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Abstract—Processor frequency scaling has greatly stagnated gains, and processor real estate was more limited. More

over the last few years, making it difficult to continue improving
sequential or single-threaded program speed. Hardware and
software system developers now need to devise innovative can
aggressive schemes to grow sequential software performanc
The goal of this work is to assess the potential and feasilii
of eliminating dynamically dead instructions (DDI) — where the
results of executed instructions are not used by the program
— to benefit program speed. Specifically, we quantify the rad
of DDI in the dynamic instruction stream for different classes
of contemporary programs (general-purpose vs. embedded)na
architectures (CISC vs. RISC), and explore characteristis of DDI
to assist the design of effective solution mechanisms.

To achieve our goal, we develop a robust and portable
compiler (GCC) based framework for DDI research, and target
this investigation at contemporary x86 and ARM based machiss.
We find that while a substantial fraction of instructions executed
by all classes of programs are dynamically dead, architectal
features show a visible impact. Our experiments reveal that
handful of static program instructions contribute a majority of
DDI. We further find that DDI are often highly predictable, ca n be
detected within small instruction windows, and a small amout of
static context information can significantly benefit DDI detection
at run-time. Thus, our research can induce the development
and adoption of practical DDI elimination techniques to scée
sequential program performance in future processors.

Keywords—Dynamically dead instructions; architecture; com-
piler;

I. INTRODUCTION

An instruction executed by a processodigiamically dead

recently, physical barriers and technology limitationsvéna
effectively ended the rapid scaling of processor frequesnci
to automatically increase single-threaded software spééed
also find that many legacy programs and software tasks still
employ sequential algorithms (such as finite state maclutjes
and iterative numerical methods) that derive little berfeditn
increasing processor counts on newer multi-core machines.
Additionally, even most parallel workloads are limited by
their sequential components, as dictated by Amdahl’s Igw [5
Therefore, we believe that it will become attractive as well
as important in the future to investigate and deploy more
aggressive techniques to improve performance for secenti
program components as well as for programs that cannot
be recompiled/parallelized. Based on past research sesult
eliminating DDI is one such promising avenue.

Past DDI research has not conducted an extensive study
of the characteristics of DDI. Earlier studies were perfedm
on architectures (like the Alpha and the Itanium) that are
either defunct or less mainstream today. Additionally, the
impact of the instruction set/family on the fraction of DD i
executed programs has not been studied. Instruction sigtndes
decisions ranging from CISC vs. RISC to localized features,
like predication, may affect the prevalence of DDI. Likegis
compiler optimizations can also influence the ratio andufiesst
of DDI in generated codes. Therefore, for any DDI eliminatio
schemes to be deployed in existing systems, it is necessary t
first study the extent and characteristics of the problem for
contemporary architectures (such as the x86 and the ARM)
and for programs generated using compilers that use the full

(DDI) if its calculated result is not used by the program [1]. suite of modern opti_mization_s. Such a stud_y will assist the
It is obvious that executing dynamically dead instructionsdevelopment of practical solutions to the DDI issue, anéaév
will waste power and hardware resources, and likely slowthe potential performance benefit.

down the program execution. Consequently, compiler opti-
mizations, such aslead and partial dead code elimination
were specifically designed to remove such useless insingcti

The goal of our research is to investigate the issue of DDI
in the context of current compilers (GCC) and contemporary

from generated codes. In the past, researchers have oisenfiChitectures (x86 and ARM) to determine the benefit and
that, even after applying such compiler transformations, Fotential of DDI ellmlna'qon to improve Seq‘_le”“a' program
significant fraction (24% on the Alpha [2] and 20% on the SP€€d, and to help design practical resolution schemes. We
ltanium [3], on average) of executed instructions are dead’2Ke the gg%wl')ng cgntrlbutl_?nsfln this chJ(rk. (a)b}N?j develo
However, existing compilers and hardware typically do netty & unique -based compiler frameworkgortably detect,

implement any dedicated techniques to detect and elimthate StUdy: and categorize the DDI for multiple different arehit
DDI missed by the standard compiler optimizations. tures. (b) We determine the number and ratio of dynamically
dead instructions and the corresponding static instrostio

Past DDI studies were performed in the era of exponenthat contribute to the overall DDI for general-purpose and
tially growing uniprocessor clock speeds, when singledded embedded benchmark programs. (c) We design experiments to
applications were enjoying free, regular, and rapid pentoice  study DDI characteristics to assist the development ofréutu



hardware, software, and hybrid DDI elimination schemeshSu and evaluate speculative mechanisms to remove or eliminate
measurements include determining the size of the dynamisuch useless instructions.

instruction window to detect a dead instruction at run-time
and the effect of using staticontextinformation to isolate
instructions with a high probability of being dynamicallgat.

