
Code Cache Management in Managed Language VMs to
Reduce Memory Consumption for Embedded Systems

Forrest J. Robinson
EECS, University of Kansas, USA

fjrobinson@ku.edu

Michael R. Jantz
EECS, University of Tennessee, USA

mrjantz@utk.edu

Prasad A. Kulkarni
EECS, University of Kansas, USA

prasadk@ku.edu

Abstract
The compiled native code generated by a just-in-time (JIT) com-
piler in managed language virtual machines (VM) is placed in a
region of memory called the code cache. Code cache management
(CCM) in a VM is responsible to find and evict methods from the
code cache to maintain execution correctness and manage program
performance for a given code cache size or memory budget. Effec-
tive CCM can also boost program speed by enabling more aggres-
sive JIT compilation, powerful optimizations, and improved hard-
ware instruction cache and I-TLB performance.

Though important, CCM is an overlooked component in VMs.
We find that the default CCM policies in Oracle’s production-grade
HotSpot VM perform poorly even at modest memory pressure.
We develop a detailed simulation-based framework to model and
evaluate the potential efficiency of many different CCM policies
in a controlled and realistic, but VM-independent environment. We
make the encouraging discovery that effective CCM policies can
sustain high program performance even for very small cache sizes.

Our simulation study provides the rationale and motivation to
improve CCM strategies in existing VMs. We implement and study
the properties of several CCM policies in HotSpot. We find that
in spite of working within the bounds of the HotSpot VM’s current
CCM sub-system, our best CCM policy implementation in HotSpot
improves program performance over the default CCM algorithm by
39%, 41%, 55%, and 50% with code cache sizes that are 90%, 75%,
50%, and 25% of the desired cache size, on average.

Categories and Subject Descriptors D.3 [Software]: Program-
ming languages; D.3.4 [Programming Languages]: Processors—
Compilers, Run-time environments

General Terms Performance, Measurement, Languages

Keywords Code-cache, Memory-constrained, HotSpot JVM

1. Introduction
The rise of Java in the mid-1990’s introduced managed runtime
environments or virtual machines (VM) to mainstream computing
devices, including embedded and mobile systems. High-level man-
aged languages running within a VM, such as Java and JavaScript,
have gained extensive adoption since they typically support high-

level programming language semantics, portable binary distribu-
tion formats, and safe and secure program execution.

VMs execute the portable architecture-independent program bi-
naries using interpretation or binary translation. Program emula-
tion via interpretation is inherently slow [23]. Therefore, modern
VMs, like those included with web browsers and most Java virtual
machines (JVM), employ just-in-time (JIT) compilation to trans-
late (important sections of) the input binary to native code at run-
time [10, 20]. The generated native code is stored in a region of
heap memory, called the code cache. Thus, the code cache storage
enables the native code produced after JIT compilation to be reused
later, without re-generating it on every invocation of that region.

JIT compilation consumes computational resources and mem-
ory to hold the generated native code at run-time. To trade-off
the run-time JIT compilation cost with overall program execution
speed, many VMs employ a technique called selective compila-
tion to only translate and optimize the frequently used (or hot)
sections of the program [16, 21]. Unfortunately, even with selec-
tive compilation, the memory footprint of the code cache can be-
come significant, especially for memory constrained embedded de-
vices [12, 25]. A large code cache can reduce the memory available
to the rest of the executing application, increase the frequency and
cost of garbage collection, and decrease overall device response
time by lowering the number of programs that are simultaneously
resident in memory.

Small embedded devices, such as wearables, often feature pow-
erful multi-core processors, but can only accommodate modest
memory capacities. 1 Our measurements reveal that compiling only
the hot program methods (with Oracle’s production-grade HotSpot
c1 compiler [20]) for just the startup run of the standard DaCapo
benchmarks [6] results in an average code cache size of over 4MB
(see Table 1). Google reported that with Android 4.4, many mo-
bile apps tend to max out the code cache fairly quickly (which by
default had been set to 1MB).2 In fact, with Dalvik, Google recom-
mended the JIT compiler to be entirely disabled for low-memory
devices to overcome the increase in memory consumption due to
the code cache. However, disabling JIT compilation can signifi-
cantly degrade program speed. Therefore, it is a critical research
challenge to efficiently and accurately determine which methods
should reside in the code cache when memory is scarce to maxi-
mize overall program performance.

The code cache management (CCM) algorithm was initially de-
signed to maintain program execution correctness in dynamic lan-
guage VMs by evicting previously compiled regions from the code
cache if the assumptions made during compilation are later found

1 Android smart-watches have adopted dual-core and quad-core ARM Cor-
tex based processors, but typically offer not more than 512MB of memory.
https://wtvox.com/smartwatches/best-smartwatch-top-10/
2 http://source.android.com/devices/tech/config/low-ram.html



to be incorrect. The CCM algorithm in current VMs is also respon-
sible for finding and evicting compiled regions to accommodate na-
tive code from later compilations if the code cache is full. The CCM
algorithm has a choice when selecting a method to purge from the
code cache. Ideally, the algorithm needs to find a method that is
not currently hot and will not become hot and trigger a recompi-
lation in the future. Better code cache management can enable the
VM to support larger applications, and enhance performance by
allowing a greater number of (phase-specific) compilations [19],
enabling more powerful optimizations (like aggressive inlining for
critical methods) [18], and enhancing instruction cache and instruc-
tion translation look-aside buffer (I-TLB) performance [12].

In this work we investigate the effectiveness of different CCM
strategies to sustain program performance with lower code cache
sizes. We find that the default CCM policies supported in the
HotSpot JVM produce large performance losses even with mod-
est code cache size pressure. We design a novel simulation-based
framework to model and evaluate the potential efficiency of differ-
ent CCM policies in a controlled and realistic environment that is
isolated from VM and hardware specific implementation factors.
Encouraging results from this modeling study provide the rationale
to design and develop improved CCM methods during actual VM
executions. We extend the current CCM algorithm in HotSpot and
implement and compare new profiling based CCM policies. Even
with minimal changes to the rest of HotSpot’s code cache infras-
tructure, we find that better CCM policies improve average pro-
gram performance by 39%, 41%, 55%, 58%, and 50% when code
cache sizes are limited to 90%, 75%, 50%, 40%, and 25% of the
desired cache sizes respectively.

Thus, we make the following contributions in this work:

1. We conduct experiments to measure the impact of constrained
code cache sizes on program performance with existing CCM
algorithms in HotSpot.

2. We design and build a detailed modeling framework to inves-
tigate the effectiveness of different ideal, offline, and online-
reactive profiling-based CCM algorithms. The theoretical ideal
CCM technique uses knowledge about the future program be-
havior to select the methods to evict, and provides a baseline to
compare the efficiency of other practical CCM policies. To un-
derstand their potential, our offline and online profiling based
CCM models employ the best profiles possible with each tech-
nique by discarding the physical costs of profile data collection.

