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Abstract—Processor frequency scaling has greatly stagnated
over the last few years, making it difficult to continue improving
sequential or single-threaded program speed. Hardware and
software system developers now need to devise innovative and
aggressive schemes to grow sequential software performance.
The goal of this work is to assess the potential and feasibility
of eliminating dynamically dead instructions (DDI) – where the
results of executed instructions are not used by the program
– to benefit program speed. Specifically, we quantify the ratio
of DDI in the dynamic instruction stream for different classes
of contemporary programs (general-purpose vs. embedded) and
architectures (CISC vs. RISC), and explore characteristics of DDI
to assist the design of effective solution mechanisms.

To achieve our goal, we develop a robust and portable
compiler (GCC) based framework for DDI research, and target
this investigation at contemporary x86 and ARM based machines.
We find that while a substantial fraction of instructions executed
by all classes of programs are dynamically dead, architectural
features show a visible impact. Our experiments reveal thata
handful of static program instructions contribute a majori ty of
DDI. We further find that DDI are often highly predictable, ca n be
detected within small instruction windows, and a small amount of
static context information can significantly benefit DDI detection
at run-time. Thus, our research can induce the development
and adoption of practical DDI elimination techniques to scale
sequential program performance in future processors.

Keywords—Dynamically dead instructions; architecture; com-
piler;

I. I NTRODUCTION

An instruction executed by a processor isdynamically dead
(DDI) if its calculated result is not used by the program [1].
It is obvious that executing dynamically dead instructions
will waste power and hardware resources, and likely slow-
down the program execution. Consequently, compiler opti-
mizations, such asdead and partial dead code elimination,
were specifically designed to remove such useless instructions
from generated codes. In the past, researchers have observed
that, even after applying such compiler transformations, a
significant fraction (24% on the Alpha [2] and 20% on the
Itanium [3], on average) of executed instructions are dead.
However, existing compilers and hardware typically do not yet
implement any dedicated techniques to detect and eliminatethe
DDI missed by the standard compiler optimizations.

Past DDI studies were performed in the era of exponen-
tially growing uniprocessor clock speeds, when single-threaded
applications were enjoying free, regular, and rapid performance

gains, and processor real estate was more limited. More
recently, physical barriers and technology limitations have
effectively ended the rapid scaling of processor frequencies
to automatically increase single-threaded software speed. We
also find that many legacy programs and software tasks still
employ sequential algorithms (such as finite state machines[4]
and iterative numerical methods) that derive little benefitfrom
increasing processor counts on newer multi-core machines.
Additionally, even most parallel workloads are limited by
their sequential components, as dictated by Amdahl’s law [5].
Therefore, we believe that it will become attractive as well
as important in the future to investigate and deploy more
aggressive techniques to improve performance for sequential
program components as well as for programs that cannot
be recompiled/parallelized. Based on past research results,
eliminating DDI is one such promising avenue.

Past DDI research has not conducted an extensive study
of the characteristics of DDI. Earlier studies were performed
on architectures (like the Alpha and the Itanium) that are
either defunct or less mainstream today. Additionally, the
impact of the instruction set/family on the fraction of DDI in
executed programs has not been studied. Instruction set design
decisions ranging from CISC vs. RISC to localized features,
like predication, may affect the prevalence of DDI. Likewise,
compiler optimizations can also influence the ratio and features
of DDI in generated codes. Therefore, for any DDI elimination
schemes to be deployed in existing systems, it is necessary to
first study the extent and characteristics of the problem for
contemporary architectures (such as the x86 and the ARM)
and for programs generated using compilers that use the full
suite of modern optimizations. Such a study will assist the
development of practical solutions to the DDI issue, and reveal
the potential performance benefit.

The goal of our research is to investigate the issue of DDI
in the context of current compilers (GCC) and contemporary
architectures (x86 and ARM) to determine the benefit and
potential of DDI elimination to improve sequential program
speed, and to help design practical resolution schemes. We
make the following contributions in this work. (a) We develop
a unique GCC-based compiler framework toportably detect,
study, and categorize the DDI for multiple different architec-
tures. (b) We determine the number and ratio of dynamically
dead instructions and the corresponding static instructions
that contribute to the overall DDI for general-purpose and
embedded benchmark programs. (c) We design experiments to
study DDI characteristics to assist the development of future



hardware, software, and hybrid DDI elimination schemes. Such
measurements include determining the size of the dynamic
instruction window to detect a dead instruction at run-time,
and the effect of using staticcontext information to isolate
instructions with a high probability of being dynamically dead.