Martin et al. also worked on an issue related to DDI and
presented hybrid schemes to statically mark the last use of
register values that the hardware can later track to elit@ina

The rest of this document is organized as follows. Weunnecessary save and restore instructions at procedigeell
present the related work in Section Il. We describe our GCCeontext switches [14]. Sundaramoorthy et al. proposed a new
based framework to detect, analyze, and categorize DDI iprocessor microarchitecture to simultaneously run twoieop
Section Ill. We present our experimental observations io- Se of every program to exploit the propertiesmredictabledead,
tion IV. Finally, we describe future work and the conclusion branch, and otheneffectualinstructions to speed up both the
in Sections V and VI, respectively. duplicated program streams [15]. These works also did not
focus on analyzing and understanding the occurrence of DDI.

I[I. BACKGROUND AND RELATED WORK . . . . .
Detecting and understanding dynamically dead instrustion

Unreachable and dead code is introduced by softwaresquires us to generate and analyze the profile or trace of
developers into high-level language programs or by the conmthe whole program execution. Compiler and computer archi-
piler when optimizing and generating binary code. Trad#io tecture researchers have often employed such executi@n tim
compiler optimizations, such asreachable code eliminatipn program trace information to understand important program
dead code eliminatiorand partial dead code eliminatiomre  properties [16]—[18]. The first algorithms for generatiniyohe-
tasked with detecting and removing such dead code fromprogram paths were presented by Larus [19] and Melski and
generated programs [6], [7]. Although these optimizatiaress Reps [20], and later extended by several others [21], [28. W
highly effective, high rates of DDI persist even for proggam use and extend these algorithms to generate the control-flow
generated by compilers that apply these optimizations. and data-flow profiles for this work.

Past research has explored the DDI issue and suggested
hardware mechanisms to find and eliminate DDI. Lumetta and I1l. FRAMEWORK FOREXPLORING DDI
Patel found that, on average, 15% of executed instructions ) ] ) . .
in the SPEC2000 benchmarks on the Alpha processor are In this section we briefly describe our experimental frame-
dead [8]. They also measured an additional 10% of the instrugVork to generate program execution profiles to detect and
tions to beNOPs Fahs et al. proposed thePLayarchitecture  investigate dynamically dead instructions. We use and fyiodi
to provide dynamic optimization support at the hardware2 single GCC compiler (version 4.5.2) source code to build
level [2]. Their dynamic optimization system built upon the binaries for a 32-bit x86 platform, and cross-compile biesr
Alpha simulator discovered 24% of DDI, on average, andfor the ARM. Each compiled program is instrumented after
could eliminate about 10% of them. Butts and Sohi analyzed!l the optimizations are applied and immediately befordeco
some important properties of DDI and proposed a hardwargeneration. We do not yet instrument library functions. Our
technique to predict and eliminate DDI at runtime [1]. Their tracing algorithm automatically marks all arguments pddse
technique was able to detect 79% of useless instructions i@ library function as being used.

their benchmarks and achieved up to 9.6% speedup benefits. ; - ;
This work only studied instructions that produce dead tegis b Each x86 binary is natively executed on Intel(R) Xeon(R)

values, and chose to ignore dead memory stores, NOPs a gsed machine. ARM binaries are cross-compiled on the

. : 6 and run on an OMAP4 Panda board with a dual-core
Pc:re];ertr::g(eejdé drf)?ggﬁg’vn?;kosﬁﬂgié%e[g]r ominent causes df D ARMvV7 processor. The inserted instrumentations produce tw

trace files on program execution. These trace files contain an

These existing works do not perform the same and agncompressed sequential list of the basic block numbergalo
comprehensive an investigation into the characterisfi@®  with a list of memory addresses as they are reached/accessed
as we do in this work. Additionally, they each explored a king during execution. These trace files are later used in a single
hardware and benchmark set, and often used architectes ttsequential scan to analyze and discover instances of DDUrin o
are currently not in common use. Our current research feacus@enchmark programs. The trace is scanned in a reverse order
on gaining a more thorough understanding of the potentidl anto reduce the complexity of classifying dead instructioims.
properties of DDI for multiple contemporary architectusgsl  particular, when processing a specific instruction in tlaeey
benchmark domains to assist the development and tuning @éverse scanning allows the liveness value of all consuofers
existing and new remedial mechanisms. the instruction’s result to be already known [1], [2].

