
Exploring Errors in Binary-Level CFG Recovery

Anjali Pare and Prasad A. Kulkarni
Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, USA

anjali.pare@ku.edu, prasadk@ku.edu

Keywords: reverse engineering, control-flow graphs, disassembly

Abstract: The control-flow graph (CFG) is a graphical representation of the program and holds information that is criti-
cal to the correct application of many other program analysis, performance optimization, and software security
algorithms. While CFG generation is an ordinary task for source level tools, like the compiler, the loss of high-
level program information makes accurate CFG recovery a challenging issue for binary-level software reverse
engineering (SRE) tools. Earlier research shows that while advanced SRE tools can precisely reconstruct most
of the CFG for the programs, important gaps and inaccuracies remain that may hamper critical tasks, from
vulnerability and malicious code detection to adequately securing software binaries.
In this work, we perform an in-depth analysis of control-flow graphs generated by three popular reverse en-
gineering tools - angr, radare2 and Ghidra. We develop a unique methodology using manual analysis and
automated scripting to understand and categorize the CFG errors over a large benchmark set. Of the several
interesting observations revealed by this work, one that is particularly unexpected is that most errors in the
reconstructed CFGs appear to not be intrinsic limitations of the binary-level algorithms, as currently believed,
and may be simply eliminated by more robust implementations. We expect our work to lead to more accurate
CFG reconstruction in SRE tools and improved precision for other algorithms that employ CFGs.

1 INTRODUCTION

Software reverse engineering (SRE) is the process of
analyzing a software system to extract design and im-
plementation information, especially in cases when
the high-level source code is missing (Eilam, 2005).
SRE is a challenging task. The (forward) software en-
gineering process that translates a program written in
a high-level programming language to a binary exe-
cutable naturally loses important high-level program
information, including data types, function and code
layout, and control-flow information. Furthermore,
developers may use code obfuscation, hand-written
assembly code, and other such techniques to inten-
tionally make it even harder to statically recover all
aspects of the original code syntax and semantic in-
formation (Collberg et al., 1997; Cozzi et al., 2018).

SRE involves several algorithms and heuristics
that attempt to recover different aspects of program
information from the input binary. Steps include, bi-
nary disassembly – translating binary code from ma-
chine code to assembly language, decompilation –
translating assembly/machine code to a higher-level
language representation, like C/C++, and binary anal-
ysis – recovering the control-flow and data-flow in-

formation of the binary executable. These steps are
supported by several finer-level algorithms to perform
tasks, such as code discovery or code and data disam-
biguation, function entry/exit point recovery, function
signature recovery, indirect branch target resolution,
control-flow graph generation, data type recovery, ar-
ray start and bound detection, etc.

Many steps in the SRE process are speculative
and imprecise (Wartell et al., 2011; Meng and Miller,
2016). Fortunately, it is now well-established that
code that is generated by standard compilers, and
without the complexities introduced by obfuscation
and hand-written assembly, has more predictable
properties and clearer patterns (Andriesse et al., 2016;
Hawkins et al., 2017). However, even in such simpler
cases, complications remain during the SRE process
that introduce errors in the program information that
is extracted by even the most sophisticated reverse en-
gineering tools (Pang et al., 2021; Andriesse et al.,
2016). Such errors can have an out-sized effect on the
accuracy of other security and performance transfor-
mations that use this information (Caballero and Lin,
2016; Vaidya et al., 2021; Burow et al., 2017).

Measuring the precision of the different stages of
the SRE process is important to not only understand

and resolve their remaining challenges, but also to
more clearly present the capabilities of the modern
SRE tools to researchers and developers that may then
employ them to build more advanced algorithms to
improve the security and performance of binary pro-
grams. Consequently, researchers have built elabo-
rate frameworks to measure and quantify the accu-
racy of modern SRE tools for different binary analysis
tasks (Pang et al., 2021; Kline. and Kulkarni., 2023).

Unfortunately, while these assessment frame-
works and research works report the accuracy num-
bers of different SRE tasks and conduct light anal-
ysis of the results, they typically do not perform a
thorough study to deeply understand the issues that
cause the observed inaccuracies. Such a detailed
study will enable us to measure and categorize the
leading causes of the inaccuracy in different SRE pro-
cesses. We can then further study if and which cate-
gories of inaccuracies are intrinsic limitations of the
reversing process due to loss of program information,
or if they are shortcoming of the adopted algorithm or
implementation. Such detailed analysis will help the
SRE engineers resolve issues and improve their tools
or help researchers focus their efforts on developing
better algorithms for specific sub-problems.

An exhaustive study to understand errors in any
SRE process is often skipped because it may necessi-
tate a tedious manual study and reasoning over low-
level assembly/machine code. Our goal in this work is
to develop a systematic mechanism and conduct such
studies to examine and understand the sources of er-
rors in key SRE steps. In this current study, we focus
our efforts on investigating the causes of imprecision
in the important control-flow graph (CFG) recovery
step during binary disassembly1.

For this work, we employ the open-source frame-
work built by Pang et al. (Pang et al., 2021) to obtain
the ground-truth information from the LLVM com-
piler, and their binary-level scripts to retrieve the CFG
from three popular SRE tools, Angr (Shoshitaishvili
et al., 2016), Ghidra (NSA, 2023) and Radare2 (Àl-
varez, 2023). We leverage this information and de-
velop our own systematic and iterative approach us-
ing both manual analysis and automated scripting to
uncover and categorize the key causes of imprecision
during the CFG recovery by the different SRE tools
compared to the ground truth. We limit the scope of
our current work to the study of true negative CFG
edges; in other works, we only attempt to understand
why certain CFG edges that are present in the ground

1A CFG has a node for every basic block and an edge
for every possible control flow transfer in the function.
CFGs are used in static analysis and compiler applications
because of their ability to represent the flow of a program.

truth are excluded or missed in the CFGs generated
for binaries by the SRE tools.