The rest of this document is organized as follows. We
present the related work in Section II. We describe our GCC-
based framework to detect, analyze, and categorize DDI in
Section III. We present our experimental observations in Sec-
tion IV. Finally, we describe future work and the conclusions
in Sections V and VI, respectively.

II. BACKGROUND AND RELATED WORK

Unreachable and dead code is introduced by software
developers into high-level language programs or by the com-
piler when optimizing and generating binary code. Traditional
compiler optimizations, such asunreachable code elimination,
dead code elimination,andpartial dead code eliminationare
tasked with detecting and removing such dead code from
generated programs [6], [7]. Although these optimizationsare
highly effective, high rates of DDI persist even for programs
generated by compilers that apply these optimizations.

Past research has explored the DDI issue and suggested
hardware mechanisms to find and eliminate DDI. Lumetta and
Patel found that, on average, 15% of executed instructions
in the SPEC2000 benchmarks on the Alpha processor are
dead [8]. They also measured an additional 10% of the instruc-
tions to beNOPs. Fahs et al. proposed therePLayarchitecture
to provide dynamic optimization support at the hardware
level [2]. Their dynamic optimization system built upon the
Alpha simulator discovered 24% of DDI, on average, and
could eliminate about 10% of them. Butts and Sohi analyzed
some important properties of DDI and proposed a hardware
technique to predict and eliminate DDI at runtime [1]. Their
technique was able to detect 79% of useless instructions in
their benchmarks and achieved up to 9.6% speedup benefits.
This work only studied instructions that produce dead register
values, and chose to ignore dead memory stores, NOPs and
prefetches. A recent work studied the prominent causes of DDI
for embedded programs on the x86 [9].

These existing works do not perform the same and as
comprehensive an investigation into the characteristics of DDI
as we do in this work. Additionally, they each explored a single
hardware and benchmark set, and often used architectures that
are currently not in common use. Our current research focuses
on gaining a more thorough understanding of the potential and
properties of DDI for multiple contemporary architecturesand
benchmark domains to assist the development and tuning of
existing and new remedial mechanisms.

Researchers have also explored issues that are similar
to DDI, and produce useless executed instructions. Several
studies have investigated static instructions that produce the
same value on multiple consecutive dynamic invocations [10],
or dynamic instructions that update a register or memory
location with a value that it already contains [11], [12]. This
phenomenon is called value locality. Some researchers have
explored the phenomenon ofsilent stores, which are memory
write instructions that do not alter the value already present at
the target address [11], [13]. Many of these works also propose

and evaluate speculative mechanisms to remove or eliminate
such useless instructions.

Martin et al. also worked on an issue related to DDI and
presented hybrid schemes to statically mark the last use of
register values that the hardware can later track to eliminate
unnecessary save and restore instructions at procedure calls and
context switches [14]. Sundaramoorthy et al. proposed a new
processor microarchitecture to simultaneously run two copies
of every program to exploit the properties ofpredictabledead,
branch, and otherineffectualinstructions to speed up both the
duplicated program streams [15]. These works also did not
focus on analyzing and understanding the occurrence of DDI.

Detecting and understanding dynamically dead instructions
requires us to generate and analyze the profile or trace of
the whole program execution. Compiler and computer archi-
tecture researchers have often employed such execution time
program trace information to understand important program
properties [16]–[18]. The first algorithms for generating whole-
program paths were presented by Larus [19] and Melski and
Reps [20], and later extended by several others [21], [22]. We
use and extend these algorithms to generate the control-flow
and data-flow profiles for this work.

III. F RAMEWORK FOREXPLORING DDI

In this section we briefly describe our experimental frame-
work to generate program execution profiles to detect and
investigate dynamically dead instructions. We use and modify
a single GCC compiler (version 4.5.2) source code to build
binaries for a 32-bit x86 platform, and cross-compile binaries
for the ARM. Each compiled program is instrumented after
all the optimizations are applied and immediately before code
generation. We do not yet instrument library functions. Our
tracing algorithm automatically marks all arguments passed to
a library function as being used.