3. We extend existing and implement new CCM policies in
HotSpot, evaluate their performance, and assess the impact of
profiling overheads and other implementation factors imposed
by HotSpot on the effectiveness of CCM techniques.

The rest of this paper is organized as follows. We present back-
ground regarding the CCM infrastructure in the HotSpot VM in
the next section. We describe the experimental results with current
CCM techniques in Section 3. We describe the design of our sim-
ulation framework and provide results with the ideal and practical
CCM algorithms in Section 4. We explain the HotSpot implemen-
tation of CCM policies, and discuss their performance and impact
of physical constraints and implementation choices on their effec-
tiveness in Section 5. We present related work in Section 6. Finally,
we discuss future work and present our conclusions from this study
in Sections 7 and 8 respectively.

2. Background
Our work in this paper employs Oracle’s production-grade HotSpot
Java virtual machine [20, 22]. In this section we provide a brief
background on the internal workings of HotSpot that are relevant
to this current work.

Benchmark Total Hot methods – startup
Methods Num Size (bytes)

avrora 3,808 630 914,944
fop 7,450 1,573 3,192,320
jython 9,100 2,226 5,574,144
luindex 3,476 532 1,127,936
lusearch 2,901 495 914,944
pmd 5,661 1,758 3,053,056
sunflow 4,457 405 1,133,056
tomcat 13,465 3,092 6,619,948
tradebeans 33,653 3,055 6,008,320
tradesoap 34,319 6,044 12,768,768
xalan 4,815 1,820 3,273,216
Average 10,567 1,741 4,058,717

Table 1. Number of the total and hot program methods, and size
occupied by the hot compiled code during the startup run for each
benchmark.

HotSpot’s emulation engine includes a high-performance threaded
bytecode interpreter and multiple JIT compilers. The execution of a
new program begins in the interpreter. HotSpot uses each method’s
hotness count, which is a sum of the method’s invocation and loop
back-edge counters, to promote methods to (higher levels of) JIT
compilation. The HotSpot JVM has two dynamic compilers: (a) the
c1 compiler that is quick, and generates code that is lightly opti-
mized and with a smaller memory footprint due to limited inlining,
and (b) the c2 compiler that optimizes code more thoroughly. More
recent HotSpot releases support a tiered compilation mode that
simultaneously enables both compilers to combine their benefits.
For this work we only use the c1 compiler to allow easier exper-
imental setup and more precise analysis of observed results. The
compilation unit in HotSpot is a single program method.

The compiled code is stored in the code cache. The code cache
in VMs typically has a fixed upper bound on size to prevent ex-
cessive memory usage. The code cache can contain different code
types. For example, HotSpot maintains two primary code types in
the code cache: code that is generated by the JIT compilers and per-
sistent infrastructure code generated by the JVM such as adapters
and the interpreter. While earlier HotSpot versions had a single uni-
fied code cache, the latest HotSpot release implements a segmented
code cache to segregate the different code types. A segmented code
cache has been shown to reduce fragmentation and result in lower
I-Cache and I-TLB miss rates [12]. For this work, a segmented code
cache makes it easier to precisely control the size of only the seg-
ment that holds compiled method code.

In HotSpot, a method selected for eviction by the CCM must
transition through several states before actually releasing the mem-
ory that it occupies. Each subsequent state transition currently
only happens at successive safepoints. A CCM algorithm marks
a method for eviction by changing its status to non-entrant. A non-
entrant method cannot be entered, but can exist on the call-stack
of an application thread. HotSpot transitions non-entrant methods
to the state zombie if the method is not on any thread’s call-stack.
Zombie methods can still be referenced by other methods via in-
line caches. HotSpot updates the inline cache entries for zombie
methods, if any, and then is able to release the space they occupy.
Thus, CCM algorithms in HotSpot experience a lag between when
method evictions are requested to create free space to when that
space actually becomes available to store new compiled code in the
code cache.

All our experiments for this work employ 11 DaCapo Java
benchmarks with their default input size [6].3 Table 1 shows some

3 We leave out batik, eclipse, and h2 because they fail with the default client
build of HotSpot-9 without any of our modifications.



0

5

10

15

20

25

P
e

rf
. 

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

 

Benchmarks

90% 75% 50% 40% 25%

0

2

4

6

8

10

12

14

P
e

rf
. 

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

 

Benchmarks

90% 75% 50% 40% 25%

(a) (b)

Figure 1. Comparison of benchmark performance (execution times) with the existing HotSpot CCM policies, (a) stop-compiler and (b)
stack-scan, different constrained code cache sizes

relevant properties of the different DaCapo benchmarks. For each
benchmark in column 1, we show the total number of loaded meth-
ods in column 2 of the table. Columns 3 and 4 display the number
and size of the compiled (hot) program methods after the startup
iteration. Many more methods are expected to be compiled by the
time the program reaches steady-state. All our run-time experi-
ments are performed on a cluster of 8-core 2.84GHz Intel x86-64
machines running Fedora Linux as the operating system. To ac-
count for inherent timing variations during the benchmark runs, all
the run-time results in this paper report the (geometric) average
over 10 runs for each benchmark-configuration pair [9].

3. Current CCM Policies in HotSpot
In this section we assess the effectiveness of existing CCM policies
in HotSpot to sustain program performance at different constrained
code cache sizes.

We design an experimental setup to systematically limit the
code cache size for each program. We first calculate the total ac-
cumulated size of all compiled methods in the default startup pro-
gram run for each benchmark, and use it as the full code cache size
for that benchmark (100% code cache size). Then, runs with con-
strained code cache sizes use 90%, 75%, 50%, 40%, and 25% of
this full code cache space needed for each benchmark. Thus, the
code cache size limits we use are specific to each benchmark.

We evaluate the performance of two CCM strategies, stop-
compiler and stack-scan. The stop-compilation CCM method sim-
ply stops all JIT compilation if/when the code cache gets full. This
CCM policy is simple and fast, and was therefore employed in
several early HotSpot versions and other language VMs, such as
Android’s Dalvik.

The latest stable HotSpot release uses a profiling-driven adap-
tive CCM method that we call stack-scan. The stack-scan policy
uses a separate thread to sweep the code cache to remove some
of the compiled code when the code cache usage gets close to or
over its maximum size limit. The sweeper associates a separate
counter with each compiled method in the code cache to keep track
of method utilization. This counter is initially set to a high value
after method compilation. A method’s counter is decremented ev-
ery time the method is reached during the code cache sweep, and is
reset to its original high value if it is found on the call-stack of any
application thread. Hot methods are expected to be encountered of-
ten on some call-stack and will therefore maintain a high counter
value. Methods with lower counter values are candidates from evic-
tion from the code cache when pressure is high. This policy disables
compilation if the code cache is full, and restarts compilation after
the sweeper again creates adequate free space in the code cache.