Researchers have also explored issues that are similar We use programs from the MiBench [23] and SPEC
to DDI, and produce useless executed instructions. Sever@lPU2006 benchmark suites [24]. MiBench includes ‘C’ pro-
studies have investigated static instructions that predhe  grams generally used in embedded applications. We randomly
same value on multiple consecutive dynamic invocation$, [10 select one program from each of the six MiBench categories
or dynamic instructions that update a register or memoryor our set. The SPEC CPU 2006 benchmarks contain larger
location with a value that it already contains [11], [12].i§h CPU-intensive general-purpose applications. We include t
phenomenon is called value locality. Some researchers hawght ‘C’ integer benchmarks from the SPEC CPU 2006
explored the phenomenon sflent storeswhich are memory set for our experiments. While our x86 experiments use our
write instructions that do not alter the value already pnes¢  complete benchmark set, we use only the embedded MiBench
the target address [11], [13]. Many of these works also psepo benchmarks on the ARM platform.



for (i=0; i <NUMNODES ; i++) {
i f((iCost = AdjMatrix[iNode][i]) != NONE) {
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Fig. 2. Optimization to reduce load/store latency (dijastr
Fig. 1. Percentage of dynamically dead instructions in x@ichmark
programs. The DDI is further categorized as register set destructions,

memory set dead instructions, aNDP instructions Figure 1 further breaks-up the DDI into three categories:

dead instructions due to a register set, dead instructioes d

files. We employ the popular Simpoint mechanism to Iimitthe system. On average, the optimized MiBench benchmarks

th_e program run-times with the SPEC benchmarks [25]. Th%ontain 3.88% register set dead instructions, 3.83% meswiry
Simpoint framework allows us to generate traces over Smalledead instructions, and MSOP instructions. The corresponding

representativexecution intervals instead of the entire programg . bers for unoptimized MiBench benchmark are 3.34%,

run. We used Simpoints to gather information for a maxi-1 5105 and 0.06%, respectively. The optimized SPEC bench-

mum of five 100 miIIion_ instruc_tion windows for each_SPEC arks contain 4.58% register dead instructions, 5.42% mgmo
benchmark. Our analysis considers all memory locations anEet dead instructions, and MDP instructions. Finally, 6.64%
registers as used upon starting thackward scan on each y ' y

- X 1.85%, and 0.21% of instructions executed by the unoptithize
simpoint. Thus, our DDI _numbers for the SPEC benchmark§PEC benchmarks are dynamically dead due to redundant
reflect a conservative estimate.

register sets, memory sets aN@P instructions respectively.

We note some interesting properties of DDI in our bench-
mark programs. First, all benchmarks contain both register

We use our modified GCC to instrument the x86 and ARMand memory set DDI. Second, GCC compiler optimizations
benchmark programs. These instrumented programs produ@é€ able to completely remowOP instructions from all x86
instruction and data traces at runtime, which we then aealyzPinaries. We also found that most benchmarks (with optichize
for DDI. For each benchmark, we use the GCC optimizaRitcount being the only exception) display a larger numifer o
tions flags,- C0 and - CB8, to generate the unoptimized and Mmemory set dea(_:i instructions in the _optlmlzed binaries than
optimized binaries respectively. In this section we presea  their corresponding unoptimized variants.
results of our analysis regarding the ratio and charatiesis Figure 2 shows an example of a common transformation
of DDI for x86 and ARM binary programs generated by GCC'appIigd by GCC that causes trr)1e progratijkétra, in this case)
to exhibit higher DDI after optimizations. This optimizauti
assigns a local to a register in order to reduce the loa@/stor
latency. In this example, the unoptimized binary first shts t

We describe our DDI analysis results on the x86 platformmemory location of the variablé Cost, and then checks
in this section. Results of our experiments on the ARM arewhether thei f -path is taken. Instead, the optimized binary
presented in Section IV-B. We use our backward tracingstores the value dfCost both in memory and in the register
algorithm to traverse the execution traces for each bendhma%esi . Then, instead of using the memory location holding
(or benchmark’s simpoints) and collect the number and charthe contents of Cost, the rest of the loop body uses the
acteristics of each program’s dynamically dead instrunstio  %esi register instead. Thé Cost variable is still updated

