
VISTA: VPO Interactive System for
Tuning Applications

PRASAD KULKARNI, WANKANG ZHAO, STEPHEN HINES, DAVID WHALLEY,
XIN YUAN, ROBERT VAN ENGELEN and KYLE GALLIVAN

Florida State University

JASON HISER and JACK DAVIDSON

University of Virginia

BAOSHENG CAI

Oracle Corporation

MARK BAILEY

Hamilton College

HWASHIN MOON and KYUNGHWAN CHO

Korea Advanced Institute of Science & Technology

and

YUNHEUNG PAEK

Seoul National University

Software designers face many challenges when developing applications for embedded systems. One

major challenge is meeting the conflicting constraints of speed, code size, and power consumption.

Embedded application developers often resort to hand-coded assembly language to meet these

This research was supported in part by NSF grants CCR-0312493, CCR-9904943, EIA-0072043,

CCR-0208892, ACI-0203956, MIC grant A1100-0501-0004, MOST grant M103BY010004-05B2501-

00411, MIC ITRC program IITA-2005-C1090-0502-0031, and KRF contract D00191 CNS-0615085.

Preliminary versions of this paper appeared in the ACM SIGPLAN ’02 Conference on Languages,
Compilers, and Tools for Embedded Systems under the title “VISTA: A System for Interactive Code

Improvement” and in the ACM SIGPLAN ’03 Conference on Languages, Compilers, and Tools for
Embedded Systems under the title “Finding Effective Optimization Phase Sequences.”

Authors’ addresses: P. Kulkarni, W. Zhao, S. Hines, D. Whalley, X. Yuan, R. van Engelen, and

K. Gallivan, Computer Science Department, Florida State University, Tallahassee, FL 32306-

4530; email: {kulkarni,wankzhao,hines,whalley,xyuan,engelen,gallivan}@cs.fsu.edu; J. Hiser and J.

Davidson, Computer Science Department, University of Virginia, Charlottesville, VA 22904; email:

{hiser,jwd}@cs.virginia.edu; B. Cai, Oracle Corporation, 4OP 955 Oracle Parkway, Redwood City,

CA 94065; email: baosheng.cai@oracle.com; M. Bailey, Computer Science Department, Hamilton

College, 198 College Hill Road, Clinton, NY 13323; email: mbailey@hamilton.edu; H. Moon, and K.

Cho, Electrical Engineering Department, Korea Advanced Institute of Science & Technology, 373-1

Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea; Y. Paek, School of Electrical Engineering,

Seoul National University, Kwanak-gu, Seoul 151-744, Korea; email: ypaek@snu.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1539-9087/06/1100-0819 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006, Pages 819–863.

820 • P. Kulkarni et al.

constraints since traditional optimizing compiler technology is usually of little help in addressing

this challenge. The results are software systems that are not portable, less robust, and more costly

to develop and maintain. Another limitation is that compilers traditionally apply the optimizations

to a program in a fixed order. However, it has long been known that a single ordering of optimization

phases will not produce the best code for every application. In fact, the smallest unit of compilation

in most compilers is typically a function and the programmer has no control over the code im-

provement process other than setting flags to enable or disable certain optimization phases. This

paper describes a new code improvement paradigm implemented in a system called VISTA that

can help achieve the cost/performance trade-offs that embedded applications demand. The VISTA

system opens the code improvement process and gives the application programmer, when neces-

sary, the ability to finely control it. VISTA also provides support for finding effective sequences of

optimization phases. This support includes the ability to interactively get static and dynamic per-

formance information, which can be used by the developer to steer the code improvement process.

This performance information is also internally used by VISTA for automatically selecting the best

optimization sequence from several attempted. One such feature is the use of a genetic algorithm

to search for the most efficient sequence based on specified fitness criteria. We include a number of

experimental results that evaluate the effectiveness of using a genetic algorithm in VISTA to find

effective optimization phase sequences.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User

Interfaces—Graphical user interfaces; D.2.6 [Software Engineering]: Programming Environ-

ments—Interactive environments; D.3.4 [Programming Languages]: Processors—Compilers, op-
timization; D.4.7 [Operating Systems]: Organization and Design—Realtime systems and embed-
ded systems, interactive systems

General Terms: Performance, Measurement, Experimentation, Algorithms

Additional Key Words and Phrases: User-directed code improvement, interactive compilation,

phase ordering, genetic algorithms

1. INTRODUCTION

The problem of automatically generating acceptable code for embedded micro-
processors is often much more complicated than for general-purpose proces-
sors. First, embedded applications are optimized for a number of conflicting
constraints. In addition to speed, other common constraints are code size and
power consumption. For many embedded applications, code size and power con-
sumption are often more critical than speed. Often, the conflicting constraints
of speed, code size, and power consumption are managed by the software de-
signer writing and tuning assembly code. Unfortunately, the resulting software
is less portable, less robust (more prone to errors), and more costly to develop
and maintain.

Automatic compilation for embedded microprocessors is further complicated
because embedded microprocessors often have specialized architectural fea-
tures that make code improvement and code generation difficult [Liao et al.
1999; Marwedel and Goossens 1995]. While some progress has been made in
developing compilers and embedded software development tools, many embed-
ded applications are still coded in assembly language, because current compiler
technology cannot produce code that meets the cost and performance goals for
the application domain.

One issue that limits the effectiveness of traditional optimizing compilers
is that they apply the code-improving transformations to a program in a fixed

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 821

order. However, it is well-known that a single fixed sequence of optimization
phases cannot produce the best code for all applications on a given machine
[Vegdahl 1982]. Whether or not a particular optimization enables or disables
opportunities for subsequent optimizations is difficult to predict, since it de-
pends on the application being compiled, the previously applied optimizations,
and the target architecture [Whitfield and Soffa 1997]. Current compiler tech-
nology also does not offer the user much flexibility in tuning the application.
The only control they often provide is in the form of compilation flags, which
could be used to turn certain optimization phases on and off.

In this paper we describe a new code-improvement paradigm, implemented
in a system called VISTA, which allows the user to interactively tune the
application and steer the optimization process in an attempt to achieve the
cost/performance trade-offs (size, power, speed, cost, etc.) demanded for embed-
ded applications. VISTA includes many features which allow users to:

1. view the low-level program representation in a graphical display throughout
the compilation process,

2. direct the order and scope of optimization phases,

3. manually specify code transformations,

4. browse through and undo previously applied transformations,

5. automatically obtain performance information,

6. obtain other static analysis information on demand, and

7. automatically search for effective optimization phase sequences.

These features, along with several other convenient facilities, make VISTA a
very robust compilation environment for tuning embedded applications.

This paper is organized as follows. In Section 2, we point the reader to re-
lated work in the area of alternative compiler paradigms, compiler user in-
terfaces, and aggressive compilation techniques. In Section 3, we outline the
VISTA framework and the information flow in VISTA. We describe in Section 4
the functionality of VISTA along with the implementation. Later, in Section 5,
we show the results of a set of experiments that illustrate the effectiveness
of using the genetic algorithm for automatically finding effective optimization
sequences. In Section 6, we provide a case study, which shows how manual and
automatic tuning can be combined in VISTA to achieve better overall perfor-
mance. We devote Section 7 to discuss some interesting implementation issues.
In Section 8 we discuss directions for future work. Finally, in Section 9, we state
our conclusions.

2. RELATED WORK

There exist systems that are used for simple visualization of the compila-
tion process. The UW Illustrated Compiler [Andrews et al. 1988], also known
as icomp, has been used in undergraduate compiler classes to illustrate
the compilation process. The xvpodb system [Boyd and Whalley 1993, 1995]
has been used to illustrate low-level code transformations in the VPO com-
piler system [Benitez and Davidson 1988]. xvpodb has also been used when

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

822 • P. Kulkarni et al.

teaching compiler classes and to help ease the process of retargeting the com-
piler to a new machine or diagnosing problems when developing new code
transformations.

Other researchers have developed systems that provide interactive compi-
lation support. These systems include the pat toolkit [Appelbe et al. 1989],
the parafrase-2 environment [Polychronopoulos et al. 1989], the e/sp sys-
tem [Browne et al. 1990], a visualization system developed at the Univer-
sity of Pittsburgh [Dow et al. 1992], and SUIF explorer [Liao et al. 1999].
These systems provide support by illustrating the possible dependencies that
may prevent parallelizing transformations. A user can inspect these depen-
dencies and assist the compilation system by indicating if a dependency
can be removed. In contrast, VISTA does not specifically deal with paral-
lelizing transformations, but instead supports low-level transformations and
user-specified changes, which are needed for tuning embedded applications in
general.

A few low-level interactive compilation systems have also been developed.
One system, which is coincidentally also called VISTA (visual interface for
scheduling transformations and analysis), allows a user to verify dependencies
during instruction scheduling that may prevent the exploitation of instruction
level parallelism in a processor [Novack and Nicolau 1993]. Selective ordering
of different optimization phases does not appear to be an option in their sys-
tem. The system that most resembles our work is called VSSC (visual simple-
SUIF compiler) [Harvey and Tyson 1996]. It allows optimization phases to be
selected at various points during the compilation process. It also allows op-
timizations to be undone, but unlike our compiler, only at the level of com-
plete optimization phases as opposed to individual transformations within each
phase. Other features in our system, such as supporting user-specified changes
and performance feedback information, do not appear to be available in these
systems.

There has been prior work that used aggressive compilation techniques
to improve performance. Superoptimizers have been developed that use an
exhaustive search for instruction selection [Massalin 1987] or to eliminate
branches [Granlund and Kenner 1992]. Iterative techniques using performance
feedback information after each compilation have been applied to determine
good optimization parameters (e.g., blocking sizes) for specific programs or li-
brary routines [Kisuki et al. 2000; Whaley et al. 2001; Knijnenburg et al. 2000].
A system using genetic algorithms to better parallelize loop nests has been de-
veloped and evaluated [Nisbet 1998]. These systems perform source-to-source
transformations and are limited in the set of optimizations they apply. Selecting
the best combination of optimizations by turning on or off optimization flags,
as opposed to varying the order of optimizations, has been investigated [Chow
and Wu 1999]. A low-level compilation system developed at Rice University
uses a genetic algorithm to reduce code size by finding efficient optimization
phase sequences [Cooper et al. 1999]. However, this system is batch oriented
instead of interactive and concentrates primarily on reducing code size and not
execution time and is designed to use the same optimization phase order for all
of the functions within a file.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 823

Fig. 1. Interactive code improvement process.

