
Improving Startup Performance in Dynamic Binary
Translators

Surya Tej Nimmakayala
EECS, University of Kansas

Lawrence, KS USA
s387n230@ku.edu

Prasad A. Kulkarni
EECS, University of Kansas

Lawrence, KS USA
prasadk@ku.edu

Abstract—A Dynamic Binary Translation (DBT) system dy-
namically translates program binaries built for a guest platform
into code for the host machine that runs the program, one
basic block at a time. Even after optimizations, auxiliary tasks
performed alongside program emulation by the DBT system
introduce performance overheads as compared to executing the
program on the native guest platform. In this work, we analyze
the extent and causes for a DBT system’s startup performance
latency. We then focus on understanding and alleviating the
program translation cost that is a significant contributor to and
disproportionately impacts the startup overhead. We propose and
assess the potential of a new technique that parallelizes program
translations on multi-core machines to reduce its evident run-time
costs. We explain the challenges in achieving such parallelization
and discuss and evaluate solutions.

Index Terms—Dynamic binary translation, performance

I. INTRODUCTION

Dynamic binary translation (DBT) systems take a guest
binary program as input and dynamically translate it at run-
time to the host machine for execution. The guest and host
platforms may or may not employ the same instruction set
architecture (ISA) and/or operating system (OS). Dynamic
binary translation is a key technology that enables portable
binary execution [1]–[7], system virtualization [8], program
debugging [9], program instrumentation [10]–[12], dynamic
optimizations [13]–[15], and code analysis and transformations
for secure execution [16], [17].

Execution of the guest binary on the host platform requires
a DBT system to perform several auxiliary tasks, including
program translation and resolution of indirect control transfers,
in addition to emulation. Many of these auxiliary tasks are
conducted inline and stall the guest program emulation. The
resulting run-time costs lower the DBT system’s performance
on the host system as compared to native execution of the
program on an equivalent guest platform.

The performance of a DBT-like runtime system is com-
monly studied and evaluated as two related, but distinct
issues [18]: (a) program startup performance that measures
the throughput for short-running programs and latency for
applications that interact with or provide feedback to users, (b)
program steady-state performance that measures the through-
put for longer-running applications. Even as sophisticated opti-
mizations employed by current DBT systems have diminished

the steady-state performance overhead, startup performance
still remains significant for most systems.

The goal of this work is to study the main causes of
performance overhead during program startup and suggest and
evaluate techniques to overcome major issues. We find that the
block translation overhead along with associated costs, such
as context switching, are some of the major factors that dis-
proportionately impact a DBT system’s startup performance,
compared to steady-state performance later in the run.

The second part of this paper explores the problem of
reducing the translation overhead at program startup. On
multi/many-core machines, one obvious technique to reduce
the user-evident block translation overhead is to translate
blocks in parallel on free processor cores. We demonstrate
the potential and challenges of this approach with detailed
experiments and two techniques, one offline and the other
online. We discuss our observations and remaining challenges.

This work makes the following contributions.
• We highlight the problem of program startup performance

and study causes of startup overhead in DBT systems.
• We study how various auxiliary tasks, especially the

translation overhead, differently impact program startup
versus steady-state performance for DBT systems.

• We propose and evaluate a novel technique to reduce
translation overhead on multicore machines.

• We discover the remaining challenges in satisfactorily
resolving the translation overhead in DBT systems.

II. BACKGROUND

In this section we provide some background on dynamic
binary translation systems that is relevant to this work. DBT
systems use a technique called incremental translation to
discover and translate the guest code one basic block at a time
as they are reached during execution. The translated blocks are
placed in a region of heap memory, called the code cache for
later reuse. As execution reaches the end of each translated
block, control is returned back to the DBT engine (called a
context switch), which determines the next block to execute.
The DBT engine checks if this next block is already in the
code cache, and if not, employs the compiler to translate the
next block. Additionally, the DBT engine generally maintains
a guest PC to target PC map table and dynamically performs
the mapping to resolve targets of indirect branches at run-time.