. . . . once in each loop iteration. Thus, while this optimizatioitl w

1) Ratio of Dynamically Dead Instructiongigure 1 shows ey reduce the load/store latency, the set (with no use) o
the ratio of the number of t_otal executed instructions fa_r‘rea the memory location is dead in all but (perhaps) the last loop
benchmark that are dynamically dead on an x86 machine. Wearation, This specific transformation actually accoufds

see that most benchmarks contain a significant percentage @§ 5694 of the DDI found in the optimizedijkstra benchmark.
DDI, although not as much as was observed in earlier studies

conducted on RISC (Alpha) and VLIW (Itanium) architectures  2) Static Instruction Contributions to DDIOur analysis

On average, our unoptimized MiBench benchmarks contaiindicates that, in most cases, thtic program instructions
4.62% of DDI, while the optimized MiBench benchmarks havecorresponding to the DDI angartially dead at run-time and/or

a slightly higher DDI fraction (7.71%). The SPEC benchmarkddifficult to remove using pure static techniques. While istat
exhibit slightly higher DDI. On average, 8.71% and 10.12%schemes to eliminate DDI may be inadequate, they may still
of the instructions executed by the unoptimized and optihiz be able to assist run-time and hardware-based schemes to
SPEC benchmarks respectively are dynamically dead on thewer their overall hardware and power costs. For instawee,
x86. This observation of optimized programs containing enor believe that a promisingybrid compiler-hardware approach
dead instructions is consistent with earlier research [1]. may employ the compiler to tag instructions@ebably dead

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. x86 Results and Analysis
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plotted on a logarithmic scale.
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Fig. 4. Number ofstatic instruction instances corresponding to DDI for figures: a very small percentage of static instructionsritoune

unoptimized x86 benchmarks. The three bars for each benchmark displayg large majority to the total DDI in our x86 benchmarks. Thus,

static instructions reached without context informatierith single-call-site using compiler or profiling-based schemes to tag only these

context information, andull-call-stack context respectively. Note, the vertical i b f - . h ib

axis is plotted on a logarithmic scale. small number ofimportant static InSt_I‘UCtIOI’IS that COIf]tI’I ute
most to the DDI shows good promise to help run-time DDI
elimination schemes.

which will then be tracked by the hardware at run-time. For  pential techniques to detect and eliminate DDI will likel
such techniques, success in eliminating DDI at low costs wil 5156 pe impacted by therobability of static instructions being
depend on the compiler accuracy of tagging potentially Oleaélead at run-time. Probability for our purposes implies ttéor
instructions, the number of instructions that the hardweeds ot the number of times that a static instruction is dead to the
to track, and the instruction window that will be needed tonmper of times it is encountered during program execution.
determine the deadessstatus of an instruction at run-time. In Thus, if a specific static instruction is always dead at iioet

this section we collect statistics to determine the feésiEnd  hon we say that its DDI probability is 100%.

assist the development of such DDI elimination techniques.

) o ) We further categorize these results based on how fast
First, we present results on the nur_nber of static instrastio (in terms of number of intervening sequential instructons
that generate DDI at run-time. Therst/leftmostbart for  an instruction is detected to be dead after it is reached.
each benchmark in Figures 3 and 4 show the number anflhjs detectionspeedmay affect the length of the hardware
ratio of static instruction instances that correspond to thejnstruction window maintained by the processor to deteatide

DDI as compared to the total number of static instructiongnstructions or how long a potential dead instruction wied
reached during the execution of each benchmark. Thus, W@ be delayed to avoid its execution for DDI elimination
can see that, for optimized SPEC and MiBench benchmarksechniques. We extend our trace algorithm to not only trace
only 18.62% and 8.97% of the static instruction instancesghe register or memory location being set, but to additignal
respectively and on average, contribute to the DDI. For oUgeterminewhenthe register or memory location was (re)set.
unoptimized benchmarks, 18.25% and 7.64% of the statiqhjs modification enables us to find instructions detectetide
instructions contrlbute to the DDI for SPEC and MiBench ithin specific instruction windows We employ (and plot)
programs, respectively. instruction windows of 5, 10, 20, 50, 100, 508,500 to
Figures 5 and 6 are plotted to further stuayly the set of analyze the speed of detecting dynamically dead instnustio

static instructions that contribute to the program BDlhese We find that most of dynamically dead instructions in
figures sort (in ascending order) and display the cont@msti our benchmarks are netiways(100% probability) dead. On

of individual (partially dead) static instructions to theesall  average, for our MiBench and SPEC benchmarks, only 0.14%
percentage of dynamically dead instructions for the o&di (29 of DDI) and 1.73% (17% of DDI) of total executed
x86 benchmarks. We can observe an important pattern in thesgstructions are generated by static instructions thaavays
detected to be dead, respectively.