3. THE VISTA FRAMEWORK

In this section we summarize the VISTA framework. This includes an overview
of the information flow in VISTA along with a brief introduction of the opti-
mization engine and visualization environment used.

3.1 Dataflow in VISTA

Figure 1 illustrates the flow of information in VISTA, which consists of a com-
piler and a viewer. The programmer initially indicates a file to be compiled and
then specifies requests through the viewer, which include sequences of optimiza-
tion phases, user-defined transformations, queries, and performance measures.
The compiler performs the actions associated with the specified requests and
sends the program representation information back to the viewer. In response
to a request to obtain performance measures, the compiler, in turn, requests
EASE to instrument the assembly with additional instructions to obtain the
dynamic instruction counts. When executed, this instrumented code returns
the performance measures. Similarly, it is possible to obtain execution cycles
via simulation. VISTA can also provide static measures. While code size can
be easily obtained, we have also provided WCET (worst-case execution time)
information by invoking a timing analyzer, instead of invoking EASE [Zhao
et al. 2004]. When the user chooses to terminate the session, VISTA writes the
sequence of transformations to a file so they can be reapplied at a later time,
enabling future updates to the program representation.

The viewer and the back-end compiler are implemented as separate pro-
cesses in VISTA. The communication between the compiler and the viewer
takes place via sockets. Separating the compiler and viewer as distinct pro-
cesses provides additional flexibility. Thus, in theory, by modifying a compiler
to send the appropriate information to the viewer, it should be possible to con-
nect any compiler as the back-end for the viewer. It is also possible, for instance,
to save the sequence of change messages sent from the compiler to the viewer
and use a simple simulator instead of the compiler to facilitate demonstra-
tions of the interface. Likewise, a set of user commands can be read from a

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

824 • P. Kulkarni et al.

file by a simple simulator that replaces the viewer, which can be used to sup-
port batch mode experimentation with different phase orderings. We were also
concerned that the amount of memory used by the compiler and the viewer
may be excessive for a single process. Separating the compiler and the viewer
into separate processes allows users to access the interactive code improvement
system on a different machine from which the compiler executes. By sending
short messages and using low-overhead sockets for the actual communication,
we have observed that communication is rarely the bottleneck, even when the
two processes are located hundreds of miles apart and communication is over
the Internet.

The VISTA system is designed to optimize code at a low level in a compiler
back-end. The compiler front-end currently only supports the translation of the
high-level language “C” to intermediate code, which is recognized by VISTA.
The compiler back-end can, in turn, produce code for many different machines,
like the SPARC, ARM, x86, Java, etc. If we are able to translate a different
high-level language, such as C++ or Java, to our intermediate language that
can be input to our back-end, VPO, then we can tune such applications as
well. However, applications in many object-oriented languages have smaller
functions and VISTA is currently designed to tune a single function at a time.
Thus other optimizations, such as inlining, may be required to be performed at
a higher level before a user can effectively tune such applications with VISTA.

3.2 VISTA’s Optimization Engine

VISTA’s optimization engine is based on VPO, the very portable optimizer
[Benitez and Davidson 1988, 1994]. VPO has several properties that make it an
ideal starting point for realizing the VISTA compilation framework. First, VPO
performs all code improvements on a single intermediate representation called
RTLs (register transfer lists). An RTL is a machine- and language-independent
representation of a machine-specific operation. The comprehensive use of RTLs
in VPO has several important consequences. Because there is a single represen-
tation, VPO offers the possibility of applying analyses and code transformations
repeatedly and in an arbitrary order. In addition, the use of RTLs allows VPO to
be largely machine-independent, yet efficiently handle machine-specific aspects
such as register allocation, instruction scheduling, memory latencies, multiple
condition code registers, etc. VPO, in effect, improves object code. Machine-
specific code improvement is important for embedded systems, because it is a
viable approach for realizing compilers that produce code that effectively bal-
ances target-specific constraints, such as code size, power consumption, and
execution speed.

A second important property of VPO is that it is easily retargeted to a new
machine. Retargetability is key for compilers targeting embedded microproces-
sors where chip manufacturers provide many different variants of the same
base architecture and some chips have application-specific designs.

A third property of VPO is that it is easily extended to handle new archi-
tectural features. Extensibility is also important for compilers targeting em-
bedded chips where cost, performance, and power-consumption considerations

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 825

often mandate development of specialized features centered around a core ar-
chitecture.

A fourth and final property of VPO is that its analysis phases (data-flow
analysis, control-flow analysis, etc.) are designed so that information is easily
extracted and updated. This property makes writing new code improvement
phases easier and it allows the information collected by the analyzers to be
obtained for display.

3.3 EASE

The EASE (environment for architectural study and experimentation)
[Davidson and Whalley 1991] environment is used in VISTA to collect static
and dynamic performance measures to evaluate the improvements made in re-
ducing the code size and the number of instructions executed. EASE collects
these measures by instrumenting the assembly code generated by the compiler
by additional instructions, which increment a counter each time a basic block
is executed. These counts are multiplied by the number of instructions in each
basic block to determine the total number of instructions executed.

Such performance feedback is important, as it gives the user a better perspec-
tive as to whether the sequence of optimizations applied is giving the expected
benefits or if the user should roll back the changes and try some different se-
quence. The measures also indicate the portions of the code, which are more
frequently executed, so the user could focus his/her attention on improving that
portion of the program. It also helps VISTA automatically determine the best
sequence of optimizations for a function.

4. FUNCTIONALITY OF VISTA

The VISTA framework supports the following features. First, it allows a user to
view a low-level graphical representation of the function being compiled, which
is much more convenient than extracting this information from a source-level
debugger. Second, a user can select the order and scope of optimization phases.
Selecting the order of optimization phases may allow a user to find a sequence
of phases that is more effective for a specific function than the default optimiza-
tion phase order. Limiting the scope of the optimization phases allows a user to
allocate resources, such as registers, for the critical regions of the code. Third, a
user can manually specify transformations. This feature is useful when exploit-
ing specialized architectural features that cannot be exploited automatically by
the compiler. Fourth, a user can undo previously applied transformations or op-
timization phases. This feature eases experimentation with alternative phase
orderings or user-defined transformations. Fifth, VISTA supports the ability to
obtain program performance measures at any time during the code improve-
ment process. Such feedback would be very useful to a user interactively tuning
the code. Sixth, VISTA provides the ability to find effective optimization se-
quences automatically. Finally, the user can query the compiler for other static
information, like dominator or live register information, which may aid the user
in better tuning the application. In this section, we describe the functionality of
VISTA and provide details on how these features were actually implemented.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

826 • P. Kulkarni et al.

Fig. 2. Main user interface window in VISTA.

4.1 Viewing the Low-Level Representation

Figure 2 shows a snapshot of the VISTA viewer that supports interactive code
improvement. The program representation appears in the right window of the
viewer and is shown as basic blocks in a control-flow graph. Within the basic
blocks are machine instructions. The programmer may view these instructions
as either RTLs or assembly code. In addition, VISTA provides options to display
additional information about the program that a programmer may find useful.

The left window varies depending on the mode selected by the user. Figure 2
shows the default display mode. The top left of the viewer screen shows the name
of the current function and the number of the transformation currently being
displayed. A transformation consists of a sequence of changes that preserve the
semantics of the program. The viewer can display a transformation in either
the before or after state. In the before state, the transformation has not yet
been applied. However, the instructions that are to be modified or deleted are
highlighted. In the after state, the transformation has been applied. At this
point, the instructions that have been modified or inserted are highlighted.
This highlighting allows a user to quickly and easily understand the effects of
each transformation. Figures 2 and 3 show the before and after states during
a transformation in instruction selection. Before and after states are used in
other graphical compilation viewers [Boyd and Whalley 1993, 1995]

The bottom left window contains the viewer control panel. The “>,” “>>,” and
“> |” buttons allow a user to advance through the transformations that were
performed. The “>” button allows a user to display the next transformation.
A user can display an entire transformation (before and after states) with two

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 827

Fig. 3. After state in the main user interface window in VISTA.

clicks of this button. The “>>” button allows a user to advance to the next op-
timization phase. A phase is a sequence of transformations applying the same
type of transformation. The “> |” button allows the user to advance beyond all
transformations and phases. The “| <,” “<<,” and “<” buttons allow the user to
back through the transformations with corresponding functionality. These but-
tons provide the ability to navigate through the changes made to the program
by the compiler. These navigation facilities are also useful if the user needs to
undo some transformations or phases, as described in Section 4.5. To enable
the viewing of previous transformations, the viewer maintains a linked list of
all messages sent to it by the compiler. Browsing through the transformations
in the viewer only involves traversal of this linked list. Thus, after the compiler
performs the transformations and sends the information to the viewer, viewing
the transformations in the viewer is done locally with no messages exchanged
between the compiler and the viewer.

Also shown in the left window is the history of code improvement phases that
the compiler has performed, which includes phases that have been applied in
the viewer and the phases yet to be applied by the viewer. We have found that
displaying the list of code improvement phases in this manner provides a user
some context to the current state of the program.

When viewing a program, the user may also change the way the program is
displayed and may query the compiler for additional information. As mentioned
earlier, the program representation may be in RTLs or assembly. Displaying the
representation in RTLs may be preferred by compiler writers, while assembly
may be preferred by embedded systems application developers who are familiar

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

828 • P. Kulkarni et al.

Fig. 4. Three different program representations in VISTA.

with the assembly language for a particular machine. When control flow is of
more interest than the specific machine instructions, the user can choose to
display only the basic block structure without the machine instructions. This
makes it possible to display more basic blocks on the screen and gives the user a
higher-level view of the function. Figure 4 shows the RTL, assembly, and control
flow-only representation of a function in VISTA.

