MSRR: Measurement Framework For Remote
Attestation

Jason Gevargizian
EECS, University of Kansas
Email: jgevargi @ittc.ku.edu

Abstract—Measurers are critical to a remote attestation
(RA) system to verify the integrity of a remote untrusted
host. Run-time measurers in a dynamic RA system sample
the dynamic program state of the host to form evidence
in order to establish trust by a remote system (appraiser).
However, existing run-time measurers are tightly integrated
with specific software. Such measurers need to be generated
anew for each software, which is a manual process that is
both challenging and tedious.

In this paper we present a novel approach to de-
couple application-specific measurement policies from the
measurers tasked with performing the actual run-time
measurement. We describe MSRR (MeaSeReR), a novel
general-purpose measurement framework that is agnostic
of the target application. We show how measurement
policies written per application can use MSRR, eliminating
much time and effort spent on reproducing core measure-
ment functionality. We describe MSRR’s robust querying
language, which allows the appraiser to accurately specify
the what, when, and how to measure. We evaluate MSRR’s
overhead and demonstrate its functionality by employing
real-world case studies.

I. INTRODUCTION

Remote attestation (RA) provides mechanisms for
untrusted clients to prove their integrity to a remote party,
and is integral for communicating entities to establish
trust in a distributed computing environment [8]. In RA,
an appraiser seeks to establish trust of a farget by
requesting evidence. Evidence is gathered by the target
and returned to the appraiser; it can include static and
configuration information, run-time measurements, and
meta-evidence. A system is then said to be frusted, or
trustworthy, from a point of reference, if it meets two
criteria: (1) the system can be unambiguously identified,
and (2) the system can be observed as behaving in
accordance with previously known expectations [14].

Most remote attestation techniques provide integrity
evidence by only measuring the static properties of the
target hardware/software system [20]. Static software
properties typically include the cumulative hash con-
structed during the measured boot process, and other
static state of the running software such as code re-
gions. However, programs from trusted vendors are still
vulnerable to run-time security attacks, such as buffer
overflow attacks. Static RA techniques cannot measure

Prasad A. Kulkarni
EECS, University of Kansas
Email: prasadk@ku.edu

the integrity of the software state that can dynamically
change after the programs begin execution.

Dynamic RA attempts to remedy this limitation with
static RA based systems [12], [13]. These dynamic RA
approaches measure run-time properties of the executing
software that must be true during a normal execution
of the program, and are specific to each program.
Measurement policies for dynamic RA reason about
the properties and relationships between dynamically
varying program state that is held in architecture reg-
isters, structures on the call-stack, and objects on the
stack, heap, or the global region. Even in cases where
applications are similar in purpose, for example two
different virus checkers, attestation critical structures and
program variables, and their properties and relationships,
may differ significantly.

As such, measurement functionality must be tailored
to each critical application on the target system. Existing
measurement systems are commonly built with their
target application in mind, and which cannot fit any other
software or possibly, even the different releases of the
same application [13]. No general purpose measurement
system with a well-defined and common command in-
terface exists for native applications. We believe that the
high cost of building customized measurement systems
for user-level applications prohibits widespread adoption
of dynamic RA in trusted computing.

While measurement policies for dynamic RA systems
have to be application-specific, the measurement systems
do not need to necessarily follow that trait. Our current
work attempts to ease the process of building per appli-
cation measurers by decoupling program-specific poli-
cies from the measurement system via a general, well-
defined, and powerful command interface. We provide a
novel general-purpose measurement framework, called
MSRR, that can support different target applications.
Our measurer provides the core measurement capabil-
ities to sample programs features, such as the code,
globals, heap, stack locals, and call-stack, as directed
by application-specific measurement policies.

MSRR is implemented by extending the GNU Debug-
ger, GDB [4], and currently resides as a trusted com-
ponent on the same machine as the target application.

Appraising

: LRrEStoVEen Measurement
System Attestation Requests
() Reauet Measurer
Appraiser Attester
____J| Evidence Measurements

Program
State

Application

Fig. 1: Components of a remote attestation scenario

The measurer is driven by a remote attester that commu-
nicates with the measurer over JSON-RPC. This paper
describes the context, features, implementation details,
and evaluation of our novel measurement framework.