Figure 1 plots the ratio of run-time program performance with
the stop-compiler and stack-scan CCM strategies at constrained
(90%, 75%, 50%, 40%, and 25%) code cache sizes, as compared to
a baseline that uses the same (stop-compiler or stack-scan respec-
tively) CCM policy with 100% code cache size. While the simplis-
tic stop-compiler policy can be expected to perform poorly at very
low code cache sizes, results in Figure 1 show that both these CCM
policies fail to perform satisfactorily even with modest code cache
constraints. On average, program performance degrades by 14%,
62.4%, 3.9X, 5.6X, and 10.1X at 90%, 75%, 50%, 40%, and 25%
code cache sizes respectively with the simple stop-compiler policy.
The more sophisticated stack-scan CCM policy does better than
stop-compiler, but the average program performance still deterio-
rates by 30%, 43.8%, 2.5X, 3.6X, and 5.7X at our different code
cache sizes respectively.

We also observe that even with highly constrained code caches
program performance remains significantly better than interpreta-
tion alone, showing the importance of JIT compilation. It is inter-
esting to note that with the stop-compiler policy, program perfor-
mance always improves with an increase in code cache size, as ex-
pected. However, this property is not maintained by the stack-scan
policy. To reduce profiling overhead, the stack-scan CCM strategy
collects and employs imprecise profiling data to guide its eviction
decisions. The effect of program performance dropping with an in-
crease in code cache size is a result of imperfect evictions exercised
by the stack-scan policy due to poor available profile data.

We also notice that unlike the stop-compiler policy that only
activates when the code cache gets full, the stack-scan policy is
also triggered at high code cache pressures before the cache limit is
actually hit. This property of stack-scan sweeper results in a slight
performance drop even in the 100% code cache case.

Thus, these results reveal that modest and high code cache pres-
sure can have a big negative performance impact with existing
CCM strategies. Regrettably, (low cost, but imprecise) program
profiling employed by the stack-scan policy appears to not offer
acceptable benefit to performance over the stop-compiler method.
In the later sections of this paper we explore if more accurate pro-
filing data can enable the VM to more effectively sustain program
performance at small code cache sizes.

4. Potential of Profiling Based CCM Policies
Implementation choices can affect the behavior and performance
of the CCM sub-system in a VM. For example, the layout of the
code cache and the amount of lag between issuing a method evic-
tion request to having space available in the code cache can in-
fluence the performance of a CCM policy. Likewise, the cost and
proficiency of dynamic profiling at run-time depends on the mech-



anisms supported in the available hardware and systems software,
and are subject to improvement in future systems. It is hard to iso-
late the effects of such implementation features during actual VM
runs to determine the real potential of different CCM strategies to
sustain program performance at constrained memory sizes.

Therefore, we build a detailed simulation framework to com-
pare different CCM strategies using offline and online-reactive pro-
filing information in a VM and hardware-independent manner. A
simulation framework allows us to effectively control profiling ac-
curacy, cost, and VM implementation factors, while achieving re-
alistic comparisons. Our simulation framework also enables us to
design and evaluate the performance impact of an ideal profiling
strategy that can deliver accurate and timely knowledge of all rele-
vant aspects of future program behavior at zero run-time cost. Thus,
the ideal CCM policy is able to determine the best methods to evict
to minimize the performance impact on future program execution.
In this section we describe our simulation framework, discuss the
different CCM algorithms that we modeled, and compare their ef-
fectiveness to manage program speed at reduced code cache sizes.

4.1 Performance Metric
The simulations need a simple, effective and accurate performance
metric to compare the different CCM policies. In this section we
describe the performance metric we devise for our simulation runs.

Method Hotness Count: JIT compilation in a (dual-mode) JVM
attempts to improve program performance by reducing the amount
of time spent by the program in the slower execution (interpre-
tation) mode. The profiler in the HotSpot interpreter uses the
method’s hotness count (method invocation count + loop back-
edge count) to estimate the time spent in the method. Thus, a lower
total hotness count over all program methods indicates that the
program spent less time in the interpreter and more time in high-
performance compiled native code, which should result in better
performance.

If a previously compiled method is evicted from the code cache,
then future invocations of the method will execute in the interpreter,
until the evicted method becomes hot again and is recompiled.
Thus, on every request to create space for a new method compile, a
good CCM algorithm should find a method to evict that minimizes
the (future) time spent by the program in the interpreter. Hence, bet-
ter code cache management will result in a smaller total program
hotness count over the entire program run. Our simulation frame-
work computes the total program hotness count as the measure of
the quality of the code cache algorithm.

From Hotness Counts to Execution Time: Ultimately, we are in-
terested in the effect of different CCM policies on program execu-
tion time. Therefore, we develop a mechanism to associate program
hotness count with execution time.

To relate hotness counts with program run-time we execute
each benchmark with many different configurations and extract the
hotness count and execution time (program wall-time) in each run.
Each selected configuration varies some aspect of HotSpot’s default
CCM algorithm and/or code cache size. We then plot all the points
associating hotness count and run-time for each benchmark, and
use the facilities provided by the language ‘R’ to fit a (quadratic)
curve over these points.

Figure 2 shows these plots for (ten) different DaCapo bench-
marks (except tomcat to allow a nicer fit on the page). The darker
band around each curve (too narrow to see on most graphs) plots
the 95% confidence interval, while the broader lighter band shows
the 95% prediction interval. Thus, we can see that interpreter hot-
ness counts are a good indicator of overall program performance,
even when the measured execution time includes all aspects of VM
execution including JIT compilation, CCM, garbage collection, etc.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
ro

g
ra

m
 p

e
rf

o
rm

a
n

ce
 r

a
ti

o

Benchmarks

90% 75% 50% 40% 25%

Figure 3. Impact of ideal CCM algorithms with different code
cache sizes compared to the ideal algorithm with unlimited size

The per-benchmark mathematical equation forming the regression
curve is used to associate hotness counts with time during later sim-
ulation runs. We employ this (simulated) time to compare different
profiling policies.

4.2 Experimental Setup
In this section we describe the replay-based [17] simulation setup
we use for our experiments.

Methodology: We instrument HotSpot to generate and log the
profile and execution data for our simulation experiments. We con-
duct two runs for each benchmark. In the first run, HotSpot runs
the program in the interpreter alone, and divides the execution into
10msec intervals. At the end of each 10msec interval, HotSpot
dumps the hotness counts of all program methods.

The other profile run is to determine the size of the compiled
native code for all program methods. We run the HotSpot VM in
its default mode, and record the space occupied by the native code
generated for each compiled method in the code cache. For each
benchmark, we also measure the maximum space needed for the
code cache when all hot methods are compiled and resident in the
cache.

Our evaluation runs use this profile data to simulate the oper-
ation of the code cache manager with different method eviction
algorithms and different code cache sizes. These runs again use
100%, 90%, 75%, 50%, and 25% of the maximum code cache
space needed for each benchmark.

