
?

1

Exploring Impact of Profile Data on CodeQuality in the
HotSpot JVM

APRIL W. WADE, University of Kansas, USA
PRASAD A. KULKARNI, University of Kansas, USA
MICHAEL R. JANTZ, University of Tennessee, USA

Managed language virtual machines (VM) rely on dynamic or just-in-time (JIT) compilation to generate
optimized native code at run-time to deliver high execution performance. Many VMs and JIT compilers collect
profile data at run-time to enable profile-guided optimizations (PGO) that customize the generated native code
to different program inputs. PGOs are generally considered integral for VMs to produce high-quality and
performant native code.

In this work we study and quantify the performance benefits of PGOs, understand the importance of
profiling data quantity and quality/accuracy to effectively guide PGOs, and assess the impact of individual
PGOs on VM performance. The insights obtained from this work can be used to understand the current state
of PGOs, develop strategies to more efficiently balance the cost and exploit the potential of PGOs, and explore
the implications of and challenges for the alternative ahead-of-time (AOT) compilation model used by VMs.

Additional Key Words and Phrases: Program profiling, Profile-guided optimizations

ACM Reference Format:
April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. 2019. Exploring Impact of Profile Data on Code
Quality in the HotSpot JVM. ACM Trans. Embedd. Comput. Syst. ?, ?, Article ? (October 2019), 25 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Program profiling involves collecting relevant information regarding the dynamic or execution-time
behavior of a program. Such information is then used by compilers to both improve the effectiveness
of traditional optimizations and enable a new class of dynamic optimizations to improve the quality
of generated code. Compiler transformations that employ profile information to benefit program
performance are called profile-guided optimizations (PGO).

Managed language platforms, such as Java, provide an accessible, secure, platform-independent
and high-performance development and run-time environment. Virtual machines (VM) for managed
1 Extension of Conference Paper This work extends our conference submission titled AOT vs JIT: Impact of Profile Data
on Code Quality (LCTES)[39]. We extend this earlier work by: (a) re-implementing all experiments in the JDK 9 release of
the HotSpot JVM whereas the previous work was based on a development snapshot, (b) extending the set of the benchmarks
used in our experiments with ScalaBench suite which provides insight into behavior of programs written in non-Java
JVM languages and thus alters some of our conclusions, (c) expanding the set of inputs used in Section 5.3, (d) adding an
investigation in Section 5.4 into the impact of specific optimizations implemented in HotSpot.

Authors’ addresses: April W. Wade, University of Kansas, 1450 Jayhawk Blvd, Lawrence, KS, 66046, USA, aprilwade@ku.edu;
Prasad A. Kulkarni, University of Kansas, 1450 Jayhawk Blvd, Lawrence, KS, 66046, USA, prasadk@ku.edu; Michael R. Jantz,
University of Tennessee, Knoxville, TN, 37996, USA, mrjantz@utk.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2009 Copyright held by the owner/author(s).
1539-9087/2019/10-ART?
https://doi.org/0000001.0000001

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


?:2 A. Wade et al.

languages commonly employ profiling assisted algorithms to achieve high program performance.
Knowledge of program behavior derived through profiling can empower the dynamic VM algo-
rithms to maximize their effectiveness while minimizing run-time costs [3, 17]. Incidentally, the
advanced execution environment supported by VMs provides the ideal flexibility and power for the
collection and application of program profiling during dynamic or just-in-time (JIT) compilation
and optimization.
In spite of their widespread adoption, important properties of PGOs used in current managed

language VMs remain unexplored.While they are typically believed to benefit program performance,
the actual benefit of profile data to PGOs is seldom quantified. Likewise, we also need to better
understand the impact of the amount and accuracy of profile data on the effectiveness of dependent
PGOs. The effect of cross-input profile data that may be available to offline profiling techniques on
PGO efficiency is also not entirely clear. Lastly, which profile-guided compiler optimizations are
most dependent on profile data as well as responsible for program performance improvement is
unknown and needs further exploration. The goal of this work is to carefully and systematically
investigate these properties of PGOs for a state-of-the-art managed language VM through rigorous
and novel VM implementation mechanisms and experimental strategies.
Better understanding the properties and benefits of PGOs is especially critical now with the

emergence of the ahead-of-time (AOT) compilation model in mainstream VM systems [32]. AOT or
load-time compilation is conducted offline and occurs only once when the program is first compiled
or installed on the device. This model eliminates the time and energy overhead of JIT compilation
during each program execution, along with the need to support the profiling, code cache and
related runtime infrastructure. However, the AOT compilation model does not have access to
the execution specific profile data that is used by PGOs during JIT compilation to customize the
native code for individual inputs and enable the application of additional aggressive and potentially
unsafe optimizations speculatively. Unlike most AOT systems, VMs can provide support for the
speculatively compiled code to be de-compiled if the speculative condition is invalidated later.
Appreciating the trade-offs of the AOT and JIT compilation models needs a clearer understanding
of the benefits that compiler optimizations derive from the availability of more accurate, fresh and
customized profile data.

In this work, we develop a variety of innovative experiments and VM frameworks to answer the
following questions:
(1) How much does customized (from the same program run) profile data impact the code quality

generated by JIT compilers?
(2) How does the amount of profile data impact the effectiveness of PGOs?
(3) How do inaccuracies in profile data affect the quality of generated code? To quantify the

impact of inaccurate profile data, we develop techniques to collect and apply profile data
from different inputs for the same program as well as to systematically introduce noise into
the profile data.

(4) How does profile data impact the benefit and effectiveness of individual optimizations?
To answer this issue, we extend the HotSpot Java VM [30] to better isolate individual JIT
optimizations and provide interfaces to control their application at run-time.

We believe that our research provides greater insight in the workings, characteristics, and benefits
of existing profiling based VM optimization systems, and demonstrates some of the challenges
that AOT compilation systems must overcome to achieve comparable code quality to JIT based
VMs. All our experiments in this work use OpenJDK’s HotSpot Java VM and programs from the
DaCapo, ScalaBench, and SPECjvm2008 benchmark suites. HotSpot is a production quality JVM
and is nearly synonymous with the JVM on the x86. We believe that other production JVMs in use

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:3

on x86 employ similar optimizations to those used by HotSpot. Therefore, we expect HotSpot’s
behavior to likely be representative of other JVMs, and the results we present to be portable to
other JVMs on x86.

The remainder of the paper is structured as follows. We explore background material related to
JIT compilers and PGOs as well as related works in Section 2. We present the tools, benchmarks,
and hardware used in our experiments in Section 3. We describe the modifications and extensions
we made to the HotSpot JVM to facilitate our experiments in Section 4. We describe the experiments
we perform, and present and discuss their results in Section 5. Finally, we suggest possible avenues
for future work and present our final conclusions in Sections 6 and 7, respectively.

2 BACKGROUND AND RELATEDWORK
In this section we describe some applications of profiling to individual optimization problems. We
also present prior work investigating properties of profiling and PGOs, and compare the goals of
our current research with related past studies.

Profiling data can be collected using offline and online schemes. Offline profiling uses additional
prior runs of the program to generate profile data. A later compilation can then use this profile to
guide code optimization decisions. Offline profiling is used by static compilers like GNU gcc/g++ [11,
21, 27, 31]. Dynamic or online profiling collects profile information during the same program run,
and is commonly employed by advanced managed language run-times, like those for Java [4, 13,
30, 38]. Researchers have also developed static analysis techniques to estimate some run-time
information for PGOs [41]. While JIT compilers typically use online profiling, AOT compilers may
employ offline profiling data or static analysis to guide adaptive optimization decisions. Some of
our studies in this work assess the impact of imprecise profile-based guidance on the quality of
code generated by PGOs.
Profile data has traditionally been employed to find the hot or frequently executed program

blocks or functions. Knowledge of hot program regions can then be used to focus compilation
and optimization effort. For example, many Java VMs only compile and apply PGOs to the hot
program methods to minimize JIT compilation overhead at run-time, in a technique called selective
compilation [3, 17, 24, 30]. Profile information is also used to direct many other optimization tasks.
For instance, profile data was used to randomize/diversify cold code blocks to reduce overhead [18],
during profile-guided meta-programming [10], to improve code cache management in JVMs [33],
to improve heap data locality in garbage collected runtimes [20], to guide object placement in
partitioned hot/cold heaps to lower memory energy consumption [22], etc. Our goal in this work is
not to generate new or improve existing PGOs, but to determine how inaccuracy in profile data or
static analysis based estimators can impact the effectiveness of PGOs.

Several prior studies compare the accuracy and impact of sampling-based profilers on adaptive
tasks. The accuracy of any given profile data can be compared directly with the known correct
profile, if it is available [5, 14, 28]. When the correct profile itself either cannot be generated or is
not known, researchers have used causality analysis to assess if their profile is able to correctly
guide the dependent adaptive task [29, 34]. Rather than evaluate the accuracy of the profiler, part
of this work assesses how profiles derived from different plausible program inputs can represent
the program execution for the current run. To our knowledge, this work is the first to conduct a
thorough systematic quantification of representative-ness of different profile data and the effect of
such dissimilarity on the effectiveness of PGOs in a standard Java VM.
Previous studies have explored static and AOT compilation of Java to benefit short-running

programs (startup performance) due to reduced JIT compilation overhead [19, 35, 40]. Instead, in
this work we study the effect on generated code quality (i.e., steady-state performance) that is
important to longer-running programs.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:4 A. Wade et al.

Several recent works have developed novel strategies for transparent and low-overhead PGO
deployment for embedded and warehouse-scale applications [12, 23]. Observations from our work
may help construct and improve future PGO deployment systems.

3 TOOLS, BENCHMARKS, AND EXPERIMENTAL SETUP
In this section we provide a brief background on the properties of the HotSpot VM and the
benchmarks used that are relevant to this work. We also explain some details of our experimental
setup.

HotSpot Internals: All our work for this paper was conducted using Oracle’s production-grade
Java virtual machine (HotSpot) in JDK-9 [30]. HotSpot provides the reference JVM implementation
and includes high-quality and state-of-the-art JIT compilers. HotSpot’s emulation engine includes a
high-performance threaded bytecode interpreter and two distinct JIT compilers. The client or c1 JIT
compiler is designed for fast program startup. The c1 compiler is very fast, but applies fewer and
simpler compiler optimizations. The server or c2 JIT compiler is slower and applies a broad range
of traditional and profile-guided optimizations to generate higher-quality code for fast steady-state
program performance. In this research we focus on code quality and therefore only use the c2
compiler for all our experiments.