Among the three SRE tools and benchmark sets
we employ for this work, we uncover 14 categorizes
of instruction and block patterns that account for most
of the true negative CFG edges. Surprisingly, we find
that most causes of imprecise CFG generation by SRE
tools are not intrinsic limitations imposed by the bi-
nary format, but seem to be algorithmic errors that
could be fixed by more robust tool implementation.
Researchers and tool engineers can use our results to
reduce the number of true negative CFG edges and
improve the precision of SRE tools.

We make the following contributions in this work.

1. We develop a novel semi-automatic method to
study and understand the causes of imprecision in
various stages of the SRE process.

2. We apply our methodology to study and under-
stand the causes of true negatives during binary-
level CFG recovery.

3. We categorize instruction and block patterns that
produce most true negative edges in the CFGs
generated by modern binary-level SRE tools.

4. We collect and analyze our data about the preci-
sion of CFG recovery by three modern SRE tools
collected over a large benchmark set with multiple
compilers, and report many interesting and some
counter-intuitive observations.

2 RELATED WORK

Several researchers have reported the causes of im-
precision during different steps of binary disassembly.
In this section we present related works and contrast
them with the work we do in this paper.

Binary disassembly is difficult due to the chal-
lenges imposed by separating code from data,
padding bytes inserted by the compiler for perfor-
mance improvement, variable-sized instructions, in-
direct control transfer instructions, etc. In fact, it has
been shown that solving the disassembly problem is
equivalent to the Halting Problem and is therefore un-
solvable in general (Horspool and Marovac, 1980).
Meng and Miller found example code constructs in
standard libraries that were hard to analyze for many
disassemblers (Meng and Miller, 2016). Andriesse et
al. later showed that although such hard-to-analyze
code constructs are possible, they are not very com-
mon in most unobfuscated binaries that are compiled
by standard compilers (Andriesse et al., 2016).

Pang et al. studied the accuracy of different disas-
sembly stages in 9 open-source disassemblers (Pang

et al., 2021). They also developed an experimental
methodology and framework to conduct this study.
They explored the algorithms and heuristics used dur-
ing the disassembly process by each studied tool,
and identified some of their weaknesses and benefits.
Since different SRE tools use distinct reversing al-
gorithms, their precision and effectiveness varies for
each task. Researchers have attempted to account for
this reality by developing a method to combine the
analysis results from multiple disassembler to achieve
a better overall result (Shaila et al., 2021).

In contrast, our goal in this work is to determine
and categorize the causes for imprecision in CFGs
reconstructed by popular open-source disassemblers.
We employ the framework built and open-sourced by
Pang et al. for this work (Pang et al., 2021).

3 METHODOLOGY

In this section, we discuss the experimental setup and
methodology used to study CFG reconstruction in re-
verse engineering tools, and analyze and compare the
performance of the tools.

Our unique methodology uses manual analysis
and automated scripting to understand and categorize
the CFG errors over a large benchmark set. We also
study the true positive, false positive and false nega-
tive edges of the CFGs to analyze the overall perfor-
mance of the tools. The main steps of our methodol-
ogy, including the tool analysis and CFG edge catego-
rization steps, are illustrated in Figure 1. We explain
our methodology below.

Figure 1: Methodology.

First, we determined the benchmarks and tools to
use for this work. We employ binaries from a sub-
set of the benchmarks provided by the earlier SoK
work(Pang et al., 2021). More specifically, we use
binaries from 5 categories of benchmarks: (a) 13 pro-
grams from the client set, (b) 104 programs from
coreutils (c) 3 programs from findutils, (d) 15 pro-
grams from binutils, and (e) 1 servers benchmark. All
binaries were built for the x64-Linux platform using

GCC and Clang compilers with optimization levels of
O0 and O3. We use these binaries to study the accu-
racy of control-flow graphs generated by three popu-
lar binary analysis tools, angr (version 9.2.6), radare2
(version 5.7.9) and Ghidra (version 10.1.2).

We use the scripts and ground truth information
provided by the SoK work (Pang et al., 2021) to com-
pare the accuracy of the control-flow graphs gener-
ated by each tool for our benchmark configurations.
For each case, we generate a list of true positive,
false positive and false negative edges in the respec-
tive CFG, compared to the ground truth. In this work
we focus on studying and categorizing only the true
CFG edges that are missed by the selected SRE tools.
These edges are called the false negative edges.

Next we employ manual analysis and automated
Ghidra scripting to further analyze and categorize the
false negative edges. We categorize the CFG edges
missed into 14 categories, as discussed in Section 4.

Additionally, we explore the following questions:
(1) What percentage of the CFG edges are correctly
found by the tools for all the benchmarks?
(2) What percentage of true positive edges are found
by all the tools combined for all the benchmarks?
(3) What fraction of edges are missed by each of the
tools as compared to the ground truth?
(4) What fraction of edges are missed by all the tools
combined?
(5) How do the categories of missed edges differ for
the different reverse engineering tools, compilers, op-
timization levels, and benchmarks?
(6) What are the most common categories of missed
edges for the different reverse engineering tools, com-
pilers, and optimization levels?
(7) How many additional edges (false positives) are
found?
(8) What fraction of false negative edges are missed
by pairs of tools?
(9) What fraction of common edges are found by pairs
of tools?