At the end of each 10msec interval, a method is compiled if
its total hotness count exceeds the default HotSpot compilation
threshold. If the code cache is full, then the code cache manager
uses one of several strategies to find and evict existing methods
from the code cache. On every eviction request, each algorithm
finds contiguous space that is equal to or greater than the size of the
new compiled method. If the new method does not occupy the en-
tire space that is created, then the remainder can be merged with the
adjacent unoccupied blocks, whenever possible. We experimented
with the following method eviction algorithms:

Ideal: This algorithm looks into the future profile of the program to
find (close to) the ideal set of contiguous methods to evict from
the code cache to fit the new compiled method. It finds the set
of methods that, combined together as a unit, have the smallest
remaining hotness counts. Thus, with this algorithm, methods
that will never be used again are given the highest priority for
deletion, and are sorted based on their size (largest size first).
Methods that will never be compiled again are given the second
highest priority and will be deleted in the order of their future
hotness counts (fewer counts first). Lowest priority is given to
methods that will exceed their compile threshold again, sorted
to order later compiles first.



0e+00 1e+08 2e+08 3e+08 4e+08

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
2
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

avrora

1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

fop

0.0e+00 5.0e+08 1.0e+09 1.5e+09

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
2
0
0
0
0

1
4
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

jython

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08 3.0e+08

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

luindex

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08 3.0e+08

2
e
+

0
4

4
e
+

0
4

6
e
+

0
4

8
e
+

0
4

1
e
+

0
5

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

lusearch

0.0e+00 5.0e+07 1.0e+08 1.5e+08

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

pmd

0e+00 2e+08 4e+08 6e+08 8e+08

0
e
+

0
0

1
e
+

0
5

2
e
+

0
5

3
e
+

0
5

4
e
+

0
5

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

sunflow

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09 1.2e+09

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

tradebeans

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

2
5
0
0
0
0

3
0
0
0
0
0

3
5
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

tradesoap

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08 3.0e+08

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
4
0
0
0
0

Interpreter Counts

T
im

e
 (

in
 m

ill
is

e
c
o
n
d
s
)

xalan

Figure 2. Individual benchmark plots associating hotness counts with program execution time. The X-axis plots the interpreter hot-
ness counts and the Y-axis shows the corresponding program execution time.

Offline: This set of algorithms attempts to simulate a CCM pol-
icy that uses an offline profiling strategy. The algorithms use
information from a prior program run, and aggregate the in-
formation over all intervals of the profile run. The profile data
is used to sort methods in ascending order of their total hot-
ness counts over the entire run. Then, in the later measured run,
methods are selected for eviction from the code cache in the
order of lowest counts first. We study the following offline pro-
filing schemes: (a) Offline-same: The same input is used for
the offline profiling run and the later evaluation/measured run.
(b) Offline-diff: The profiling run uses a different input for the
profiling and measured runs. We use a profile with the DaCapo
small input for measured runs with the default input. With dif-
ferent inputs for the profiling and measured runs, it is possible
for the profile to not have any information about certain events
(invoked methods) in the measured run. For such methods, this
algorithm assigns the lowest priority for eviction.

Reactive: These CCM algorithms employ the online reactive pro-
filing strategy, where profiling data collected during the past ex-
ecution of the same program run is used to guide the CCM task
to optimize the remaining program execution. In this case the
best (set of contiguous) methods to evict is determined based on
their hotness count in earlier intervals of the same run. The fol-
lowing simple formula finds the hotness count for each method
by assigning progressively lower weights to older profile data:

τn+1 = α ∗ tn + (1− α)τn (1)

where, τn+1 is the predicted hotness count for the next inter-
val, and tn is the actual hotness count in interval ‘n’. We exper-
imented with several different α values of 0, 0.1, 0.5, 0.9, 1.0.
We present the results for α = 0.1, which provided the best
overall numbers.

Stop compiler: A simple CCM policy that stops JIT compilation
when the code cache gets full.

Stack scan: This is an implementation of a simplified version of
HotSpot-8’s CCM algorithm in the simulator.

4.3 Results and Observations
In this section we present the results of our experiments to evaluate
and compare the effectiveness of different CCM algorithms com-
pared with an ideal profiling approach that uses knowledge of the
future program behavior.

0.97

0.98

0.99

1

1.01

1.02

1.03

P
e

rf
. 

co
m

p
a

re
d

 t
o

 '
id

e
a

l'

Benchmarks

90% 75% 50% 40% 25%

Figure 4. Impact of using the online reactive CCM algorithm
compared with the ideal algorithm for the same cache sizes

Performance Potential with Ideal CCM Policy Figure 3 shows
the potential of ideal profiling with CCM at different constrained
code cache sizes. Each bar in this graph plots the ratio of the (sim-
ulated) program run-time with the ideal CCM policy and indicated
code cache size to the run-time with an ideal algorithm and an un-
limited code cache. An unlimited code cache never needs to evict
compiled methods from the cache. We observe that an ideal CCM
algorithm often finds the right methods to evict from the cache to
minimize performance impact. On average, we see very negligi-
ble performance losses with code cache sizes restricted to 90%,
75%, and 50% of required code cache space. Even with only 40%
and 25% of desired code cache size many benchmarks do not see
a noticeable performance impact with an (geometric) average per-
formance loss of only 5% and 20% respectively. This result shows
that an ideal feedback-driven CCM policy can significantly reduce
an executing program’s code cache memory requirement with min-
imal performance losses in most cases.

Performance Potential of Other CCM Policies Next we compare
the performance effectiveness of practical CCM policies as com-
pared to the performance delivered by the ideal CCM strategy. The
profiling driven CCM algorithms in our simulation framework have
access to the most comprehensive, accurate, and timely profile data
possible by that profiling technique with no run-time overhead. We
have also implemented these policies in HotSpot, and in the next
section we present evaluation and analysis of their run-time cost
and impact on effectiveness.



0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

P
e

rf
. 

co
m

p
a

re
d

 t
o

 '
id

e
a

l'

Benchmarks

90% 75% 50% 40% 25%

Figure 5. Impact of using the offline-same CCM algorithm com-
pared with the ideal algorithm for the same cache sizes

Figure 4 shows the performance of the CCM algorithm when us-
ing the best Reactive profiling strategy (for α = 0.1) as compared
with the corresponding ideal approach for the same code cache
sizes. We find that a good reactive strategy can achieve program
performance close to ideal even for heavily constrained code cache
sizes. The average performance losses compared to ideal with this
reactive strategy are only 0.0%, 0.0%, 0.2%, 0.4%, and 0.8% for
code cache sizes that are 90%, 75%, 50%, 40%, and 25% of the
maximum needed, respectively. These results suggest that past pro-
gram behavior is a good indicator of future program execution for
code cache management. Remember that the cost of collecting this
accurate profiling information at run-time is ignored during this
simulation study. While we only show the results for the reactive
algorithm with an α of 0.1, we note that other reactive schemes
also do similarly well.