Program execution in HotSpot begins in the interpreter. The HotSpot interpreter profiles program
execution to collect various program behavior statistics, including the invocation and loop back-edge
counts for all programmethods. If the sum of the invocation and loop-backedge counts for a method
exceeds a fixed threshold, then HotSpot queues that method to be compiled.

Background Compilation: HotSpot employs a technique called background compilation, where JIT
compilation occurs in separate OS threads in parallel with application execution [24]. Background
compilation prevents application stalls due to JIT compilation. However, it can also delay method
compilation (relative to the application threads) if the compilation queue is backed up; during which
time the method running in the interpreter can continue collecting profile data. Therefore, we
disable background compilation for most of our experiments to allow more determinism and control
over when each method is compiled and the amount of profile data collected prior to compilation.

Method Deoptimization: A JVM may need to occasionally invalidate and deoptimize a compiled
method. Deoptimizations are typically caused if a condition assumed or present during JIT compi-
lation is invalidated by a later execution event. Deoptimized methods are interpreted on future
invocations, until they become hot again and recompiled. Thus, frequent method deoptimiza-
tions can influence the program’s execution time. In this study we verify that our experiments do
not cause abnormal or performance-affecting deoptimization activity. Likewise, to achieve a fair
comparison, all the experimental configurations in this work allow deoptimized methods to be
recompiled later if they regain hotness.

Benchmark Suites: Our experiments use benchmarks from the DaCapo [9], SPECjvm2008 [37],
and ScalaBench [36] suites. Five DaCapo benchmarks, batik, eclipse, tomcat, tradebeans and
tradesoap are excluded because they fail to run with the unmodified HotSpot-9.1 Similarly, we
exclude the actors benchmark from ScalaBench because it crashes when run on stock JDK9. We
also leave out SPEC’s compiler benchmarks (compiler and sunflow) due to incompatibilities with
HotSpot-9. Finally, other than monte_carlo, the remaining programs in SPEC’s numerical scimark

1batik and eclipse fail due to incompatibilities that were introduced in OpenJDK 8 and have been observed and reported
by others [1, 2]. tradebeans and tradesoap witness frequent, but inconsistent failures with the default configuration. We
have not fully investigated the cause of the failures, but we believe it is related to issues reported in [8].

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:5

benchmark (lu, sor, and sparse) fail to derive any benefit from PGOs in HotSpot. Therefore, we
exclude these programs from our later discussion to improve graph presentation for the more
interesting benchmarks. Unless specified otherwise, the DaCapo and ScalaBench programs are run
with their default input, and the SPEC benchmarks use their startup input configuration.

Our experiments attempt to evaluate the quality of code generated by PGOs during JIT compila-
tion by measuring program execution time after all desired compilations are complete. We exploit a
mechanism provided by the DaCapo, ScalaBench and SPEC harness that allows a benchmark to be
iterated multiple times. To achieve determinism most of our experiments restrict the set of methods
compiled to those that are detected to be hot and are compiled in the first program iteration. Each
run iterates the benchmark 12 times and measures the program run-time during its final iteration.
Table 1 describes some characteristics of the benchmark used in this work. The first column in

Table 1 gives the benchmark name. The next column reports the average steady-state program
run-time with the default HotSpot setup. The final three columns provide the number of methods
compiled by each benchmark during its first iteration (startup), at the end of 12 iterations (steady-
state), and by a compiler that compiles all program methods on their first invocation respectively.
To account for inherent timing variations during the benchmark runs, all the run-time results
in this paper report the (geometric) average and 95% confidence intervals over 10 runs for each
benchmark-configuration pair [15].
Our experiments were conducted on a cluster of identically configured Intel x86-64 2.4GHz

machines running the Fedora Linux OS. To further minimize the possibility of hardware effects
influencing our observations, for each configuration, we execute the benchmark on the same set of
‘N’ machines (N equals 10, the number of runs), with ‘run_i’ performed on machine ‘i’ (0<i<N).

4 CONSTRUCTED EXPERIMENTAL FRAMEWORKS
We implement many new mechanisms in the HotSpot VM to correctly and fairly conduct our
experiments for this study2. In this section we describe these engineered frameworks.

4.1 Detect User-Defined Program Execution Points
Ordinarily, the VM does not possess the ability to efficiently detect user-defined program points as
they are reached during execution. We found that many of our experiments would benefit from
such a VM capability, especially to detect the start/end of individual benchmark iterations. Inspired
by prior work [25], we add an empty VM-indicator method to the harness of each benchmark
suite that starts the next program iteration and statically annotate the method with a special flag.
We extend the VM to mark such annotated methods when the classfile is loaded. The HotSpot
interpreter efficiently checks for this flag at every method invocation and directs VM control-flow
to custom user-defined code if it is encountered during execution.

4.2 Import/Export Profile Data
One important contribution of this work is a mechanism that we built in the HotSpot JVM for
exporting profiling data recorded during one instance of the VM and importing it during a later
instance. Static compilers that support PGOs, like GCC (gprof [16]) and LLVM (llvm-profdata),
possess the ability to collect and dump profile data from one program execution, and use it during a
later compilation to guide PGOs. However, such frameworks are uncommon for managed language
run-times, such as Java VMs, since they typically rely on online profiling.

2The source code for the modified version of HotSpot used in our experiments may be found at https://github.com/aprilwade/
tecs20-sources

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.

https://github.com/aprilwade/tecs20-sources
https://github.com/aprilwade/tecs20-sources


?:6 A. Wade et al.

Benchmark Steady-State Methods compiled
run-time (ms) Startup Steady All

DaCapo benchmark suite (default input)
avrora 5916.00 396 487 5125
fop 488.90 656 1277 8474
h2 5541.20 772 842 6435
jython 2699.10 1309 1419 8519
luindex 843.10 295 483 5052
lusearch 2013.20 352 384 4376
pmd 1616.00 1085 1642 7296
sunflow 2045.80 350 373 6018
xalan 936.30 828 1242 6153
SPEC JVM 2008 benchmark suite (startup configuration)
compress 1507.00 98 103 3296
crypto.aes 3803.90 109 116 4042
crypto.rsa 361.90 183 304 4104
crypto.signverify 755.40 161 215 3933
derby 998.50 845 886 8950
mpegaudio 2637.90 148 149 3481
scimark.monte_carlo 1452.20 77 76 3264
serial 4550.20 313 412 4194
sunflow 1352.50 319 348 4946
xml.validation 689.40 518 784 5845
ScalaBench benchmark suite (default configuration)
apparat 13400.00 1399 1979 8756
factorie 33195.10 733 758 5427
kiama 879.00 670 1093 7233
scalac 2453.20 2356 4428 33443
scaladoc 2159.80 1832 3186 15145
scalap 206.00 493 831 6407
scalariform 714.20 898 1454 8096
scalatest 1342.30 1045 1621 31543
scalaxb 693.80 681 1289 7743
specs 1761.50 665 1333 25851
tmt 9593.70 823 1027 6644

Table 1. Relevant benchmarks properties

For many data types, including counter and boolean values, the serialization/deserialization
process is relatively straightforward. However, there are exceptions like the pointers to the VM
structures that represent JVM classes. Since pointer values are specific to each execution instance,
we abstract such data types by recording the corresponding class name (including package path),
in the serialized format. Later during deserialization, we perform a lookup to find a loaded class
structure with a matching name.
Looking up a class name requires that class to have previously been loaded by the VM. The

design of the class-loading infrastructure in HotSpot prevents us from loading classes during the
deserialization process. Therefore, we delay the deserialization process until all referenced class
names in the imported profile file have already been loaded. In order to achieve a reasonable
lookup-hit rate, our framework prevents methods from being compiled during the first iteration of

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:7

the benchmark and performs the deserialization of the profiling data in between the first and second
benchmark iterations. Even with this mechanism, there are a few lookup misses. We analyzed some
of these misses and found that many of them come from what appear to be dynamically generated
classes with semi-random names. Since there are only a few such cases, we do not attempt to
resolve the class name in such cases.
Another challenge is serializing profile data structures that vary in layout depending on the

bytecodes that make up the method. Specifically, for each method, HotSpot maintains an array of
structures that hold the profiling information for particular bytecodes in the method. For example,
a virtual call bytecode corresponds to a structure that records the receiver types seen at call site.
Resolving such challenges required precise and meticulous implementation.

4.3 Control Method Compilation Order
The order in which methods are compiled in the HotSpot VM is known to influence later opti-
mization decisions, especially for method inlining. Configurations that compile an identical set of
methods in different orders can generate different compiled native codes and result in different
program run-times. Therefore, we built a mechanism in the VM to sort and compile the set of hot
methods in an external user-defined order. However, a naïve implementation of such a mechanism
may delay the compilation of some hot methods if any other methods that precede it in the sorted
order have not yet been compiled. This delay in compilation is problematic for our study since
the delayed methods will continue to collect additional profile data, which can affect optimization
decisions.
Our mechanism to resolve this issue conducts the experiment in two runs for each benchmark

configuration. The first training run uses the framework just described to export the profile data
for each hot method at the proper point during execution. In the second evaluation run, the first
benchmark iteration is completely interpreted and conducts no JIT compilations. The VM uses the
VM-indicator mechanism to detect the end of the first iteration. At this point, the VM stalls the
application threads, loads the profile data exported by the training run, and then sorts and compiles
the set of hot methods in the given order. The application threads are resumed after all compilation
is done.

4.4 Similarity or Representativeness of Program Inputs
Some of our studies employ a new mechanism that we built to quantify the similarity of any two
program profiles with respect to the profiling decisions they induce during PGOs. Intuitively, our
similarity metric determines the percentage overlap in the program path induced during method
compiles by the two profiles being compared. Our metric is analogous in intent to the overlap
metric used in past works to evaluate profiling accuracy [6].
The representative-ness or similarity of two collected profile data instances is a factor of the

dependent PGO. We identified 64 profile-site locations in HotSpot’s c2 compiler where profiling data
is used to inform optimization decisions. We insert hooks at all these locations. When a method
is compiled, we record the locations visited and their order. At each hook, we note the name of
the current method being compiled (which disambiguates whether this is an inlined method), the
current bytecode-index (BCI), and the unique number of the hook location. The record of these
profile-site decisions creates a trace of the path the compiler takes as it makes profiling-informed
decisions.
Our technique for measuring the similarity of two traces for a given method is inspired by

the Unix diff utility. Our mechanism calculates the longest-common-subsequence (LCS) of the
two traces and divides two times the length of the LCS by the sum of the lengths of the two
individual traces. The resulting ratio gives us a percentage measure of similarity. When calculating

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:8 A. Wade et al.

the LCS, we treat the tuple of the three recorded data values at each profile-site as an atomic unit,
analogous to how the diff utility treats individual lines as atomic units when calculating a LCS.
To create a measure of similarity for the entire program, we compute an (unweighted) average of
the representative-ness measure of every method that was compiled during both VM instances.