Finally, we determine a set of categories of false
negative edges that we believe are not caused by an
intrinsic algorithmic or analysis limitation, and hence
can be easily correctly by better software implemen-
tations. For our final post-processing step, we remove
this set of spurious false negative edges from the list
of missed edges to compute the true accuracy of the
tools regarding precise CFG generation. This compar-
ison helps us study the benefit of fixing the spurious
false negative CFG edge categories to improve CFG
precision for algorithms that require CFGs.

4 Categories of False Negative Edges

We use our methodology described in the last section
to find and analyze the most prevalent issues that re-
sult in false negative CFG edges for the three binary
analysis tools studied in this work. We use the ob-
servations from this analysis to categorize the false
negative CFG edges. We describe these causes and
categories of false negative CFG edges in this section.

Edges across functions: The binary analysis tools
sometimes miss correctly detecting edges that start at
a basic block in one function and end at a basic block
in another function. We discover these edges by ana-
lyzing the function entry points found by the respec-
tive tools. Figure 2 displays an example of this case
with an edge 0x404ba8 → 0x404bda that is missed.

void <VOID> <RETURN>

__res_context_send.cold.8

00404ba8 CALL <EXTERNAL>::abort

........

undefined AL:1 <RETURN>

_start

........

00404bda HLT

Figure 2: Edges missed across functions.

Loop Edges: Sometimes edges from a basic block
to itself are missed. Figure 4 displays an example of
this case with an edge 0x487858 → 0x487858.

LAB_00487858

00487858 ADD dnptrs,0x8

0048785c CMP qword ptr [dnptrs],0x0

00487860 JNZ LAB_00487858

Figure 3: Same edges missed.

Edges across jumps: Some edges from a basic
block that end in JMP instruction to the target basic
block are also missed. Figure 3 displays an example
of this case with an edge 0x415415 → 0x415503.

NOP Edges: Some edges from a basic block that
end in a NOP instruction to the following block are

LAB_00415415

........

00415433 JMP LAB_00415503

LAB_00415503

00415503 MOV dword ptr [RBP + local_2c],0x0

........

Figure 4: Jump edges missed.

missed. Figure 5 displays an example of this case with
an edge 0x4072ba → 0x4072bb that is missed.

LAB_004072ba

004072ba NOP

LAB_004072bb

004072bb MOV RAX,qword ptr [RBP + local_10]

........

Figure 5: Nop edges missed.

Conditional Edges: Sometimes the taken or the
fall-through edges from a block that ends in a con-
ditional jump (such as JZ) are missed. Figures 6 and
Figure 7 display examples of this case with the fall-
through edge 0x48159a → 0x48175b, or the taken
edge 0x48159a → 0x481760 missed, respectively.

0048159a MOV RAX,qword ptr [RBP + local_120]

........

00481759 JZ LAB_00481760

0048175b CALL <EXTERNAL>::__stack_chk_fail

Figure 6: Conditional edges missed 1.

Indirect Call Edges: Sometimes edges from a ba-
sic block that end in an indirect call to the fol-
lowing block miss detection by the tools. Figure
8 displays an example of this case with an edge
0x4324af → 0x4324cc that is missed.

0048159a MOV RAX,qword ptr [RBP + local_120]

........

00481759 JZ LAB_00481760

LAB_00481760

00481760 ADD RSP,0x110

........

Figure 7: Conditional edges missed 2.

004324af MOV RAX,qword ptr [RBP + local_10]

........

004324ca CALL RAX

LAB_004324cc

004324cc MOV RAX,qword ptr [RBP + local_10]

........

Figure 8: Indirect Call edges missed.

Across Block Edges: There are cases when the
SRE tools end basic blocks at non-terminator in-
structions (instructions like a JMP or a JNZ are
terminators). This situation happens for large
basic blocks. The ground truth (from LLVM)
does not perform the block split. For example,
the ground truth may have a single edge from
0x455c3d → 0x455f15. For large basic blocks, the
tools may split the basic blocks and find mul-
tiple edges (for instance, 0x455c3d → 0x455d42,
0x455d42 → 0x455d8a, 0x455d8a → 0x455f15), but
not the edge in the ground truth. Then, the edge in
the ground truth shows up as a false negative (while
edges from the split basic blocks are detected as false
positives).

Undefined Function Edges: There are some cases
where the tools are unable to determine the function
starting address, which leads to undefined function
edges. In Ghidra’s decompiler window, these func-
tions are labeled as UndefinedFunction. Figure 9 dis-
plays an example of this case with a false negative
edge 0x403658 → 0x40368a

void UndefinedFunction_00403656(void)

{

FUN_00402f20();

return;

}

Figure 9: Undefined function edges missed.

MOV Edges: Some edges from a basic block
that end in a MOV or a MOVZX instruction to
the following block also go undetected. Figure
10 displays an example of this case with an edge
0x406269 → 0x40626d that is missed by some tools.

00406269 MOV RAX, qword ptr [RBP + local_18]

0040626d LEAVE

0040626e RET

Figure 10: Mov edges missed.

Call Edges: There are some cases where the tools
miss edges that start at a block that terminates
with a CALL instruction to a function and ends at
a block following the CALL instruction. Figure
11 displays an example of this case with an edge
0x44eccb → 0x44ece9 that is missed.

LAB_0044eccb

0044eccb MOV ESI,dword ptr [RBP + local_c]

........

0044ece4 CALL sshpkt_fatal

LAB_0044ece9

0044ece9 MOV EAX,0x0

Figure 11: Call edges missed.

Add Edges: These are missed edges from a basic
block that end in an ADD instruction to the following
block. Figure 12 displays an example of this case with
an edge 0x404657 → 0x40465f that is missed.