Thus, in addition to program emulation, the DBT system
performs several auxiliary tasks during execution, including
code translations, indirect branch resolution and system call
handling. Most auxiliary task events occur along the critical
path of program emulation and stall the program execution
until that event is resolved. Additionally, each auxiliary task
typically requires a context switch from the code cache to the
DBT engine, and back. The DBT system may need to save
and restore program state at context switches. These context
switches and inline execution of auxiliary tasks produce per-
formance overheads in DBT systems.

III. RELATED WORKS

Researchers have proposed, built, and evaluated several
techniques to reduce the performance impact of auxiliary tasks
for DBT systems. Optimization techniques, such as introduc-
ing a basic block code cache and block chaining, help both
startup and steady-state performance. Other optimizations,
such as trace generation, are designed to improve performance
for long-running programs. In this section we present prior
research in areas of DBT optimization techniques targeted to
improve warmup or startup DBT performance.

In the past, several researchers have studied the performance
impact of different aspects of DBT. Ruiz-Alvarez and Hazel-
wood analyzed the effect of the changed application code lay-
out in a DBT system on microarchitectural performance [19].
This study found that the increase in the number of instructions
executed (compared to native execution) due to DBT interfer-
ence is the main factor affecting program performance. This
study analyzed performance for long-running programs. In
contrast, our work explores how auxiliary tasks affect program
performance during startup execution.

Several researchers have studied persistent code caching to
reduce startup overhead in DBT systems [20]–[22]. Persis-
tent code caches enable code reuse by storing and reusing
translations across executions, and techniques even exist to
handle dynamically generated code [21]. These approaches
can achieve high performance during startup by reducing the
translation overhead. However, the persistent code cache itself
needs to be warmed up, is not as effective when an unseen
program without representation in the code cache is executed,
and raises some security concerns [23].

Multi-level compilation is a model for DBTs [24] and other
runtime systems [25] to improve program startup performance
without compromising on good translated code quality that is
necessary for high performance on long-running programs. A
multi-level compilation scheme provides fast code translation
initially, with the important code regions later recompiled
with slower high-quality translators. These slower compil-
ers are typically designed to operate as separate parallel
threads. However, for systems without an interpreter, the first
mandatory translation still blocks the application thread. Our
work attempts to parallelize all translation activity and is
complimentary to multi-level compilation.

IV. EXPERIMENTAL CONFIGURATION

We use the DynamoRIO DBT system for this study [11],
[26]. DynamoRIO is an open-source runtime code manipula-
tion system that employs dynamic binary translation to support
code transformations on the guest program, while it executes.
DynamoRIO only allows configurations with identical guest
and host systems. Translations in DynamoRIO are typically
very quick since they maintain identical guest code to the host
code mapping (x86-64 for this study), unless instrumentations
or other changes are explicitly requested by the user. This
methodology contrasts with DBT systems designed for porta-
bility, like Qemu [1], [27], which maps guest instructions to an
intermediate representation before translating to a potentially
different host machine format. Thus, DynamoRIO offers a
DBT system with a very low translation overhead.

We employ the SPEC cpu2006 benchmark suite, which pro-
vides industry standard, CPU-intensive single-threaded bench-
marks [28]. We discard a few benchmarks that fail on some of
our DynamoRIO configurations. Each SPEC cpu2006 bench-
mark provides three input workloads, test, train, and ref. In this
study we employ the short-running test workloads to deliver
measurements pertaining to benchmark startup performance,
and the longer-running ref workloads to furnish steady-state
performance measurements.

Our experiments were conducted on a cluster of identically
configured Intel Xeon (R) E5430 2.66 GHz (x8 cores) worksta-
tions with 16GB memory. All machines run the 64-bit CentOS
Linux release 7.2.1511 operating system. All benchmarks are
compiled using GCC version 4.8 and optimized with the -O2
flag. All experiments run each configuration 10 times, and the
average measurement is plotted or reported.