5 EXPERIMENTS, RESULTS AND ANALYSIS
In this section we describe the results of our experiments that investigate the characteristics of
current profiling-based JIT optimization systems in VMs.

5.1 Impact of Profiling on Generated CodeQuality
Our first set of experiments are designed to evaluate and quantify how PGOs in current JIT compilers
are able to utilize profiling data to improve generated code quality and performance. We prepare
five distinct HotSpot configurations to compare the behavior and performance of JIT and AOT
compilation systems. Configurations designed to simulate AOT compilation systems are denied
access to profile data.

AOT-all: This configuration compiles all program methods on their first invocation. We disable
profile data collection. Compilation occurs at the end of the first benchmark iteration. A
method compilation order cannot be enforced as we do not have any other baseline configu-
ration. The last column in Table 1 gives the number of methods compiled by each benchmark
in this configuration.

JIT-steady: HotSpot employs selective compilation to only compile methods when they are
detected to be hot (invocation+loop-backedge counts exceed 10,000 in HotSpot). This config-
uration represents the steady-state setting. Profiling is enabled. A method compilation order
is not enforced and the methods are compiled as they achieve hotness in their first twelve
iterations. The number of methods compiled by this configuration for each benchmark is
given by the fourth column in Table 1.

AOT-steady: This configuration restricts the set of methods compiled to those that are compiled
by the JIT-steady configuration for each benchmark. We do not enable profiling for this
AOT compilation. All methods are compiled after the first program iteration, and a method
compilation ordering is not enforced.

JIT-startup: This configuration is similar to earlier JIT setup, but restricts the number of
methods compiled to those that get hot during the first iteration with HotSpot’s default
setting. The number of methods compiled by each benchmark is given by the third column
in Table 1.

AOT-startup: The configuration is similar to AOT-steady, but restricts the set of methods
compiled to that compiled during JIT-startup. Profiling is disabled, and methods are compiled
in the order they reach compilation in the JIT-startup configuration as described in Section 4.3.

In all cases the run-time of the 12th benchmark iteration is reported to ignore compilation overhead
and allow the execution to stabilize.
Figure 1 compares program performance with the AOT and JIT compilation models. The first

bar for each benchmark in Figure 1 plots the ratio of the AOT-all and JIT-steady configurations, the
second bar compares the AOT-steady and JIT-steady configurations, while the last bar compares
the AOT-startup and JIT-startup configurations. The first comparison gives an estimate of the
profiling benefit derived by HotSpot-like VMs that employ selective compilation and may only
compile a fraction of the program methods. The final two plots for each benchmark can be used to
estimate the performance gain due to profiling for VMs and benchmarks that have sufficient time
and resources to compile all program methods. By enforcing a common method compilation order,

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:9

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

xalan
D

aCapo

GeoM
ean

com
press

crypto.aes

crypto.rsa

crypto.signverify

derby

m
onte

carlo

m
pegaudio

serial

sunflow

xm
l.validation

SPEC
GeoM

ean

apparat

factorie

kiam
a

scalac

scaladoc

scalap

scalariform

scalatest

scalaxb

specs

tm
t

ScalaBench

GeoM
ean

Benchmarks

0

1

2

3

4

5

6

A
O

T
R

un
-t

im
e

/
JI

T
R

un
ti

m
e

8.037.16
6.92

All Steady State Startup

Fig. 1. Profile data and PGOs have a significant impact on program performance on the HotSpot JVM

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

xalan
DaCapo

GeoM
ean

aes
com

press

derby
m

onte
carlo

m
pegaudio

rsa serial

signverify

sunflow

validation

SPEC
GeoM

ean

apparat

factorie

kiam
a

scalac

scaladoc

scalap

scalariform

scalatest

scalaxb

tm
t

ScalaBench

GeoM
ean

Benchmarks

0

1

2

3

4

5

6

R
un

-t
im

e
w

it
h

di
ff

.
pr

ofi
le

da
ta

am
ou

nt
s

/
R

un
-t

im
e

w
it

h
de

fa
ul

t
pr

ofi
le

(c
t1

00
00

)

6.75 13.73 18.04 23.67 15.83 8.33
11.55
11.45

ct0 ct10 ct100 ct500 ct1000 ct5000 ct25000

Fig. 2. A small amount of profile data from the current program run is sufficient to effectively guide PGOs on
the HotSpot JVM

the startup configurations eliminate one additional source of performance unpredictability, and
therefore provide a better baseline for comparison. We use these startup configurations in our later
experiments.
All comparisons uniformly show that PGOs in current VMs for languages like Java are able to

employ the program profile behavior to significantly improve the quality of generated code. For
instance, the JIT-startup configuration is able to improve performance over AOT-startup by 1.95X,
1.99X, 2.33X, on average, for the DaCapo, SPECjvm, and ScalaBench suites respectively.

While they cannot collect or exploit profiling data from the ongoing execution, AOT compilers
may have access to mechanisms like offline profiling or static analysis to address this potential
loss in performance. Our experiments in later sections help understand the challenges that AOT
compilers may need to overcome when using these alternative mechanisms to drive PGOs.

5.2 Impact of Profile Data Amount on CodeQuality
JIT compilation systems employ online profiling. These systems need to balance the amount of
profile data collection with the delay in making optimized code available to the emulation engine.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:10 A. Wade et al.

0 5000 10000 15000 20000 25000

Method execution counts

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
vg

.
ru

n-
ti

m
e

w
it

h
di

ff
.

pr
ofi

le
da

ta
am

ou
nt

s/
R

un
-t

im
e

w
it

h
de

fa
ul

t
pr

ofi
le

(c
t1

00
00

)
DaCapo SPEC ScalaBench

Fig. 3. Average program performance quickly improves and reaches saturation with small increases to the
amount of collected program profile information.

Spending too little time profiling the program behavior may have performance implications by
incorrectly biasing adaptive optimization decisions. Likewise, staying too long in the profile stage
will delay JIT compilation, causing the program execution to remain in the inefficient interpreter
for a longer duration. In this section we investigate the issue of how much profile data is needed by
current PGOs to make correct profile-based decisions and generate the best quality code.
We design a simple experiment that precisely controls the amount of profile data collected

during the multiple different training runs. This experiment employs our frameworks described in
Sections 4.2 and 4.3. Thus, the training runs export the collected profile data that is then loaded and
used by the evaluation run. We also control the number of methods compiled and their compilation
order so that these factors remain uniform across all experimental configurations. We configure the
training runs to collect per-method profile information that corresponds to each method executing
for 0, 10, 25, 50, 75, 100, 250, 500, 1000, 2500, 5000, 10000, 25000, and 50000 execution (invocation +
loop backedge) counts. By default, HotSpot uses the compile threshold of 10000 for its c2 compiler.
Figures 2 and 3 show the results of this experiment. We observe slightly different trends for

DaCapo and ScalaBench benchmarks compared to the SPECjvm benchmarks. Overall, one sur-
prising finding is that just a little profile knowledge (like that provided by ct10) can substantially
benefit performance over no-profiling. Less surprising is the result that performance obtained from
increasing profile knowledge quickly reaches saturation. We see only small performance gains
with profile data from execution counts beyond 1000 with DaCapo and ScalaBench, and 5000 with
SPEC. These results also suggest that offline profiling conducted over long time intervals (that is
an option for AOT-based systems) may not have much of an advantage over traditional online
profiling based JIT compilation systems.
We also find that, unlike the DaCapo and ScalaBench programs, performance for many SPEC

benchmarks does not always improve with increasing profile data, especially at low compile
thresholds (see ct10 vs. ct100 for signverify). We find that this issue is caused because SPEC
benchmarks generally compile fewer methods and have fewer critical hotspots. Therefore, small
variance in profile data and resulting optimization decisions cause an outsized impact on final
program run-time.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:11

5.3 Impact of Profile Data Accuracy on CodeQuality
Offline profiling uses profile data collected from previous training runs to bias profile-guided
optimizations and tasks during the current production run. Offline profiling mechanisms have
been studied in JIT compilation based VMs to improve program startup performance [7, 26]. AOT
compilation systems that cannot customize the single statically generated binary to all program
inputs also have the option to employ offline profiling to guide PGOs. In this section we report
our observations from experiments conducted to understand two important issues. First, how
similar does the guidance provided to the PGOs by the training and evaluation inputs need to be to
generate comparable quality code; and second, how much do non-representative program inputs
affect quality of guidance provided to PGOs and what is the resulting performance impact.

5.3.1 Offline Profiling with Other Inputs. The DaCapo suite provides two to four distinct input
settings for each benchmark program. A small and default input are provided for every benchmark
and most have large and huge inputs as well. To this set, we have added inputs for each benchmark
to ensure that each benchmark has at least 7 distinct inputs available. The jython benchmark
is an exception. We had difficulty locating programs that were compatible with the version of
jython that is distributed with DaCapo. As such jython only has the 3 inputs supplied by DaCapo
available.

The benchmarks can be divided into two categories based on the nature of their inputs. The h2,
sunflow, and xalan benchmarks have inputs that are only varied quantitatively. That is, the inputs
only differ in terms of one or two numbers that determine the size of the workload. Thus, when
creating inputs for these benchmarks, we merely generated inputs with different values from the
provided benchmarks. In contrast, the inputs to the avrora, fop, jython, luindex, lusearch, and
pmd benchmarks vary in a more qualitative way. For example, the inputs to luindex are corpuses
of text, some of which overlap with one another. For these benchmarks, we sought out new inputs.
For luindex, we used the text of public domain novels and the text of randomly selected Wikipedia
articles as our sources for new inputs.