LAB_00404657

00404657 MOV tz, qword ptr [RSP + local_4b8]

0040465c ADD tz,R13

LAB_0040465f

0040465f MOV R13, qword ptr [RSP + local_4a8]

Figure 12: Add edges missed.

Code Mislabeled Data: There are some cases
where the SRE tools find it difficult to distinguish
the code and data sections of the code. This leads
to missed edges in these sections.

Add Jump Edges: Some CFG edges from a basic
block that end in an ADD instruction to the follow-
ing block that starts with a JMP instruction were also
missed. Figure 13 displays an example of this case
with an edge 0x459df4 → 0x459e06 that is missed

00459df4 LEA RAX,[switchD_00459e06::switchD_0046c4b0]

00459e03 ADD RDX, RAX

switchD_00459e06::switchD

00459e06 JMP RDX

Figure 13: Add Jump edges missed.

Unresolved Edges: There are a few false negative
CFG edges that we could not match with a common
pattern. We leave such edges as unresolved edges.

5 Results

We study the true positive, false negative and false
positive edges of a control-flow graphs to analyze the
performance of the tools in CFG generation. We re-
port our results and observations in this section.

5.1 True Positive Edges

Table 1 provides information about the percentage of
edges found by the tools for GCC and Clang with op-
timization levels of O0 and O3. As seen in the table,
all the tools are able to find most of the edges in the

ground truth. It is observed that all the tools perform
the same or better in most cases when compiled with
GCC_O0 as opposed to GCC_O3. angr displays a
similar pattern for binaries compiled with Clang as
well. No such consistent pattern was observed with
radare2 or Ghidra for Clang. Next, angr and radare2
performed comparatively better than Ghidra for all the
benchmarks. In addition, performance of the tools
was better when compiled with GCC as compared to
Clang for optimization level O0.

Table 2 provides information about the percentage
of edges found by all the tools combined as compared
to the ground truth. Similar to the results seen in Table
1, performance of the tools was better when compiled
with GCC as compared to Clang for both optimization
levels, O0 and O3.

5.2 Edges Missed by the Tools

Table 3 provides information about the total num-
ber of edges missed individually and the common
edges missed by the tools as compared to the ground
truth. As seen in the table, when the total number of
edges missed across all the benchmarks is calculated,
angr has the least and Ghidra has the highest num-
ber of false negative edges. Furthermore, the num-
ber of edges missed when all three tools are used, is
significantly lower compared to their individual per-
formance for all the benchmarks. In addition, when
the overall performance of the compilers is observed
across all the benchmarks and tools, we see that bina-
ries compiled with GCC generate a lesser number of
false negative edges as compared to those compiled
with Clang, which implies better performance. This
observation is similar to that seen in Table 2.

5.3 Types of Edges Missed by the Tools

As mentioned in section 4, we categorized the edges
missed into 14 types. For more efficient analysis, we
combine the ADD, ADD JMP, and MOV edge cate-
gories into a Fall Through edge category.

As seen in Table 3, the number of edges missed by
the combination of all the tools is lower compared to
their individual performance. These edges are catego-
rized in Table 4. We find that NOP, Undefined Func-
tion and Call edges have the highest number of edges.
angr misses a higher number of NOP, Call and Code
Mislabeled Data edges. radare2 and Ghidra miss
NOP, Undefined Function, and Call edges, most com-
monly. In addition, binaries compiled with GCC_O3
have the highest number of missed NOP edges fol-
lowed by Call and Undefined function edges. A simi-
lar behavior was observed for binaries compiled with

Table 1: Percentage of edges found by the tools for GCC_O0, GCC_O3, Clang_O0 and Clang_O3

Files Tools GCC_O0 GCC_O3 Clang_O0 Clang_O3

Coreutils
angr 0.9983 0.9746 0.9971 0.9824

radare2 0.9805 0.9776 0.9688 0.9888
Ghidra 0.9660 0.9578 0.9200 0.8599

Findutils
angr 0.9994 0.9821 0.9974 0.9872

radare2 0.9974 0.9695 0.9786 0.9919
Ghidra 0.9757 0.9698 0.8661 0.9427

Binutils
angr 0.9936 0.9706 0.9642 0.9822

radare2 0.9463 0.9866 0.9779 0.9526
Ghidra 0.9336 0.9765 0.8433 0.9091

Clients
angr 0.9962 0.9758 0.9920 0.9826

radare2 0.9932 0.9871 0.9897 0.9925
Ghidra 0.9734 0.9684 0.9669 0.9767

Servers
angr - - 0.9941 0.9857

radare2 - - 0.9993 0.9957
Ghidra - - 0.9389 0.9684

Table 2: Percentage of combined edges found by the tools for GCC_O0, GCC_O3, Clang_O0 and Clang_O3

Files GCC_O0 GCC_O3 Clang_O0 Clang_O3
Coreutils 0.95 0.92 0.89 0.84
Findutils 0.97 0.93 0.85 0.93
Binutils 0.90 0.94 0.82 0.88
Clients 0.97 0.96 0.96 0.96
Servers - - 0.94 0.96

Clang_O3. For binaries compiled with Clang_O0,
Jump, NOP and Undefined Function edges were most
commonly missed.

As seen in Table 4, there are some edges that are
categorized differently by different tools. For instance
Ghidra labels 26 edges as missed Across Block edges
for GCC_O3. However, these are categorized as Fall
through edges by angr and radare2. A similar case is
observed for Clang_O0. For Clang_O3, the 8 edges
found by Ghidra in the Across Block category are la-
beled as unresolved by angr and radare2. Another
such instance is the Undefined Function and Code
Mislabeled as Data edges. angr labels most of these
edges as Code Mislabeled as Data whereas radare2
and Ghidra label them as Undefined Function edges.