II. BACKGROUND & RELATED WORK

In this section we present the background for this
work and other related approaches for remote attestation.
RA is a mechanism for establishing trust. The key com-
ponents to a typical remote attestation scenario are the
appraiser, the attester, the measurer, and the (target)
application, as shown in figure 1. The appraiser seeks to
establish trust in a remote system by requesting evidence
from the target by interfacing with the target’s attester.
The attester receives requests for evidence from remote
appraisers and responds with evidence. To facilitate
this task, the attester makes measurement requests of
local measurers. The measurers collects measurements
of trust critical features, including but not limited to user
applications, as requested by the local attester.

a) Static Remote Attestation: To establish trust
during RA, the appraiser needs to identify the remote
system, and request and verify evidence regarding its
hardware and software configuration [17], [6], [1]. The
evidence supplied by many RA approaches measures
only the static properties of the machine and the running
software. Sailer et al.’s integrity measurement architec-
ture (IMA) was one of the first instantiations of the
Trusted Computing Groups’ measured boot attestation
process [20]. Measured boot employs trusted hardware
on the target machine, such as a TPM (trusted platform
module) chip [7], to measure and hash each successive
software component, by the preceding software, as it
is launched during system boot. Each software hash
extends a running hash to create a hash chain that suc-
cinctly stores the specific order of the specific software
components launched at startup.

SWATT [21] and Pioneer [22] employ pure software-
based attestation techniques that depend on verification
functions that are specially designed such that any tam-
pering attempt noticeably increases their running time.
However, both techniques can only attest static code/-
data. While SWATT can verify the memory contents of

an embedded device with a simple CPU, Pioneer can
handle complex CPUs to attest a program’s binary code.
Likewise, there are other works that share the limitation
of only being able to perform static or load-time integrity
measurement [16], [11].

b) Dynamic Remote Attestation: Static RA tech-
niques cannot provide integrity evidence for the dynamic
program properties and verify that applications are be-
having as expected at run-time. Several works have stud-
ied run-time integrity measurement techniques. Flicker
utilizes hardware support for late launch to bind and
attest the integrity of executed code with its input/out-
put [15]. BIND cryptographically attaches an integrity
proof for a program with the output it produces [23].
However, these techniques are not generalized to handle
other generic dynamic program state.

PRIMA extends IMA with information flow integrity
measurement on SELinux-like systems with a manda-
tory access control policy [10]. PRIMA prevents high
integrity processes from accessing low integrity data,
without intervention and alteration. Semantic remote
attestation employs a trusted managed-language virtual
machine to attest certain properties of the client pro-
gram [8]. DynIMA combines load-time integrity mea-
surement with dynamic tracking techniques that instru-
ment program code to perform integrity-related runtime
checks [2]. DynIMA only support dynamic checks that
are generic to all binaries and require no program spe-
cific knowledge. No measurement interface is exposed.

Redas provides dynamic RA by measuring certain
structural invariants and global data invariants [12].
Redas employs OS modifications and can only perform
continuous measurements at certain pre-defined program
points, specifically system calls and the malloc family
of functions. The Java Measurement Framework (JMF)
defines a policy language to manually write program-
specific run-time integrity policies, along with a mea-
surement framework to sample the dynamic program
state as directed by the security policies [24]. However,
JMF only targets the Java environment and does not
define a comprehensive measurement interface.

Several systems measure the Linux kernel runtime
integrity. Copilot monitors certain well-known regions of
Linux kernel memory using an external PCI card [18].
Another technique dynamically attests the Linux ker-
nel control-flow integrity [19]. Linux kernel integrity
monitoring, or LKIM, verifies the consistency of known
critical kernel data structures at run-time [13]. These
techniques develop custom measurement frameworks
that only apply to the Linux kernel.

The cost of designing specialized measurement sys-
tems is high. While such costs can be amortized for OS
kernels with their large code bases, they become pro-
hibitive for smaller user-space applications. Our MSRR

framework presented in this work is unique because it
is the first attempt to develop a comprehensive, exten-
sible and well-defined command interface to decouple
integrity measurement from generic policy specification
for user-level binary applications.