In this section, we evaluate the effectiveness of recording the program behavior with one of the
aforementioned inputs, and then using that offline profile data to guide PGOs during an evaluation
run with the default input set. For each benchmark-input pair, one training run and one evaluation
run is performed. The training run uses one benchmark-input pair and collects profiling data and
method compilation order. The evaluation run executes the benchmark using the default input
and the profile data collected during the training run. We use the setup described in Sections 4.2
and 4.3 for these experiments. At the end of the evaluation run’s first iteration, the VM stalls
all application threads, imports the stored profile data and compiles all the hot methods in the
compilation order provided by the training run. The program run-time is recorded at the end of 12
benchmark iterations.

Figure 4 displays the run-time reported by the offline-profiling configuration as compared to the
run-time from the first configuration for each benchmark. We find that, with a few exceptions (most
notably input1 of pmd and input9 of xalan), the use of profiling data collected from different
inputs provides performance within 6% of using profiling data from the default input. Surprisingly,
in several cases, for example input5 of h2, using the training data from another input provides a
significant performance improvement compared to using the data collected from the same input
as the one being executed. Our results suggest that while offline profiles from different inputs
result in equivalent program performance in most cases, pathological cases that see a significant
performance impact can exist.
In Section 4.4 we described our technique to compare and quantify the similarity or overlap in

the paths taken through the HotSpot JIT optimizer for a given method/program by two different

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:12 A. Wade et al.

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

xalan

Benchmarks

0.80

0.85

0.90

0.95

1.00

1.05

1.10

R
un

-t
im

e
w

it
h

pr
ofi

le
da

ta
fr

om
di

ff
.

in
pu

ts
/

R
un

-t
im

e
w

it
h

de
fa

ul
t

pr
ofi

le

1.16 1.31

input00 input01 input02 input03 input04 input05 input06 input07 input08 input09

Fig. 4. In most cases, offline profiling using another input produces a binary that achieves good performance
with a later evaluation run with the default input.

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

xalan

Benchmarks

0.90

0.92

0.94

0.96

0.98

1.00

S
im

ila
ri

ty
of

m
et

ho
d

co
m

pi
la

ti
on

s
co

m
pa

re
d

to
’d

ef
au

lt
’

in
pu

t

input0 input1 input2 input3 input4 input5 input6 input7 input8 input9

Fig. 5. The compiler behavior of DaCapo’s default can be closely represented by loading profiling information
collected using other input sets.

program inputs. Figure 5 uses this mechanism to quantify the representative-ness of each input
compared to the default input for each benchmark. We find that with an average similarity score
of more than 90%, program behavior with inputs other than the default input are still quite
representative of its behavior with the default input itself, with regards to guiding the PGOs
in the HotSpot JVM.

At the same time, while our profile data similarity metric is useful (as will be reconfirmed in the
next section and Figure 6), correlation between the similarity metric and program performance
during cross-input runs (Figures 4 and 5) is poor. Our similarity metric compares decisions at
hundreds of program sites and is thus far unable to weigh individual profile data based decisions
by their resulting impact on execution performance. We plan to explore more accurate similarity
metrics in future work.

5.3.2 Offline Profiling with Randomized Program Input. Although the input sets provided by
DaCapo and the ones we have collected generate representative profiles for the default input set for
most benchmarks, it is unclear (a) if other program inputs may provide varying representative-ness,
and (b) what is the effect of such plausible variance on the effectiveness of PGOs and delivered code
quality. Unfortunately, we do not know of any Java benchmark suite that includes a deliberately
and systematically designed diverse set of program inputs. It was also not obvious to us how to
generate such diverse input sets for our set of benchmarks. Instead we develop a novel approach to
systematically vary the representative-ness of the known program profile for any program-input
pair, and study its effect on performance.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:13

0 20 40 60 80 100

% Randomization

0.75

0.80

0.85

0.90

0.95

1.00

S
im

ila
ri

ty
of

pr
ofi

le
da

ta
us

in
g

X
%

ra
nd

om
iz

at
io

n
to

’d
ef

au
lt

’

DaCapo SPEC ScalaBench

Fig. 6. Average representative-ness of the profile trace for various randomization configurations as compared
to HotSpot’s default reactive configuration

Our approach first conducts a training run to collect and export the complete per-method profile
data for each benchmark with its standard default input set. This profile contains multiple fields,
such as branch-taken counts, trap information, etc. Then, we methodically introduce random
noise into this profile data with controlled probabilities as each profile data field is loaded during
later evaluation runs. We call this process randomization of the profile data. Thus, a profile data
randomization with a probability of X% will alter a profile data field with a probability of X% and
leave it unchanged with a probability of (100-X)%.
Randomization of the profile data field depends on the type of the field. For boolean fields,

randomization flips the boolean value. For integer counter fields, randomization will set the field to
a low or high value with the same probability. A low counter value is guaranteed to be less than
the fixed VM threshold for that counter, and a high counter value exceeds the threshold. For class
pointer fields, a non-null field will be set to null with the same probability. If the randomization
does not nullify the entire field, then each referenced class in that field may again be set to null
with the same probability. We do not yet attempt to alter a class pointer to instead reference another
random class. Likewise, we also do not attempt to update a null class pointer to reference some
other random program class. This randomized profile data will be used later during the run by the
VM to guide PGOs during JIT compilation of the hot program methods.

Our experiment employs randomization values in increments of 10, from 0% to 100%. We employ
our mechanism described in Section 4.4 to calculate the similarity metric of each randomized
profile data. Figure 6 shows the average representative-ness metric over all benchmarks for all
the randomization ratios attempted. We see that profile data similarity decreases with increasing
randomization, and validates that our randomization technique is working as intended to alter the
representative-ness of profile data.

This curve shows that even small profile data imperfections noticeably affect the similarity metric.
Yet, even a completely random (100% randomization) program input still achieves a reasonably high
similarity metric (72% for DaCapo, 77% for SPEC, and 76% for ScalaBench), indicating that even
vastly different profiles result in the compiler following a similar optimization path in a majority of
the cases.
Figures 7 and 8 show the performance implications of using varying levels of imperfect profile

data to guide PGOs in HotSpot’s c2 compiler. For each benchmark, each bar in Figure 7 plots the
ratio of program run-time when the VM is using the indicated randomization of profile data to
program run-time in the default scenario when using online profile data from the same run with

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:14 A. Wade et al.

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

xalan
DaCapo

GeoM
ean

aes
com

press

derby
m

onte
carlo

m
pegaudio

rsa serial

signverify

sunflow

validation

SPEC
GeoM

ean

apparat

factorie

kiam
a

scalac

scaladoc

scalap

scalariform

scalatest

scalaxb

specs
tm

t
SacalBench

GeoM
ean

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
un

-t
im

e
%

in
pu

t
ra

nd
om

iz
at

io
n

/
R

un
-t

im
e

w
it

h
de

fa
ul

t
co

nfi
g

r0 r20 r50 r80 r100

Fig. 7. Impact of varying profile data inaccuracy on individual program performance on the HotSpot JVM

0 20 40 60 80 100

% Randomization

1.0

1.2

1.4

1.6

1.8

A
vg

.
ru

n-
ti

m
e

w
it

h
ra

nd
om

iz
at

io
n

/
A

vg
.

ru
n-

ti
m

e
w

it
h

de
fa

ul
t

co
nfi

g

DaCapo SPEC ScalaBench

Fig. 8. Impact of varying profile data inaccuracy on average program performance on the HotSpot JVM

no randomization. Again, we employ the frameworks described earlier in Sections 4.2 and 4.3 to
produce a fair comparison.
All benchmarks show an identical trend with performance degrading with increasing profile

data imperfection in most cases. The scale of performance change varies significantly between the
programs, and is likely a factor of several concerns, including the benefit derived from profiling
and the significance of the sites randomized. We observe that while performance for the DaCapo
benchmarks uniformly degrades with increasing randomization, the SPEC and ScalaBench programs
notice some jitter. For the SPEC benchmarks, we believe this effect is again a result of the programs
themselves having fewer and more prominent hotspots. We hypothesize that the ScalaBench
performance behavior occurs due to Scala programs tendency to be written in a functional style
that creates highly-nested function calls that often rely on calls made on interface methods, which in
the degenerate case can be expensive to execute. Consequentially, the impact of incorrect profiling
data increases geometrically, rather than linearly as it does for the DaCapo programs. One important
finding is that even small imperfections in profile data can significantly lower the effectiveness of
PGOs, which bears serious implications for offline profiling based optimization strategies. Note that
this is a limit study; whether actual program inputs can generate such a diverse range of profiles is
an open issue.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:15

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

xalan
DaCapo

GeoM
ean

aes
com

press

derby
m

onte
carlo

m
pegaudio

rsa serial

signverify

sunflow

validation

SPEC
GeoM

ean

apparat

kiam
a

scalac

scaladoc

scalap

scalariform

scalatest

scalaxb

specs
tm

t
SacalBench

GeoM
ean

Benchmarks

0

1

2

3

4

5

R
un

-t
im

e
%

pr
ofi

le
-s

it
e

m
is

pr
ed

ic
t

/
R

un
-t

im
e

w
it

h
de

fa
ul

t
co

nfi
g 11.03

18.93
6.40

25.20
7.25

25.54
8.47

M0 M20 M50 M80 M100

Fig. 9. Increasing the probability of mispredicting at a profile-site branch increases the negative impact on
the quality of generated code on the HotSpot JVM (individual benchmark view)

5.3.3 Randomizing Profile-Site Decisions at Compilation. Profile data is used at various profile-sites
during compilation to affect optimization decisions. As mentioned earlier, we identify 64 static
profile-sites in the source code of HotSpot’s c2 compiler where some profile data determines the
path taken by the compiler. In this section we study and quantify the sensitivity of the compiler
to incorrect decisions taken at profile-sites. Again, we define accurate profile decisions as those
induced by online profiling, where the profile data for the current run is dynamically collected by
the VM during the same measured program run. This result is important to static analysis based
prediction techniques that may be employed by AOT compilers to guide PGOs.

Our experiment to quantify the performance impact of compiler sensitivity systematically varies
the probability of the compiler taking a wrong decision (relative to that taken by the online profiling
based reactive HotSpot configuration) at a profile-site. Our experiment reverses the path taken
at each profile-site with a given user-specified probability (referred to later as the mispredict
probability). Thus, a mispredict probability of 0% forces the c2 compiler to take the same path as
that taken by the reactive HotSpot configuration every time and at every profile-site reached during
compilation. In contrast, a mispredict probability of 100% forces the c2 compiler to take the wrong
path at every profile-site, whenever feasible.3 We found that mispredicting the trap-related profile-
sites4 produces high instability in HotSpot and causes a very high number of deoptimizations.
Therefore, we currently always predict correctly for this set of profile-sites.