Table 5 and Table 6 provide information about
the types of false negative edges for different reverse
engineering tools, different compilers, different opti-
mization levels, and different types of benchmarks.
Based on the table, Undefined Function, Code Misla-
beled as Data, Across Block, Conditional, and Jump
edge categories have the highest number of edges.

angr misses a higher number of Across Block,

Conditional, Jump, and Fall through edges. radare2
misses a higher number of Conditional, Undefined
Function, Fall Through and Jump edges. Ghidra
misses Across Block, Jump, Undefined Function and
Code Mislabeled as Data edges, most commonly.
Compared to the other tools, Ghidra misses the most
cases of Across Block and Code Mislabeled as Data
edges, whereas angr misses the most cases of Indirect
call and Loop edges. radare2 misses the most cases
of Conditional and Fall through edges as compared
to the other tools. Furthermore, when compiled with
optimization level of O3, the number of NOP edges
missed by the tools increases considerably.

5.4 True Positive Edges after Post
Processing

Apart from the Across function, Indirect Call, Unde-
fined Function and Code Mislabeled as Data Edges,
all the other category edges can be added during the
post processing analysis of the CFGs. Once these
edges are added and are no longer considered as false
negative edges, we compare the new performance of

Table 3: Number of edges missed by the tools. GT, A, R, G stand for ground truth, angr, radare2 and Ghidra, respectively

Files Compiler GT A R G All A % R % G % All %

Coreutils

GCC_O0 199037 342 3881 6771 0 0.17 1.95 3.40 0.00
GCC_O3 216305 5498 4841 9131 77 2.54 2.24 4.22 0.04
Clang_O0 248508 716 7744 19877 11 0.29 3.12 8.00 0.00
Clang_O3 214830 3777 2397 30106 49 1.76 1.12 14.01 0.02

Findutils

GCC_O0 26049 16 69 633 0 0.06 0.26 2.43 0.00
GCC_O3 31497 565 960 951 11 1.79 3.05 3.02 0.03
Clang_O0 39728 104 852 5318 0 0.26 2.14 13.39 0.00
Clang_O3 30320 389 246 1736 14 1.28 0.81 5.73 0.05

Binutils

GCC_O0 118531 759 6369 7867 0 0.64 5.37 6.64 0.00
GCC_O3 116809 3435 1565 2747 108 2.94 1.34 2.35 0.09
Clang_O0 125622 4498 2775 19683 4 3.58 2.21 15.67 0.00
Clang_O3 125514 2240 5954 11407 78 1.78 4.74 9.09 0.06

Clients

GCC_O0 199649 756 1367 5319 2 0.38 0.68 2.66 0.00
GCC_O3 245260 5937 3154 7762 506 2.42 1.29 3.16 0.21
Clang_O0 257032 2047 2659 8512 93 0.80 1.03 3.31 0.04
Clang_O3 257848 4483 1922 6002 179 1.74 0.75 2.33 0.07

Servers Clang_O0 14293 84 10 874 0 0.59 0.07 6.11 0.00
Clang_O3 14675 210 63 463 5 1.43 0.43 3.16 0.03

Total 2481507 35856 46828 145159 1137 1.44 1.89 5.85 0.05

Table 4: Types of false negative edges missed by all the tools across all the benchmarks. A, R, G stand for angr, radare2 and
Ghidra, respectively

Compiler GCC_O0 GCC_O3 Clang_O0 Clang_O3
Tool A R G A R G A R G A R G

Across Blocks 0 0 0 0 0 26 0 0 13 0 0 8
Across Func 2 2 2 0 0 0 0 0 0 0 0 0
Conditional 0 0 0 18 18 18 0 0 0 0 0 0

Jump 0 0 0 6 6 6 25 25 25 12 12 12
Loop 0 0 0 0 0 0 14 14 14 5 5 5
Call 0 0 0 98 99 99 1 1 1 2 2 2
Nop 0 0 0 470 470 470 16 16 16 245 245 245

Undef Func 0 0 0 3 69 69 6 33 33 50 50 50
Fall Through 0 0 0 31 31 6 13 13 0 1 1 1

Code Data 0 0 0 72 5 5 33 6 6 2 2 2
Unresolved 0 0 0 4 4 3 0 0 0 8 8 0

Total 2 2 2 702 702 702 108 108 108 325 325 325

the tools to the ground truth. Table 7 provides infor-
mation about the percentage of edges found by the
tools for GCC and Clang with optimization levels of
O0 and O3 after post processing. Similar to the data
presented in Table 1, all the tools are able to find most
of the edges in the ground truth. However, after post
processing, it is observed that the performance of the
tools improved for all the benchmarks. This compari-

son helps us study the impact of our work in generat-
ing more accurate CFGs that further lead to improved
precision for other algorithms that require CFGs.

5.5 Across Function Edges

We use manual analysis and scripting to determine
the Across Function edges present in the ground truth.