III. FRAMEWORK INTERFACE AND CAPABILITIES

MSRR is a novel lightweight measurement framework
that is agnostic of the target application. MSRR provides
the core functionality to sample the execution state of a
process. The decoupling provided by our measurement
framework will allow an expert to save time and effort by
only producing a program-specific measurement policy
to drive the general measurement framework, rather than
building the entire measurement system from the ground
up for each user-level application.

MSRR has a robust querying language that provides
the interface to the attesters. The querying language al-
lows the attester to specify in detail what features of the
target application to sample, how the measurer should
sample them, and when/where to make those samples.
In this section we first describe the general capabilities
of our measurement framework in Section III-A. We
then present the measurement types, interface, and im-
plementation details in Sections III-B, III-C, and II-D
respectively.

A. MSRR Capabilities

MSRR can be driven locally or remotely via JSON-
RPC. In a typical remote attestation scenario, the mea-
surer would communicate exclusively with a local or
remote attester, which in turn serves remote appraisers.

The measurement interface exposes control and mea-
surement functions. The attester can select and deselect
target processes to measure. The attester can request
measurements of various features of program state, in-
cluding but not limited to: call stack dump, local and
global variable values, heap structures, type information
for structures, and register and memory values.

Measurement requests are made using a querying lan-
guage that is robust and allows for simple atomic mea-
surement, complex composite measurements, or mea-
surements with internal logic and dependent nested
measurements. As such, requests can take different
forms: immediate measurements, delayed or scheduled
measurements, recurring or periodic measurements, and
triggered measurements. All measurements types can be
prefixed with logic contingent upon the result of previous
measurements to support conditional short-cutting to
avoid unnecessary target interruption and computation.

The measurement system is invokable via remote pro-
cedure calls and, by design, cannot invoke/message the
appraiser at will. As such, non-immediate measurements
immediately return an acknowledgment of successful

scheduling and or failure to do so. When the scheduled
measurement takes place, the measurement system stores
this value. At any point, the appraiser may make a
request for the result of a previously scheduled mea-
surement; in such a case, the return will be the measured
value or a “measurement pending” flag.

B. Measurement Types

In this section we present a classification of the
measurement types supported by MSRR. The two main
categories of supported measurement types are: on-
demand measurements Versus monitoring measurements.
On-demand measurements are those sampled immedi-
ately, at the time of request. The samples are taken and
evidence is returned back to the attester immediately.

Monitoring measurements are those that can be exe-
cuted either periodically or upon some trigger, typically
a reoccurring one. In either case, the measurements are
registered with the measurer immediately upon receipt
of the request. The measurer then stores samples when
the specified trigger fires. The stored measurements can
be requested at any time by the attester.

C. MSRR Command Interface

In this section we describe our measurement system’s
application programming interface. Table I shows the
categories of MSRR commands and lists some important
functions in each category. The first column in Table I
lists the command name followed by its arguments in
the second column. The third column lists the fype of the
data returned by the command. The last column briefly
describes the actions performed by each command.

MSRR exposes a command interface that is classified
into the following categories.

Admin and Setup: These commands allow the ap-
praiser to attach/detach the measurer to the target
program and setup the internal state of the measurer.

Measurement: These commands create measurement
instances. The measure command launches an
on-demand measurement, while the 1oad/store
commands start a monitoring measurement.

Features: These commands specify the program prop-
erty to sample. They are used as arguments to the
measurement commands.

Snapshots: These commands create a snapshot of the
target application process. Application snapshots
are discussed in Section III-D, and are an imple-
mentation utility to efficiently conduct expensive
measurement tasks.

Events and Hooks: These commands assist the cre-
ation of the monitoring measurements by setting up
events and hooks to perform such measurements.