1The remaining two bars for each benchmark will be discusatst. | . .
2We only present plots for the optimized benchmark resultsaiee space. The leftmostbar for each benchmark in Figure 7 shows

The unoptimized benchmarks reveal similar trends. the percentage DDI that are dead with a high 90% probability
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us B0 820 mso ‘2100 500 > 500 While such partitioning may increase the number of static
locations a technique to eliminate DDI may need to track, it
should also improve the probability of eaittstruction-context

to be dead at run-time. In this section, we explore the impact
of using such context information on the DDI probability and
the number of instances that may need to be tracked.
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Approach: There are many different kinds of context in-
formation that the compiler/hardware can exploit or trded:
example, information contained in the dynamic functiori-cal
Fig. 7. Percentage of DDI that are dead wab% probabilty in the stack and/or the intra-procedural basic block path takesnto

optimized x86 benchmarks. From left to right, the bars for each benchmark/NStruction can provide context to partition dynamic instion
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display the percentage of DDI without context informatievith single-call- instances. In this research, we limit the context inforovati
site context andull-call-stack context respectively. employed to (stack of) the PC-location of the function call
that contains the dead instruction. To simulate and analyze
ws o mp MCenundows e mss the effect of using this context information, we modified our
GCC compiler to add further instrumentation to the genérate
© binaries. This new instrumentation identifies each fumctiall

by a distinct call-site identifier corresponding to the static

(PC) location of the functionall instruction. We appropriately
III iii i UUU ﬁiﬁ extend our trace algorithm to maintain a stack of such cdantex
il -ii _— . information during the DDI analysis phase. For our backward
s ' &St ¢ ;@iﬁ«»*‘ tracing algorithm, the function call-site identifier is jresl on
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Fig. 8. Percentage of DDI that are dead wBbB% probability in the ; : Qi .
unoptimized x86 benchmarks. From left to right, the bars for each benchmark]c For. this work, lwe lemploy flImCtKl)ln .Ca” Sltel Cot:ltEXt In
display the percentage of DDI without context informatiavith single-call- ormation at two levels: (apingle-call-site— only the top
site context andfull-call-stack context respectively. stack entry is used, and (B)ll-call-stack— the entire call-site

stack is used. To generate the full-stack context knowledge

we extend our call-stack implementation such that eactk stac
in the optimized x86 benchmarks. Thus, on average, 5.07%cation also holds dash of the entire call-site stack state
(65.76% of DDI) and 5.65% (55.83% of DDI) of dynamically below it. On reaching the function return during our backdvar
executed instructions are generated by static instrugtibat  scan algorithm, we push a CRC32 hash checksum of the
are dead at least nine of every ten times they are reached feurrent function identifier with the previous checksum op to
the MiBench and SPEC benchmarks, respectively. This figuref the stack. The checksum value is restored on reaching the
also reveals that most of the instructions with DDI prokiil  function start. Thus, the CRC32 hash allows us to cheaply
of 90% are detected to be dead within very small instructionmaintain and employ context knowledge of the entire program
windows, which can benefit some plausible hardware-baseghll-site stack state at each point.
DDI detection techniques. Similarly, for a probability di%, - ) . . .
we can detect 5.51% (71.47% of DDI) and 5.99% (59.19% of _ Benefit: The benefit of employing context information can
DDI) of the dynamically executed instructions to be dead for2® gauged from Figures 7 and 8. As discussed in the last sec-
our MiBench and SPEC benchmarks, respectively. Again, mo 02’ Figure _7.sh.ows the percentage of DDI that are dead with
of these are detected dead within small instruction windows 0% probab|I_|ty in the opt|m|z_¢<_j x86 be_n_ch.marks. Remember