Figure 5 presents the performance comparison of the Offline-
same code cache eviction algorithm compared with the correspond-
ing ideal CCM approach. We see that with a perfectly representa-
tive offline profile, the CCM algorithm again performs quite well.
The Offline-same strategy results in an (geometric) average perfor-
mance loss of 0.0%, 0.1%, 0.6% 1.5%, and 3.8% for our five code
cache sizes respectively, compared to the ideal algorithm. As op-
posed to online profiling approaches that collect their data during
the same program run, offline profiling strategies require a separate
program execution to acquire the desired program behavior data.
This data must then be structured and aggregated for used by adap-
tive VM tasks. This data aggregation can reduce the effectiveness of
adaptive tasks by limiting its ability to customize for different sec-
tions/phases of the program run. The higher performance loss with
the offline profiling based CCM strategy, compared with reactive-
CCM, shows this negative impact of profile data aggregation.

Offline profiling suffers from another limitation. A different in-
put set or execution environment can cause the application’s run-
time behavior to differ from its behavior during the profiling run.
The influence of this limitation on the efficiency of the adaptive task
will depend on the likeness, of lack thereof, of the profiling and ac-
tual evaluation run. We attempt to measure the impact of this lim-
itation with our offline-diff CCM configuration when profile data
collected during program runs with the small DaCapo benchmark
inputs are used during evaluation runs with the default input. As ex-
pected, we see a much more noticeable performance loss with this
configuration. We find performance losses of 0.3%, 1.2%, 3.9%,
6.1%, and 10.1%, on average, with the Offline-diff scheme com-
pared to ideal for the code cache sizes of 90%, 75%, 50%, 40%,
and 25% respectively.

The default stack-scan CCM policy in HotSpot uses a low-
overhead sampling based profiling mechanism, as explained earlier.
The stack-scan CCM policy can be considered an instance of a low-
cost and less precise online reactive profiling policy. The actual

0

1

2

3

4

5

6

7

8

9

10

P
e

rf
. 

co
m

p
a

re
d

 t
o

 '
id

e
a

l'

Benchmarks

90% 75% 50% 40% 25%

Figure 6. Impact of using our implementation of the HotSpot
stack-scan CCM algorithm compared with the ideal algorithm for
the same cache sizes

implementation of this policy in HotSpot has been heavily tuned for
different situations, and is associated with several flags and other
tuning knobs. We implemented a simpler variant of this complex
policy in our simulator.

Figure 6 displays the the performance comparison of the stack-
scan CCM algorithm compared with the corresponding ideal CCM
approach. We found that this policy fares quite poorly and achieves
performance that is 31%, 50%, 2.44X, 2.83X, and 5.77X worse
over the ideal configuration, on average, at 90%, 75%, 50%, 40%,
and 25% code cache sizes respectively. Thus, these simulation
results do a fair job of tracking the actual HotSpot performance
numbers with the stack-scan policy displayed in Figure 1(b).

Additionally, we also simulated the simpler stop-compiler strat-
egy that simply stops compilation if the code cache gets full. The
stop-compiler algorithm is the simplest CCM policy and was found
to achieve performance that is 6%, 39%, 3.01X, 3.65X, and 6.93X
worse when the code cache is constrained to 90%, 75%, 50%, 40%,
and 25% of the needed code cache space respectively, on average.

Other than stop-compiler, CCM policies evict program methods
when the code cache gets full. These evicted methods will now
run in the interpreter. A poor eviction decision (that is, evicting
a hot method) will result in the method quickly becoming hot
again, and will be recompiled. Thus, the greater the number of
method evictions and recompilations triggered by a CCM strategy,
the poorer is its quality and effectiveness. Additionally, the task of
performing method evictions and recompilations will also incur an
overhead at run-time, and can be used to further estimate the run-
time cost or overhead of each CCM algorithm.

Table 2 shows the average number of methods evicted and re-
compilations of evicted methods performed by each of our simu-
lated CCM strategies over all benchmark programs. As expected,
we find that strategies that result in better performance keep more
of the important methods in the cache longer. The stack-scan CCM
policy is an exception because, unlike the other strategies, it tem-
porarily disables compilation when the code cache gets full. For the
remaining CCM algorithms, fewer poor eviction decisions in turn
also result in fewer recompilations. We can see that availability of
future program behavior information allows the ideal CCM policy
to often evict methods that do not need to be recompiled later, espe-
cially at modest memory pressure. The average number of method
evictions and recompilations steadily increases with smaller/con-
strained code cache sizes. In general, more effective CCM strate-
gies predict better eviction candidates, and will likely incur less
overhead at run-time and exhibit better overall performance.

In summary, our experiments in this section reveal several inter-
esting and important results.



Strategy 90% 75% 50% 40% 25%
Evic Recom Evic Recom Evic Recom Evic Recom Evic Recom

Ideal 48.6 0.9 209.6 8.4 1068.3 477.7 2075.9 1308.5 6301.9 5225.8
Offline-same 149.5 64.5 577.8 299.4 2163.4 1526.8 3903.3 3104.9 10806.5 9695.6
Offline-diff 204.1 117.1 819.9 514.6 2895.1 2218.5 4977.6 4154.2 12969.8 11847.3
React-α = 0.1 277.9 105.0 730.6 297.6 2201.8 1413.1 3705.1 2748.6 8729.1 7524.2
Stack-scan 7459.6 6468.4 6957.8 6342.5 4900.9 4398.8 4695.8 4175.9 2594.3 2291.1

Table 2. Average number of method evictions and re-compilations for each code cache management algorithm.

1. We find than an ideal CCM strategy with access to detailed pro-
file information regarding future program execution can sustain
efficient program performance even with heavily constrained
code cache sizes. We expect this observation to fuel much fur-
ther research in developing practical CCM policies that can re-
alize high program speed and low memory consumption in the
code cache in actual VMs.

2. It is encouraging to observe that several profiling-based CCM
algorithms can achieve effectiveness close to the ideal policy.
However, several hurdles will need resolution to realize these
policies in a real VM. Online reactive CCM policies need to
overcome the cost of profile collection at run-time. Offline pro-
filing CCM strategies need to not only develop mechanisms to
find representative program inputs to generate accurate offline
profile data and make it available to the VM at run-time, but
may also need to investigate approaches to resolve the profile
aggregation effect inherent to offline profiling.

3. Our results also reveal that CCM strategies have the potential to
be much more effective than HotSpot’s default stack-scan CCM
policy. The stack-scan policy uses an approximate sampling-
based online profiling approach to reduce dynamic overhead.
It is unclear if the stack-scan policy’s poor performance is due
to the imprecise nature of profiling data employed, or if it is
caused by implementation decisions in HotSpot. We explore
and discuss this issue further in the next section.

5. Performance of Profiling Based CCM Policies
in HotSpot

In the last section we evaluated the potential effectiveness of sev-
eral CCM strategies in a controlled simulation setting that allowed
us to ignore profiling costs, and other known and unknown VM im-
plementation issues. These simulation experiments provide encour-
aging results on the potential of CCM algorithms to sustain accept-
able program performance even with very limited code cache sizes.
Consequently, we explored and implemented a few CCM policies
to understand and assess their behavior in the HotSpot JVM. In this
section we present an assessment of an extended stack-scan, reac-
tive, and offline CCM policies implemented in HotSpot.