Table 5: Types of false negative edges across all the benchmarks. A, R, G stand for angr, radare2 and Ghidra, respectively

Compiler GCC_O0 GCC_O3 Clang_O0 Clang_O3
Tool A R G A R G A R G A R G

Across Blocks 745 140 18699 5974 160 15971 224 61 11263 527 88 8150
Across Func 2 3 2 0 0 2 2 4 1 0 0 0
Conditional 342 1360 158 4422 3614 27 955 4999 2 5764 1778 1033

Jump 116 4439 232 3517 3588 217 2072 3970 6293 3131 5076 3974
Loop 0 0 0 23 0 4 33 14 20 309 5 315
Call 326 22 19 212 262 522 159 45 75 293 87 341

Indirect 226 1 2 156 0 1 279 0 1 239 0 1
Nop 4 142 4 507 499 471 16 17 16 250 274 260

Undef Func 0 1406 1211 138 1830 2304 48 1683 1702 117 57 3143
Fall Through 111 3981 48 403 524 17 3569 2686 16 386 1647 74

Code Data 0 185 214 77 9 1031 80 563 34845 36 1542 32113
Unresolved 1 7 1 6 34 24 12 0 30 47 28 310

Since these edges start at a basic block in one function
and end at a basic block in another function, they are
incorrect and should not be present in the CFG. We
find 5 such cases in the ground truth. When we ob-
serve the Across Function edges missed by the tools
in Table 5, we find that angr, radare2 and Ghidra miss
4, 7 and 5 such edges, respectively.

5.6 True Positive Edges after Post
Processing

Table 7 provides information about the percentage of
edges found by the tools for GCC and Clang with op-
timization levels of O0 and O3 after post processing.
Similar to the data presented in Table 1, all the tools
are able to find most of the edges in the ground truth.
However, after post processing, it is observed that the
performance of the tools improved for all the bench-
marks.

6 Discussion

6.1 Edges Missed by the Tools

As seen in the Table 3, edges missed by the combina-
tion of all the tools was lower than the edges missed
individually. This would imply that utilizing all the
SRE tools leads to lower false negative edges. For
most of the missed edges, there was at least one tool
that was able to find it accurately and lead to better
CFG reconstruction.

As previously mentioned, there are some false
negative edge cases that could be easily eliminated.

These categories include Conditional, Jump, Loop,
Call, NOP, Fall through and Across Block edges. It is
unclear why the algorithms that the tools use lead to
these categories of false negative edges. However, be-
cause of the nature of these edges, they may be elim-
inated during post processing. Once the edges are
removed, we calculate the performance of the tools
as shown in Table 7. After post processing, the per-
formance of the tools significantly improved which
shows that with more robust implementations, we will
be able to generate more accurate CFGs.

6.2 Types of Edges Missed by the Tools

As seen in the previous section, some of the false
negative edges missed are Code Mislabeled as Data
edges. It is hard for reverse engineering tools to sep-
arate code and data regions. Therefore, we see a high
number of edges mislabeled as data leading to false
negative edges.

With the help of Ghidra’s listing view, we are able
to view bytes that Ghidra was able to disassemble
but not assign to a particular function. Ghidra labels
these functions as UndefinedFunctions. Such func-
tions may be created by the SRE tools when they are
unable to determine the start address of the function.
Because of this, these edges are not analyzed and lead
to false negatives. To reduce the false negative edges,
the tools would need to accurately determine the func-
tion start and end addresses.

Another category with a high number of false neg-
ative edges is the Across Blocks edge category. angr
researchers informed us that these edges are missed
because of a limitation that angr inherits from lib-
vex. This limitation states that basic blocks can only

Table 6: Types of false negative edges

Files Compiler Blocks Func Cond Jump Loop Call Indirect Nop Undef Func Fall-Through Code Data Unresolved

Clients GCC_O0 320 2 217 30 0 73 110 0 0 3 0 1
GCC_O3 2124 0 2315 625 22 138 98 338 39 156 77 5

angr Clang_O0 190 1 927 393 33 66 161 16 48 170 32 10
Clang_O3 318 0 2965 652 53 11 145 159 36 116 1 27

Clients GCC_O0 21 2 85 34 0 6 0 2 1210 6 0 1
GCC_O3 18 0 118 707 0 101 0 305 1761 133 4 7

radare2 Clang_O0 10 2 191 475 14 18 0 17 1667 65 200 0
Clang_O3 8 0 834 698 0 66 0 169 26 84 20 17

Clients GCC_O0 4078 2 0 0 0 4 0 0 1205 2 28 0
GCC_O3 4337 0 25 84 3 122 0 305 2129 17 729 11

Ghidra Clang_O0 1727 1 2 1003 20 44 0 16 1702 9 3967 21
Clang_O3 1166 0 900 345 55 37 0 162 874 66 2374 23

Coreutils GCC_O0 106 0 112 47 0 10 67 0 0 0 0 0
GCC_O3 1967 0 1197 2142 0 27 44 70 51 0 0 0

angr Clang_O0 28 0 6 541 0 10 60 0 0 71 0 0
Clang_O3 135 0 1474 1817 193 23 48 37 13 36 1 0

Coreutils GCC_O0 105 1 987 1374 0 9 1 133 174 1091 0 6
GCC_O3 123 0 2070 2172 0 40 0 89 59 262 4 22

radare2 Clang_O0 42 0 3197 2089 0 20 0 0 12 2332 52 0
Clang_O3 66 0 440 1740 1 13 0 43 13 39 42 0

Coreutils GCC_O0 6755 0 0 0 0 9 2 0 4 0 1 0
GCC_O3 8289 0 0 111 0 327 1 71 151 0 173 8

Ghidra Clang_O0 4469 0 0 1875 0 13 1 0 0 0 13519 0
Clang_O3 2186 0 115 2751 196 229 0 44 1943 3 22397 242

Findutils GCC_O0 6 0 2 4 0 0 4 0 0 0 0 0
GCC_O3 234 0 166 108 1 0 3 11 14 28 0 0

angr Clang_O0 1 0 2 97 0 0 4 0 0 0 0 0
Clang_O3 43 0 231 74 14 0 3 3 10 6 5 0

Findutils GCC_O0 1 0 2 32 0 0 0 3 0 31 0 0
GCC_O3 3 0 752 71 0 120 0 12 0 1 1 0

radare2 Clang_O0 2 0 394 273 0 4 0 0 4 173 2 0
Clang_O3 1 0 120 93 0 1 0 9 10 11 1 0