Control Functions: These commands provide a higher-
level interface to create more sophisticated mea-

Function Arguments Return Description
Admin & Setup
detach - VOID Detach measurer from target.
quit - VOID Terminate measurer.
set_target STRING pid VOID Attach measurer to a process by PID.
Measurement
load INT store_id MEASUREMENT Load a measurement from a store.
measure FEATURE f MEASUREMENT Measure a specific feature of target.
store INT store_id, MEASUREMENT m VOID Store a measurement into in a store.
Features
callstack - FEATURE Create a feature representing the callstack.
mem STRING address, STRING format FEATURE Create a feature for a specific memory address to be inter-
preted with a specific format.
reg STRING reg_name FEATURE Creates a feature for a specific register.
var STRING var_name FEATURE Creates a feature for a specific target variable, by source ID.
Snapshots
snap - INT Create a snapshot of target and return a reference to the
snapshot.
to_snap INT snap_id, STRING expression Anything Evaluate an expression on the specified snapshot.
Events & Hooks
delay INT delay, INT repeat EVENT Create a timer event with a specified duration.
disable INT hook_id VOID Disable a hook.
enable INT hook_id VOID Enable a hook.
hook EVENT e, EXPRESSION a INT Create a hook that evaluates an expression when an event
occurs.
kill INT hook_id VOID Kill a hook.
reach STRING source_file, EVENT Create an event that triggers upon target reaching a specified
INT source_line, INT repeat code location.
reach_func ~ STRING func_name, INT repeat EVENT Create an event that triggers upon target reaching a specific
function.
Control Functions
eq INT left_hand, INT right_hand INT Evaluate the equivalence of the arguments.
if INT condition, Anything Evaluate one of two expressions depending upon some con-
EXPRESSION expr_true, dition.
EXPRESSION expr_false
not INT original INT Return the boolean complement of the inputl.
seq EXPRESSION el, €2 ... VOID Evaluate a sequence of expressions.

TABLE I:

MSRR extensible function interface

surements that will only be triggered if/when cer-
tain program properties (themselves, determined
through earlier measurements) or conditions exist.

The MSRR commands return values of type void,
int, string, feature, measurement, event,
and expression. The void, int, and string
types function as expected. Measurement functions use
the feature type to describe a feature in the target
application to measure. The measurement type has
two main components, the data component and a type
descriptor. The data component is the raw data taken in
the sample. The type component captures the type of the
raw data, which corresponds to the original feature’s type
in the source language. The event type is used to create
event functions that trigger measurements periodically
or when certain conditions are met. The expression
type describes a lazy expression, that is currently used
by the hook function to invoke other MSRR commands
when the corresponding event is triggered. We provide
some examples of MSRR functions in Section V.

D. Implementation

We have implemented MSRR as an extension of the
GNU Project Debugger, GDB [4], [5]. Consequently,
our current implementation benefits from GDB’s ex-
tensive capabilities and infrastructure, but also inherits
GDB’s limitations. GDB utilizes the DWARF debug
symbols to drive its measurement capabilities [3]. As
such, MSRR requires the DWARF debug symbols for
measuring the target applications. The DWARF data
enables the measurement system to easily find various
program features using source code level descriptors,
and simplifies policy generation, either manually by an
expert or by other automated means. DWARF debug
symbols can be produced optionally by most state of
the art compilers, for example by using the ‘-g’ option
with GCC. We assume that the DWARF debug symbols
are available to the measurer and the appraiser, even if
they were stripped from the target binary program.

Our GDB-based MSRR measurement framework uti-
lizes hardware features, OS interfaces, and program
instrumentation to provide its measurement capabili-
ties. For instance, MSRR’s reach and reach_func

functions employ GDB’s breakpoint functionality. GDB
implements breakpoints using either the built-in hard-
ware breakpoints, if available, or as software breakpoints
using program instrumentation to replace a program
instruction with a trap. Likewise, MSRR utilizes GDB’s
syscall feature to pause the program at system calls
for measurements, which uses interfaces exposed by the
OS. The overhead of code instrumentation in MSRR
is limited because the instrumentation is only inserted
during the measurement period, and does not need to
permanently slow-down the entire program execution.

Measurements in MSRR employ two strategies. Di-
rect measurements are the default technique that stall
program execution while recording the desired program
state. For measurements that are expected to require
a significant processing overhead, MSRR provides a
strategy called snapshot measurements.

The following is the typical workflow for a direct
measurement. On receiving a measurement request, de-
pending on its type, MSRR performs an immediate
sampling or schedules a sampling event. To ensure
coherency, the actual measurement interrupts and stalls
the target application for the entire duration of the search
and processing of all data requested.

Typical Measurement Workflow:

1) Measurement request is received from the attester.

2) The measurer interrupts the target application.