that we obtain these probabilities by dividing the number of

Figure 8 plots a similar graph for DDI that are deadtimes the static instruction instance is dynamically desd b

with 90% probability and within the illustrated instruatio the number of times the instruction instance is executed. Th
windows for theunoptimizedbenchmarks respectively. These leftmost bar in each of these figures show the percentage
results (and those with 100% and 70% probabilities) arelynost of DDI without any context information. The middle bars
consistent with our earlier observations for the optimizeddisplay the percentage of DDI when using giagle-call-site
benchmarks. Thus, in summary, we can conclude that, whileontext, while the rightmost bar for each benchmark prasent
few dead instructions are always dead, a majority of DDIlthe percentage of DDI using tHall-call-stack knowledge as
are detected to be dead with high probabilities and relgtive context.

quickly within small instruction windows at run-time. Thus, from these figures, we observe that context knowl-

3) Context Information to Improve DDI Detectiomn this  edge can dramatically improve the fraction of DDI that are
section we explore the potential and costs of a simple mechaletected to be dead with a high probability. We find that
nism to improve DDI probability at run-time. This mechanism using single-call-site and full-call-stack context, oreege,
is based on the intuition that an instruction with a uniquefor SPEC benchmarks DDI that are dead with 90% probability
static (program counter or PC) location may be reached alongses from 5.65% to 7.61% (75.18% of DDI) and 8.13%
different intra- and inter-procedural paths, which maytiig  (80.32% of DDI), respectively. Similarly, for SPEC bench-
different DDI behavior. We exploit thigontextinformation  marks DDI that are dead with 100% probability increases from
to partition the dynamically executed instruction insesic 1.73% to 3.25% (32.11% of DDI) and 4.38% (43.27% of DDI),
attributed to a single static location into multiple disipsets.  respectively. On average, DDI for SPEC benchmarks with 70%



probability increases from 5.99% to 8.66% (85.55% of DDI)embedded/mobile devices. Moreover, the RISC-based ARM
and 8.92% (88.12% of DDI) respectively. Importantly, simpl architecture presents a good contrast to the CISC x86, ie mor
single-call-site context knowledge is able to derive mdshe  similar to the architectures used in earlier DDI studidee(the
benefits of using the full-call-stack context information. Alpha and MIPS), and may reveal the impact of architecture
differences on observed DDI. In this section, we descrilee th

Likewise, Figure 8 plots the impact of using context infor- g 1ts of our DDI analysis on benchmarks compiled for the
mation on DDI with 90% probability for unoptimized bench- Apm architecture. y P

marks on the x86. We again find that our observations from

the earlier optimized benchmark results, namely that (agla h We updated the ARM port of our GCC compiler to
ratio of static DDI instances are dead with a high probahilit instrument binaries to collect DDI statistics on our ARM-
(b) this probability can be substantially improved by udlittte Linux based systems. Our ARM PandaBoard machine has
context knowledge, and (c) most DDI can be quickly detecteg dual-core ARMv7 Processor, which we configured to run
to be dead in small dynamic instruction windows, also holdthe Ubuntu 10.10 sever OS. Since the ARM is much slower
very well over the unoptimized benchmark programs. Thusas compared to the x86 processors, and characterized as an
although we only explore one avenue of context informatiorembedded architecture, we only use our MiBench benchmarks
for these experiments, we can conclude that context knaeled for our analysis in this section.

can significantly improve the DDI probability, ansimple
context knowledge can get DDI probability benefits close tqb
those achieved by more complex context collection algosth a

We appropriately extend the implementation of our GCC-
sed instrumentation framework to correctly handle the us
of predication, or conditional instruction execution oreth
Costs: As noted earlier, context information improves DDI ARM. Predication is a distinctive feature of the ARM (and
probability by partitioning the DDI instances that areibtited ~ some other) architecture that is used to mitigate the costs
to a single static PC location into multiple PC-context loca typically associated with conditional branches. The use of
tions. Therefore, it is obvious that using context knowkedgn  predication has important ramifications on DDI analysis. To
increase the number of locations that an online DDI detactio perform accurate DDI analysis, we need to know whether the
or elimination algorithm may need to track, thereby inciegis predicated instructions encountered at run-time are ¢zdar
its cost and complexity. Figures 3 and 4 that were discussedot. A predicated instruction on the ARM executes condition
earlier show the number and ratiostticinstruction instances ally based on the state of the CPSR (Current Program Status
that correspond to the DDI as compared to the total numbégregister) register. If the condition is satisfied, the instion
of static instructions reached during the execution of eacls executed, and would be considered a DDI if its result is not
benchmark. The middle bar in these figures displays thesased by the program. Otherwise, the instruction is effettiv

static instance numbers and ratios when usingsthgle-call-  turned into aNOP instruction. We consider such instructions
site context, while the last bar for each benchmark shows thes#hat fail their predicate condition to be predicated dead
results when using thill-call-stack context knowledge. instruction.