Figures 9 and 10 show the impact of different mispredict probabilities on program performance
as compared to the program run-time achieved by the default reactive HotSpot configuration with
0% mispredict probability. We find that even a small mispredict probability causes a noticeable
degradation in generated code quality. A 4% mispredict probability increases program run-time by
15.1% for DaCapo (28.7% for SPEC), while 100% misprediction causes a 2X slowdown for DaCapo
(over 3X for SPEC). Thus, our experiments show that the HotSpot c2 compiler relies on correct
prediction at most profile-sites to maximize effectiveness. This result sets a high bar for any
technique that attempts to correctly predict the direction of individual profile-sites to improve code
quality.

3It is not always feasible to take the wrong path. For instance, if the profile-site references a profile data type that is a class
pointer, and the profile data recorded by the reactive configuration is null, then taking the reverse path may require us to
now provide an actual plausible class pointer value. Our setup does not yet have the capability to construct such values.
4Sites that determine whether a trap event, such as an array-out-of-bounds exception, occurs at a particular BCI or in a
given method.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:16 A. Wade et al.

0 20 40 60 80 100

% Randomization

1.0

1.5

2.0

2.5

3.0

A
vg

.
ru

n-
ti

m
e

w
it

h
%

m
is

pr
ed

it
/

A
vg

.
ru

n-
ti

m
e

w
it

h
de

fa
ul

t
co

nfi
g

DaCapo SPEC ScalaBench

Fig. 10. Impact of varying the probability of mispredicting at a profile-site branch on average program
performance

0 1000 2000 3000 4000

Number of methods with at least % similarity

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

si
m

ila
ri

ty
of

a
m

et
ho

d
ap

p
ea

ri
ng

in
at

le
as

t
tw

o
b

en
ch

m
ar

ks

Fig. 11. The majority of all methods are compiled identically when invoked in different benchmarks.

5.3.4 Comparing similarity of method compilations across benchmarks. Several (library) methods
are reached and compiled during different benchmark executions. In this section we apply and
study the compilation similarity metric (described in Section 4.4) for methods that are compiled
across different benchmarks and potentially vastly different contexts. To do so, we collect the traces
of compilation decisions for each method compiled in (a single iteration of) the default run of
every benchmark in all three suites. Then, for every method that was compiled in at least two
of the benchmarks, we compute the similarity of how the method was compiled in each pair of
benchmarks that compiled it. For methods that were compiled in more than two benchmarks, we
average the similarity from each benchmark-pair to produce a single value for each method.
The results from this study are shown in a cumulative frequency graph in Figure 11. We see

from this figure that cross-benchmark context seems to matter less to decisions made during PGOs,
even when they are invoked from different programs. In fact, 58% of the methods are compiled
identically even when being compiled in different applications and there is a 91% average similarity
for all compilations of the same method across benchmarks. This result shows that even in what
should be highly different workloads, the majority of methods are compiled identically and that

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:17

only a small minority of methods have their compilations significantly influenced by contextual
differences in profile data. While interesting, we note that the results of this study are limited by
the observation that important program methods are less likely to be shared between benchmarks
in many cases.

5.4 Impact of Profiling on Individual Optimizations
Most modern compilers, including HotSpot’s c2 compiler, employ many different optimization
phases to improve the quality of generated code and achieve higher execution performance. Distinct
optimizations are likely to contribute differently to the overall performance improvement. Likewise,
while many individual optimizations may use profile data to guide their heuristics and operation,
the impact or importance of profile data for each optimization is also likely to differ. In this section
we describe results from our study that attempts to understand and quantify both the performance
impact of each optimization and the impact of profiling data on the effectiveness of individual
optimizations in a JIT compiler.

For this study we identified 52 flags in JDK9 HotSpot that control or influence optimizations in
its c2 compiler. In addition to these 52 flags, we reintroduced 8 other optimization control flags
that existed in earlier JDK versions but were removed in JDK9. Disabling all 60 optimization flags
lowers average program performance by 2.64X, 4.18X, and 3.03X for benchmarks in the DaCapo,
SPEC and ScalaBench suites respectively.
We realize and note the following challenges for this study. First, in spite of our best efforts

there may be optimizations that we do not yet control. Such optimizations will be active in all our
experiments. Second, disabling an optimization may block some program analysis if the analysis
if intricately woven together with the transformation. Preventing the analysis may hurt later
optimizations that depend on that information. We have attempted to identify and prevent such
cases.
Additionally, register allocation is not one of our 60 flags and is active in all our experimental

configurations. Since HotSpot did not provide a way to disable register allocation in JDK9, we
updated this pass to allow curtailing the number of available registers. We found that with fewer
than four available registers, the method stack size grew enough for the c2 compiler to abort
compilation for many methods. This issue in addition to the expected loss in efficiency from
more memory accesses due to fewer registers resulted in a drastic performance loss for most
benchmarks. With register allocation limited to a reduced set of 8, 4, and 2 registers, average
benchmark performance reduced by (133%, 147%, 1825%), (125%, 200%, 2877%), and (108%, 120%,
1982%) for DaCapo, SPEC and ScalaBench respectively. We keep register allocation ON in all our
experiments.Experimental Design. Experiments to study the effect of (profiling on) each individual optimization
flag (say, ‘opt_A’) could be designed in one of (at least) two ways:
(1) EXP-A: Change the configuration of opt_A (opt_A=ON Vs. opt_A=OFF, or opt_A with

profile data Vs. opt_A without profile data), while all other optimization flags are ON and
applied uniformly. Several compiler optimizations are known to enable one another; this
configuration will include the enabling effect other optimizations have on the performance
of opt_A. At the same time, several compiler optimizations may target the same program
inefficiency (as opt_A). Therefore, this configuration may undervalue the impact of opt_A as
other optimizations compensate for the effect of opt_A in certain cases.

(2) EXP-B: Change the configuration of opt_A, while all other optimization flags are OFF. This
experiment discards the enabling effect that other optimizations have on opt_A, but may
better quantify the full potential of opt_A.

The primary goal of our experiments in this section is to understand the effect of profile data on
individual optimizations in HotSpot. This study will compare two experiments that both apply each

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:18 A. Wade et al.

Opt. Flag Name Description
UseCHA Class hierarchy analysis; can devirtualize calls when, for example, no

subclasses exist at runtime.
UseTypeProfile Allows type speculation based on observed type information.
OptoCoalesce Pessimistic copy coalescing during register allocation.
UseLoopPredicate Converts array range and loop invariant checks into uncommon traps

and moves them outside of the body of their containing loop.
LoopPeeling Simplifies a loop by breaking it into multiple copies of the original.
ParseGVN Global value numbering; removes redundant computations
PeepholeRemoveCopies Removes redundant loads of stack values and register-to-register copies.
ImplicitNullChecks Allows null pointer dereferences to be caught in a signal handler

rather than checked explicitly.
Table 2. Description of important optimization flags

Benchmarks Optimizations

Inlining others UseCHA UseType
Profile

Opto
Coalesce

UseLoop
Predicate

Loop
Peeling ParseGVN

Peephole
Remove
Copies

Implicit
NullChecks

dacapo
avrora 2897.30 148.30 51.90 787.40 155.50 -88.40 -85.10 -14.90 74.40 140.60
fop 1119.10 -7.70 26.80 142.50 11.70 -16.10 -3.10 13.30 15.50 -8.80
h2 5025.70 89.90 -135.40 1033.50 -45.00 -16.00 -85.30 118.10 73.00 55.50
jython 8305.30 39.50 77.70 838.60 27.40 4.10 -1.40 9.50 141.80 52.30
luindex 1489.70 1.90 28.30 1045.40 21.40 0.70 9.30 35.20 51.70 11.30
lusearch 935.90 18.40 20.70 228.30 21.30 16.40 14.10 26.40 19.40 24.80
pmd 863.80 -1.40 52.90 174.80 7.80 1.60 -7.00 -2.10 17.20 5.20
sunflow 25353.30 281.00 76.80 2924.10 118.70 49.70 104.90 147.00 168.30 188.00
xalan 957.60 10.90 8.10 128.00 -0.60 -1.00 -3.90 7.80 10.10 9.20
MEAN 5216.41 64.53 23.09 811.40 35.36 -5.44 -6.39 37.81 63.49 53.12
specjvm
compress 1523.80 28.80 1.50 1.90 54.50 40.00 5.10 140.40 37.50 30.30
crypto.aes 15380.10 -26.20 -20.80 1321.10 149.40 -19.00 -28.90 1052.40 50.10 -27.90
crypto.rsa 969.90 -2.00 -0.40 11.60 1.80 2.90 -2.10 0.90 1.60 0.90
crypto.signverify 1645.60 -1.00 -2.30 3.00 13.60 30.70 -1.30 1.20 17.60 -0.90
derby 3291.40 10.90 -18.50 259.60 -13.00 -2.00 -12.40 55.10 43.00 28.80
monte_carlo 2614.20 3.60 2.30 -1.50 0.60 46.70 0.10 2.90 -4.70 8.90
mpegaudio 1330.40 78.10 11.80 14.20 25.40 156.40 14.40 543.90 146.20 75.10
serial 8270.60 123.20 -13.40 39.50 107.70 -3.70 -9.90 159.40 148.60 80.20
sunflow 6315.60 56.70 -35.60 1719.50 -8.50 -18.20 -17.20 56.70 112.30 63.30
xml.validation 1622.20 38.20 6.40 437.50 16.40 2.80 -3.40 54.50 46.40 40.90
MEAN 4296.38 31.03 -6.90 380.64 34.79 23.66 -5.56 206.74 59.86 29.96
scalabench
apparat 36144.50 667.70 121.90 16446.60 346.50 172.10 -177.50 640.50 561.70 449.70
factorie 423699.50 1115.40 2997.20 70581.00 85.10 2759.40 -15.40 -1012.50 376.60 358.90
kiama 3536.90 2.80 30.30 1110.90 -3.70 -13.50 -2.00 0.50 3.60 10.90
scalac 5486.50 61.70 562.90 975.00 20.00 31.20 9.00 28.30 99.10 45.30
scaladoc 4751.70 88.60 260.70 1086.80 53.80 21.80 8.30 66.10 72.70 117.70
scalap 766.00 3.90 3.00 209.70 3.40 -0.70 2.30 5.50 4.20 2.10
scalariform 2761.40 20.10 21.60 816.10 11.00 1.10 -0.30 11.60 15.50 16.80
scalatest 184.30 369.70 -17.10 205.30 -25.90 -0.10 21.50 428.70 534.90 4.30
scalaxb 2245.70 11.20 0.80 688.50 -3.50 47.20 -3.30 4.30 5.80 8.40
specs 1600.00 249.60 284.10 433.90 232.20 240.50 245.10 254.60 -2.00 -8.40
tmt 65270.80 89.20 116.80 7575.10 43.40 70.80 56.50 197.50 196.70 95.20
MEAN 49677.03 243.63 398.38 9102.63 69.30 302.71 13.11 56.83 169.89 100.08