3) The measurer searches for and collects the desired
data, if available.

4) The measurer releases the target program.

5) The measurer packages the data and sends the
results to the attester.

The snapshot measurement strategy is reserved for
heavy-weight measurements. This strategy uses the
Linux fork system call to construct a new child process
that retains a full snapshot of the original program’s pro-
cessor and data state. The actual measurement happens
on the child snapshot. The original target application is
allowed to continue after the fork command returns.

Snapshot and Release Workflow:

1) Measurement request is received from the attester.

2) The measurer interrupts the target application.

3) An entire snapshot of the target’s state is taken.

4) The measurer releases the target program.

5) The measurer collects the relevant data from the
snapshot and decommissions it.

6) The measurer packages the data and sends the
results back to the attester.

Figure 2 compares the direct and snapshot measure-

Direct Measurements+)
(G IS A J
1
msrR [[[wi] M | M2 [wma] M]
Snap and Release v ¥
] N [~ 1| | A]
1 ?
msrR [™ | MS [m] MS [™]
()
e [A T [Y | J
APP A A A
1 7
msrr [M [mi] M | MS [M |
CHILD [v [w]

Fig. 2: Snapshot measurement scenarios

ment strategies for several scenarios. The snapshot mea-
surement strategy is provided to lower the measurement
overhead when direct measurement is likely to interrupt
the target program for longer than the anticipated cost of
taking the snapshot. In Figure 2, the measurement system
receives the following measurement requests: first, a
measurement request for M1 and later a measurement
request for measurements {M2, M3}. The first case
uses direct sampling exclusively. The second example
employs snapshot sampling. However, the snapshot mea-
surement for M1 produces no performance benefit but
snapshot for {M2, M3} does. The last case demonstrates
the ideal use-case, where direct measurement is used for
M1 and snapshot measurement is taken for the {M2,
M3} request. Snapshot measurements, currently, need to
be explicitly requested by the attester by using the MSRR
commands interface.

IV. PERFORMANCE BENCHMARKING

A dynamic measurement system should actively main-
tain trust throughout the life of a target application. Such
a measurer must be lightweight and as unintrusive to the
target applications as possible. In this section we present
some performance benchmarking results with MSRR.

We conduct our experiments on a system running 64-
bit Fedora 24 with 32 GB of memory and quad-core Intel
Xeon 1.8 Ghz processors. We employ custom micro-
benchmarks and programs from the SPEC CPU 2006
benchmark suite with the reference data sets [9]. Each
benchmark-configuration is executed 10 times, and the
average program run-time is used.

Our first experiment is designed to evaluate MSRR
overhead when it is attached to the target application
and is ready to collect measurements, but receives no
requests from the attester during the process life-time.
In this scenario, we found that MSRR does not impose
any discernible overhead for any of all our benchmarks.

Our next experiment uses a simple micro-benchmark
(computing the Fibonacci sequence) to measure the cost
of individual measurement events. We create a timed
monitoring measurement (using delay) to sample the

10000ms 1000ms m100ms system calls

program run-time with measurements /
No-measurement program run-time
5
2

Fig. 3: MSRR overhead when invoked to periodically
sample the application call-stack

program call-stack (callstack), a specific machine
register (req), and a stack memory variable (mem) every
10msec. We create another event-based continuous mea-
surement to measure the cost of the hook mechanism.
The hook stops the program at a specified program
location and immediately returns without collecting any
measurement. The experimental setup is designed to
collect about 22,000 samples of any one measurement
type during a single program run. We also create a timed
event to measure the overhead of the snapshot utility that
calls snap every 10,000msec.

The baseline executes the micro-benchmark without
any measurement. Each active run activates a single
measurement type during program execution. The time
difference between the active and baseline program
runs, divided by the number of events invoked gives
us the estimate of the cost of each event. We find that
the callstack, reg, mem, hook, and snap events
have an overhead of 0.54msec, 0.32msec, 0.32msec,
1.94msec, 96.45msec, respectively, on our system.

The cost of some events, especially callstack and
snap, may vary depending on the client program’s call-
stack depth and memory usage. Our next experiment
evaluates the overhead imposed by MSRR when sam-
pling the entire call stack of a user-application at dif-
ferent measurement frequencies. Measurements are col-
lected at periodic intervals of 100ms, 1000ms, 10,000m:s,
and at every system call.