5.1 Impact of VM Implementation Choices
Design and implementation choices exercised in the VM can make
a large impact on the performance delivered by the CCM policies.
The method eviction (or sweeper) mechanism implemented in the
HotSpot JVM differs significantly from the perfect method em-
ployed by the simulation algorithm in Section 4. This difference
impacts the properties of all CCM policies in HotSpot.

In particular, our simulation algorithm installs the compiled
methods at the end of each interval. At that time, if sufficient con-
tiguous space is not available, then the algorithm uses the selected
CCM policy to find the methods to evict. These selected methods
are then evicted and space to install the new compiled method is
created instantaneously. The program execution can use the newly
compiled method immediately in the next execution interval.

0

1

2

3

4

5

6

7

8

9

10

P
e

rf
. 

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

 

Benchmarks

90% 75% 50% 40% 25%

Figure 7. Impact of using the extended SS-no-stop CCM policy
at constrained code cache sizes as compared to performance of the
same algorithm with maximum (100%) code cache size.

In contrast, HotSpot’s sweeper mechanism works differently,
and was described earlier in Section 2. With HotSpot, the space
needed for future compilations needs to be made available be-
fore the compiled code is generated. Additionally, method eviction
needs to follow several stages from active to non-entrant to zombie,
requires several code cache sweeps, and therefore takes some time
and is not instantaneous. In our current work, we do not attempt
to make changes to the sweeper sub-system in HotSpot. Therefore,
all CCM policies implemented in HotSpot have to respect the VM’s
default sweeper mechanism.

5.2 Stack scan no stop compiler (SS-no-stop) CCM policy
We observe the CCM policy implemented in the latest HotSpot re-
lease (called stack-scan) performs poorly with small code cache
sizes. These results with the default stack-scan policy were pre-
sented in Figure 1(b). Stack-scan is in fact an instance of a conser-
vative low-cost reactive CCM policy that collects very limited pro-
file information to guide its CCM decisions. Our simulation studies
reveal that a reactive CCM strategy (albeit, one with access to de-
tailed profile information) can achieve close to ideal performance
numbers. Therefore, it is not entirely clear weather the stack-scan
policy’s lower than expected performance is due to: (a) the quality
of employed profile information, or (b) some other implementation
factors. We conducted a study to first alleviate the effect of possible
implementation factors.

The stack-scan CCM algorithm in HotSpot stops the JIT com-
piler if the code cache gets full. The policy should restart compila-
tion once adequate code cache space becomes available and certain
other conditions are satisfied. However, we observed that the com-
piler restart rarely happens for our benchmarks. We experimented
with relaxing the conditions to restart compilation.

Figure 7 plots the performance of our most aggressive extended
stack-scan policy that does not stop method compilations even
when the cache is full. Generated compiled code that does not
find room in the code cache will be discarded. We note that JIT
compilation with the c1 compiler is very fast, and we found that
the few discarded compilations do not add much overhead to the
overall VM execution time. We observe that this simple extension



0

0.5

1

1.5

2

2.5

3

3.5

4

P
e

rf
. 

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

 

Benchmarks

90% 75% 50% 40% 25%

Figure 8. Impact of using our implementation of the reactive CCM
policy at different constrained code cache sizes as compared to
performance of the same algorithm with maximum (100%) code
cache size.

to HotSpot’s default stack-scan implementation makes it much
more efficient at sustaining program performance at lower code
cache sizes. On average, this extended stack-scan CCM policy
degrades program speed by 0%, 6.1%, 43.1%, 89.9%, and 3.6X
when code cache size is restricted to 90%, 75%, 50%, 40%, and
25% respectively, and as compared to a baseline that employs the
same CCM policy with 100% code cache size.

5.3 Reactive (Online) CCM policy
Next, we implement a reactive CCM policy in HotSpot based
on our Reactive simulation setup that collects and employs more
comprehensive profile information. This reactive CCM strategy
implements method-specific counters that are incremented on each
method entry and loop back-edge (in both the interpreter and the
compiler). We again employ Equation 1 to calculate the hotness
score of each method on every sweeper activation. This hotness
score accounts for the parameter α to appropriately account for the
method’s recent hotness and past (historical) hotness.

Our modified HotSpot sweeper evicts methods that have the
smallest hotness scores until we evict 15% of the code cache (by
size), or until the score passes below some costliness threshold.
This heuristic allows the policy to keep deleting past 15% of free
space as long as those additional methods evicted are cold. We
found this heuristic to reduce the number of compile failures, in-
crease responsiveness, and allow the VM to better handle any
surges in compilation requests.

Figure 8 plots program performance with the reactive CCM pol-
icy in HotSpot. Similar to our simulation setup, we again use an α
value of 0.1. Thus, we can see that the quality of profile information
used by the CCM algorithm has a definite impact on its effective-
ness. On average, we find that the reactive CCM policy leaves per-
formance unchanged for 90% code cache size, and degrades pro-
gram speed by 1.5%, 5.5%, 13.6%, and 99.3% with code cache size
that is 75%, 50%, 40%, and 25% respectively, when compared to
a baseline that employs the same reactive CCM policy with 100%
code cache size. Note that the selected baseline allows us to ignore
the cost of the profiling overhead. Program performance including
the profiling overhead is presented and discussed in Section 5.5.

5.4 Offline-same CCM policy
An offline profiling based optimization has the benefit that there is
no cost of collecting profiling data at run-time, and can simplify
VM implementation by removing the need to support any profil-
ing infrastructure in the VM. However, an offline profiling based
strategy requires prior training runs, and generally aggregates pro-
file data across the training runs. Profile data aggregation makes it

0

5

10

15

20

25

P
e

rf
. 

co
m

p
a

re
d

 t
o

 1
0

0
%

 C
C

 

Benchmarks

90% 75% 50% 40% 25%

Figure 9. Impact of using our implementation of the offline-same
CCM policy at different constrained code cache sizes as compared
to performance of the same algorithm with maximum (100%) code
cache size.

0

1

2

3

4

5

6

7

8

9

stop_comp. stack_scan (SS) SS_no_stop reactive offline

P
e

rf
. 

co
m

p
a

re
d

 t
o

 s
to

p
-

co
m

p
il

e
r 

C
C

M
 p

o
li

cy
 w

it
h

 

2
0

0
%

 C
C

 s
iz

e

Benchmarks

100% 90% 75% 50% 40% 25%

12.259.56

Figure 10. Average impact of the different CCM policies imple-
mented in HotSpot at different constrained code cache sizes as
compared to performance of the stop-compiler CCM policy with
200% code cache size.

difficult to customize the optimization for different execution-time
program phases.

We implemented an offline CCM policy in HotSpot based on our
Offline-same simulation setup. We conduct a single training run in
interpretation mode and calculate the overall hotness (invocation +
loop back-edge) counts of all program methods. A list of methods
sorted in ascending order of their hotness counts is given to HotSpot
at the start of the program’s evaluation run. The CCM policy evicts
methods from the code cache in this provided order.