Table 3. Performance difference (in msec) when individual optimizations flags are turned OFF (FLAG_OFF
configuration). Numbers in bold indicate performance effect is greater than corresponding effect in the
FLAG_ON configuration in Table 4.

focus optimization – one with profile data ON and the other with profile data OFF, while applying
all remaining optimizations consistently in both settings. The intricate engineering in HotSpot
makes it exceedingly difficult to reliably turn profile data OFF for only one optimization at a time
(while leaving it ON for all the other optimizations). Therefore, EXP_A will make it impossible to

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:19

Benchmarks Optimizations

Inlining others UseCHA UseType
Profile

Opto
Coalesce

UseLoop
Predicate

Loop
Peeling ParseGVN

Peephole
Remove
Copies

Implicit
NullChecks

dacapo
avrora 1604.60 78.10 423.50 1660.00 248.60 -61.10 -39.00 8.30 140.70 26.70
fop 846.00 15.30 125.00 242.90 43.00 8.20 14.10 17.90 57.40 13.50
h2 4012.50 510.40 322.90 1941.90 892.40 230.20 -6.30 279.50 1055.20 468.40
jython 7239.10 95.10 552.50 1641.40 220.10 18.30 1.80 86.10 331.10 84.00
luindex 544.80 -39.90 25.60 2805.60 1.30 59.70 -79.00 -21.20 81.40 -40.20
lusearch 841.20 -5.00 29.50 266.30 13.60 -13.40 -7.20 10.50 5.80 -7.80
pmd 602.40 19.00 91.70 198.00 33.50 34.80 -25.50 19.70 53.60 13.80
sunflow 22187.70 -150.40 -138.40 3087.60 263.90 -162.20 -86.30 -49.10 -45.80 -161.70
xalan 753.30 18.60 79.50 201.10 37.40 16.50 -1.20 30.20 18.00 3.10
MEAN 4292.40 60.13 167.98 1338.31 194.87 14.56 -25.40 42.43 188.60 44.42
specjvm
compress 1690.70 15.80 -13.70 21.00 281.10 229.40 220.80 91.10 259.20 11.50
crypto.aes 13607.30 27.70 10.30 2222.10 1640.90 584.90 1415.60 1679.80 973.60 34.30
crypto.rsa 1994.10 1.50 0.90 8.30 9.60 14.70 2.00 7.80 9.60 7.50
crypto.signverify 2149.60 2.80 0.60 3.10 141.50 307.80 200.60 199.50 82.90 0.40
derby 3095.70 -10.50 197.00 470.90 93.50 41.30 26.80 23.50 40.60 -51.20
monte_carlo 0.00 -30.90 -317.20 -3.10 1707.10 -3.40 -249.70 2750.00 1640.40 -0.50
mpegaudio 1471.40 11.60 12.00 56.30 340.10 480.60 156.90 541.90 245.70 13.20
serial 8287.30 -17.60 86.60 197.30 305.60 62.00 83.00 38.20 416.90 -3.20
sunflow 7962.10 33.80 12.80 1502.50 311.00 28.50 16.70 192.20 212.80 -18.60
xml.validation 1086.50 4.10 63.70 518.20 88.00 21.00 13.20 94.20 121.50 14.50
MEAN 4134.47 3.83 5.30 499.66 491.84 176.68 188.59 561.82 400.32 0.79
scalabench
apparat 12996.10 4841.20 522.00 24476.60 6669.60 1286.00 -517.00 313.80 4890.40 4765.40
factorie 188045.50 5039.90 64665.00 133633.60 8234.70 1449.50 4916.40 -359.60 10122.20 2914.10
kiama 2035.40 -8.80 227.30 1336.60 50.10 20.90 19.30 5.60 70.40 3.90
scalac 3725.60 118.90 1434.70 1697.60 215.20 -41.70 -41.50 -6.50 357.40 65.60
scaladoc 3043.10 87.00 965.50 1606.30 204.00 8.10 -26.80 1.30 276.30 60.10
scalap 463.40 10.90 75.90 248.20 0.40 -0.50 -0.50 0.80 5.90 13.80
scalariform 1565.00 15.60 249.70 1071.10 68.80 -1.50 6.70 15.80 87.10 12.80
scalatest 557.00 -549.80 -24.50 -190.60 -306.20 -384.60 -271.30 -306.60 -598.20 -270.90
scalaxb 1586.40 -1.10 76.40 782.50 165.70 13.00 1.40 11.30 177.60 7.50
specs 1132.90 14.60 24.10 173.80 17.90 17.80 13.90 23.50 34.20 19.50
tmt 14765.20 51.50 905.50 10363.60 1083.70 317.00 433.50 416.30 895.30 82.60
MEAN 20901.42 874.54 6283.78 15927.21 1491.26 244.00 412.19 10.52 1483.51 697.67

Table 4. Performance difference (in msec) when individual optimizations flags are turned ON (FLAG_ON
configuration, inlining is ON). Numbers in bold indicate performance effect is greater than corresponding
effect in the FLAG_OFF configuration in Table 3.

separate the effect of profile data on opt_A from its effect on all other optimizations. Therefore, we
employ EXP-B to conduct our evaluations in the remainder of this section.
While we employ the EXP-B design, we also perform experiments to explore the enabling and

compensating effect of optimizations in HotSpot in their default setting (with profile data always
available). We conduct two experiments for each optimization flag (opt_A): (a) FLAG_OFF uses the
EXP-A design to compare program performance of experiment with opt_A=OFF with the default
configuration that sets all flags ON, and (b) FLAG_ON uses the EXP-B design to compare program
performance of experiment with opt_A=ON with the baseline configuration that sets all flags OFF.

Interestingly, we found that only 8 of 60 optimization flags displayed any significant performance
impact in our experiments. Therefore, to simplify presentation, we group the remaining 52 flags
into a single set that is operated and presented as one unit. Table 2 lists and describes the 8
significant optimization flags. We also observed that several of our optimization flag sets perform
transformations or analysis that enables method inlining. These flag-sets only show a noticeable
impact when combined with inlining.
Tables 3 and 4 present the results of the FLAG_OFF and FLAG_ON (with inlining always ON)

experiments, respectively, for each benchmarks and optimization flag-set. The first column in
each of these tables gives the benchmark name. The remaining columns show the performance
benefit (in msec) of each individual optimization flag-set in the respective (FLAG_OFF or FLAG_ON)
configuration. The FLAG_ON experiment captures the combined effect of opt_A and its enabling

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:20 A. Wade et al.

Benchmarks Optimizations

Inlining others UseCHA UseType
Profile

Opto
Coalesce

UseLoop
Predicate

Loop
Peeling ParseGVN

Peephole
Remove
Copies

Implicit
NullChecks

I NI I NI I NI I NI I NI I NI I NI I NI I NI
DaCapo benchmark suite
avrora 0.83 0.95 0.79 0.97
fop 0.65 0.92 0.84 0.96 0.97
h2 0.70 0.95 0.79 0.90 0.93 0.89 0.92 0.95
jython 0.50 0.92 0.78 0.97 0.95 0.95
luindex 0.88 0.31 0.97 0.98 0.99 0.99 0.98 0.96 0.99
lusearch 0.73 0.89
pmd 0.78 0.96 0.91 0.98 0.96 0.98 0.97 0.96
sunflow 0.22 0.51
xalan 0.66 0.95 0.86 0.97 0.96 0.96
GEOMEAN 0.62 0.95 0.94 0.71 0.96 0.96 0.98 0.98 0.99 0.99 0.95 0.95 0.95 0.99
SPEC JVM 2008 benchmark suite
compress 0.58 0.88 0.82 0.90 0.90 0.89 0.83
crypto.aes 0.38 0.74 0.80 0.92 0.93 0.96 0.83 0.93 0.80 0.92 0.88 0.95
crypto.rsa 0.20 0.83 0.78 0.89 0.90
crypto.signverify 0.38 0.89 0.87 0.77 0.89 0.85 0.94 0.85 0.91 0.94 0.87
derby 0.37 0.89 0.74 0.96
monte_carlo 0.75 0.96 0.60 0.83 0.76 0.90
mpegaudio 0.76 0.93 0.90 0.90 0.90 0.95 0.88 0.87 0.95 0.92
serial 0.41 0.97 0.95 0.95 0.93 0.95
sunflow 0.32 0.59 0.92 0.95 0.94
xml.validation 0.64 0.73 0.95 0.96 0.95 0.94 0.95
GEOMEAN 0.42 0.89 0.74 0.88 0.90 0.87 0.88 0.86 0.93 0.83 0.88 0.90 0.91
ScalaBench benchmark suite
apparat 0.76 0.88 0.39 0.83 0.97 0.97 1.05 0.88 0.96 0.88
factorie 0.51 0.66 0.30 0.95 0.95 0.96
kiama 0.59 0.92 0.53
scalac 0.68 0.82 0.96 0.79 0.96
scaladoc 0.68 0.85 0.95 0.75 0.97 0.96 0.97
scalap 0.61 0.89 0.65
scalariform 0.61 0.90 0.57 0.97 0.97
scalatest 0.71 1.44
scalaxb 0.58 0.97 0.64 0.92 0.97 0.92 0.95
specs 0.72 0.99 0.94 0.99 0.98 0.99 0.99 0.99 0.97
tmt 0.61 0.96 0.56 0.95 0.97 0.96 0.97
GEOMEAN 0.64 0.88 0.88 0.96 0.59 0.95 0.94 0.97 0.98 1.05 0.99 1.00 0.96 0.88

Table 5. Impact of individual flags w/ profiling data enabled

interaction with all other optimizations (including inlining), partially offset by the compensating
effect of other optimizations. In contrast, the FLAG_OFF setting captures the effect of opt_A and
its interaction just with inlining. Thus, if FLAG_OFF > FLAG_ON for some opt_A, then it indicates
that the compensating effect dominates any enabling interaction. If FLAG_ON > FLAG_OFF, then
the overall enabling interaction between optimizations dominates.