V. ANALYZING DBT BEHAVIOR AT PROGRAM STARTUP

We have two primary goals with this work for DBT systems:
(a) to explore the magnitude of performance overhead and
the contribution of the translation cost at program startup
compared to steady-state, and (b) to develop techniques to
reduce translation overhead at program startup. In this section
we examine and contrast performance and translation behavior
at program startup versus program steady-state.

a) DynamoRIO versus Native Performance: Our first ex-
periment compares DBT startup and steady-state performance
with native program performance. With DynamoRIO, the input
guest code and generated host code use the same x86-64-Linux
machine configuration. The first bars for each benchmark in
Figures 1(a) and 1(b) plot the native benchmark execution
time when using the test and ref input data sets, respectively.
With native execution, programs run for 2.1 seconds and 474.6
seconds with the test inputs and ref inputs, respectively. The
next benchmark bars display the program execution time when
running with the default DynamoRIO DBT system. We find
that running with DynamoRIO incurs a performance penalty
of 75.9% and 17.4% with the test and ref inputs, respectively.

The final bars for each benchmark in Figures 1(a) and 1(b)
show program run-time with DynamoRIO configured with
traces disabled. A trace is a sequence of frequently executed

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.000
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000

N
at

iv
e

Ti
m

e
/

D
Ri

o
Ti

m
e

Pr
og

ra
m

 R
un

-T
im

e

Benchmarks

Native DRio Drio-NT Native_vs_DRio Native_vs_DRIO-NT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

200

400

600

800

1000

1200

1400

1600

1800

N
at

iv
e

Ti
m

e
/

D
Ri

o
Ti

m
e

Pr
og

ra
m

 R
un

-T
im

e

Benchmarks

Native DRio Drio-NT Native_vs_DRio Native_vs_DRIO-NT

(a) (b)

Fig. 1. DynamoRIO emulation time compared to the native execution time for each benchmark on the same platform, for the (a) test and (b) reference SPEC
inputs, respectively. The bars are plotted on the left Y-axis (lower is faster), while the line-plots use the right Y-axis (higher is better).

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

Co

de
 c

ac
he

 e
xi

ts
 (c

on
te

xt
 s

w
itc

he
s)

Benchmarks

Translations Ind. Branches Disallow_links System calls

33553

Fig. 2. Number of DynamoRIO code cache exits with the test (first benchmark
bar) and ref (right benchmark bar) inputs. Although programs with test inputs
run for much shorter duration as compared with the ref inputs, they encounter
a similar number of total code cache exits during program execution.

basic blocks placed together as one unit. Trace construction
is an optimization that can improve the efficiency of indirect
branches and achieve better code layout [11]. Without trace
construction, benchmark performance with DynamoRIO de-
grades about 10% for ref inputs, but improves by 19% for
test inputs. Given our focus on improving startup program
performance, and to simplify DynamoRIO code modifications,
all our later experiments in this study disable traces.

b) Context Switch: A typical DBT system translates the
guest application code one block at a time and stores it in the
code cache. This cached code can then be natively executed.
The DBT system enters/leaves the code cache via a mech-
anism known as a (user-level) context switch. Occasionally,
the execution needs to switch back to the DBT emulator to
perform auxiliary tasks, including translating guest code that
is not already in the code cache, resolution of indirect control
transfers, and system call processing. Context switches require
the DBT system to save and restore program state like general-
purpose registers, condition codes and other operating-system
dependent state. Thus, context switches are expensive, and
DBT systems, including DynamoRIO, often perform several
optimizations, such as branch chaining and inline caching of
indirect branch/call targets, to lower their occurrence.

Figure 2 plots the number of code cache exits for the
DynamoRIO DBT with the test and ref inputs. The context-
switches are categorized according to their purpose into, (a)
translation, (b) indirect branch resolution, (c) block linking
disallowed, and (d) system call handling. It is not surprising
to find that block translation and indirect branch resolution are
responsible for most context switches from the code cache.
However, it is remarkable that although the average program
run-time with the ref input increases by a factor of 72X
over the test input, the average number of context switches
only increases by a factor of 1.1X. This relatively modest
increase is because the DBT system uses the program startup
period to perform block translations and other optimizations
that reduce context switches during later execution. Thus, the
context switch overhead largely impacts program startup or
early program execution performance.

c) Translation versus Application Time: By default,
DynamoRIO conducts block (and trace) translation syn-
chronously with application execution in the same thread. We
constructed a new DynamoRIO configuration with separate
application and translation threads. While translation still oc-
curs in lock-step with program emulation for the experiments
in this section, this new DynamoRIO configuration could be
used to perform code translations asynchronously with and in
parallel with program execution. A global FIFO queue serves
as the interface between the application and compiler thread(s).