Figure 3 shows the ratio of the program run-time
when measurements are taken for various configurations
to the program run-time with no measurer attached. We
found that the measurer imposes an overhead of 0.08%,
0.25%, 2.14%, and 4.44% for call-stack measurements
taken every 10,000ms, 1000ms, 100ms, and at all system
calls, respectively and on average (geometric mean)
over all benchmark programs. The standard deviations
were small relative to their means. The average standard
deviation was 0.34% and all standard deviations fell in
the range of 0.01% and 3.65%.

Distinct benchmarks have both a different system call

invocation rate and different average call-stack depths.
These differences cause the large variation in the over-
head imposed by MSRR for call-stack samples at system
call sites for different programs. The timer-based events
trigger the measurements at a uniform rate (100ms,
1,000ms, or 10,000ms) for all benchmarks. For these
timer-based experiments, the largest overhead was on
benchmark 403.gcc at a measurement period of 100ms.
The average execution time for 403.gcc was 115.7%
of the execution time without any measurement. We
found that the higher overhead is mainly because 403.gcc
routinely has higher call-stack depths than most other
benchmarks.

V. EXAMPLES AND CASE STUDY

In this section we present a few examples to illus-
trate the MSRR function interface and invocation. Each
example shows a simple exchange between an attester
and our measurer. For each step in the exchange, we
show a request made by the attester, followed by the
response from the measurer. While the communication
takes place using JSON-RPC, we only show the more
readable short-form notation.

a) Attach measurer to process with PID 1590:
This example shows the attester requesting MSRR to
initiate measurement for a target application.

[Command [(set_target 1590) |
[Response [INT:0 |

b) Sample the call stack immediately: Our second
example uses the MSRR interface to request an on-
demand measurement to sample the target application’s
call-stack.

[Command [(measure (callstack))]

MEASUREMENT:M{type=0,
cg=(main (sleep
(__nanosleep_nocancel))),
ft=1:main 2:sleep
3:__nanosleep_nocancel,
next=NULL}

Response

c) Store a measurement of variable A in function
Our next example requests a monitoring
measurement to sample the value of a variable on
the application call-stack. The attester creates a hook
which requires an event descriptor (EVENT) and an
action (EXPRESSION). In this case the event is the
reach function with an offset of 0. The action is a
lazy expression that will sample and store the value
in variable “A”, when the event condition is satisfied.
Since this measurement may not happen immediately,
MSRR returns a ‘0’ to simply indicate success.

main:

»int

5 int

(hook (reach “main” 0 0)
‘(store 1 (measure (var “A”))))

[Response [INT:0]

‘ Command

d) Request the measurement stored in Store

1

I.: In this example, the attester requests MSRR to _

communicate the measurement stored by a previously
registered hook. MSRR immediately responds with
either the stored measurement, if available, else returns
‘0.

Command | (load 1)
Response | MEASUREMENT:M{type=1, data=33
, next=NULL}

e) DreamChess case study: Next we present a
longer realistic usage scenario for MSRR. We discuss
some malicious modifications that an attacker may wish
to perform on the application, and then we describe
how our system may be used to detect such attacks.
We employ DreamChess, which is an open source chess
game for Windows, Mac, and Linux. The trust frame-
work is tasked with ensuring that the game of chess is
being played correctly and fairly. Using DreamChess,
we describe a few high-level attestation goals. For each
goal, we present a practical attestation policy generated
by an expert. We also show how each policy translates
into measurement requests in MSRR.

DreamChess describes the game board in a structure
called board. The structure contains an integer array
square of size 64, to represent the squares of the board.
The first eight elements of the array correspond to the
first row of spaces on the board. The next 8 elements
correspond to the next row, and so on. There is a unique
integer value reserved for each game piece and color
combination, and an additional value reserved for a blank
space. See the following listing for the flags and the
definition of board.

typedef struct board
turn ;

square [64];
captured [10];
state ;

int

int

7 } board_t;

Goal - Is the Chess Board in a Valid State: The
referee/appraiser may wish to determine if the board is

1

valid, at any given time. The validity of a chess board

can be defined in many ways. In this example we say

a board is ‘valid’ if there are no more than 8 pawns of ;

black and no more than 8 pawns of white.! As such, the
rule may look something like the following.