Each x86 binary is natively executed on Intel(R) Xeon(R)
based machine. ARM binaries are cross-compiled on the
x86 and run on an OMAP4 Panda board with a dual-core
ARMv7 processor. The inserted instrumentations produce two
trace files on program execution. These trace files contain an
uncompressed sequential list of the basic block numbers along
with a list of memory addresses as they are reached/accessed
during execution. These trace files are later used in a single
sequential scan to analyze and discover instances of DDI in our
benchmark programs. The trace is scanned in a reverse order
to reduce the complexity of classifying dead instructions.In
particular, when processing a specific instruction in the trace,
reverse scanning allows the liveness value of all consumersof
the instruction’s result to be already known [1], [2].

We use programs from the MiBench [23] and SPEC
CPU2006 benchmark suites [24]. MiBench includes ‘C’ pro-
grams generally used in embedded applications. We randomly
select one program from each of the six MiBench categories
for our set. The SPEC CPU 2006 benchmarks contain larger
CPU-intensive general-purpose applications. We include the
eight ‘C’ integer benchmarks from the SPEC CPU 2006
set for our experiments. While our x86 experiments use our
complete benchmark set, we use only the embedded MiBench
benchmarks on the ARM platform.
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Fig. 1. Percentage of dynamically dead instructions in x86 benchmark
programs. The DDI is further categorized as register set dead instructions,
memory set dead instructions, andNOP instructions

The referencedata set for the SPEC benchmarks results
in long (several hours) program run-times and large trace
files. We employ the popular Simpoint mechanism to limit
the program run-times with the SPEC benchmarks [25]. The
Simpoint framework allows us to generate traces over smaller
representativeexecution intervals instead of the entire program
run. We used Simpoints to gather information for a maxi-
mum of five 100 million instruction windows for each SPEC
benchmark. Our analysis considers all memory locations and
registers as used upon starting thebackward scan on each
simpoint. Thus, our DDI numbers for the SPEC benchmarks
reflect a conservative estimate.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We use our modified GCC to instrument the x86 and ARM
benchmark programs. These instrumented programs produce
instruction and data traces at runtime, which we then analyze
for DDI. For each benchmark, we use the GCC optimiza-
tions flags,-O0 and -O3, to generate the unoptimized and
optimized binaries respectively. In this section we present the
results of our analysis regarding the ratio and characteristics
of DDI for x86 and ARM binary programs generated by GCC.

A. x86 Results and Analysis

We describe our DDI analysis results on the x86 platform
in this section. Results of our experiments on the ARM are
presented in Section IV-B. We use our backward tracing
algorithm to traverse the execution traces for each benchmark
(or benchmark’s simpoints) and collect the number and char-
acteristics of each program’s dynamically dead instructions.

1) Ratio of Dynamically Dead Instructions:Figure 1 shows
the ratio of the number of total executed instructions for each
benchmark that are dynamically dead on an x86 machine. We
see that most benchmarks contain a significant percentage of
DDI, although not as much as was observed in earlier studies
conducted on RISC (Alpha) and VLIW (Itanium) architectures.
On average, our unoptimized MiBench benchmarks contain
4.62% of DDI, while the optimized MiBench benchmarks have
a slightly higher DDI fraction (7.71%). The SPEC benchmarks
exhibit slightly higher DDI. On average, 8.71% and 10.12%
of the instructions executed by the unoptimized and optimized
SPEC benchmarks respectively are dynamically dead on the
x86. This observation of optimized programs containing more
dead instructions is consistent with earlier research [1].

for (i=0 ; i<NUM_NODES ; i++) {
    if((iCost = AdjMatrix[iNode][i]) != NONE) {
        ...
    }
}

==> converted by compiler to

for (i=0 ; i<NUM_NODES ; i++ ) {
    leal  (%edi,%ebx), %ecx
    movl  AdjMatrix(,%ecx,4), %esi
    cmpl  $9999, %esi
    movl  %esi, iCost

    ...
}

// calc. index into array AdjMatrix

    je    .L45 

// Load AdjMatrix[iNode][i] into %esi
// Compare AdjMatrix[iNode][i] with NONE

// if false, enter ’if’ statement
// Mostly useless copy of AdjMatrix[iNode][i] into variable iCost

Fig. 2. Optimization to reduce load/store latency (dijkstra)