We again find that the unoptimized and optimized x86 GCC RTL representation includes information on whether
benchmarks show very similar trends. For the optimized SPE©r not the assembly instruction is predicated. To accuratel
benchmarks, and compared to the baseline of not using arfyandle the issue of predicated instructions, we inserttiadéil
context information, we can see that the number of staticode instrumentation to dump the value of the CPSR register
instances that contribute to DDI (and may need to be trackedjrior to executing each predicated instruction at run-tifrfee
increases by about 2.56 times when using single-call-sitgalue of the CPSR register allows us to determine whether
context (middle bars), and by 356.83 times when using the ful or not a predicated instruction was executed or converted in
call-stack for context (last bars), on average. For the MiBe a NOP. Then, in our trace algorithm, we perform the same
benchmarks, the corresponding increases are 1.40 times apbeck of the CPSR register for every predicated instruction
2.72 times respectively, on average. Thus, as expectaay usiand determine its influence on the overall DDI value.
the full-call-stack context information causes a large pum
in both the number ototal static instances as well as the
number of instances corresponding to DDI, especially fo
the SPEC benchmarks. This jump will likely result in a
corresponding increase in the cost of online DDI elimiratio
algorithms. Fortunately, while employing even the sincgdi-
site for context raises the number of static DDI instandas, t
increase in much more tempered and manageable. These C(g

results, combined with our earlier observation showing tha tructions. On averaae. the unootimized MiBench benchsark
using more complete context knowledge is not significantlyS ' g€, P

more beneficial, should bode well for the cost and complexit)gg?tjae'gdSiﬁg:ﬁéﬁgfstegS;go/gead instructions, 1.23% memory
: - : ; L , 0. predicated dead instructaoms

of future, simple online or hybrid techniques to elimina®ID 0.05%NOP instructions. The optimized MiBench benchmarks

contain 8.42% register set dead instructions, 4.63% memory

B. ARM Results and Analysis set dead instructions, 7.55% predicated dead instructants

no NOP instructions, on average.

1) Ratio of Dynamically Dead Instruction&igure 9 shows
IIhe ratio of the number of total executed instructions farhea
benchmark that are dynamically dead. We can see that our op-
timized and unoptimized MiBench programs contain 20.60%
and 10.11% DDI, on average, respectively Figure 9 further
breaks-up the dynamically dead instructions into four cate
é)tries: dead instructions due to a register set, dead oigins
Ue to a memory set, predicated dead instructionsNaDEin-

While the x86 is still the dominant architecture for desk-
top and server-class machines, the ARM architecture is fast Thus, we find that, in contrast to programs on the x86
becoming the de-facto standard for medium and high-enthat we found deliver a low DDI ratio, the ARM bench-
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Fig. 10. Number of static instruction instances reached ewecution of
ARM MiBench benchmarks

marks display a higher overall ratio of DDI similar to other

architectures, such as the DEC Alpha [1], [2] and the Inte

Itanium [3]. However, most of this increase can be attridute

to the use of predication, which is a unique feature of the
ARM that is absent in most other (studied) architectures

Many other observations we can make on the ARM ar

patterns that we also witnessed in our previous x86 results.
For example, all benchmarks contain both register and mgmor

set DDI, compiler optimizations are able to completely rgmo
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Fig. 11. Contributions of static (partially) dead instioot instances to the
DDI of optimized ARM MiBench benchmarks (sorted in ascegdarder)
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Fig. 12. Contributions of static (partially) dead instioot instances to the
DDI of unoptimized ARM MiBench benchmarks (sorted in aséegdrder)

of individual (partially dead) static instruction instascto the
verall percentage of DDI for the ARM benchmarks. Again,
e observe the pattern seen in the x86 benchmarks repeated in
these figures: a small percentage of static instructiomitsts
actually contribute most of the the total DDI in the ARM
benchmarks. This observation may have important impboati
on techniques to benefit from DDI elimination.