Our next experiment is designed to measure the translation
overhead in DBT systems during program startup and steady-
state. We use our new DynamoRIO configuration (with a
single compiler thread) for this experiment. The application
thread(s) make a translation request the first time a code
block is reached during execution and/or the block is not
present in the code cache. Such requests stall the application
thread until the translation is completed. We call them the
urgent translation requests. We use thread execution times
given by Linux’s proc file-system [29] to report application
and translation thread times.

The stacked bars in Figures 3(a) and 3(b) plotted on the
left Y-axis show the actual application and translation times

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0.000
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000

Tr
an

sl
at

io
n

 T
im

e
/

To
ta

l T
im

e

Th
re

ad
 R

un
-T

im
e

Benchmarks

Application Translation Trans_vs_Total Time

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.000
200.000
400.000
600.000
800.000

1000.000
1200.000
1400.000
1600.000
1800.000
2000.000

Tr
an

sl
at

io
n

Ti
m

e
/

To
ta

l T
im

e

Th
re

ad
 R

un
-T

im
e

Benchmarks

Application Translation Trans_vs_Total

(a) Test Input (b) Ref Input

Fig. 3. Block translation time compared to all other time spent during program execution with DynamoRIO for the (a) test and (b) ref SPEC inputs,
respectively. The stacked bars are plotted on the left Y-axis, while the line-plot uses the right Y-axis. Translation time is a significant component of total
program execution time for shorter running programs (with a DBT system).

for each benchmark with the test and ref inputs respectively.
The line graph plots the ratio of the benchmark translation
time and application run-time on the right Y-axis. While block
translation overhead only accounts for 0.3% of total program
execution time with the ref inputs, it comprises a much more
significant 22.5% (and as high as 90%) with the test inputs,
on average. Therefore, translation cost is a major factor for
performance overhead at program startup. In the next section
we propose and evaluate a new technique to reduce the evident
block translation and context switch costs of a DBT system
on multi-core machines.

VI. PARALLELIZING BLOCK TRANSLATIONS

Many Java and other high-level language runtime systems,
such as the HotSpot Java virtual machine [25], include an
interpreter in addition to the just-in-time (JIT) compiler to
perform emulation of the guest binary. In such systems the
JIT compilations facilitate performance enhancement over
interpreted execution, but do not block the execution of the
application. These systems reduce compilation activity by
supporting selective compilation, where program units (traces
or methods) are only compiled/optimized if they are frequently
executed (or hot). Selective compilation not only reduces the
compilation activity, but also allows the important program
units to be compiled sooner. Selected program units are queued
by the application thread(s) as and when they are detected.
Separate compiler threads work asynchronously to generate
optimized native code. Even with selective compilation, JIT
compilers in a JVM notice a surge in compilation activity at
program startup. Many such systems spawn multiple compiler
threads to more effectively handle this surge and to allow
programs earlier access to native code. Native code execution
provides the runtime with a higher performance emulation
alternative over interpretation.

Our proposed block translation parallelization framework in
DBT systems is inspired by such language runtime systems.
However, the two systems have important differences. DBT
systems, like DynamoRIO, Pin and QEMU, lack an interpreter.
Therefore, all block translation requests in such DBT systems

are blocking (or urgent). Since application threads stall on
every translation request sent, there is at most one pending
request from each application thread at any given time. There
is no provision to locate, queue and translate blocks ahead-
of-time. Additionally, since all code units reached during exe-
cution first require guest-to-host translation, there is typically
more translation activity in terms of number of requests as
compared to a runtime with selective compilation.

Therefore, our first challenge to parallelize block trans-
lations is to find guest binary code blocks before they are
reached during execution. We call this speculative translation
of blocks as eager translation. We examine and present
two eager translation techniques. The first technique uses
an offline approach to generate a list of block addresses
that are guaranteed to be needed during program execution
(Section VI-B). This method provides an ideal baseline to
evaluate the potential benefit of eager translation. Our next
technique generates the list of eager block addresses online
(Section VI-C). First, we describe the experimental framework
we employ for this study in the next section.