Figure 1 further breaks-up the DDI into three categories:
dead instructions due to a register set, dead instructions due
to a memory set, andNOP instructions. ANOP instruction is
used for several purposes such as to force memory alignment
and to prevent hazards, and does not change the state of
the system. On average, the optimized MiBench benchmarks
contain 3.88% register set dead instructions, 3.83% memoryset
dead instructions, and noNOP instructions. The corresponding
numbers for unoptimized MiBench benchmark are 3.34%,
1.21%, and 0.06%, respectively. The optimized SPEC bench-
marks contain 4.58% register dead instructions, 5.42% memory
set dead instructions, and noNOP instructions. Finally, 6.64%,
1.85%, and 0.21% of instructions executed by the unoptimized
SPEC benchmarks are dynamically dead due to redundant
register sets, memory sets andNOP instructions respectively.

We note some interesting properties of DDI in our bench-
mark programs. First, all benchmarks contain both register
and memory set DDI. Second, GCC compiler optimizations
are able to completely removeNOP instructions from all x86
binaries. We also found that most benchmarks (with optimized
bitcount being the only exception) display a larger number of
memory set dead instructions in the optimized binaries thanin
their corresponding unoptimized variants.

Figure 2 shows an example of a common transformation
applied by GCC that causes the program (dijkstra, in this case)
to exhibit higher DDI after optimizations. This optimization
assigns a local to a register in order to reduce the load/store
latency. In this example, the unoptimized binary first sets the
memory location of the variableiCost, and then checks
whether theif-path is taken. Instead, the optimized binary
stores the value ofiCost both in memory and in the register
%esi. Then, instead of using the memory location holding
the contents ofiCost, the rest of the loop body uses the
%esi register instead. TheiCost variable is still updated
once in each loop iteration. Thus, while this optimization will
likely reduce the load/store latency, the set (with no use) of
the memory location is dead in all but (perhaps) the last loop
iteration. This specific transformation actually accountsfor
48.56% of the DDI found in the optimizeddijkstra benchmark.

2) Static Instruction Contributions to DDI:Our analysis
indicates that, in most cases, thestatic program instructions
corresponding to the DDI arepartially dead at run-time and/or
difficult to remove using pure static techniques. While static
schemes to eliminate DDI may be inadequate, they may still
be able to assist run-time and hardware-based schemes to
lower their overall hardware and power costs. For instance,we
believe that a promisinghybrid compiler-hardware approach
may employ the compiler to tag instructions asprobably dead,



Fig. 3. Number ofstatic instruction instances corresponding to DDI for
optimized x86 benchmarks. The three bars for each benchmark display static
instructions reached without context information, withsingle-call-sitecontext
information, andfull-call-stack context respectively. Note, the vertical axis is
plotted on a logarithmic scale.

Fig. 4. Number ofstatic instruction instances corresponding to DDI for
unoptimized x86 benchmarks. The three bars for each benchmark display
static instructions reached without context information,with single-call-site
context information, andfull-call-stack context respectively. Note, the vertical
axis is plotted on a logarithmic scale.

which will then be tracked by the hardware at run-time. For
such techniques, success in eliminating DDI at low costs will
depend on the compiler accuracy of tagging potentially dead
instructions, the number of instructions that the hardwareneeds
to track, and the instruction window that will be needed to
determine the dead-nessstatus of an instruction at run-time. In
this section we collect statistics to determine the feasibility and
assist the development of such DDI elimination techniques.

First, we present results on the number of static instructions
that generate DDI at run-time. Thefirst/leftmost bar1 for
each benchmark in Figures 3 and 4 show the number and
ratio of static instruction instances that correspond to the
DDI as compared to the total number of static instructions
reached during the execution of each benchmark. Thus, we
can see that, for optimized SPEC and MiBench benchmarks,
only 18.62% and 8.97% of the static instruction instances,
respectively and on average, contribute to the DDI. For our
unoptimized benchmarks, 18.25% and 7.64% of the static
instructions contribute to the DDI for SPEC and MiBench
programs, respectively.

Figures 5 and 6 are plotted to further studyonly the set of
static instructions that contribute to the program DDI.2 These
figures sort (in ascending order) and display the contributions
of individual (partially dead) static instructions to the overall
percentage of dynamically dead instructions for the optimized
x86 benchmarks. We can observe an important pattern in these

1The remaining two bars for each benchmark will be discussed later.
2We only present plots for the optimized benchmark results tosave space.