Figure 9 shows program performance with the offline CCM pol-
icy in HotSpot. We observe that this strategy does not perform as
well as the reactive CCM policies. On average, the offline CCM
policy drops performance by 5%, 46%, 4.28X, 7.38X, and 12.37X
with code cache size that is 90%, 75%, 50%, 40%, and 25% re-
spectively, when compared to a baseline that employs the same
offline CCM policy with 100% code cache size. Thus, even with
perfectly representative offline profile data, our current implemen-
tation of this policy in HotSpot fails to deliver acceptable effec-
tiveness. These poor results from the offline CCM policy contradict
our observations from the simulation studies, and we will attempt
to understand and possibly resolve this behavior in future work.

5.5 Overall Comparison of CCM Policies in HotSpot
Figure 10 compares the effectiveness of all the HotSpot CCM
policies using a common baseline. The selected baseline is program
performance with the simplest stop-compiler CCM algorithm and
2X the code cache size desired by each benchmark (200% code
cache size). Remember, that 100% code cache size is benchmark-
specific, and is computed by summing the sizes of all methods



compiled for each benchmark in the default HotSpot configuration.
We use 200% code cache size for our baseline because some CCM
policies, like stack-scan, activate when available free cache space
approaches some threshold of allocated cache size, and therefore
trigger even with the 100% code cache size configuration.

From Figure 10 we can observe that the stop-compiler and of-
fline CCM policies only achieve acceptable performance at very
modest memory pressure, when most methods are able to reside
in the cache. At higher memory pressures, these policies degrade
quickly and significantly. The comprehensive profile data available
to the reactive policy allows it to make excellent decisions about
which methods to evict, but the overhead of incrementing coun-
ters at every method entry and loop back-edge hurt execution time.
Only at very heavily constrained code cache sizes does the ben-
efit of better eviction decisions overcome the profiling cost with
this strategy. In future work, we will further investigate the trade-
offs between profile quality and cost for reactive CCM policies.
Finally, HotSpot’s stack-scan is an implementation of a low-cost
reactive CCM strategy that collects and uses approximate profile
data. The effectiveness of HotSpot’s default stack-scan policy im-
proves significantly with our extensions, and this SS-no-stop policy
achieves the best or close-to-best overall performance results for
most code cache sizes. Compared to the default HotSpot policy, the
SS-no-stop CCM implementation improves performance by 20.4%,
39.0%, 41.3%, 54.9%, 57.8%, and 49.7% at our various code cache
pressures respectively, on average.

It is important to appreciate that all these policies still per-
form much better than completely disabling JIT compilation and
only using the interpreter. On average across all our benchmarks,
interpreter-only execution time is 17.35 times worse than the stop-
compiler CCM policy with 200% code cache size.

6. Related Work
Code caches are used to store translated and/or optimized code in
managed language VMs and dynamic binary translators (DBT).
Researchers in both these related areas have previously investigated
issues regarding code cache layout and CCM to reduce memory
consumption. In this section we present and compare past research
that is related to our current work in this paper.

Zhang and Krintz were among the first researchers to study and
present the effect of method eviction from the code cache on mem-
ory consumption and program speed in a JVM [25, 26]. Similar
to our present research, this work evaluated the efficiency of of-
fline and online profiling techniques to find the appropriate set of
methods to evict from the code cache. Additionally, they also stud-
ied techniques to decide when to invoke their eviction algorithm.
However, this work was conducted in a compile-only JVM (Jikes
RVM [1, 2]), which presents many different properties compared to
the HotSpot JVM that employs a baseline interpreter and only com-
piles the hot program methods. The influence of a compile-only
JVM, and Jikes in particular, cause critical differences in the profil-
ing techniques employed and experimental setup used as compared
to our current research. Moreover, the simulation studies are an-
other unique contribution of our work that investigate the potential
and properties of many different CCM algorithms in a controlled
and VM-independent environment.

Several researchers have explored code cache eviction tech-
niques for DBTs. Hazelwood and Smith found that a medium-
grained FIFO eviction scheme achieved better performance than a
single-block FIFO scheme by lowering replacement overhead [13].
Dynamo conducts a full cache flush at anticipated program phase
changes when the trace generation rate becomes high [5]. Intel’s
Pin DBT also supports a full code cache flush [15]. DynamoRio
adaptively scales up the code cache size based on the program’s
working set size, but does not implement algorithms to evict com-

piled blocks to reduce memory consumption in the code cache [7].
The Strata DBT implements techniques to bound code cache mem-
ory usage by reducing the space required for DBT-injected code [4].
Hazelwood and Smith proposed a generational code cache that can
transition methods from a nursery cache to a persistent cache and
evict unused code blocks from the cache [14]. Guha et al. designed
a least-recently-used (LRU) profiling policy to selectively (or par-
tially) flush code cache blocks for their DBT [11]. However, DBT
code caches store blocks or traces instead of program methods,
have fine-grained inter-block linking, and, in general, have different
requirements compared to a managed-language JVM.

The organization of the code cache can influence the feasibility
and effectiveness of CCM algorithms. Jikes RVM allocates com-
piled native code to Java objects that are then placed on the com-
mon heap with other data objects [1]. Jikes can then use the garbage
collector (GC) to manage code cache objects and evict unused com-
piled code. Thus, low memory consumption by code cache objects
can enable the Jikes RVM to place more data objects or reduce the
frequency of GC [25]. While HotSpot earlier employed a single
unmanaged code cache, the latest HotSpot release now employs a
segmented code cache, with each segment servicing a distinct type
to code [12]. Oracle’s Maxine JVM also partitions their code cache
into different regions for holding the VM’s code, and that generated
by its two compilers [24]. Most DBTs employ a single code cache,
but may use either a simpler thread-private or a more space efficient
thread-shared configuration [8]. The Strata DBT introduced a code
cache organization split between the scratchpad and main memory
to mitigate performance overhead on embedded systems [3]. We do
not vary the default code cache organization in our current work,
but plan to explore more effective code cache designs in the future.

7. Future Work
There are many avenues for future work on this topic. Our imme-
diate plan is to further study the properties and improve the im-
plementation of CCM policies in HotSpot, and add other policies,
such as FIFO. Second, there is little current research to dynamically
find the optimal code cache size for individual program executions
in a VM. We will investigate techniques to adaptively and quickly
find the ideal balance between performance and code cache size for
each program at run-time for memory sensitive embedded devices.
Third, a smaller code cache can result in more method evictions
and recompilations. Our current work did not measure the effect of
a smaller cache size on energy consumption with different CCM
policies, which we plan to do in the future. Fourth, the placement
of native code in a code cache can influence the amount of cache
fragmentation and achieved I-Cache and I-TLB performance. We
plan to better understand the impact of these tradeoffs and develop
new JIT compilation orders or native code placement techniques
in the code cache to optimize these performance factors. Fifth, we
will study mechanisms to derive accurate and low-cost profiling
data, and explore issues such as the tradeoff between profile data
accuracy, quality and performance benefit. Finally, the code cache
subsystem includes many components, including the CCM algo-
rithm to find methods to evict, method eviction strategy, and code
cache layout. In the future we plan to study and redesign all these
components together to find the best overall strategy.