We implemented the viewer using Java to enhance its portability. We used
Java 2, which includes the Java Swing toolkit that is used to create graph-
ical user interfaces. The aspects of the interface that limit its speed are the
displaying of information and the communication with the compiler. Thus, we
have found that the performance of the interface was satisfyingly fast, despite
having not been implemented in a traditionally compiled language.

4.2 Selecting the Order and Scope of Optimization Phases

Generally, a programmer has little control over the order in which a typical
compiler applies code improvement phases. Usually the programmer may only
turn a compiler code improvement phase on or off for the entire compilation of
a file. For some functions, one phase ordering may produce the most suitable
code, while a different phase ordering may be best for other functions. VISTA
provides the programmer with the flexibility to specify what code improvements
to apply to a program region and the order in which to apply them. A knowl-
edgeable embedded systems application developer can use this capability for
critical program regions to experiment with different orderings in an attempt
to find the most effective sequence.

We also find it useful to conditionally invoke an optimization phase based
on whether a previous optimization phase caused any changes to the program
representation. The application of one optimization phase often provides op-
portunities for another optimization phase. Such a feature allows a sequence

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 829

Fig. 5. Interactively selecting optimization phases.

of optimization phases to be applied until no further improvements are found.
Likewise, an optimization phase that is unlikely to result in code-improving
transformations unless a prior phase has changed the program representation,
can be invoked only if changes occurred, which may save compilation time.
VISTA supports such conditional compilation by providing four structured con-
trol statements (if-changes-then, if-changes-then-else, do-while-changes, while-
changes-do). These structured statements can also be nested.

Consider the interaction between register allocation and instruction selec-
tion optimization phases. Register allocation replaces load and store instruc-
tions with register-to-register move instructions, which provides opportunities
for instruction selection. Instruction selection combines instructions together
and reduces register pressure, which may allow additional opportunities for
register allocation. Figure 5 illustrates how to exploit the interaction between
these two phases with a simple example. The user has selected two constructs,
which are a do-while-changes statement and a if-changes-then statement. For
each iteration, the compiler performs register allocation. Instruction selection
is only performed if register allocation allocates one or more live ranges of a
variable to a register. These phases will be iteratively applied until no addi-
tional live ranges are allocated to registers.

In order to communicate to VPO the sequence of optimizations phases to
apply, the viewer translates the structured statements into a low-level sequence

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

830 • P. Kulkarni et al.

Fig. 6. Loop report indicating member basic blocks.

of requests. This sequence is interpreted by VPO and each resulting change to
the program representation is sent to the viewer. This process continues until
a stop operation has been encountered. The operations to be performed by the
selection shown in Figure 5 are as follows:

1. Perform instruction selection

2. Perform register assignment

3. Enter loop

4. Perform register allocation

5. If no changes in last phase goto 7

6. Perform instruction selection

7. If changes during loop iteration then goto 4

8. Exit loop

9. Perform loop-invariant code motion

10. Stop

As shown in the upper window of Figure 5, the user is prevented from select-
ing some of the phases at particular points in the compilation. This is because
of compiler restrictions on the order in which it can perform phases. Although
we have tried to keep these restrictions to a minimum, some restrictions are
unavoidable. For instance, the compiler does not allow the register allocation
phase (allocating variables to hardware registers) to be selected until the reg-
ister assignment phase (assigning pseudoregisters to hardware registers) has
been completed. The user may also only request that the compiler perform
register assignment once.

In addition to specifying the order of the code improvement phases, a user
can also restrict the scope in which a phase is applied to a region of code. This
feature allows the allocation of resources, such as registers, based on what the
user considers to be the critical portions of the program. The user can restrict
the region to a set of basic blocks by either clicking on blocks in the right window
or clicking on loops in a loop report similar to the one shown in Figure 6. The
viewer marks the basic blocks in which the scope is to be restricted and sends

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 831

Fig. 7. Manually specifying a transformation on the ARM.

this information to the compiler. Thus, before applying any optimization phase,
the compiler first checks if the basic block is in scope. If not, then the block is
skipped. This is safe to do for optimizations local to a block. When applying
loop optimizations, if the header block is not included in the scope, then the
loop is skipped. A few phases cannot have their scope restricted because of the
method in which they are implemented in the compiler or how they interact
with other phases (e.g., filling delay slots). Note that, by default, the scope in
which a phase is applied is the entire function.

VPO also required several other modifications to support interactive code
improvement. The original batch compiler had to be modified to listen to user
requests and perform corresponding actions, as well as to send messages to the
viewer. Each optimization phase in a compiler needs certain data and control-
flow information about the function to do its work. For interactive compilation,
we had to identify the analysis each phase needs and the analysis that each
optimization phase invalidates. We also had to identify which phases were re-
quired during the compilation (e.g., fix entry/exit), which code improvement
phases could only be performed once (e.g., fill delay slots), and the restrictions
on the order in which code improvement phases could be applied.

4.3 User-Specified Code Transformations

Despite advances in code generation for embedded systems, knowledgeable as-
sembly programmers can always improve code generated by current compiler
technology. This is likely to be the case, because the programmer has access
to information the compiler does not. In addition, many embedded architec-
tures have special features (e.g., zero overhead loop buffers, modulo address
arithmetic) not commonly available on general-purpose processors. Automat-
ically exploiting these features is difficult because of the high rate at which
these architectures are introduced and the time required for a highly optimiz-
ing compiler to be produced. Yet generating an application entirely in assembly
code is not an attractive alternative because of the longer development time,
higher likelihood of errors, and loss of portability. It is desirable to have a sys-
tem that not only supports traditional compiler code improvement phases, but
also supports the ability to manually specify transformations.

Figure 7 shows how VISTA supports the application of user-specified code
transformations. When the user clicks on an instruction, the viewer displays

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

832 • P. Kulkarni et al.

the list of possible user-specified changes for that instruction. As the user se-
lects each change, the change is sent to the compiler. Transformations to basic
blocks (insert, delete, label) are also possible. In response to each user-specified
transformation, the compiler first verifies the syntax of that particular trans-
formation. A number of semantic checks are also performed. For instance, if
the target of a branch is modified, then the compiler checks to ensure that
the target label in the branch is actually a label of a basic block. This ensures
that the transformations do not violate some basic semantic constraints of the
language. This is easy and fast to do, but, at the same time, it does not guar-
antee that all the semantics of the program are preserved. After performing
this check, if the transformation is valid, then the compiler sends the appro-
priate change messages to the viewer so it can update the presented program
representation.

Each change associated with a user-specified transformation must be re-
flected in the program representation in the compiler. If an instruction is in-
serted or modified, the RTL or assembly instruction specified must be converted
to the encoded RTL representation used in the compiler. We developed two
translators for this purpose. The first translator converts a human-generated
RTL into an encoded RTL. The second translator transforms an assembly in-
struction into an encoded RTL. After obtaining the encoded RTL, we use the
machine description in the compiler to check if the instruction specified was
legal for the machine. Before performing the change, the compiler checks if the
change requested is valid. This check includes validating the syntax of the in-
struction, as well some semantics checks mentioned previously. The compiler
only performs the change if it does not detect the change to be invalid.

The user can also query the compiler for information that may be helpful
when specifying a transformation. For example, a user may wish to know which
registers are live at a particular point in the control flow. The query is sent to
the compiler, the compiler obtains the requested information (calculating it
only if necessary), and sends it back to viewer. Thus, the compiler can be used
to help ensure that the changes associated with user-specified transformations
are properly made and to guide the user in generating valid and more efficient
code.

Providing user-specified transformations has an additional benefit. After the
user has identified and performed a transformation, the optimization engine
can be called upon to further improve the code. Such user-specified transforma-
tions may reveal additional opportunities for the optimization engine that were
not available without user knowledge. In this way, the optimizer and user can,
jointly, generate better code than either the user or the optimizer could have
generated separately. In Section 6, we provide a case study which illustrates
how user knowledge about the application and the machine can be used along
with automatic program tuning to generate better overall code with less effort.

4.4 Automatic Pattern Recognition and Replacement

The ability to perform hand-specified transformations in VISTA is important
as it allows a knowledgeable user to make changes, which could not be directly

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 833

exploited by any predefined compiler optimization. This feature is even more
useful at the current time, where compiler writers are finding it increasingly
difficult to keep pace with the rapidly evolving microprocessor industry. Similar
program inefficiencies can occur multiple times in the same function. It would
be extremely tiring for the user to find each occurrence of a particular type of
program fragment and replace it with more efficient code at every place. What
is needed here is a tool that will find all occurrences of some code fragment and
replace it with the desired efficient code, as specified by the user. VISTA provides
exactly this functionality, which is, in essence, an interactively pattern-driven
peephole optimizer [Davidson and Whalley 1989].

We have included in VISTA a pattern-based peephole optimizer. The user
can specify the search pattern as multiple strings of the form:

<search pattern>:<deads>:<list of registers>

The <search pattern> must be of the form [x=y;]+, which matches the
form of an RTL in VISTA. “x” and “y” are, in turn, sequences of characters and
arguments. The characters in the pattern must exactly match the characters in
an RTL for the search to be successful. The arguments can match any sequence
of characters in the RTL until the following character in the search pattern
matches some literal in the RTL being compared. Each argument number in
the search pattern is associated with the RTL characters it matches, and can
be used later to substitute the same characters in the replacement pattern. In
the <deads> field, we can specify the registers that must be dead in this RTL.
The <list of registers> specifies which arguments must be registers. The
last two fields in the search pattern are optional.

The replacement pattern is similarly constituted and must use the same
arguments as the search pattern or other constant characters. The pattern-
matching arguments in the searched RTL are used to construct the replace-
ment RTL. The viewer scans every instruction in the function and attempts
to match it with the search pattern. The matched sequence of instructions is
highlighted in the viewer. Each argument in the search pattern in associated
with an appropriate sequence of characters. The viewer then constructs the
replacement RTLs by replacing all the arguments in the replacement pattern
with their associated character sequence. These replacement instructions are
then sent to the compiler to verify their syntax and semantics. If correct, the
matched and replacement instructions are shown in the dialog boxes in the
viewer and the user has the option of making the change. This process is il-
lustrated in Figure 8. In cases where the syntax or semantics are detected as
invalid by the compiler, an appropriate message is displayed in the dialog box
and the user is not allowed to make any change (Figure 9).