The unoptimized benchmarks reveal similar trends.
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Fig. 5. Contributions of (partially dead) static instruction instances to the
DDI of optimized x86 MiBench benchmarks (sorted in ascending order)
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Fig. 6. Contributions of (partially dead) static dead instruction instances to
the DDI of optimized x86 SPECbenchmarks (sorted in ascending order)

figures: a very small percentage of static instructions contribute
a large majority to the total DDI in our x86 benchmarks. Thus,
using compiler or profiling-based schemes to tag only these
small number ofimportant static instructions that contribute
most to the DDI shows good promise to help run-time DDI
elimination schemes.

Potential techniques to detect and eliminate DDI will likely
also be impacted by theprobability of static instructions being
dead at run-time. Probability for our purposes implies the ratio
of the number of times that a static instruction is dead to the
number of times it is encountered during program execution.
Thus, if a specific static instruction is always dead at run-time,
then we say that its DDI probability is 100%.

We further categorize these results based on how fast
(in terms of number of intervening sequential instructions)
an instruction is detected to be dead after it is reached.
This detectionspeedmay affect the length of the hardware
instruction window maintained by the processor to detect dead
instructions or how long a potential dead instruction will need
to be delayed to avoid its execution for DDI elimination
techniques. We extend our trace algorithm to not only trace
the register or memory location being set, but to additionally
determinewhen the register or memory location was (re)set.
This modification enables us to find instructions detected dead
within specific instruction windows. We employ (and plot)
instruction windows of 5, 10, 20, 50, 100, 500,>500 to
analyze the speed of detecting dynamically dead instructions.

We find that most of dynamically dead instructions in
our benchmarks are notalways (100% probability) dead. On
average, for our MiBench and SPEC benchmarks, only 0.14%
(2% of DDI) and 1.73% (17% of DDI) of total executed
instructions are generated by static instructions that arealways
detected to be dead, respectively.

The leftmostbar for each benchmark in Figure 7 shows
the percentage DDI that are dead with a high 90% probability
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Fig. 8. Percentage of DDI that are dead with90% probability in the
unoptimized x86benchmarks. From left to right, the bars for each benchmark
display the percentage of DDI without context information,with single-call-
site context andfull-call-stack context respectively.

in the optimized x86 benchmarks. Thus, on average, 5.07%
(65.76% of DDI) and 5.65% (55.83% of DDI) of dynamically
executed instructions are generated by static instructions that
are dead at least nine of every ten times they are reached for
the MiBench and SPEC benchmarks, respectively. This figure
also reveals that most of the instructions with DDI probability
of 90% are detected to be dead within very small instruction
windows, which can benefit some plausible hardware-based
DDI detection techniques. Similarly, for a probability of 70%,
we can detect 5.51% (71.47% of DDI) and 5.99% (59.19% of
DDI) of the dynamically executed instructions to be dead for
our MiBench and SPEC benchmarks, respectively. Again, most
of these are detected dead within small instruction windows.

Figure 8 plots a similar graph for DDI that are dead
with 90% probability and within the illustrated instruction
windows for theunoptimizedbenchmarks respectively. These
results (and those with 100% and 70% probabilities) are mostly
consistent with our earlier observations for the optimized
benchmarks. Thus, in summary, we can conclude that, while
few dead instructions are always dead, a majority of DDI
are detected to be dead with high probabilities and relatively
quickly within small instruction windows at run-time.

3) Context Information to Improve DDI Detection:In this
section we explore the potential and costs of a simple mecha-
nism to improve DDI probability at run-time. This mechanism
is based on the intuition that an instruction with a unique
static (program counter or PC) location may be reached along
different intra- and inter-procedural paths, which may display
different DDI behavior. We exploit thiscontext information
to partition the dynamically executed instruction instances
attributed to a single static location into multiple disjoint sets.

While such partitioning may increase the number of static
locations a technique to eliminate DDI may need to track, it
should also improve the probability of eachinstruction-context
to be dead at run-time. In this section, we explore the impact
of using such context information on the DDI probability and
the number of instances that may need to be tracked.