'A complete valid board rule would be more complex to express ’

all the rules of a chess game. It may bind the piece types and colors
considering special chess piece promotion rules. It may also bind each
piece to a subset of spots that it can reach.

(Status , Reason) ValidMove(int board[]) {
if (board.countif (BLACK PAWN) > 8)
return (FAIL, ”Too many black pawns!”)

else if (board.countif (WHITE_PAWN) > 8)
return (FAIL, ”"Too many white pawns!”)

else
return (PASS, null);

Listing 1: Valid Board Rule

For this rule, the appraiser may request a measure-
ment of the square array within DreamChess’s board
structure instance at any time. A measurement request
and response for this rule would look as follows.

[Command [(measure (board))]

MEASUREMENT:M{ type=1,
data={
6,2,4,8,10,4,2,6,
[...]
7,3,59,11,5,3,7
} , next=NULL}

Response

Note that such a rule may not be true at program
points when this structure is being legally updated. The
rule could account for such legal rule violation by also
requesting the measurer to return the program counter
when the measurement is taken. The appraiser can then
assess the measurement with the provided context.

Goal - Is the Move Valid An appraiser might also
be interested in ensuring that each and every move
made during play is valid. To do so, a policy can
be constructed to take a baseline board measurement
at the start of play and then a new measurement of
the board upon the conclusion of each move operation.
The difference between each successive board state will
determine whether the move was valid.

For this example, a move is defined as valid if the
previous board and next board state differ in exactly two
spaces. Again, this rule is simplistic since it does not
account for complex maneuvers, such as castling, and
does not bind each piece type to their specific move
patterns. The simple rule can be described as follows.

(Status , Reason) ValidBoard(int boardl[],
int board2[]) {
int diff_board[] =

boardl);
if (diff_board [].countNonZero () >2)
return (FAIL, ”“More than two spaces
changed!”) ;
else
return (PASS,

board2 . subtract (

null) ;

Listing 2: Simple Valid Move Rule

For this rule, our measurement framework must be
invoked as follows. First an initial (on-demand) mea-
surement of the board is taken. Then, a recurring (mon-
itoring) measurement is registered for each move opera-
tion. The appraiser can request the stored measurements
at any time. The command to register the monitoring
measurement is below.

Command | (hook (reach “DoMove” 0 1)
(store 1 (measure (var
“board->squares”))))

[Response [INT:0]

The appraiser can request the samples using the fol-
lowing rule.

[Command [(load 1)]

MEASUREMENT:M{type=1,
data={
6,2,4,8,10,4,2,6,
[...]
7,3,59,11,5,3,7
} , next=NULL}

Response

VI. FUTURE WORK

There are multiple avenues for future work. First, in-
sightful policy specification often requires manual input
from an expert. We plan to explore static and dynamic
techniques to automatically derive important program
properties for policy specification during dynamic RA.
Second, while MSRR provides a general-purpose com-
mand interface for driving measurements, the mapping
from high-level policies to the actual MSRR commands
is still manual. We plan to automate this mapping in
future work. Finally, we will continue to extend the
MSRR interface, improve its performance, reduce the
trusted code base, ensure better separation between the
target application and measurer, and develop protocols to
attest the trustworthiness of the measurement framework
and responses delivered to the remote attester.

VII. CONCLUSIONS

The goal of this work is to decouple application-
specific measurement policies from the actual measur-
ers that conduct the measurement at run-time in the
context of dynamic remote attestation. We described
our measurement framework, MSRR, that provides a
general-purpose, comprehensive and extensible interface
of commands to easily specify and efficiently perform
dynamic program measurements. We presented MSRR’s
command interface, described its implementation details,
evaluated its performance for a few measurement tasks,
and illustrated its usage through multiple simple exam-
ples and case studies. In summary, we believe that our
general-purpose measurement framework is an important
first step in realizing the goal of automating, as much as

possible, the synthesis of policies and tools to achieve
reliable, efficient, and widespread adoption of dynamic
RA for user-space applications.

REFERENCES

[1] David Challener, Kent Yoder, and Ryan Catherman. A Practical
Guide to Trusted Computing. IBM Press, 2008.