A. Framework to Study Parallelizing Block Translations

As described earlier in Section V-c, we extended the Dy-
namoRIO framework to asynchronously isolate the translation
activity in separate threads and provide a request queue for
application thread(s) to interface and communicate with the
translation thread(s). This setup allows us to create multiple
translation threads. However, DynamoRIO’s emulation and
translation frameworks were not designed to operate in parallel
and make heavy use of shared global structures and locks.
We found that DynamoRIO’s current design prevents the
translation threads from actually operating concurrently with
each other or with the application threads.

Our focus for this work is to evaluate the potential of parallel
translations on DBT startup performance and identifying other
challenges to achieve this potential. While we realize that
issues involving shared data structures, locks, race conditions,
etc. can reduce the ideal benefits from parallelization and that
resolving DynamoRIO’s design issue is a substantial research

0

0.2

0.4

0.6

0.8

1

1.2
N

at
iv

e
ru

n-
tim

e
/

Ru
n-

tim
e

w
ith

 X
-C

T

Benchmarks

1-CT 2-CT 4-CT 8-CT 16-CT 32-CT 64-CT 128-CT INF-CT

Fig. 4. Application performance with a DBT (compared to native program run-time) that uses varying number of parallel translation threads using the offline
approach to generate block addresses to eagerly translate. Performance improves rapidly with a small number of parallel translation threads.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
rg

en
t c

om
pi

le
s

w
ith

 X
-C

T
/

To
ta

l n
ee

de
d

co
m

pi
le

s

Benchmarks

1-CT 2-CT 4-CT 8-CT 16-CT 32-CT 64-CT 128-CT INF-CT

Fig. 5. Ratio of necessary block compiles that are urgently compiled with a DBT configuration that uses varying number of parallel translation threads using
the offline approach to generate block addresses to eagerly translate. A small number of parallel translation threads are able to significantly decrease the
number of (urgent) translations that stall application progress.

and engineering challenge, we decided to leave a significant
architectural overhaul of the DynamoRIO DBT system to
future work. (We do note that parallel JIT compilers have been
successfully built for several runtimes [25].)

Instead, for this work we build a simple and precise frame-
work to emulate the behavior of multiple parallel translation
threads with a single thread. Our translation thread operates in
lock-step with the application thread(s) on a single processor
core. The translation thread is invoked on an urgent request
from an application thread. On entry, the translation thread ex-
tracts the total application thread time and multiplies this time
by ‘N’, where ‘N’ is the total number of translation threads
being emulated. This process gives us the time available to
the translation thread to do its work. The translation thread
locks the processor until this calculated time is exhausted
or if there is nothing left to translate in the queue. The
time taken to process all the urgent requests that invoke the
translation thread is stored (lets call it the urgentReqProcTime),
since the application threads are stalled for urgent requests.
Finally, on program termination, our DBT system fetches the
thread times from the proc file-system. The application thread
times combined with the urgentReqProcTime gives us the total
program run-time. All other compilation activity is reported as
having occurred in parallel with actual program execution.

B. Offline Approach to Generate Eager Block Addresses

In this section we present our offline profiling based ap-
proach to generate a list of guest binary block addresses for
the parallel compiler threads to speculatively translate. This
approach allows us to determine the performance potential
of eagerly translating blocks in DBTs to minimize evident
translation overhead.

The offline approach works in two steps. First, we run
each benchmark program (with the test input data-set) with
a DynamoRIO configuration that outputs the list of block ad-
dresses that are reached during execution. The later measured
runs employ a DynamoRIO setup that uses this list of block
addresses to populate the compiler queue during initialization.
This setup then employs the procedure described in the last
section that uses the addresses in the compiler queue to guide
the eager translation of blocks in parallel with application
execution. The measured runs also use the test input, so they
only translate blocks that are guaranteed to be reached during
the program execution. We disable the OS’ ASLR (Address
space layout randomization) facility for this experiment.