Approach: There are many different kinds of context in-
formation that the compiler/hardware can exploit or track.For
example, information contained in the dynamic function call-
stack and/or the intra-procedural basic block path taken toan
instruction can provide context to partition dynamic instruction
instances. In this research, we limit the context information
employed to (stack of) the PC-location of the function call
that contains the dead instruction. To simulate and analyze
the effect of using this context information, we modified our
GCC compiler to add further instrumentation to the generated
binaries. This new instrumentation identifies each function call
by a distinct call-site identifier corresponding to the static
(PC) location of the functioncall instruction. We appropriately
extend our trace algorithm to maintain a stack of such context
information during the DDI analysis phase. For our backwards
tracing algorithm, the function call-site identifier is pushed on
this call-stack on encountering a function return, and popped
off the stack on reaching the function start.

For this work, we employ function call-site context in-
formation at two levels: (a)single-call-site– only the top
stack entry is used, and (b)full-call-stack– the entire call-site
stack is used. To generate the full-stack context knowledge,
we extend our call-stack implementation such that each stack
location also holds ahash of the entire call-site stack state
below it. On reaching the function return during our backward
scan algorithm, we push a CRC32 hash checksum of the
current function identifier with the previous checksum on top
of the stack. The checksum value is restored on reaching the
function start. Thus, the CRC32 hash allows us to cheaply
maintain and employ context knowledge of the entire program
call-site stack state at each point.

Benefit: The benefit of employing context information can
be gauged from Figures 7 and 8. As discussed in the last sec-
tion, Figure 7 shows the percentage of DDI that are dead with
90% probability in the optimized x86 benchmarks. Remember
that we obtain these probabilities by dividing the number of
times the static instruction instance is dynamically dead by
the number of times the instruction instance is executed. The
leftmost bar in each of these figures show the percentage
of DDI without any context information. The middle bars
display the percentage of DDI when using thesingle-call-site
context, while the rightmost bar for each benchmark presents
the percentage of DDI using thefull-call-stack knowledge as
context.

Thus, from these figures, we observe that context knowl-
edge can dramatically improve the fraction of DDI that are
detected to be dead with a high probability. We find that
using single-call-site and full-call-stack context, on average,
for SPEC benchmarks DDI that are dead with 90% probability
rises from 5.65% to 7.61% (75.18% of DDI) and 8.13%
(80.32% of DDI), respectively. Similarly, for SPEC bench-
marks DDI that are dead with 100% probability increases from
1.73% to 3.25% (32.11% of DDI) and 4.38% (43.27% of DDI),
respectively. On average, DDI for SPEC benchmarks with 70%



probability increases from 5.99% to 8.66% (85.55% of DDI)
and 8.92% (88.12% of DDI) respectively. Importantly, simple
single-call-site context knowledge is able to derive most of the
benefits of using the full-call-stack context information.

Likewise, Figure 8 plots the impact of using context infor-
mation on DDI with 90% probability for unoptimized bench-
marks on the x86. We again find that our observations from
the earlier optimized benchmark results, namely that (a) a high
ratio of static DDI instances are dead with a high probability,
(b) this probability can be substantially improved by usinglittle
context knowledge, and (c) most DDI can be quickly detected
to be dead in small dynamic instruction windows, also hold
very well over the unoptimized benchmark programs. Thus,
although we only explore one avenue of context information
for these experiments, we can conclude that context knowledge
can significantly improve the DDI probability, andsimple
context knowledge can get DDI probability benefits close to
those achieved by more complex context collection algorithms.

Costs:As noted earlier, context information improves DDI
probability by partitioning the DDI instances that are attributed
to a single static PC location into multiple PC-context loca-
tions. Therefore, it is obvious that using context knowledge can
increase the number of locations that an online DDI detection
or elimination algorithm may need to track, thereby increasing
its cost and complexity. Figures 3 and 4 that were discussed
earlier show the number and ratio ofstatic instruction instances
that correspond to the DDI as compared to the total number
of static instructions reached during the execution of each
benchmark. The middle bar in these figures displays these
static instance numbers and ratios when using thesingle-call-
sitecontext, while the last bar for each benchmark shows these
results when using thefull-call-stackcontext knowledge.

We again find that the unoptimized and optimized x86
benchmarks show very similar trends. For the optimized SPEC
benchmarks, and compared to the baseline of not using any
context information, we can see that the number of static
instances that contribute to DDI (and may need to be tracked)
increases by about 2.56 times when using single-call-site
context (middle bars), and by 356.83 times when using the full-
call-stack for context (last bars), on average. For the MiBench
benchmarks, the corresponding increases are 1.40 times and
2.72 times respectively, on average. Thus, as expected, using
the full-call-stack context information causes a large jump
in both the number oftotal static instances as well as the
number of instances corresponding to DDI, especially for
the SPEC benchmarks. This jump will likely result in a
corresponding increase in the cost of online DDI elimination
algorithms. Fortunately, while employing even the single-call-
site for context raises the number of static DDI instances, this
increase in much more tempered and manageable. These cost
results, combined with our earlier observation showing that
using more complete context knowledge is not significantly
more beneficial, should bode well for the cost and complexity
of future, simple online or hybrid techniques to eliminate DDI.