[2] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Dy-
namic integrity measurement and attestation: Towards defense
against return-oriented programming attacks. In ACM Workshop
on Scalable Trusted Computing, pages 49-54, 2009.

[3] Michael J. Eager. Introduction to the DWARF debugging format.
Eager Consulting at http://dwarfstd.org/, April 2012.

[4] Free Software Foundation. GDB: The GNU project debugger.
https://www.gnu.org/software/gdb/, February 2018.

[5] John Gilmore and Stan Shebs. GDB internals. Cygnus Solutions,
February 19 2004.

[6] Trusted Computing Group. TCG infrastructure working group
architecture part II: Integrity management. Specification Version
1.0, Revision 1.0, November 17 2006.

[7]1 Trusted Computing Group. TPM main part 1: Design principles.
Specification Version 1.2, Revision 116, March 1 2011.

[8] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic
remote attestation: A virtual machine directed approach to trusted
computing. In Proceedings of Conference on Virtual Machine
Research And Technology Symposium, pages 3—15, 2004.

[9] John L. Henning. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1-17, September 2006.

[10] Trent Jaeger, Reiner Sailer, and Umesh Shankar. PRIMA: Policy-
reduced integrity measurement architecture. In Proceedings of
the Eleventh ACM Symposium on Access Control Models and
Technologies, pages 19-28, 2006.

[11] S. Jiang, S. Smith, and K. Minami. Securing web servers against
insider attack. In Proceedings of the 17th Annual Computer
Security Applications Conference, pages 265—, 2001.

[12] C.Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. Remote
attestation to dynamic system properties: Towards providing
complete system integrity evidence. In 2009 Conference on
Dependable Systems Networks, pages 115-124, June 2009.

[13] Peter A. Loscocco, Perry W. Wilson, J. Aaron Pendergrass, and
C. Durward McDonell. Linux kernel integrity measurement using
contextual inspection. In Proceedings of the 2007 ACM Workshop
on Scalable Trusted Computing, pages 21-29, 2007.

[14] Andrew Martin. The ten page introduction to trusted computing.
Technical Report RR-08-11, OUCL, December 2008.

[15] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K.
Reiter, and Hiroshi Isozaki. Flicker: An execution infrastruc-
ture for TCB minimization. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems
2008, pages 315-328, 2008.

[16] Milena Milenkovi¢, Aleksandar Milenkovié, and Emil Jovanov.
Hardware support for code integrity in embedded processors. In
Proceedings of the Conference on Compilers, Architectures and
Synthesis for Embedded Systems, pages 55-65, 2005.

[17] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Boot-
strapping Trust in Modern Computers. Springer Publishing
Company, Incorporated, 1st edition, 2011.

[18] Nick L. Petroni, Jr, Timothy Fraser, Jesus Molina, and
William A. Arbaugh. Copilot - a coprocessor-based kernel
runtime integrity monitor. In Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, pages 13—13, 2004.

[19] Nick L. Petroni, Jr. and Michael Hicks. Automated detection of
persistent kernel control-flow attacks. In Proceedings of the 14th
ACM Conference on Computer and Communications Security,
pages 103115, 2007.

[20] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van
Doorn. Design and implementation of a TCG-based integrity
measurement architecture. In Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, pages 16-16, 2004.

[21]

[22]

[23]

[24]

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:
software-based attestation for embedded devices. In IEEE Sym-
posium on Security and Privacy, 2004. Proceedings. 2004, pages
272-282, May 2004.

Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert
van Doorn, and Pradeep Khosla. Pioneer: Verifying code integrity
and enforcing untampered code execution on legacy systems.
SIGOPS Oper. Syst. Rev., 39(5):1-16, October 2005.

E. Shi, A. Perrig, and L. Van Doorn. BIND: a fine-grained
attestation service for secure distributed systems. In Symposium
on Security and Privacy, pages 154—168, May 2005.

Mark Thober, J. Aaron Pendergrass, and Andrew D. Jurik.
Jmf: Java measurement framework: Language-supported runtime
integrity measurement. In Proceedings of the Seventh ACM
Workshop on Scalable Trusted Computing, pages 21-32, 2012.