This experiment launches measured runs with the DBT sys-
tem simulating varying number of translation threads. Figure 4
shows the application performance with 1, 2, 4, 8, 16, 32,
64, 128, and INF (unlimited) parallel translation threads. The

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

at
iv

e
ru

n-
tim

e
/

Ru
n-

tim
e

w
ith

 X
-C

T

Benchmarks

1-CT 2-CT 4-CT 8-CT 16-CT 32-CT 64-CT 128-CT INF-CT

Fig. 6. Application performance with a DBT (compared to native program run-time) that uses varying number of parallel translation threads using the online
approach to generate block addresses to eagerly translate. Performance improvement with a small number of parallel translation threads is significant, but at
42% of native performance, much lower than the ideal offline approach.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
rg

en
t c

om
pi

le
s

w
ith

 X
-C

T
/

To
ta

l n
ee

de
d

co
m

pi
le

s

Benchmarks

1-CT 2-CT 4-CT 8-CT 16-CT 32-CT 64-CT 128-CT INF-CT

Fig. 7. Ratio of necessary block compiles that are urgently compiled with a DBT configuration that uses varying number of parallel translation threads using
the online approach to generate block addresses to eagerly translate. Urgent translation requests reduce by as much as 74%, on average.

application performance is displayed by comparing its run-
time (derived using the procedure described in Section VI-A)
with native guest program run-time on the same platform. We
see that performance improves rapidly with increasing number
of parallel translation threads. The performance benefit is due
to the combined effect of fewer urgent compiles blocking
application progress and fewer DBT context switches. We
find that a small number of compiler threads is sufficient to
get most of the performance benefits. Overall, performance
improves from 27% to 62% of native program execution-time
with 1 to 128 parallel translation threads, on average1.

Figure 5 plots the ratio of the number of urgent translations
performed with this DBT configuration and varying number
of parallel translation threads divided by the total number
of necessary block translations for each benchmark. Eager
translations with this DBT configuration always successfully
reduce urgent translation requests. We find that even a single
translation thread with this setup reduces the number of
urgent translation requests by 20%, on average. Ideally, the
INF-CT configuration should result in only a single urgent
request for each run. However, the offline profiling run is not

1Performance of the 416.gamess benchmark exceeds its native execution
time, which may be due to a better block layout and caching effects that we
are yet to explore more fully.

always able to accurately find all block addresses for a few
benchmarks. This limitation causes the DBT to make about 2.9
urgent translation requests with the INF-CT configuration, on
average. Overall, we conclude that accurate speculative/eager
translation with a small number of parallel translation threads
can successfully raise DBT startup performance significantly.

C. Online Approach to Generate Eager Block Addresses

In this section we describe and evaluate a simple online
approach to automatically generate the list of block addresses
to eagerly translate during program execution. This online
approach uses a greedy algorithm to locate valid block start
addresses and translate the maximum number of blocks before
the application terminates. For every translated block that
ends in a conditional branch, this online technique adds
two addresses, the fall-through and target, to the queue that
provides the work-list for the translation threads. For blocks
containing direct jump and call instructions, DynamoRIO
already continues translation from the target location and
includes those instructions in the same block. We do not
yet add any addresses for blocks ending with indirect control
transfers (indirect jumps, branches, calls, or returns).

Other than updating how the speculative block addresses
are generated, the DynamoRIO framework and experimental

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
U

se
fu

l e
ag

er
 c

om
pi

le
s w

ith
 X

-C
T

/
To

ta
l e

ag
er

 c
om

pi
le

s w
ith

 X
-C

T

Benchmarks

1-CT 2-CT 4-CT 8-CT 16-CT 32-CT 64-CT 128-CT INF-CT

Fig. 8. Ratio of eager translations performed by our online approach that are used by the application thread. Results show a low rate of successful predictions.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

1-CT 2-CT 4-CT 8-CT 16-CT 32-CT 64-CT 128-CT INF-CT

Av
g.

 #
 o

f t
ra

ns
la

tio
ns

of parallel compiler threads

Urgent compiles Eager compiles

Fig. 9. Average number of urgent and eager translations performed for each
benchmark by offline (first bar) and online (second bar) approaches.

setup used in this section are identical to that employed in
Section VI-B. Figure 6 compares the application performance
with 1, 2, 4, 8, 16, 32, 64, 128, and INF (unlimited) parallel
translation threads with native program run-time, and plots
their ratio. Comparing these results with the ideal baseline
from Figure 4 we can see that while performance improves no-
ticeably with increasing number of parallel translation threads,
the improvement significantly lags the ideal baseline. Overall,
performance improves from 26% of native program execution-
time to 42% of native execution-time with 1 to 128 parallel
translation threads, on average.