B. ARM Results and Analysis

While the x86 is still the dominant architecture for desk-
top and server-class machines, the ARM architecture is fast
becoming the de-facto standard for medium and high-end

embedded/mobile devices. Moreover, the RISC-based ARM
architecture presents a good contrast to the CISC x86, is more
similar to the architectures used in earlier DDI studies (like the
Alpha and MIPS), and may reveal the impact of architecture
differences on observed DDI. In this section, we describe the
results of our DDI analysis on benchmarks compiled for the
ARM architecture.

We updated the ARM port of our GCC compiler to
instrument binaries to collect DDI statistics on our ARM-
Linux based systems. Our ARM PandaBoard machine has
a dual-core ARMv7 Processor, which we configured to run
the Ubuntu 10.10 sever OS. Since the ARM is much slower
as compared to the x86 processors, and characterized as an
embedded architecture, we only use our MiBench benchmarks
for our analysis in this section.

We appropriately extend the implementation of our GCC-
based instrumentation framework to correctly handle the use
of predication, or conditional instruction execution on the
ARM. Predication is a distinctive feature of the ARM (and
some other) architecture that is used to mitigate the costs
typically associated with conditional branches. The use of
predication has important ramifications on DDI analysis. To
perform accurate DDI analysis, we need to know whether the
predicated instructions encountered at run-time are executed or
not. A predicated instruction on the ARM executes condition-
ally based on the state of the CPSR (Current Program Status
Register) register. If the condition is satisfied, the instruction
is executed, and would be considered a DDI if its result is not
used by the program. Otherwise, the instruction is effectively
turned into aNOP instruction. We consider such instructions
that fail their predicate condition to be apredicated dead
instruction.

GCC RTL representation includes information on whether
or not the assembly instruction is predicated. To accurately
handle the issue of predicated instructions, we insert additional
code instrumentation to dump the value of the CPSR register
prior to executing each predicated instruction at run-time. The
value of the CPSR register allows us to determine whether
or not a predicated instruction was executed or converted into
a NOP. Then, in our trace algorithm, we perform the same
check of the CPSR register for every predicated instruction
and determine its influence on the overall DDI value.

1) Ratio of Dynamically Dead Instructions:Figure 9 shows
the ratio of the number of total executed instructions for each
benchmark that are dynamically dead. We can see that our op-
timized and unoptimized MiBench programs contain 20.60%
and 10.11% DDI, on average, respectively Figure 9 further
breaks-up the dynamically dead instructions into four cate-
gories: dead instructions due to a register set, dead instructions
due to a memory set, predicated dead instructions, andNOP in-
structions. On average, the unoptimized MiBench benchmarks
contain 8.44% register set dead instructions, 1.23% memory
set dead instructions, 0.39% predicated dead instructions, and
0.05%NOP instructions. The optimized MiBench benchmarks
contain 8.42% register set dead instructions, 4.63% memory
set dead instructions, 7.55% predicated dead instructions, and
no NOP instructions, on average.

Thus, we find that, in contrast to programs on the x86
that we found deliver a low DDI ratio, the ARM bench-
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marks display a higher overall ratio of DDI similar to other
architectures, such as the DEC Alpha [1], [2] and the Intel
Itanium [3]. However, most of this increase can be attributed
to the use of predication, which is a unique feature of the
ARM that is absent in most other (studied) architectures.
Many other observations we can make on the ARM are
patterns that we also witnessed in our previous x86 results.
For example, all benchmarks contain both register and memory
set DDI, compiler optimizations are able to completely remove
NOP instructions, and benchmarks display a larger number of
memory set dead instructions in the optimized binaries thanin
their unoptimized variants. Likewise, optimized binarieson the
ARM also typically contain more predicated dead instructions
than the unoptimized binaries.