Findutils GCC_O0 633 0 0 0 0 0 0 0 0 0 0 0
GCC_O3 714 0 2 7 1 73 0 11 9 0 129 5

Ghidra Clang_O0 218 0 0 414 0 17 0 0 0 0 4668 1
Clang_O3 314 0 6 144 14 74 0 3 23 1 1144 13

Binutils GCC_O0 313 0 11 35 0 243 45 4 0 108 0 0
GCC_O3 1649 0 744 642 0 47 11 88 34 219 0 1

angr Clang_O0 1 1 16 1032 0 81 29 0 0 3292 44 2
Clang_O3 23 0 989 532 49 253 25 48 56 216 29 20

Binutils GCC_O0 13 0 286 2999 0 7 0 4 22 2853 185 0
GCC_O3 16 0 674 638 0 1 0 93 10 128 0 5

radare2 Clang_O0 5 0 1215 1130 0 3 0 0 0 113 309 0
Clang_O3 11 0 384 2489 4 7 0 50 6 1513 1479 11

Binutils GCC_O0 7233 0 158 232 0 6 0 4 2 46 185 1
GCC_O3 2631 2 0 15 0 0 0 84 15 0 0 0

Ghidra Clang_O0 4722 0 0 2899 0 1 0 0 0 6 12048 7
Clang_O3 4388 0 12 718 49 1 1 48 215 4 5941 30

Servers Clang_O0 4 0 4 9 0 2 25 0 0 36 4 0
angr Clang_O3 8 0 105 56 0 6 18 3 2 12 0 0

Servers Clang_O0 2 2 0 3 0 0 0 0 0 3 0 0
radare2 Clang_O3 2 0 0 56 0 0 0 3 2 0 0 0
Servers Clang_O0 127 0 0 102 0 0 0 0 0 1 643 1
Ghidra Clang_O3 96 0 0 16 1 0 0 3 88 0 257 2
Total 62002 16 24454 36625 723 2363 906 2460 13639 13462 70695 500

contain certain number of instructions after which the
blocks are terminated. This leads to the Across Block
edge category edges in angr. A similar pattern is ob-
served in Ghidra and radare2 when the basic blocks
contain a higher number of instructions.

Fall-through edges were another category of edges
that were commonly missed by the tools. One reason

for this could be that the tools are unable to determine
if the instructions in the fall-through blocks are reach-
able. In addition, the tools could potentially miss call
edges if they are unable to determine whether a func-
tion returns or not. A call to a non-returning function
will not return to the call site and this would lead to
false negative edges.

Table 7: Percentage of edges found by the tools for GCC_O0, GCC_O3, Clang_O0 and Clang_O3 after post processing

Files Tools GCC_O0 GCC_O3 Clang_O0 Clang_O3

Coreutils
angr 0.9997 0.9996 0.9998 0.9997

radare2 0.9991 0.9996 0.9997 0.9997
Ghidra 1.0000 0.9985 0.9456 0.8856

Findutils
angr 0.9998 0.9995 0.9999 0.9994

radare2 1.0000 0.9999 0.9998 0.9996
Ghidra 1.0000 0.9955 0.8825 0.9611

Binutils
angr 0.9996 0.9996 0.9994 0.9990

radare2 0.9983 0.9999 0.9975 0.9881
Ghidra 0.9984 0.9999 0.9040 0.9507

Clients
angr 0.9994 0.9991 0.9990 0.9992

radare2 0.9939 0.9928 0.9927 0.9998
Ghidra 0.9938 0.9883 0.9779 0.9873

Servers
angr - - 0.9980 0.9986

radare2 - - 0.9999 0.9999
Ghidra - - 0.9549 0.9764

Indirect Call edges were another category of false
negative edges discussed in this study. Indirect branch
targets depend on values that are computed at run-
time. Therefore, predicting these statically may be
challenging. As seen previously, if the tools are un-
able to determine whether the indirect call target is a
returning or non-returning function they could poten-
tially miss these edges.

Table 5 displays the types of edges missed by the
tools. Here it was observed that when compiled with
higher optimization levels, the number of NOP edges
missed increases. This may be observed because with
higher optimization levels, NOP instructions need to
be added for code alignment in the basic blocks.

As seen in Table 4 and 5, tools may categorize
certain edges differently. The tools categorize the
false negative edges based on the control-flow edges
found by them. For example, if a tool does not cor-
rectly identify a particular function start address, it
would categorize that edge as an Undefined Function
edge. If the other tools were able to find the function
start address correctly, but the edge was still missed,
it would be categorized as a different false negative
edge type.

6.3 Across Function Edges

We find that the ground truth finds 5 Across Func-
tion edges across all the benchmarks. angr, radare2
and Ghidra miss 4, 7 and 5 such edges, respectively.
As mentioned previously, these edges are categorized
as Across Function edges based on the function en-
try points found by the tools. radare2 may miss some

function entry points which leads to additional across
function edges missed by the tool.

6.4 Compiler optimization

We did not find significant or consistent differences in
the performance of the tools when optimization lev-
els of O0 and O3 were used. We hypothesize that
since most optimizations that the compiler applies are
intra-block and keep the structure of the block intact,
we do not see a significant decline or improvement
in the performance of the tools when different com-
piler optimization levels are used. Although, when
overall performance was observed, the tools gener-
ated more accurate CFGs when binaries were com-
piled with GCC as opposed to Clang. For this reason,
we hypothesize that the tools are configured to per-
form better on binaries compiled with GCC.