Finally, we also provide an option to replace all matched sequences automat-
ically. Here the viewer finds each instruction sequence matching the search
pattern, constructs the replacement instructions, verifies their syntax and se-
mantics, and then, if valid, automatically makes the replacement. The dialog
box indicates the number of successfully replaced patterns in the function, as
illustrated in Figure 10.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

834 • P. Kulkarni et al.

Fig. 8. Valid pattern during pattern based search.

Fig. 9. Invalid pattern during pattern based search.

4.4.1 Prototyping New Code Improvements. The ability to manually spec-
ify low-level code transformations has another important, more general,
application of user-specified transformations. Unlike high-level code trans-
formations, it is difficult to prototype the effectiveness of low-level code
transformations.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 835

Fig. 10. Replace all valid patterns during pattern based search.

There are two factors that make prototyping low-level code transformations
difficult. First, many low-level code improvements exploit architectural fea-
tures that are not visible in a high-level representation. For example, machine-
dependent code improvements, such as allocating a variable to a register, do
not have equivalent source code transformations. In such cases, the source
code cannot be hand-modified to measure the effectiveness of the transforma-
tion. Second, low-level code transformations are often only fully effective when
performed after other, specific transformations have been applied. For exam-
ple, branch chaining may reveal additional opportunities for unreachable code
elimination. For such cases, it may be possible to perform the transformation
in source code, but it is not possible to prototype its effectiveness accurately at
the source level, since opportunities will be missed.

One prototyping strategy is to generate low-level code, write it to a file, man-
ually perform the code improvement, read the low-level code back in, and per-
form any additional code improvements. This process can only work if the code
improver accepts the same representation it generates. Although VPO uses a
single low-level representation, the RTLs it accepts use pseudoregisters, while
the RTLs it generates use hardware registers. Often, there are other phase-
order limitations that prevent the use of this strategy. By opening the code
improvement process to user-specified changes, VISTA provides a general so-
lution to prototyping and measuring the effectiveness of new low-level code
transformations.

4.5 Undoing Transformations

An important design issue for an interactive code improvement system is the
manner in which support is provided to an embedded systems application

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

836 • P. Kulkarni et al.

developer to experiment with different orderings of phases and user-specified
transformations in an attempt to improve the generated code. In order to sup-
port such experimentation, VISTA provides the ability for the user to reverse
previously made decisions regarding phases and transformations that have
been specified.

This reversing of transformations is accomplished using the (“| <,” “<<,” “<”)
buttons as shown in Figures 2 and 3. These buttons allow a user to view the
transformations that were previously applied. The “<” button allows a user to
display the previous transformation. The “<<” button allows a user to back up
to the previous code improvement phase. Likewise, the “| <” button allows the
user to view the state of the program before any transformations have been
applied. The ability to back up and view previously applied transformations is
very useful for understanding how code was generated or to grasp the effects
of individual transformations.

As mentioned in Section 4.1, the viewer maintains a linked list of all mes-
sages sent to it by the compiler. This list is distinct from a similar history of
all previous program changes maintained by the compiler. At the end of one
compilation session, the compiler dumps this list to a file. The next time the
compiler is invoked for the same program, the compiler first reads from this
file and applies all the transformations performed during past compilation ses-
sions. A separate transformation file has to be maintained for each source file,
containing only the changes made to all the functions in that file.

Before the user can invoke a code improvement phase or user-specified trans-
formation while viewing a prior state of the program, the subsequent transfor-
mations must be removed. Thus, the user has the ability to permanently undo
previously applied phases and transformations. When the compiler receives a
request to undo previous transformations, it dumps the transformation list it
maintains to a file. The current function with all its data structures are dis-
carded and reinitialized. A fresh instance of the function is then read from
the input file. This function has no optimizations applied to it at this time.
The compiler then reads the saved transformation file and reapplies the pre-
vious changes, but only up to the point where the user had indicated that the
transformations be discarded. The remaining changes are thus automatically
removed.

The other approach tried was to keep enough state information regarding
each change so that it could be rolled back. For instance, if a change reflects a
modification to an instruction, then the compiler and viewer must save the old
version of the instruction before modification so that its effect can be reversed
if requested by the user. This approach was found to be difficult to maintain as
it required complicated data structures and an unacceptably large amount of
space to store the information needed to reverse each change. This made the
code difficult to understand and less robust. As we already maintained a list of
all program changes, we felt it unnecessary to maintain another list of all things
to undo to reverse each change. In an interactive compilation environment,
where the majority of the time spent is in between the user clicking buttons,
the additional effort in reading the unoptimized function back in was found to
be worth the reduced complexity in the compiler.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 837

The ability to undo previously applied transformations is used extensively
by VISTA when measuring program performance. In addition, it is sometimes
easier to perform a portion of a transformation before completely determining
whether the transformation is legal or worthwhile. Being able to revoke changes
to the program will facilitate the development of such transformations.

4.6 Visualizing Performance

An important requirement of interactive code improvement is the ability to
measure and visualize the performance of the program being improved. It is
only by examining the performance of the program that the user can understand
the effectiveness of their user-specified code improvements and their choices in
phase ordering. VISTA provides the mechanisms necessary to easily gather
and view this information. VISTA supports obtaining both static and dynamic
measurements. The static measure we used in our experiments is a count of the
instructions in the function (i.e., the code size). For the dynamic measure, we
most often use a crude approximation of the number of CPU cycles by counting
the number of instructions executed, since this measure can be obtained with
little overhead. We measure the dynamic instruction count by instrumenting
the assembly code with instructions to increment counters using the EASE
system [Davidson and Whalley 1991]. We have also used VISTA to obtain other
performance measures like WCET [Zhao et al. 2004] and software simulation
cycles [Burger and Austin 1997].

VISTA provides the user two options to determine program performance:

1. The first option indicates the current program performance, at the point
when this option is selected. The compiler instruments, links and executes
the program only once and sends the dynamic performance counts to the
viewer. The viewer displays the relative frequency of execution of each basic
block in the block’s header, as seen in the right portion of Figure 11. This
information indicates the frequently executed parts of the code, so that the
user can concentrate resources on optimizing the critical portions of the code.

2. The second option displays the relative static and dynamic improvements
made after each optimizing phase. When this option is selected, the compiler
executes the program once and gets the baseline measures. After each phase,
the program is again executed and static and dynamic counts obtained are
compared with the baseline measures. The relative improvements made by
each phase are displayed in the viewer, which are shown in the left portion
of Figure 11. This information allows a user to quickly gauge the progress
that has been made in improving the function. It is also very useful when it
is important for the function to reach a particular performance goal.

To get the dynamic instruction counts, the compiler must link and execute
the program. The commands to accomplish this can be specified by the user in
a file. If this file is not present, then the user is prompted for this information
before getting the measurements for the first time. The window that is opened
to collect this information is shown in Figure 12. The Actual Output File is
compared with the Desired Output File to verify that correct output is produced.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

838 • P. Kulkarni et al.

Fig. 11. Getting performance measures in VISTA.

Fig. 12. Test configuration window.

If the executable produced by the compiler goes into an infinite loop, then the
execution is terminated after Max. Execution Time.

Figure 13 shows the steps the compiler performs to obtain the performance
counts. At the start of the measurement process, the compiler needs to store
some information needed to get back to the original state. This includes saving
the assembly for the previous functions and global variables to a file, and the
transformations applied to the current function, thus far. A pointer to the start
of the current function in the input file is also stored. There are some required
transformations that must always be performed before the assembly code for
a function can be generated. These are register assignment (assigning pseudo
registers to hardware registers) and fix entry-exit (fixing the entry and exit of
the function to manage the run-time stack). Before generating assembly for

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 839

Fig. 13. The measurement process.

measurements, VISTA checks if these phases have been applied and, if not,
performs them.

The instrumentation of code by EASE is done as the next stage. The EASE en-
vironment instruments the code with additional instructions, including incre-
ments to counters associated with each basic block. The instrumented assembly
is output to a file. After code for the function is generated, all the data structures
holding the state of this function are cleared and reinitialized. VISTA then reads
in the remaining functions in the file, applies the required transformations, and
instruments each with EASE code to produce the final assembly file.

This instrumented assembly file is linked and executed. Upon execution, an
information file that contains the number of instructions and the frequency of
execution of each basic block in the function is generated. These counts are sent
to the viewer for display. At this point, the compiler is holding the last function
in the input file with EASE instrumentation applied to it. To get back to the
point when measurements were initiated, the pointer to the start of the current
function in the input file is used to reread the function. The compiler then
reapplies the sequence of previously applied transformations to this function
to reproduce the program representation at the point where measurements
were taken.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

840 • P. Kulkarni et al.

Fig. 14. Selecting the best sequence from a specified set.

VISTA compiles functions within a file one at a time and each file is compiled
separately. In order to reduce compilation overhead, the position in the assem-
bly file at the beginning of the function is saved and the assembly is regenerated
at that point. Thus, obtaining new measurements requires producing instru-
mented assembly for only the remaining functions in the file and assembling
only the current file. VISTA also saves the position in the intermediate code
file that is input to VPO and the position in the transformation file to further
reduce I/O.

4.7 Performance-Driven Selection of Optimization Sequences

In addition to allowing a user to specify an optimization sequence, it is de-
sirable for the compiler to automatically compare two or more sequences and
determine which is most beneficial. VISTA provides two structured constructs
that support automatic selection of optimization sequences. The first construct
is the select-best-from statement and is illustrated in Figure 14. This statement
evaluates two or more specified sequences of optimization phases and selects
the sequence that best improves performance according to the selected crite-
ria. For each sequence, the compiler applies the specified optimization phases,
determines the program performance (instruments the code for obtaining per-
formance measurements, produces the assembly, executes the program, and
obtains the measurements), and reapplies the transformations to reestablish
the program representation at the point where the select-best-from statement
was specified. After the best sequence is found, the compiler reapplies that
sequence.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 841

Fig. 15. Selecting the best sequence from a set of optimization phases.