As mentioned earlier, we find that several optimizations have a significant enabling interaction
with method inlining. This observation becomes manifest from the Inlining column in the two
tables, which show that for most benchmarks only turning inlining ON (with FLAG_ON) is much
less beneficial than the harm of turning inlining OFF (with FLAG_OFF) as many other optimizations
are now unable to achieve their full potential without inlining. We also observe that for most other
optimization flag-sets that show significant performance benefits, that benefit in the FLAG_ON
configuration is often greater than its effect in the FLAG_OFF configuration. These observations
suggest that, (a) other than inlining, the effect of optimizations enabling opportunities for one
another may not be as pronounced, and (b) there is a significant compensating effect from several
optimizations targeting and addressing the same program inefficiency.

Benefit of Individual Optimizations in HotSpot. We next report results from experiments that
evaluate the benefit of individual optimizations in HotSpot (with profile data always available). Our
baseline configuration turns all optimizations OFF (EXP-B). We have two other configurations for

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:21

Benchmarks Optimizations

Baseline others UseCHA UseType
Profile

Opto
Coalesce

UseLoop
Predicate

Loop
Peeling ParseGVN

Peephole
Remove
Copies

Implicit
NullChecks

I NI I NI I NI I NI I NI I NI I NI I NI I NI I NI
DaCapo benchmark suite
avrora 0.94 1.06 0.88 0.74 1.08 0.91
fop 0.70 0.66 0.59
h2 0.62 0.85 0.49
jython 0.55 0.78 0.43 0.39 0.60
luindex 0.88 0.97 0.27 0.90 0.99 0.90 0.91 0.98 0.91 0.90
lusearch 0.83 1.03 1.05 0.73 1.05 1.05
pmd 0.70 0.84 0.67 0.63 0.83 0.69 0.83
sunflow 0.49 1.09 0.26 1.13
xalan 0.60 0.85 0.57 0.52
GEOMEAN 0.69 0.93 1.05 0.69 0.49 1.08 0.91 0.90 0.62 0.60 0.91 1.05 0.91 0.90 0.93 1.05
SPEC JVM 2008 benchmark suite
compress 0.52 0.61 0.47 0.47 0.60
crypto.aes 0.39 0.29 0.33 0.35 0.32 0.96 0.36
crypto.rsa 0.63 1.07
crypto.signverify 0.59 0.49 0.54 0.56
derby 0.38 0.92 0.34 0.28
monte_carlo 0.79 0.75 0.87
mpegaudio 0.75 0.96 0.78
serial 0.47 0.41 0.84
sunflow 0.68 1.17 0.41 0.64 0.65
xml.validation 0.43 0.65 0.31 0.37 0.60
GEOMEAN 0.52 0.89 0.34 0.32 0.57 0.45 0.84 0.44 0.54 0.96 0.56 0.80
ScalaBench benchmark suite
apparat 0.89 0.79 1.03 0.35 0.75 0.81 0.81 0.78 1.02
factorie 0.46 0.72 0.32 0.14
kiama 0.64 0.94 0.59 0.34
scalac 0.77 0.95 0.68 0.60
scaladoc 0.77 0.70 0.57
scalap 0.66 0.95 0.59 0.43
scalariform 0.76 1.03 0.69 0.43
scalatest 0.91
scalaxb 0.70 0.46 0.67
specs 0.82 1.01 0.77
tmt 0.69 0.97 0.38
GEOMEAN 0.72 0.93 0.79 1.03 0.58 0.41 0.71 0.81 0.81 0.78 1.02

Table 6. Impact of profiling data on individual optimization flags

each optimization flag that turn ON each one individually (one configuration with method inlining
OFF and another with inlining ON).
Table 5 shows the results of this experiment, but only displays numbers that are statistically

significant. The first column gives the benchmark name. The next column shows performance
improvement when only the optimization of function inlining is enabled. All later columns with
label ‘NI’ compare the program performance with one flag-set ON to the baseline performance that
disables all optimization flags. The columns with label ‘I’ compare the program performance with
both the one flag-set and inlining ON to program performance with only inlining ON.

Study Impact of Profile Data on Optimizations. We perform another experiment to determine
the amount of benefit optimizations in HotSpot’s c2 compiler derive from profile data. Even with
the EXP-B configuration, showing the degree to which an optimization is affected by profile data
is slightly tricky. Simply using the performance of a profiling enabled configuration normalized
against the performance of the corresponding profiling disabled configuration is not sufficient
because, (a) there may be other compiler optimizations that we are not yet disabling, and (b) profile
data may affect other performance-relevant VM tasks. Manifestation of this issue can be seen in the
Baseline-NI column in Table 6. This column displays the ratio of a configuration that disables all
optimizations but has profiling ON to another configuration that also disables all optimizations but
has profiling OFF. Ideally, these two configurations should report identical performance numbers.
However, several benchmarks, such as jython in DaCapo, xml.validation in SPEC and factorie in

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:22 A. Wade et al.

ScalaBench, report significant performance benefit from profile data even when all optimization
flags that we control are turned OFF in both configurations. 5
Table 6 presents the performance impact of profile data for each optimization flag-set. Each

number in this table reports the ratio of some flag-set configuration with profiling ON to an
equivalent configuration with profiling OFF. Columns labeled with an ‘I’ turn inlining ON, and
those labeled ‘NI’ turn inlining OFF. The Baseline configuration turns OFF all flags. The other
columns report results for experiments that turn one flag-set ON as indicated. To calculate the
impact of profiling on any flag-set, the numbers reported in the column for that flag-set must be
compared with the corresponding numbers in the Baseline column. For each flag-set, we only report
values that are statistically different from the Baseline. That is, we report the values when the either
the baseline or experimental error is less than the absolute difference between the baseline and
experimental geometric means. We find that other than inlining, UseTypeProfile appears to be the
only other flag-set that derives significant performance benefit from profile data in our experiments.

Overall Observations. We make the following observations from our experiments in this section.
We see (from Table 5) that 52 of the 60 flags (that we grouped together as others) don’t contribute
meaningful performance benefits for our benchmarks, even when all are employed as a unit. With
inlining off, no benchmark derives significant benefit from this set of 52 optimization flags. Com-
bining function inlining with the others set of flags, improves the performance for two benchmarks
over our three benchmark suites.
Function inlining is by far the most beneficial optimization. The application of inlining alone

improves average program performance by 38%, 58% and 36% for our three benchmark suites
respectively. Inling is also an enabling optimization that improves the effectiveness of several
optimization flags, especially, UseCHA and UseTypeProfile. Inlining is also the one that is most
affected by profile data. We can see from Table 6 that availability of profile data improves the
effectiveness of inlining alone by 31%, 48%, and 28% for DaCapo, SPEC and ScalaBench, respectively
and on average.

Other than Inlining, the UseTypeProfile flag has the largest improvement over all and is the most
affected by profiling data. This flag significantly impacts the effectivness of inlining. Additionally,
as the name suggests, it controls access to the use of type profiling information, so it is heavily
affected by the presence or absence of profiling information. UseCHA, by comparison, provides
a significant improvement by itself, mostly for the same reasons as UseTypeProfile, but it is less
affected by profiling information because it controls a static analysis that doesn’t rely on profiling
data directly (though it can affect how profiling data is used).
OptoCoalesce, UseLoopPredicate, LoopPeeling, ParseGVN, and PeepholeRemoveCopies all show

significant performance improvement on SPEC benchmarks but little effect on benchmarks from the
other two suites. We believe this happens because the SPEC benchmarks are more numeric in nature,
and have smaller, tighter inner loops that benefit from these optimizations. In contrast, idiomatic
Scala, as used in the ScalaBench benchmarks, makes frequent use of higher level abstractions –
in particular functional combinators – which obscure loops behind deeply nested function calls.
Consequentially, these optimizations provide minimal benefit to those programs without inlining
enabled.
ImplicitNullChecks provides the smallest benefit of our “important” flags. In particular, it only

provides a significant improvement on a couple of benchmarks. The fact that it is unaffected by

5 Some programs, especially sunflow in both DaCapo and SPEC report performance benefit from turning profiling OFF.
Such behavior is plausible when profile data gathered during the early program run is not representative of the remaining
execution and improperly biases some dependent optimizations. We have not investigated the exact cause in this particular
case when all our optimizations are turned OFF.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:23

profiling information is unsurprising as it controls a speculative optimization that is not applied in
successive compilations of methods where it proves to be a source of traps.

6 FUTUREWORK
There are multiple avenues for future work. First, one limitation of this work is that it is only
conducted for one VM and compiler, the HotSpot VM’s c2 compiler. It is important to investigate if
the observations we make in this study can be generalized to other dynamic compilers for Java
or other languages. Second, this work investigates the different characteristics of PGOs in JIT
optimization systems individually. In future work, we will study how these aspects affect one
another. For example, we can study the interaction of profiling amount and accuracy, or the impact
of profile accuracy on individual JIT compiler optimizations, etc. Third, we intend to explore
and compare different algorithms to assess profile similarity in future work. Fourth, this work
demonstrated the benefit that program performance can derive from profile information. At the
same time, we also find that the collected profile knowledge needs to be sufficiently accurate for
the current program input for PGOs to realize their maximum potential. Our next research focus
will be on how to extract such profile data in systems where online profiling is not feasible, like
AOT systems, and how to customize the generated binaries for different input behaviors. This is a
broad research issue, with many questions to explore. For instance, similar to categorizing profile
data types, can program behaviors also be categorized into a small finite number of behavioral
types? Can improvements be made to profile data collection during offline profiling over multiple
program inputs so that the dependent optimizations can be specialized to generate variations of
binary programs for different behavioral types? Can we build advanced static analysis techniques
to improve coverage of offline profiling inputs to encompass all possible program behaviors?
Eventually, in the future, we plan to build runtime systems that can combine the advantages of
AOT and JIT compilation systems with none, or at least fewer, of the associated drawbacks.