7 Future Work

There are multiple avenues for future work. Firstly,
in this work we only study and categorize the false
negative edges of the CFG generated by mainstream
binary analyzers. In the future we will perform a sim-
ilar analysis on the false positive edges of the CFGs.
Secondly, we observe that the edges missed by all
the tools combined is lower than the edges missed
by individual tools. We plan to use this observa-
tion to develop techniques that could utilize multiple
tools leads to lower the overall false negative edges.

Thirdly, we will extend these results will new bench-
marks, compilers and binary analysis tools. Finally,
one of our main contributions of this work is the ob-
servation that many categories of false negative edges
are not intrinsic limitations of the analysis algorithms,
but seem to be caused by spurious implementation
oversights. Therefore, an important future project
is to attempt to fix such mistakes to directly resolve
many causes of erroneous CFG edges generated by
these tools.

8 Conclusion

In this paper we studied three reverse engineering
tools angr, radare2 and Ghidra. We used the bench-
marks and framework developed in the SoK Binary
Disassembly paper (Pang et al., 2021) to compare our
results and perform an in-depth analysis of control-
flow graphs generated by the tools. We focused on
binaries for the x64 architecture, built for Linux oper-
ating systems using GCC and Clang compilers, with
optimization levels of O0 and O3. With the help of
this paper, we studied the performance of the tools for
different compilers and optimization levels, found the
true positive and false negative edges, categorized the
false negative edges, and compared the performance
of the tools before and after post processing. By us-
ing manual analysis and scripting, we were able to
identify that most errors in the generation of CFGs
are not because of the limitations of the algorithms.
Therefore, they can be easily eliminated by more ro-
bust implementations. With the help of this paper, we
aimed to provide information about CFG reconstruc-
tion errors that may lead to more accurate CFG gen-
eration in the SRE tools and any other algorithms that
use CFGs.

REFERENCES

Andriesse, D., Chen, X., Van Der Veen, V., Slowinska, A.,
and Bos, H. (2016). An in-depth analysis of disassem-
bly on full-scale x86/x64 binaries. In Proceedings of
the 25th USENIX Conference on Security Symposium,
SEC’16, page 583–600, USA. USENIX Association.

Burow, N., Carr, S. A., Nash, J., Larsen, P., Franz, M.,
Brunthaler, S., and Payer, M. (2017). Control-flow
integrity: Precision, security, and performance. ACM
Comput. Surv., 50(1).

Caballero, J. and Lin, Z. (2016). Type inference on executa-
bles. ACM Comput. Surv., 48(4).

Collberg, C., Thomborson, C., and Low, D. (1997). A tax-
onomy of obfuscating transformations. Technical re-

port, Department of Computer Science, The Univer-
sity of Auckland, New Zealand.

Cozzi, E., Graziano, M., Fratantonio, Y., and Balzarotti, D.
(2018). Understanding linux malware. In 2018 IEEE
symposium on security and privacy (SP), pages 161–
175. IEEE.

Eilam, E. (2005). Reversing: Secrets of Reverse Engineer-
ing. John Wiley amp; Sons, Inc., USA.

Hawkins, W., Hiser, J. D., Nguyen-Tuong, A., Co, M., and
Davidson, J. W. (2017). Securing binary code. IEEE
Security Privacy, 15(6):77–81.

Horspool, R. N. and Marovac, N. (1980). An approach to
the problem of detranslation of computer programs.
The Computer Journal, 23(3):223–229.

Kline., J. and Kulkarni., P. (2023). A framework for as-
sessing decompiler inference accuracy of source-level
program constructs. In Proceedings of the 9th In-
ternational Conference on Information Systems Secu-
rity and Privacy - ICISSP,, pages 228–239. INSTICC,
SciTePress.

Meng, X. and Miller, B. P. (2016). Binary code is not easy.
In Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, page
24–35, New York, NY, USA. Association for Comput-
ing Machinery.

NSA (2023). Ghidra. https://ghidra-sre.org/.
Pang, C., Yu, R., Chen, Y., Koskinen, E., Portokalidis, G.,

Mao, B., and Xu, J. (2021). Sok: All you ever wanted
to know about x86/x64 binary disassembly but were
afraid to ask. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 833–851.

Shaila, S., Darki, A., Faloutsos, M., Abu-Ghazaleh, N., and
Sridharan, M. (2021). Disco: Combining disassem-
blers for improved performance. In Proceedings of
the 24th International Symposium on Research in At-
tacks, Intrusions and Defenses, pages 148–161.

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N.,
Polino, M., Dutcher, A., Grosen, J., Feng, S., Hauser,
C., Kruegel, C., and Vigna, G. (2016). SoK: (State
of) The Art of War: Offensive Techniques in Binary
Analysis. In IEEE Symposium on Security and Pri-
vacy.

Vaidya, R., Kulkarni, P. A., and Jantz, M. R. (2021). Ex-
plore capabilities and effectiveness of reverse engi-
neering tools to provide memory safety for binary pro-
grams. In Deng, R., Bao, F., Wang, G., Shen, J., Ryan,
M., Meng, W., and Wang, D., editors, Information Se-
curity Practice and Experience, pages 11–31, Cham.
Springer International Publishing.

Wartell, R., Zhou, Y., Hamlen, K. W., Kantarcioglu, M.,
and Thuraisingham, B. (2011). Differentiating code
from data in x86 binaries. In Machine Learning and
Knowledge Discovery in Databases: European Con-
ference, ECML PKDD 2011, Athens, Greece, Septem-
ber 5-9, 2011, Proceedings, Part III 22, pages 522–
536. Springer.

Àlvarez, S. (2023). The official radare2 book.
https://book.rada.re/index.html.