Fig. 16. Selecting options to search the space of possible sequences.

The other construct, the select-best-combination statement, is depicted in
Figure 15. This statement accepts a set of m distinct optimization phases and
attempts to discover the best sequence for applying these phases. Figure 16
shows the different options that VISTA provides the user to control the search.
The user specifies the sequence length, n, which is the total number of phases

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

842 • P. Kulkarni et al.

Fig. 17. Window showing the status of searching for an effective sequence.

applied in each sequence. An exhaustive search attempts all possible mn se-
quences, which may be appropriate when the total number of possible sequences
can be evaluated in a reasonable period of time. The biased sampling search
applies a genetic algorithm in an attempt to find the most effective sequence
within a limited amount of time. This type of search is appropriate when the
search space is too large to evaluate all possible sequences. For this search, the
number of different sequences in the population and the number of generations
must be specified, which limits the total number of sequences evaluated. These
terms are described in more detail later in the paper. The permutation search
attempts to evaluate all permutations of a specified length. Unlike the other
two searches, a permutation by definition cannot have any of its optimization
phases repeated. Thus, the sequence length, n, must be less than or equal to the
number of distinct phases, m. The total number of sequences attempted will be
m!/(m − n)! A permutation search may be an appropriate option when the user
is sure that each phase should be attempted, at most, once. VISTA also allows
the user to choose weight factors for instructions executed and code size, where
the relative improvement of each is used to determine the overall improvement.
When using the select-best-from statement, the user is also prompted to select
a weight factor.

Performing these searches is often time-consuming. Thus, VISTA provides a
window showing the current status of the search. Figure 17 shows a snapshot of
the status of the search that was selected in Figures 15 and 16. The percentage of
sequences completed along with the best sequence and its effect on performance
is given. The user can terminate the search at any point and accept the best
sequence found so far.

4.8 Presenting Static Program Information

The viewer in VISTA also can display a variety of static program analysis
information to the user. Such information can prove to be very useful to a

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 843

Fig. 18. Getting static program information in VISTA.

Fig. 19. Clicking on a basic block highlights corresponding source code lines.

programmer interactively tuning the program. Clicking on a basic block in
VISTA provides information, such as the live registers coming into and going
out of the basic block, the dominators of that block, and the successors and pre-
decessors of that block. Clicking on block 9 in Figure 3 displays the information
shown in Figure 18a. Clicking on a RTL displays the assembly representation
of the RTL and the dead registers at that point. Figure 18b shows the infor-
mation displayed on clicking the highlighted RTL in Figure 3. As mentioned
earlier, VISTA also has the ability to show the registers live at any point in the
function.

In addition to such static information, double-clicking on a basic block or RTL
in the viewer, opens up another window showing the “C” source code with the
source lines corresponding to that block or RTL highlighted. This is illustrated
in Figure 19. VISTA also has the reverse ability, in the sense that clicking on any
line in this source-code window highlights the corresponding RTLs generated
for those lines in the main VISTA user interface window. This functionality is
accomplished by maintaining source-line information in the intermediate code

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

844 • P. Kulkarni et al.

Table I. MiBench Benchmarks Used in the Experiments

Category Program Description

auto/industrial bitcount Test bit manipulation abilities of a processor

network dijkstra Calculates shortest path between nodes using

Dijkstra’s Algorithm

telecomm fft Performs a fast fourier transform on an array of data

consumer jpeg Image compression and decompression

security sha Secure hash algorithm

office stringsearch Searches for given words and phrases

generated by the front-end. Note that this information is not always accurate,
as certain optimizations, like code motion, move instructions and basic blocks
around. In spite of this, such information along with the various static analysis
results prove to be very handy when optimizing and debugging any program.

5. EXPERIMENTAL RESULTS

This section describes the results of a set of experiments to illustrate the ef-
fectiveness of using VISTA’s biased sampling search, which uses a genetic al-
gorithm to find effective sequences of optimization phases. We used a set of
MiBench programs, which are C benchmarks targeting specific areas of the
embedded market [Guthaus et al. 2001]. We used one benchmark from each
of the six categories of applications. Descriptions of the programs we used are
given in Table I.

We perform the following experiments on the ARM architecture.1 Our exper-
iments have many similarities to the Rice study, which used a genetic algorithm
to reduce code size [Cooper et al. 1999]. We believe the Rice study was the first
to demonstrate that genetic algorithms could be effective for finding efficient
optimization phase sequences. However, there are several significant differ-
ences between their study and our experiments, and we will contrast some of
the differences in this section.

The Rice experiments used a genetic algorithm to find effective sequences
consisting of twelve phases from ten candidate optimizations. They compared
these sequences to the performance obtained from a fixed sequence of twelve op-
timization phases. In contrast, VPO does not utilize a fixed sequence of phases.
Instead, VPO repeatedly applies phases until no other improvements can be
obtained. Figure 20 shows the algorithm used to determine the order in which
optimization phases are applied to VPO. This algorithm has evolved over the
years and the primary goal has always been to reduce execution time. The
smallest unit of compilation in the Rice work was a file, which may contain
many individual functions. In this study, we perform our searches for effective
optimization sequences on a per-function basis.

A complication when assessing VISTA’s ability to find effective optimization
sequences as compared to the batch VPO compiler is that the register assign-
ment (assigning pseudoregisters to hardware registers) and fixed entry exit (fix-
ing the entry and exit of the function to manage the run-time stack) phases are

1This is in contrast to a similar set of experiments performed on the general-purpose SPARC

processor in a conference version of the paper [Kulkarni et al. 2003].

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 845

Fig. 20. VPO’s order of optimizations applied in the batch mode.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

846 • P. Kulkarni et al.

Table II. Candidate Optimization Phases in the Genetic Algorithm Along with Their

Designations

Optimization Phase Gene Description

branch chaining b Replaces a branch or jump target with the target

of the last jump in the jump chain

eliminate empty block e Removes empty blocks from the control flow graph

useless jump u Remove useless transfers of control like a jump to

elimination the next block in the control flow

dead code elimination d Remove block unreachable from the top block

reverse branches r Reverses a conditional branch when it branches

over a jump to eliminate the jump

block reordering i Removes a jump by reordering basic blocks when the

target of the jump has only a single predecessor

merge basic blocks m Merges two consecutive basic blocks when the

predecessor has no transfer of control and the

successor has only one predecessor

instruction selection s Combine instructions together when the combined

effect is a legal instruction

evaluation order o Reorder instructions within a basic block to calc.

determination expressions that require the most registers first

minimize loop jumps j Remove an unconditional jump at the end of a loop

or one that jumps into a loop, by replicating a

portion of the loop

dead assignment h Removes assignments where the assignment value is

elimination never used

register allocation k Replaces references to a variable within a

specific live range with a register

common subexpression c Eliminates fully redundant calculations

elimination

loop transformations l Performs loop-invariant code motion, recurrence

elimination, loop strength reduction, and induction

variable elimination on each loop ordered by loop

nesting level. Each of these transformations can

also be individually selected by the user.

strength reduction q Replaces an expensive instruction with one or more

cheaper ones

required, which means that they must be applied only once. Many of the other
phases shown in Figure 20 must be applied after register assignment and before
fix entry exit. Thus, we first set up the compiler to perform register assignment
on demand, i.e. before the first phase which needs it. We then apply the genetic
algorithm to find the best sequence of improving phases among fifteen candi-
date phases attempted by the batch compiler before fix entry exit. These fifteen
phases, along with a short description of each phase, are listed in Table II.

Another complication was the number of optimization phases to apply, since
it may be beneficial to perform a specific optimization phase multiple times.
When applying the genetic algorithm, one must specify the number of optimiza-
tion phases (genes) in each sequence (chromosome). It was not clear how to de-
termine an appropriate uniform limit since the number of attempted optimiza-
tion phases by the batch compiler could vary with each function. Therefore, we
first determine the number of successfully applied optimization phases (those

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 847

which affected one or more instructions in the compiled function) during batch
compilation. We then multiply the number of successful phases by 1.25 to ob-
tain the number of optimization phases in each sequence for that function. This
sequence length is a reasonable limit for each function and still gives an oppor-
tunity to successfully apply more optimization phases than the batch compiler
is able to accomplish. Note that this number was much less that the total phases
attempted by the batch compiler for each function in all of the experiments.

5.1 Batch Compilation Measures

Table III shows batch compilation information for each function in each of the
benchmark programs. The first column identifies the program and the number
of static instructions that is produced for the application after batch compila-
tion. The second column lists the functions in the corresponding benchmark
program. In four of the benchmarks, some functions were not executed, even
though we used the input data that was supplied with the benchmark. Since
such functions did not affect the dynamic measures, we have designated such
functions together as unexecuted funcs. The third and fourth columns show the
percentage of the program that each function represents for the dynamic and
static instruction count after applying the optimization sequence. Although the
batch compiler applies the same sequence of optimizations in the same order,
many optimizations may not produce any modifications in the program. Iter-
ation also causes some transformations to be repeatedly applied. Thus the se-
quence and number of optimizations successfully applied often differs between
functions. The fifth column shows the sequence and number of optimization
phases successfully applied by the batch compiler before fix entry exit. One
can see that the sequences of successful optimization phases can vary greatly
between functions in the same application. The final column shows the to-
tal number of optimization phases attempted. The number applied can vary
greatly depending upon the size and loop structure of the function. The num-
ber of attempted phases is also always significantly larger than the number of
successfully applied phases.

We also evaluated the impact that iteratively applying optimization phases
had on dynamic and static instruction counts. We obtained this measurement
by comparing the results of the default batch compilation to results obtained
without iteration, which uses the algorithm in Figure 20 with all the do-while’s
iterated only once. On average, we found that iteratively applying optimization
phases reduced dynamic instruction count by 9.51% over results obtained with-
out iteration. The impact on static counts was much less, with iteration only
improving results by 0.54%. This was expected, since the compiler has been
originally tuned for execution time alone. In fact, we were initially unsure if
any additional dynamic improvements could be obtained using a genetic algo-
rithm given that iteration may mitigate many phase-ordering problems.