In summary, DDI characteristics observed on the ARM are
consistent with our earlier observations on the x86, with th

NOP instructions, and benchmarks display a larger number ofimportant exception of the ARM binaries exhibiting signifi-

memory set dead instructions in the optimized binaries than
their unoptimized variants. Likewise, optimized binarsthe
ARM also typically contain more predicated dead instrutsio
than the unoptimized binaries.

2) Static Instructions and Dynamically Dead Instructions:
Figure 10 displays the number and ratio stétic instruction

instances that contribute to the DDI as compared to the total

number of static instructions reached during the execution

each benchmark. Thus, we can see that on average, 13.34
and 23.50% of the static instruction instances contribote t

the overall DDI for the unoptimized and optimized MiBench

benchmarks respectively. We also find that, on averagee ther

are more distinct instruction instances reached duringeiee

cution of unoptimized programs, as compared to the optithize

benchmarks. This trend is consistent with the x86 result

We also observe that the percentage of static instruction

contributing to DDI significantly increases in the optinize
ARM benchmarks.

Figures 11 and 12 are plotted to further stuahly the set
of static instructions that contribute to the program DHes$e
figures sort (in ascending order) and display the contralmsti

cantly greater ratio of DDI. However, we also find that this
increase in the DDI ratio over the x86 is primarily due to
extensive use of the ARM-specific feature of predication by
modern compilers like GCC.

V. FUTURE WORK

The larger objective of our project is to develop compiler
d hardware techniques to eliminate DDI, and evaluate thei
effect on program efficiency and power consumption. Thus,
there are several avenues for future work. First, we plan to
tudy the effect of static techniques, including the use of
different compilers and optimizations on DDI. Second, w# wi
explore existing hardware-only techniques [1] and develap
hybrid schemes to eliminate DDI on contemporary processors
hird, we will evaluate the potential of new device technolo
gies, such as tunneling field effect transistors (TFET) goiia-s
transfer torque RAM (STT-RAM), that with their unique char-
acteristics may enable innovative microarchitecturalestbs
to address the issue of DDI. Finally, the phenomenon of DDI
is closely related to the issues of value locality, and iffal
instructions that have also been widely studied by reseasch



We plan to develop techniques to simultaneously deal with al [4]
these related problems in a uniform manner.

VI. CONCLUSIONS

(5]
As growth in single-threaded program performance has
stagnated in recent years, more aggressive techniques are
necessary to reverse this trend. Eliminating dynamicadigcd 6]
instructions that produce values not used by the program
provides an approach that can not only improve sequential’]
program speed but also impact energy usage. However, before
we invest in building techniques to eliminate DDI, we need a 8]
better understanding of the extent and properties of tligeis
for contemporary architectures, compilers, and benchsark
The goal of our work was to perform this study.

We built our GCC-based instrumentation and analysis[g]
framework that provides a unique portable environment to ex
plore the number, ratio, and properties of DDI across migltip
target architectures. In contrast to earlier DDI studies-co [10]
ducted on different (RISC/VLIW) architectures, we discove
that x86 displays a lower, though still significant, ratio of
DDl to total executed instructions (SPEC — 10.12%, MiBenc
— 8.92%). On the ARM, DDI comprises a higher fraction
of executed instructions (MiBench — 20.60%), but most of
this increase over the x86 can be attributed to the use qiz
predicated instructions. These DDI ratios set the uppenrto
for the processor cycle count savings that can be achieved by
eliminating DDI on these machines.

11]

[13]

We perform experiments to understand DDI properties that
can assist in the development of improved DDI elimination
schemes. As noted in earlier studies, we also find that cempil [14]
optimizations often cause a small increase in the number of
DDI. Further analysis shows that, while most of the static[ls]
instructions corresponding to the observed DDI are only par
tially dead, a large fraction of such static locations aradle
with a very highprobability of over 90%. We determine that
online analysis can detect most DDI within small instruetio [16]
windows. We also find that a relatively low number of static
instructions contribute to the overall DDI. We investigate
the effect of usingcontextinformation to better differentiate
between the DDI instances attributed to a single statictioca
and find that a limited amount of context knowledge can
substantially improve DDI probability. We believe that our
results set the stage for much finer and deeper analysis,
and eventual resolution of the problem of DDI for programsyig)
executing on contemporary machines.

[17]

(18]

[20]
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