Similar to Figure 5, Figure 7 plots the ratio of the number of
urgent translations performed with this DBT configuration and
varying number of parallel translation threads divided by the
total number of necessary block translations that are needed for
each benchmark. On average, the number of urgent compiles
reduce by 11% with a single translation thread, and up to
74% with 128 translation threads, compared to a system with
no eager translations. Interestingly, while this online eager
translation configuration is able to eliminate about 75% of the
urgent requests in the best case, the best performance benefit
derived (at 42% of native performance) is much lower than
75% (which would be, 26 + 0.75 ∗ (62 − 26) = 53%), of
the baseline benefit with the offline approach. We study the
efficiency of the online approach to explore this observation.

Figure 8 plots the ratio of useful eager translations, that

is correct speculative translations that successfully eliminate
needed urgent translation requests. This graph indicates that
our simple online approach is quite inefficient in finding
useful blocks to translate. In the best case, only 23% of
the eagerly translated blocks are useful, with this number
remaining relatively stable after about 16 translation threads.

Figure 9 displays the total number of urgent and eager
translations performed with the offline and online approaches
for varying number of translation threads, averaged over all
the benchmarks. The offline approach only translates known
useful blocks, and we can see that almost all blocks are eagerly
translated after about 16 translation threads. In contrast, the
online approach is not able to locate a significant number of
block addresses that are reached during execution, even in the
INF-CT configuration. We also find that the online approach
with multiple translation threads processes a very large number
of blocks that are then placed in the code cache, increasing
the DBT’s memory usage. Poor locality in the code cache and
large memory usage impacting processor cache performance
may be the reason for low performance numbers with the
online technique. A secondary, but nonetheless interesting
observation is that large parts of the program seem to not
be reached during execution. We require further research to
develop algorithms and techniques that improve the efficiency
of useful eager translations.

VII. FUTURE WORK

Future directions for this work span three goals. First,
develop new techniques and algorithms to improve the pre-
dictability of eager translation. We will develop static compiler
based and dynamic rules-based or machine-learning based
methods to eagerly translate only those blocks that have a high
likelihood of being reached during future program execution.
Second, explore algorithms and techniques to minimize the
need for locks and increase available parallelism between the
multiple compiler and application threads. Third, investigate
techniques to understand other sources of startup overhead,
including the fixed DBT initialization cost and indirect branch
overhead before optimizations are activated, to further improve
program startup performance.

VIII. CONCLUSIONS

Our goal with this work is to examine, understand and
improve DBT system startup performance. We study the major
sources of program overhead for short-running (startup) and
long-running (steady-state) programs. We find that the cost
of auxiliary tasks and user-level context switches are mostly
incurred at program startup. Optimizations performed by the
DBT system at startup enable execution to stay in the code
cache context for longer periods during steady-state execution.

We found that block translations performed by a DBT
system pose a large cost at program startup, and dominates
the total execution time for some programs. We investigate
the potential of novel techniques to reduce this translation
overhead on multi-core machines. Our techniques use multiple
parallel translation threads to eagerly or speculatively translate
blocks before they are reached and stall program execution.
We employ an offline approach to demonstrate the enormous
potential of this technique to reduce translation costs, and find
that prediction accuracy will need to be further improved to
realize this potential with completely online techniques.

REFERENCES

[1] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, pages 41–41, 2005.

[2] Ho-Seop Kim and James E. Smith. Dynamic binary translation for
accumulator-oriented architectures. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’03, pages 25–35, 2003.

[3] Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex
Skaletsky, Yun Wang, and Yigel Zemach. Ia-32 execution layer: a
two-phase dynamic translator designed to support ia-32 applications on
itanium-based systems. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 36, pages 191–,
2003.

[4] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman
Rubin, Tony Tye, S. Bharadwaj Yadavalli, and John Yates. Fx!32:
A profile-directed binary translator. IEEE Micro, 18(2):56–64, March
1998.