5.2 Genetic Algorithm Optimization Measures

There are a number of parameters in a genetic algorithm that can be varied to
affect the performance of the generated code. The best algorithm for a particular

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

848 • P. Kulkarni et al.

Table III. Batch Optimization Measurements

Program % of % of Attempted

and Size Function Dyna. Stat. Applied Sequence and Length Phases

bitcount AR btbl bitcount 3.22 3.86 emsoskschs (10) 153

(496) BW btbl bitcount 3.05 3.66 emsoshsks (9) 82

bit count 13.29 3.25 beurmsohsksc (12) 152

bit shifter 37.41 3.86 bedrimsheksc (12) 169

bitcount 8.47 10.16 emsosksc (8) 81

main 13.05 19.51 bedrimsosjmhskshcls (19) 177

ntbl bitcnt 14.40 3.66 ermssksc (8) 150

ntbl bitcount 7.12 8.54 emsoskskskscsc (14) 183

unexecuted funcs 0.00 43.49 (10.3) 149.8

average (10.83) 146.94

dijkstra dequeue 0.85 10.40 bemsoksch (9) 148

(327) dijkstra 83.15 44.04 beudrimsojmsbkschls (19) 193

enqueue 15.81 12.84 beudrimsoksc (12) 152

main 0.06 22.94 bedrimsojmskshcls (17) 174

print path 0.01 8.26 ermsosksc (9) 81

qcount 0.12 1.53 emsks (5) 76

average (11.83) 137.33

fft CheckPointer 0.00 2.34 bemsks (6) 76

(728) IsPowerOfTwo 0.00 2.61 bermsohks (9) 79

NumberOfBits... 0.00 3.98 beurmsokslc (11) 154

ReverseBits 14.13 2.61 bedimsojmhsksclrlrlr (20) 173

fft float 55.88 38.87 beudrimsojmhskskschllhrsc 301

lrlrksclrlrlrs (39)

main 29.98 39.56 bedrimsogsjmhskschlhqscsc (25) 189

unexecuted funcs 0.00 10.03 (10) 151.00

average (17.14) 160.42

jpeg finish input ppm 0.01 0.04 emsh (4) 66

(5171) get raw row 48.35 0.48 eurmsohksc (10) 150

jinit read ppm 0.10 0.35 emsoksc (7) 148

main 43.41 3.96 beudrimsojmhshksclsc (20) 158

parse switches 0.51 11.26 beudrimsojmhsbekschsc (21) 192

pbm getc 5.12 0.81 beurmsohkschc (13) 151

read pbm integer 1.41 1.26 beudrimsoeksc (13) 167

select file type 0.27 2.07 beudrimsoekschc (15) 157

start input ppm 0.79 5.96 beudrimsosjmsekschlrlrlrsc (26) 196

write stdout 0.03 0.12 emsks (5) 79

unexecuted funcs 0.00 73.69 (14.04) 148.36

average (13.94) 148.04

sha main 0.00 13.71 bedrimsksclsc (13) 153

(372) sha final 0.00 10.75 ermsohsksc (10) 129

sha init 0.00 5.11 bedsojmhshsksclrlrlrs (21) 152

sha print 0.00 3.76 emshsksc (8) 80

sha stream 0.00 11.02 bedimsjmkslsc (13) 151

sha transform 99.51 44.62 bedimsojmshskshcllhsclhscscsc (29) 258

sha update 0.49 11.02 bedrimsojmhsksclc (17) 181

average (15.86) 159.87

string- init search 92.32 6.18 bedimsojmskshc (14) 101

search main 3.02 14.08 bedrimsogjmksclschsc (20) 179

(760) strsearch 4.66 7.37 bedrimsoseksclsc (16) 173

unexecuted funcs 0.00 71.44 (16.29) 169.14

average (16.40) 163.70

average (13.87) 151.69

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 849

application only comes from experience and continuous fine tuning based on
empirical results. In our experiments for this paper, we have used a very ba-
sic genetic algorithm loosely based on the one used by Cooper et al. [1999] in
their study to effectively reduce the code size for embedded applications. They
demonstrated that this algorithm gives much improved performance as com-
pared to random probing. In the future, we plan to experiment with different
parameters of the genetic algorithm and study their effects on program perfor-
mance. The population size (fixed number of sequences or chromosomes) is set
to 20 and each of these initial sequences is randomly initialized. Since some
phase orderings are not valid in the compiler, checks are made to only gener-
ate legal optimization phase sequences. The sequences in the population are
sorted by fitness values (using the dynamic and static counts according to the
weight factors). At each generation (time step), we remove the worst sequence
and three others from the lower (poorer performing) one-half of the population
chosen at random. Each of the removed sequences are replaced by randomly
selecting a pair of sequences from the upper one-half of the population and then
performing a crossover operation on that pair to generate two new sequences.
The crossover operation combines the lower one-half of one sequence with the
upper one-half of the other sequence and vice versa to create the new pair of
sequences. Fifteen chromosomes are then subjected to mutation (the best per-
forming sequence and the newly generated four sequences are not mutated).
During mutation, each gene (optimization phase) is replaced with a randomly
chosen one with a low probability. For this study, mutation occurs with a prob-
ability of 5% for a chromosome in the upper one-half of the population and a
probability of 10% in the lower one-half. All changes made by crossover and
mutation were checked for validity of the resulting sequences. This was done
for a set of 100 generations. Note that many of these parameters can be varied
interactively by the user during compilation, as shown in Figure 16.

Table IV shows the results that were obtained for each function by apply-
ing the genetic algorithm. For these experiments, we obtained the results for
three different criteria. For each function, the genetic algorithm was used to
perform a search for the best sequence of optimization phases, based on static
instruction count only, dynamic instruction count only, and 50% of each factor.
As in Table III, unexecuted funcs indicate those functions in the benchmark
that were never executed using the benchmark’s input data. We also indicate
that the effect on the dynamic instruction count was not applicable (N/A) for
these functions. The last six columns show the effect on static and dynamic
instruction counts, as compared to the batch compilation measures for each of
the three fitness criteria. The results that were expected to improve according
to the fitness criteria used are shown in boldface. The results indicate that in
spite of the inherent randomness of the genetic algorithm, the improvements
obtained do tend to lean more toward the particular fitness criteria being tuned.
For most functions, the genetic algorithm was able to find sequences that ei-
ther achieved the same result or improved the result as compared to the batch
compilation results.

Figures 21 and 22 show the overall effect of using the genetic algorithm for
each test program on the dynamic and static results, respectively. The results

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

850 • P. Kulkarni et al.

Table IV. Effect on Dynamic Instruction Counts and Space Using the Three Fitness Criteria

Optimize for Dy. Cnt. Optimize for Space Optimizing for Both

% Dyna. % Stat. % Dyna. % Stat. % Dyna. % Stat.

Program Functions Improv. Improv. Improv. Improv. Improv. Improv.

bitcount AR btbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
BW btbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
bit count −1.40 −11.11 −1.40 −11.11 −1.40 −11.11
bit shifter 0.40 7.14 0.40 7.14 0.40 7.14
bitcount 0.00 0.00 0.00 0.00 0.00 0.00
main 0.001 3.33 0.001 3.33 0.001 3.33
ntbl bitcnt 14.68 14.29 14.68 14.27 14.70 14.27
ntbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
unexecuted funcs N/A N/A N/A 1.60 N/A 0.54
total 2.72 2.00 2.72 1.81 2.72 1.81

dijkstra dequeue 0.00 3.85 0.00 3.85 0.00 3.85
dijkstra 4.20 6.73 −0.01 6.73 4.20 6.73
enqueue 0.00 0.00 0.00 0.00 0.00 0.00
main 49.89 5.09 38.53 10.17 49.88 5.09
print path 5.12 5.56 5.12 5.56 5.12 5.56
qcount 0.00 0.00 0.00 0.00 0.00 0.00
total 3.70 4.84 0.22 6.05 3.70 4.84

fft CheckPointer 33.33 7.69 16.67 7.69 33.33 7.69
IsPowerOfTwo 12.5 8.33 0.00 8.33 0.00 0.00
NumberOfBits... −23.92 0.00 −26.09 5.00 0.00 0.00
ReverseBits −1.27 7.69 −1.27 7.69 −1.27 7.69
fft float 11.17 2.29 2.45 3.27 10.71 4.90
main 3.63 5.10 −4.03 5.10 3.63 5.10
unexecuted funcs N/A N/A N/A 2.86 N/A 0.00
total 8.26 3.80 0.51 4.33 7.96 4.62

jpeg finish input ppm 0.00 0.00 0.00 0.00 0.00 0.00
get raw row 0.00 0.00 0.00 0.00 0.00 0.00
jinit read ppm 15.39 15.39 15.36 15.36 15.39 15.39
main 5.58 −11.00 −0.05 1.50 0.12 6.50
parse switches 6.29 1.78 0.70 0.79 −0.70 0.59
pbm getc 0.00 0.00 0.00 0.00 0.00 0.00
read pbm integer 5.00 −2.00 0.00 0.00 0.00 0.00
select file type 0.00 0.00 0.00 −1.61 0.00 0.00
start input ppm 2.68 3.57 2.70 3.57 2.70 3.57
write stdout 0.00 0.00 0.00 0.00 0.00 0.0
unexecuted funcs N/A N/A N/A 5.02 N/A 5.48
total 3.18 0.27 0.05 4.20 0.11 4.70

sha main 9.68 4.65 9.68 4.65 9.68 4.65
sha final 4.17 5.13 4.17 5.13 4.17 5.13
sha init 0.00 0.00 0.00 0.00 0.00 0.00
sha print 8.33 8.33 8.33 8.33 8.33 8.33
sha stream 0.61 8.83 −31.22 26.47 8.57 32.35
sha transform 0.70 10.18 −2.42 13.92 0.35 12.66
sha update 0.06 8.82 0.00 5.71 0.00 5.71
byte reverse 1.75 −41.67 0.52 10.42 0.52 10.42
total 0.90 1.30 −1.83 11.20 0.38 11.20

string init search 0.15 12.9 0.15 12.90 0.15 12.90
search main 0.002 6.15 −3.21 9.23 −3.21 9.23

strsearch 3.80 5.00 −0.62 5.00 −0.62 5.00
unexecuted funcs N/A N/A N/A 8.38 N/A 8.82
total 0.29 7.35 0.05 9.85 0.05 9.85

average 3.18 3.26 0.29 6.24 2.49 6.17

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 851

Fig. 21. Overall effect on dynamic instruction count.