7 CONCLUSIONS
The standard reactive JIT compilation model used in desktop and server VMs can acquire and
exploit program profile information from the current run to guide advanced PGOs to generate
high-quality native code. In this work we quantify the impact of profile data on the quality of
code produced by the JIT compiler, study how the amount and accuracy of profile data affect
program performance, and investigate the effect of profile data on individual optimizations in the
JIT compiler for dynamic languages like Java. Additionally, we make a number of interesting, and
hitherto unknown, discoveries about the properties of profile data that are critical to maximize
its ability to correctly guide dependent PGOs. Within the context of HotSpot’s c2 JIT compiler
and our set of benchmark programs, we find that, (a) PGOs can achieve significant performance
benefits on current JVM systems. (b) Even a small amount of profile data collected at program
startup can significantly benefit generated code quality as compared to no-profiling. (c) Profile data
collected from different program input sets is often able to correctly guide PGOs for most programs.
However, a random or wrong profile data may induce program performance that is worse than not
using any profile data. (d) A small fraction of profile-site mispredictions can significantly affect
the performance of PGOs to generate high-quality code. (e) Most optimizations do not contribute
significantly to performance improvement. Profile data appears to be most profitably used by
inlining and other optimizations that assist with inlining decisions, like UseTypeProfile. We design
and construct several innovative VM frameworks and experiments to accomplish this work. We
believe that our frameworks, experiments, and observations can prove useful to VM developers
and researchers to build compilation systems that can combine the benefits of both AOT and JIT
based models.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.



?:24 A. Wade et al.

REFERENCES
[1] [n.d.]. DaCapo Batik benchmark fails. https://github.com/RedlineResearch/OLD-OpenJDK8/issues/1.
[2] [n.d.]. DaCapo Eclipse benchmark fails. https://github.com/RedlineResearch/OLD-OpenJDK8/issues/2.
[3] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. 2005. A survey of adaptive

optimization in virtual machines. Proc. IEEE 92, 2 (February 2005), 449–466.
[4] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. 2011. Adaptive Optimization in the

Jalapeno JVM. SIGPLAN Notices 46, 4 (May 2011), 65–83.
[5] Matthew Arnold and David Grove. 2005. Collecting and exploiting high-accuracy call graph profiles in virtual machines.

In Proceedings of the Symposium on Code Generation and Optimization. 51–62.
[6] Matthew Arnold and David Grove. 2005. Collecting and Exploiting High-Accuracy Call Graph Profiles in Virtual

Machines. In Proceedings of the Symposium on Code Generation and Optimization (CGO ’05). 51–62.
[7] Matthew Arnold, AdamWelc, and V. T. Rajan. 2005. Improving Virtual Machine Performance Using a Cross-run Profile

Repository. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’05). ACM, NewYork, NY, USA, 297–311. https://doi.org/10.1145/1094811.1094835

[8] Steve Blackburn, Daniel Frampton, Robin Garner, and John Zigman. 2009. dacapo-9.12-bach.
http://dacapobench.org/RELEASE_NOTES.txt.

[9] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications (OOPSLA ’06).
ACM, 169–190.

[10] William J. Bowman, Swaha Miller, Vincent St-Amour, and R. Kent Dybvig. 2015. Profile-guided Meta-programming. In
Proceedings of the Conference on Programming Language Design and Implementation. 403–412.

[11] Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. 1991. Using profile information to assist classic code
optimizations. Software Prac. Experience 21 (1991), 1301–1321.

[12] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: Automatic Feedback-directed Optimization for
Warehouse-scale Applications. In Proceedings of the 2016 International Symposium on Code Generation and Optimization
(CGO ’16). ACM, New York, NY, USA, 12–23. https://doi.org/10.1145/2854038.2854044

[13] MichałCierniak, Guei-Yuan Lueh, and James M. Stichnoth. 2000. Practicing JUDO: Java Under Dynamic Optimizations.
In Proceedings of the Conference on Programming Language Design and Implementation. 13–26.

[14] Evelyn Duesterwald and Vasanth Bala. 2000. Software profiling for hot path prediction: Less is more. SIGPLAN Notices
35, 11 (Nov. 2000), 202–211.

[15] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous Java performance evaluation. In
Proceedings of the conference on Object-oriented programming systems and applications. 57–76.

[16] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof: A call graph execution profiler. SIGPLAN
Notices 17, 6 (1982), 120–126.

[17] Urs Hölzle and David Ungar. 1996. Reconciling responsiveness with performance in pure object-oriented languages.
ACM Trans. Program. Lang. Syst. 18, 4 (1996), 355–400.

[18] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael Franz. 2013. Profile-guided Automated
Software Diversity. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO) (CGO ’13). 1–11.

[19] SungHyun Hong, Jin-Chul Kim, Jin Woo Shin, Soo-Mook Moon, Hyeong-Seok Oh, Jaemok Lee, and Hyung-Kyu Choi.
2007. Java Client Ahead-of-time Compiler for Embedded Systems. In Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES ’07). 63–72.

[20] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B. Moss, Zhenlin Wang, and Perry Cheng. 2004.
The garbage collection advantage: Improving program locality. In Proceedings of the Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA ’04). 69–80.

[21] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter, Roger A. Bringmann, Roland G.
Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. 1993. The superblock:
An effective technique for VLIW and superscalar compilation. J. Supercomput. 7, 1-2 (1993), 229–248.

[22] Michael R. Jantz, Forrest J. Robinson, Prasad A. Kulkarni, and Kshitij A. Doshi. 2015. Cross-layer Memory Management
for Managed Language Applications. In Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications. 488–504.

[23] Calin Juravle. 2019. Improving app performance with ART optimizing profiles in the cloud. https://android-
developers.googleblog.com/2019/04/improving-app-performance-with-art.html.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.

https://doi.org/10.1145/1094811.1094835
https://doi.org/10.1145/2854038.2854044


?:25

[24] Chandra Krintz, David Grove, Vivek Sarkar, and Brad Calder. 2000. Reducing the overhead of dynamic compilation.
Software: Practice and Experience 31, 8 (December 2000), 717–738.

[25] Prasad A. Kulkarni. 2011. JIT Compilation policy for modern machines. In Proceedings of the Conference on Object
Oriented Programming Systems Languages and Applications. 773–788.

[26] Zoltan Majo, Tobias Hartmann, Marcel Mohler, and Thomas R. Gross. 2017. Integrating Profile Caching into the
HotSpot Multi-Tier Compilation System. In Proceedings of the 14th International Conference on Managed Languages and
Runtimes (ManLang 2017). ACM, New York, NY, USA, 105–118. https://doi.org/10.1145/3132190.3132210

[27] Markus Mock, Craig Chambers, and Susan J. Eggers. 2000. Calpa: A tool for automating selective dynamic compilation.
In Proceedings of the Symposium on Microarchitecture. 291–302.

[28] Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and Ramesh Peri. 2007. Shadow profiling: Hiding
instrumentation costs with parallelism. In Proceedings of the Symposium on Code Generation and Optimization (CGO
’07). 198–208.

[29] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2010. Evaluating the accuracy of Java
profilers. In Proceedings of the Conference on Programming Language Design and Implementation (PLDI ’10). 187–197.

[30] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java HotSpot™server compiler. In Proceedings of the
Symposium on Java Virtual Machine Research and Technology Symposium. 1–12.

[31] Karl Pettis and Robert C. Hansen. 1990. Profile guided code positioning. In Proceedings of the ACM SIGPLAN 1990
Conference on Programming Language Design and Implementation (PLDI ’90). 16–27.

[32] Android Open Source Project. [n.d.]. Introducing ART. https://source.android.com/devices/tech/dalvik/.
[33] Forrest J. Robinson, Michael R. Jantz, and Prasad A. Kulkarni. 2016. Code Cache Management in Managed Language

VMs to Reduce Memory Consumption for Embedded Systems. In Proceedings of the Conference on Languages, Compilers,
Tools, and Theory for Embedded Systems. 11–20.

[34] Shai Rubin, Rastislav Bodík, and Trishul Chilimbi. 2002. An efficient profile-analysis framework for data-layout
optimizations. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’02). ACM, 140–153.

[35] Mauricio Serrano, Rajesh Bordawekar, Sam Midkiff, and Manish Gupta. 2000. Quicksilver: A Quasi-static Compiler for
Java. In Proceedings of the Conference on Object-oriented Programming, Systems, Languages, and Applications. 66–82.

[36] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da Capo con Scala: Design and Analysis
of a Scala Benchmark Suite for the Java Virtual Machine. In Proceedings of the 26th Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA ’11). ACM, New York, NY, USA, 657–676.

[37] SPEC2008. 2008. SPECjvm2008 Benchmarks. http://www.spec.org/jvm2008/.
[38] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani. 2005. Design and

Evaluation of Dynamic Optimizations for a Java Just-in-time Compiler. ACM Transactions on Programming Languages
and Systems 27, 4 (July 2005), 732–785.

[39] April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. 2017. AOT vs. JIT: Impact of Profile Data on Code Quality. In
Proceedings of the 18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES 2017). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/3078633.3081037

[40] Chih-Sheng Wang, Guillermo Perez, Yeh-Ching Chung, Wei-Chung Hsu, Wei-Kuan Shih, and Hong-Rong Hsu. 2011.
A Method-based Ahead-of-time Compiler for Android Applications. In Proceedings of the Conference on Compilers,
Architectures and Synthesis for Embedded Systems. 15–24.

[41] Youfeng Wu and James R. Larus. 1994. Static Branch Frequency and Program Profile Analysis. In Proceedings of the
Symposium on Microarchitecture. 1–11.

ACM Trans. Embedd. Comput. Syst., Vol. ?, No. ?, Article ?. Publication date: October 2019.

https://doi.org/10.1145/3132190.3132210
https://doi.org/10.1145/3078633.3081037

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Tools, Benchmarks, and Experimental Setup
	4 Constructed Experimental Frameworks
	4.1 Detect User-Defined Program Execution Points
	4.2 Import/Export Profile Data
	4.3 Control Method Compilation Order
	4.4 Similarity or Representativeness of Program Inputs

	5 Experiments, Results and Analysis
	5.1 Impact of Profiling on Generated Code Quality
	5.2 Impact of Profile Data Amount on Code Quality
	5.3 Impact of Profile Data Accuracy on Code Quality
	5.4 Impact of Profiling on Individual Optimizations

	6 Future Work
	7 Conclusions
	References