2) Static Instructions and Dynamically Dead Instructions:
Figure 10 displays the number and ratio ofstatic instruction
instances that contribute to the DDI as compared to the total
number of static instructions reached during the executionof
each benchmark. Thus, we can see that on average, 13.34%
and 23.50% of the static instruction instances contribute to
the overall DDI for the unoptimized and optimized MiBench
benchmarks respectively. We also find that, on average, there
are more distinct instruction instances reached during theexe-
cution of unoptimized programs, as compared to the optimized
benchmarks. This trend is consistent with the x86 results.
We also observe that the percentage of static instructions
contributing to DDI significantly increases in the optimized
ARM benchmarks.

Figures 11 and 12 are plotted to further studyonly the set
of static instructions that contribute to the program DDI. These
figures sort (in ascending order) and display the contributions
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Fig. 12. Contributions of static (partially) dead instruction instances to the
DDI of unoptimized ARM MiBench benchmarks (sorted in ascending order)

of individual (partially dead) static instruction instances to the
overall percentage of DDI for the ARM benchmarks. Again,
we observe the pattern seen in the x86 benchmarks repeated in
these figures: a small percentage of static instruction instances
actually contribute most of the the total DDI in the ARM
benchmarks. This observation may have important implications
on techniques to benefit from DDI elimination.

In summary, DDI characteristics observed on the ARM are
consistent with our earlier observations on the x86, with the
important exception of the ARM binaries exhibiting signifi-
cantly greater ratio of DDI. However, we also find that this
increase in the DDI ratio over the x86 is primarily due to
extensive use of the ARM-specific feature of predication by
modern compilers like GCC.

V. FUTURE WORK

The larger objective of our project is to develop compiler
and hardware techniques to eliminate DDI, and evaluate their
effect on program efficiency and power consumption. Thus,
there are several avenues for future work. First, we plan to
study the effect of static techniques, including the use of
different compilers and optimizations on DDI. Second, we will
explore existing hardware-only techniques [1] and developnew
hybrid schemes to eliminate DDI on contemporary processors.
Third, we will evaluate the potential of new device technolo-
gies, such as tunneling field effect transistors (TFET) and spin-
transfer torque RAM (STT-RAM), that with their unique char-
acteristics may enable innovative microarchitectural schemes
to address the issue of DDI. Finally, the phenomenon of DDI
is closely related to the issues of value locality, and ineffectual
instructions that have also been widely studied by researchers.



We plan to develop techniques to simultaneously deal with all
these related problems in a uniform manner.

VI. CONCLUSIONS

As growth in single-threaded program performance has
stagnated in recent years, more aggressive techniques are
necessary to reverse this trend. Eliminating dynamically dead
instructions that produce values not used by the program
provides an approach that can not only improve sequential
program speed but also impact energy usage. However, before
we invest in building techniques to eliminate DDI, we need a
better understanding of the extent and properties of this issue
for contemporary architectures, compilers, and benchmarks.
The goal of our work was to perform this study.

We built our GCC-based instrumentation and analysis
framework that provides a unique portable environment to ex-
plore the number, ratio, and properties of DDI across multiple
target architectures. In contrast to earlier DDI studies con-
ducted on different (RISC/VLIW) architectures, we discover
that x86 displays a lower, though still significant, ratio of
DDI to total executed instructions (SPEC – 10.12%, MiBench
– 8.92%). On the ARM, DDI comprises a higher fraction
of executed instructions (MiBench – 20.60%), but most of
this increase over the x86 can be attributed to the use of
predicated instructions. These DDI ratios set the upper-bound
for the processor cycle count savings that can be achieved by
eliminating DDI on these machines.

We perform experiments to understand DDI properties that
can assist in the development of improved DDI elimination
schemes. As noted in earlier studies, we also find that compiler
optimizations often cause a small increase in the number of
DDI. Further analysis shows that, while most of the static
instructions corresponding to the observed DDI are only par-
tially dead, a large fraction of such static locations are dead
with a very highprobability of over 90%. We determine that
online analysis can detect most DDI within small instruction
windows. We also find that a relatively low number of static
instructions contribute to the overall DDI. We investigate
the effect of usingcontext information to better differentiate
between the DDI instances attributed to a single static location,
and find that a limited amount of context knowledge can
substantially improve DDI probability. We believe that our
results set the stage for much finer and deeper analysis,
and eventual resolution of the problem of DDI for programs
executing on contemporary machines.
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