Fig. 22. Overall effect on static instruction count.

show that the genetic algorithm was more effective at reducing the static in-
struction count than dynamic instruction count, which is not surprising since
the batch compiler was developed with the primary goal of improving the execu-
tion time of the generated code and not reducing code size. However, respectable

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

852 • P. Kulkarni et al.

dynamic improvements were still obtained despite having a baseline with a
batch compiler that iteratively applies optimization phases until no more im-
provements could be made. Note that many batch compilers do not iteratively
apply optimization phases and the use of a genetic algorithm to select opti-
mization phase sequences will have greater benefits as compared to such non-
iterative batch compilations. The results when optimizing for both dynamic
instruction counts and space showed that we were able to achieve close to the
same dynamic benefits when optimizing for dynamic instruction counts and
close to the same static benefits when optimizing for space. A user can set
the fitness criteria for a function to best improve the overall result. For in-
stance, small functions with high dynamic instruction counts can be optimized
for speed, functions with low dynamic instruction counts can be optimized pri-
marily for space (since these measurements are typically much faster as we do
not need to execute the code), and large functions with high dynamic counts
can be optimized for both space and speed. The optimization phase sequences
selected by the genetic algorithm for each function are shown in Table V. The
sequences shown are the ones that produced the best results for the specified
fitness criteria. Similar to the results in Table III, these sequences represent
the optimization phases successfully applied, as opposed to all optimization
phases attempted.

From these results it appears that strength reduction was rarely applied
since we used dynamic instruction counts instead of taking the latencies of
more expensive instructions, like integer multiplies, into account. It appears
that certain optimization phases enable other specific phases. For instance, in-
struction selection (s) often follows register allocation (k), since instructions can
often be combined after memory references are replaced by registers. Likewise,
dead assignment elimination (h) often follows common subexpression elimina-
tion (c), since a sequence of assignments often become useless when the use of
its result is replaced with a different register.

The results in Table V also show that functions within the same program
produce the best results with different optimization sequences. The functions
with fewer instructions typically had not only fewer successfully applied opti-
mization phases but also less variance in the sequences selected between the
different fitness criteria. Note that many sequences may produce the same re-
sult for a given function and the one shown is just the first sequence found that
produces the best result.

Finding the best sequence using the genetic algorithm for 100 generations
with a population size of twenty required a few hours for each function on an
ARM. The compilation time was less when optimizing for size only, since we
would only get dynamic instruction counts when the static instruction count
was less than or equal to the count found so far for the best sequence. In this
case we would use the dynamic instruction count as a secondary fitness value
to break ties. In general, we found that for most functions the search time was
dominated not by the compiler, but instead by assembling, linking, and execut-
ing the program. If we use size without obtaining a dynamic instruction count,
then we typically obtain results for each function in far less time. However, for
some of the bigger functions, with long sequence lengths, compilation time is

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 853

Table V. Optimization Phase Sequences Selected Using the Three Fitness Criteria

Program Functions Optimizing for Dy. Cnt. Optimizing for Space Optimizing for Both

bitcount AR btbl bitcount skes sksech chsksmd

BW btbl bitcount skes skes dskms

bit count crhdesikscmsr mshkurcdks humsrkhces

bit shifter bsekhdsricb erskrshcb skcrbsdhr

bitcount sdokms sodksm sdoks

main dsokhrslrsmkcs srohskescmlcr soeksmcslhrsksr

ntbl bitcnt crhsks csckrehs srchks

ntbl bitcount smkcse dmsks smkcse

dijkstra dequeue soerkscb sdksmcr smkrsce

dijkstra skerslbemucr rskiebsdcre sikscrbdjce

enqueue esbdimks idskebsd mbsudmiksmc

main idskelrsblmcd sksecbidemr skmdrlrslc

print path ersmkcs csksmcrc skcres

qcount smkc smkc chsm

fft CheckPointer scrkcdh skrms rcskhc

IsPowerOfTwo sboerhks seckimh bcrskhm

NumberOfBits... sbchekrumcl ibisrdklcs iskbmrsljd

ReverseBits dskmciebhsd skehrsrmc ecrskchsmr

fft float brdsuckschclrslhlscks eshkmrlslhursclrshks durshbcdkhksclrshlhsc

main bskdlerihkms sekhrlbrmsch dskbhdlmrirsh

jpeg finish input ppm ech ech ech

get raw row shekci shkurcm esuhkce

jinit read ppm cskdsc mskcs skcsm

main bdljmiskesbehr mesobhldksrcu sbodrmkshlcur

parse switches ishskmbdscrejs rshsurbksdcsre srhskusdrcbmsd

pbm getc dsokricbhe sokeurech soucrkmcdeh

read pbm integer ecbsksdchmrir smbkcrsedi soucrkcshr

select file type dsrkscimhbr sdkscriheb bsrkdmschi

start input ppm useokrbdrsircem rsikcedbsrdr rsikmcsedrrbm

write stdout cdmh cdmh smkc

sha main dsrbelrmkcs ibmrskdscs ibrskldcs

sha final dskhicrs sdkmcicsrh skhmcrecs

sha init sksmce esksc msksec

sha print schdkmc smeckch sdckhc

sha stream rslrkjs dsrksr clchesksbdu

sha transform seoblkcmdjclhslsmbic somrlkcdlhslcrsc recmqsklcshlcsr

sha update sdiorkcbhdcmjs sokecmrhcs sobkcrsirdcmh

string- init search sebkdsmcim birsksdcm esbksdmcie

search main slkrsdlcmh rmeslsksrc dmsbdklsrumc

strsearch bsksedurc skbserimced dbedskrisce

also significant on the ARM. We have developed techniques to avoid evaluating
redundant sequences to further speed up the genetic algorithm [Kulkarni et al.
2004]. In the future, we plan to enhance these techniques to further, reduce the
search time.

5.3 Simulation Results

In the previous section, we presented dynamic instruction counts as an indica-
tor of the run-time execution speed of the application. In an ideal world, where
each instruction takes the same number of cycles to execute, operating sys-
tem policies like context switches, processor, and machine characteristics, like

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

854 • P. Kulkarni et al.

pipelines and memory hierarchies, and the delay caused by I/O do not have
any noticeable effect on program execution time, this would indeed be true.
However, on most machines these features have a significant impact on the
execution time of any application. In fact, for an application dominated by I/O,
or for an application dominated by system calls and calls to other functions,
reducing only the number of dynamic instructions in the current function only
may have no noticeable effect on execution time. When combined with pipeline,
memory hierarchy, and OS effects, this might even result in an actual increase
in the execution time for some program executions.

As a result many people do not consider dynamic instruction counts to pro-
vide a reasonable indication of program performance. However, getting accu-
rate and reproducible execution times is nontrivial in the presence of OS and
complicated architectural features. To offset such effects, many users perform
multiple runs of the application and show the average execution time along
with the standard deviation. This method provides reasonably reproducible
measures for compute-intensive kernels. However, such a method also has a
tendency to break down for applications doing I/O. The small performance im-
provements we generally observe can also be easily dwarfed by the variations
in the execution times because of such external factors. While such individual
variations for each function may be fairly small, their cumulative effect may
be more substantial. Finally, the development environment is often different
from the target environment for embedded applications and actual executions
may not be possible. Such considerations lead us to use a simulator to get cycle
counts for the function being optimized, since these measures are repeatable.
Improvement in simulation cycle counts, while taking pipeline and memory
hierarchy effects into consideration, can serve as a reasonable estimation of
execution time improvement [Burger and Austin 1997].

As part of our experiments, we used the SimpleScalar toolset [Burger and
Austin 1997], which is widely used and acknowledged. The cycle-accurate ver-
sion of the ARM simulator computes cycle counts for the entire application.
This would include the cycle counts of all procedure and system calls made
from the function being optimized. Since that part of the code was not impacted
by the current optimization sequence, including cycle counts for those functions
was inappropriate. Thus, we modified the simulator to disregard cycle counts
when it leaves the current function and again start the counts upon reentering
the current function. However, the simulation of these other functions still in-
cludes the effect on various stores, like branch prediction buffers and caches.
Thus, we believe that other simulator idiosyncrasies like branch mispredictions
and cache misses have been reasonably addressed during this modification. Ob-
viously, simulation takes orders of magnitude more time than direct execution
(for the benchmark fft, over several executions, we observed that simulation
takes at least 5000 times as much time as direct execution). We also wanted
to show that the improvements using cycle counts are fairly consistent with
those using dynamic instruction counts. Thus, we have only evaluated the per-
formance for one benchmark, fft. We chose fft as it had shown the best overall
dynamic improvement (when optimizing for only dynamic instruction counts)
and because this benchmark has a good mix of both small and large functions.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 855

Table VI. Effect of Iterative Compilation on Dynamic Cycle Counts

Batch Iterative % Iterative

Functions Total Cycles Total Cycles Improvement

CheckPointer 15 11 26.67

IsPoverOfTwo 76 43 43.42

NumberOfBits... 78 74 5.13

ReverseBits 147523 147496 0.02

fft float 1444030 1234553 14.51

main 537587 421972 21.51

Total 2129309 1804149 15.27

Each function in this benchmark is only processed for 50 generations, as op-
posed to the 100 generations used for the above experiments. This was done as
we had observed during our prior experiments that most functions reach their
best sequence in the first 50 generations. All other experiment parameters have
been maintained the same. The simulation environment was configured for an
inorder ARM processor with issue, decode, and commit widths of 4, 16 KB L1
data cache, 16 KB L1 instruction cache, and 256 KB shared L2 cache. Table
VI shows the improvements in cycle counts given by the sequence found by the
genetic algorithm over the batch compiler measures.