8. Conclusions
The goal of this work is to understand the potential and evaluate
the effectiveness of different CCM policies to sustain program per-
formance when code cache sizes are too constrained to hold all
the desired hot methods during program execution in a managed-
language VM. We design a creative simulation setup to investigate
the potential of an ideal and many other practical CCM policies.



We discover that an ideal CCM strategy can allow the VM to main-
tain close-to-full program speed even with high code cache mem-
ory pressure. Furthermore, we found that profiling-based practical
CCM policies can realize close to ideal results.

Unfortunately, the current CCM strategy in the popular HotSpot
Java VM, based on a low-cost approximate reactive profiling mech-
anism, produces large program slow-downs at small code cache
sizes. We investigate this disparity in HotSpot’s CCM strategy. We
implement extensions to HotSpot’s default CCM policy and design
and re-engineer our other simulated CCM policies in HotSpot. Our
CCM algorithms in HotSpot deliver positive results and uncover
many other interesting questions that will need resolution to find
an optimal CCM strategy for future runtime systems.

The abundance of managed languages and the expectation
from small embedded devices to simultaneously support multiple
resource-consuming programs makes memory capacity manage-
ment an important issue for embedded systems. We hope that our
work can guide researchers to develop/provide the necessary hard-
ware and software structures to maximize the efficiency of CCM
techniques for memory constrained embedded systems.

Acknowledgments
We thank the anonymous reviewers for their thoughtful and con-
structive feedback. This research is supported in part by the Na-
tional Science Foundation under CAREER award CNS-0953268,
and award CNS-1464288.

References
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.

Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen. Implementing
JalapeÑo in Java. In Proceedings of the 14th ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’99, pages 314–324, 1999.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adap-
tive optimization in the JalapeÑo JVM. In Proceedings of the 15th
ACM SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA ’00, pages 47–65, 2000.

[3] J. A. Baiocchi and B. R. Childers. Heterogeneous code cache: Using
scratchpad and main memory in dynamic binary translators. In Pro-
ceedings of the 46th Annual Design Automation Conference, DAC ’09,
pages 744–749, 2009.

[4] J. A. Baiocchi, B. R. Childers, J. W. Davidson, and J. D. Hiser.
Reducing pressure in bounded DBT code caches. In Proceedings of
the 2008 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES ’08, pages 109–118, 2008.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dy-
namic optimization system. In Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Implemen-
tation, PLDI ’00, pages 1–12, 2000.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking de-
velopment and analysis. In Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications, OOPSLA ’06, pages 169–190, 2006.

[7] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’03, pages 265–275, 2003.

[8] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared
software code caches. In Proceedings of the International Symposium
on Code Generation and Optimization, CGO ’06, pages 28–38, 2006.

[9] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java
performance evaluation. In Proceedings of the conference on Object-

oriented programming systems and applications, OOPSLA ’07, pages
57–76, 2007.

[10] Google. Chrome V8 JavaScript VM, September 2012.
https://developers.google.com/v8/intro.

[11] A. Guha, K. Hazelwood, and M. Soffa. Balancing memory and perfor-
mance through selective flushing of software code caches. In Proceed-
ings of the 2010 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, CASES ’10, pages 1–10, 2010.

[12] T. Hartmann, A. Noll, and T. Gross. Efficient code management for
dynamic multi-tiered compilation systems. In Proceedings of the 2014
International Conference on Principles and Practices of Programming
on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ
’14, pages 51–62, 2014.

[13] K. Hazelwood and J. E. Smith. Exploring code cache eviction
granularities in dynamic optimization systems. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, pages 89–99,
2004.

[14] K. Hazelwood and M. D. Smith. Managing bounded code caches in
dynamic binary optimization systems. ACM Transactions on Architec-
ture and Code Optimization, 3(3):263–294, Sept. 2006. ISSN 1544-
3566.

[15] K. Hazelwood, G. Lueck, and R. Cohn. Scalable support for multi-
threaded applications on dynamic binary instrumentation systems. In
Proceedings of the 2009 International Symposium on Memory Man-
agement, ISMM ’09, pages 20–29, 2009.

[16] U. Hölzle and D. Ungar. Reconciling responsiveness with perfor-
mance in pure object-oriented languages. ACM Transactions on Pro-
gramming Language Systems, 18(4):355–400, 1996. ISSN 0164-0925.

[17] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: Improving program
locality. In Proceedings of the 19th Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA ’04, pages 69–80, 2004.

[18] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A trace-based Java
JIT compiler retrofitted from a method-based compiler. In Proceed-
ings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’11, pages 246–256, 2011.

[19] M. R. Jantz and P. A. Kulkarni. Exploring single and multilevel
JIT compilation policy for modern machines. ACM Transactions on
Architecture and Code Optimization, 10(4):22:1–22:29, Dec. 2013.

[20] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox. Design of the Java HotSpot™client compiler for Java 6.
ACM Trans. Archit. Code Optim., 5(1), 2008.

[21] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead
of dynamic compilation. Software: Practice and Experience, 31(8):
717–738, December 2000.

[22] M. Paleczny, C. Vick, and C. Click. The Java HotSpot™server com-
piler. In JVM’01: Proceedings of the 2001 Symposium on JavaTM
Virtual Machine Research and Technology Symposium, pages 1–12,
Berkeley, CA, USA, 2001.

[23] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Sys-
tems and Processes. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2005. ISBN 1558609105.

[24] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan, L. Daynès,
and D. Simon. Maxine: An approachable virtual machine for, and in,
Java. ACM Transactions on Architecture and Code Optimization, 9(4):
30:1–30:24, Jan. 2013. ISSN 1544-3566.

[25] L. Zhang and C. Krintz. Adaptive code unloading for resource-
constrained JVMs. In Proceedings of the 2004 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, LCTES ’04, pages 155–164, 2004.

[26] L. Zhang and C. Krintz. Profile-driven code unloading for resource-
constrained JVMs. In Proceedings of the 3rd International Symposium
on Principles and Practice of Programming in Java, PPPJ ’04, pages
83–90, 2004.


	Introduction
	Background
	Current CCM Policies in HotSpot
	Potential of Profiling Based CCM Policies
	Performance Metric
	Experimental Setup
	Results and Observations

	Performance of Profiling Based CCM Policies in HotSpot
	Impact of VM Implementation Choices
	Stack scan no stop compiler (SS-no-stop) CCM policy
	Reactive (Online) CCM policy
	Offline-same CCM policy
	Overall Comparison of CCM Policies in HotSpot

	Related Work
	Future Work
	Conclusions