[5] Hewlett-Packard Development Company. HP ARIES binary
compatibility and product support statement. accessed from
http://www.hp.com/go/aries, September 2008.

[6] Apple Inc. Rosetta. accessed from http://www.apple.com/asia/rosetta,
2006.

[7] Amanieu D. Antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján.
Low overhead dynamic binary translation on arm. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, pages 333–346, 2017.

[8] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson,
Thomas Kistler, Alexander Klaiber, and Jim Mattson. The transmeta
code morphing™ software: Using speculation, recovery, and adap-
tive retranslation to address real-life challenges. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’03, pages 15–24,
2003.

[9] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’07, pages 89–100, 2007.

[10] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’05, pages
190–200, 2005.

[11] Derek L. Bruening. Efficient, transparent, and comprehensive runtime
code manipulation. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2004.

[12] Peter Feiner, Angela Demke Brown, and Ashvin Goel. Comprehensive
kernel instrumentation via dynamic binary translation. In Proceedings
of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XVII,
pages 135–146, 2012.

[13] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo:
a transparent dynamic optimization system. In Proceedings of the
ACM SIGPLAN 2000 conference on Programming language design and
implementation, PLDI ’00, pages 1–12, 2000.

[14] Yukinori Sato, Tomoya Yuki, and Toshio Endo. Exanadbt: A dynamic
compilation system for transparent polyhedral optimizations at runtime.
In Proceedings of the Computing Frontiers Conference, CF’17, pages
191–200, 2017.

[15] Chaohao Xu, Jianhui Li, Tao Bao, Yun Wang, and Bo Huang. Meta-
data driven memory optimizations in dynamic binary translator. In
Proceedings of the 3rd International Conference on Virtual Execution
Environments, VEE ’07, pages 148–157, 2007.

[16] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson,
David Evans, John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowan-
hill. Secure and practical defense against code-injection attacks using
software dynamic translation. In Proceedings of the 2nd international
conference on Virtual execution environments, VEE ’06, pages 2–12,
2006.

[17] Mathias Payer and Thomas R. Gross. Fine-grained user-space se-
curity through virtualization. In Proceedings of the 7th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’11, pages 157–168, 2011.

[18] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.
Sweeney. Adaptive optimization in the jalapeÑo jvm. In Proceedings of
the 15th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’00, pages 47–65,
2000.

[19] A. Ruiz-Alvarez and K. Hazelwood. Evaluating the impact of dynamic
binary translation systems on hardware cache performance. In 2008
IEEE International Symposium on Workload Characterization, pages
131–140, Sept 2008.

[20] Clément Béra, Eliot Miranda, Tim Felgentreff, Marcus Denker, and
Stéphane Ducasse. Sista: Saving optimized code in snapshots for
fast start-up. In Proceedings of the 14th International Conference on
Managed Languages and Runtimes, ManLang 2017, pages 1–11, 2017.

[21] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant.
A general persistent code caching framework for dynamic binary trans-
lation (dbt). In Proceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’16, pages 591–603, 2016.

[22] Vijay Janapa Reddi, Dan Connors, Robert Cohn, and Michael D. Smith.
Persistent code caching: Exploiting code reuse across executions and
applications. In Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’07, pages 74–88, 2007.

[23] Derek Bruening and Vladimir Kiriansky. Process-shared and persistent
code caches. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’08,
pages 61–70, 2008.

[24] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-
Chung Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung.
Hqemu: A multi-threaded and retargetable dynamic binary translator on
multicores. In Proceedings of the Tenth International Symposium on
Code Generation and Optimization, CGO ’12, pages 104–113, 2012.

[25] Michael Paleczny, Christopher Vick, and Cliff Click. The Java
HotSpot™server compiler. In Proceedings of the Symposium on Java
Virtual Machine Research and Technology Symposium, pages 1–12,
2001.

[26] DynamoRIO: Dynamic Instrumentation Tool Platform. accessed from
http://www.dynamorio.org/home.html, April 2018.

[27] QEMU: The FAST! processor emulator. accessed from
https://www.qemu.org/, April 2018.

[28] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Comput. Archit. News, 34(4):1–17, September 2006.

[29] Arnaldo Carvalho de Melo. The new linux perf tools. Linux Kongress,
2010.