The results in Table VI show that the improvements in dynamic cycle counts
are correlated to the improvements in dynamic instruction counts shown in
Table IV. The functions which actually degraded in Table IV show only marginal
improvements in Table VI. Overall, for the function studied, the improvements
in actual cycle counts are almost twice the improvements in dynamic instruction
counts, as compared to the batch compiler measures. The results may vary for
other functions. Note that these results only show the suitability of iterative
compilation to improve cycle counts and, in no way, suggests that our approach
is more beneficial to cycle counts than to dynamic instruction counts. Also,
in most cases, the actual sequences giving the best performance in Table VI
are different than the sequences achieving best performance for corresponding
functions in Table IV. The use of simulation versus dynamic instruction counts
is effectively a tradeoff between accuracy and search time.

6. COMBINING INTERACTIVE AND AUTOMATIC COMPILATION

A major advantage of interactive compilation is that the user can utilize his/her
knowledge about the application and machine domains to produce better code
than that produced automatically by the compiler. Automatic compilation is
still important as it greatly eases the task of performing manual changes later.
In this section, we illustrate the ability of VISTA to combine the benefits of both
interactive and automatic tuning on some section of code by providing a case
study that involves tuning a critical function extracted from a software that
controls a compact disc player (see Figure 23).

For this particular function, the application programmer applies his knowl-
edge of the problem domain and uses 8-bit data variables, when possible, to
reduce the memory footprint of the application. For example, the programmer
knows that the loop-induction variables will not exceed 8 bits and declares the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

856 • P. Kulkarni et al.

Fig. 23. C source.

Table VII. Summary of Case Study

Compilation Method Code Size Instructions in Critical Loop

batch compiler 45 5

batch plus hand edits 42 4

VISTA’s GA 42 5

GA plus hand edits 39 4

interactive GA and hand edits 39 4

induction variables to be 8-bit chars. If the optimizer determines it is best to
leave these variables on the stack, memory is conserved. However, if the com-
piler promotes these variables to 32-bit registers, it must preserve the program
semantics, which do not allow the value to become larger than 8 bits. Con-
sequently, the compiler inserts truncation instructions (and reg, reg, #255)
when a register holding an 8-bit value is modified. In the example, the three
increments of the three induction variables incur this truncation overhead. One
might claim that the compiler could remove the extra operations, and this is
partially true. However, the truncation operation for the induction variable cnt
at line 5 cannot be removed, since the loop bounds are unknown at compile time.

To illustrate the effectiveness of VISTA’s compilation techniques, the sample
program was compiled using five different approaches (see Table VII). First,
the program was compiled using the batch compiler. The batch compiler gener-
ated 45 instructions for the function and five instructions for the critical loop
(line 15). If the resulting code does not meet the specified size and performance
constraints, one option the programmer has is to hand edit the output of the
batch compiler. Removing the truncation instructions manually, the program-
mer can save three instructions for the function and one in the critical loop (see
row two of Table VII).

Using VISTA’s genetic algorithm to apply all optimizations (200 generations,
50% size, and 50% dynamic instruction counts) yields better code than the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 857

Fig. 24. Loop produced by GA plus hand edits.

Fig. 25. Loop produced from the batch compiler.

batch compiler, 42 instructions overall with 5 instructions in the critical loop.
However, applying the same hand edits that were applied to batch compiler’s
output yields a function with 39 instructions and 4 instructions in the critical
loop. This result is a significant savings over the initial batch version.

It may be possible to do even better. By examining the sequence of opti-
mizations VISTA’s genetic algorithm applies and their effect on the resulting
code, the application programmer can determine that register allocation in-
troduces the truncation-related inefficiencies in the program. By discarding
optimizations after register allocation, applying the hand edits, and rerunning
the GA, VISTA may be able to produce even better assembly than doing a final
edit of the output of the genetic algorithm. In this particular case study, no
further improvements are gained, but it is easy to believe that other functions
being tuned may see further improvement. Table VII summarizes the results
of the case study. Figures 24 and 25 show the best and worst assembly for our
critical loop (line 15 in the source) obtained in Table VII.

One might claim that hand edits would be unnecessary if the programmer
had declared the induction variables to be type int. Although true for our ex-
ample, modifying the source program is not always possible. In a more complex
function, induction variables cannot always be assigned to a register for the
entire execution of the function. If an induction variable needs to reside on
the stack for a portion of the program, either hand edits are necessary or the
compiler will waste stack memory.

7. IMPLEMENTATION ISSUES

In this section, we discuss the implementation of certain features in VISTA.

7.1 Correct Button Status in the Viewer

In the VISTA user interface the only buttons active at any point during the
compilation process are those that can be legally selected by the user. The rest
of the buttons are grayed out. As the user selects optimization phases to be ap-
plied, the sets of selectable and disabled buttons should change. For example,
selecting register assignment enables many other optimizations dependent on
register assignment, like register allocation and code motion. Clicking fill de-
lay slots grays out most other optimizations, which are not legal after this

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

858 • P. Kulkarni et al.

phase. The control statements like the if, while, select best from, and select
best combination constructs complicate the act of determining which buttons
are active during and after applying each construct. This problem is further
complicated by the feature of undoing previously applied transformations, sup-
ported in VISTA, since this requires storing detailed button status information
at many different points with the ability of getting back to a previous button
state when changes are undone. The interaction of all these factors made the
task of determining the correct button status a nontrivial task requiring metic-
ulous and careful handling.

7.2 Proper Handling of Interactive Compilation

The original VPO compiler was batch-oriented and had a fixed order in which
optimizations and the various static program analysis required for each op-
timization were done. To modify the compiler for interactive compilation, we
carefully isolated the analysis required for each optimization. At places, the
analysis required was done as part of the optimization itself. In such cases, we
modularized the code to separate the analysis part from the actual optimization
part. It was also impractical to do all the required analysis before each opti-
mization phase, as some of those might have been performed for some previous
phase and would still be legal at the current compilation point. Thus, we also
identified the analysis invalidated by each optimization phase. Only the static
program analysis not previously performed, or invalidated by some previous
optimization must be applied before each optimization phase.

In VISTA, there are two separate program states maintained, one at the com-
piler and another at the viewer. It is important that the two remain consistent
at every point during the compilation session. The user only views the program
order and information in the viewer. If this information does not reflect the cor-
rect status in the compiler, then the user would be misled and the whole point of
interactively tuning the program would be lost. Thus, we made sure that each
change made in the compiler is also sent to the viewer. We also implemented a
sanity check, that compares the two program states for consistency and informs
the user of inconsistencies.

7.3 Maintaining the Transformation List

When transformations are undone, the current program state in the compiler
is discarded and a fresh program state with no optimizations is reread. Trans-
formations are then applied to this program state from a transformation list,
which is a linked list of all the changes previously applied. The changes are
only applied up to a certain point so that all the changes not applied are lost or
undone. Note that the original changes to the program are made by calling the
actual optimization routines, while after undoing, the changes are reapplied
by reading from a list. Also, at the end of the current compilation session, the
transformation list is saved to a file, which is read back in and reapplied at the
start of the next session.

We maintain a list of all previous transformations in VISTA, rather than just
the optimization phases applied, for three reasons. First, maintaining all the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 859

changes in a separate list makes it possible to undo a part of some optimization.
Second, the implementation of optimization routines may be changed by com-
piler writers in between two sessions. As the changes are read from a file, before
the next session, the user is able to see the program in the same state as it was
at the end of the previous session, irrespective of whether the implementation
of the actual optimization routine has been changed. Third, this was needed
to correctly reapply hand-specified transformations, since each hand-specified
transform is an individual customized change by the user, and so does not make
the same change each time. Thus, we need the added granularity of saving each
individual change, instead of only saving the list of optimization phases. Saving
all the changes in the transformation list and reapplying them later to produce
the same effect took much time and careful design and implementation.

7.4 Batch Mode for Experiments

In an interactive environment, the user is expected to perform all tasks using
keyboard and mouse clicks. While this is reasonable during normal compila-
tion sessions, it is impractical while debugging and conducting experiments. To
simplify and expedite the task of performing experiments, a batch execution
mode is included in VISTA. It is possible in the viewer to save all the button
clicks to a file. This file can be called, either from the command line or from
the user interface to reexecute the same set of commands. The format of the
file is simple enough to even write manually. The experiments involving ge-
netic algorithms take a lot of time and usually run overnight. The ability to use
batch compilation gave the authors the option to automate the entire process
by writing scripts. This saved a lot of time and unnecessary manual labor.

7.5 Interrupting/Restarting Iterative Measurements

Program improvement using iterative compilation is a time-consuming process.
Many functions typically require several hours to evaluate all the sequences
during the genetic algorithm. In such a scenario, if the compiler breaks down or
the machine crashes in the middle of the algorithm, then valuable time is lost,
if we need to restart the algorithm from the beginning. To save time, it would
be nice if one could resolve the problem and then restart the algorithm from the
point it had crashed. This feature is indispensable when obtaining simulator
cycle counts since the compilation time soars from hours to days. This feature is
now built in to VISTA. An important consideration was maintaining the states
of the hashtables, so that the same number of sequences would still be detected
as redundant.

8. FUTURE WORK

There is much future work to be considered on the topic of selecting effec-
tive optimization sequences. We currently use a very simple genetic algo-
rithm to search for effective sequences. Changing the genetic algorithm can
give vastly different results. The crossover and mutation operations can be
changed. Presently, even with this algorithm, we only obtained measurements
for 100 generations and a optimization sequence that is 1.25 times the length

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

860 • P. Kulkarni et al.

of successfully applied batch optimization sequence. It would be interesting to
see how performance improves as the number of generations and the sequence
length varies. In addition, the set of candidate optimization phases could be
extended. Finally, the set of benchmarks could be increased.

Finding effective optimization sequences using the genetic algorithm is a
time consuming process. This problem is even more severe on embedded pro-
cessors, because most of these systems only provide execution time measure-
ments via simulation on a host processor. The overhead of simulating programs
to obtain speed performance information may be problematic when performing
large searches using a genetic algorithm, which would likely require thousands
of simulations. Embedded processors usually also have slower clock speeds
than general-purpose processors. We are currently exploring ways to reduce the
search time by evolving approaches to find more redundant sequences, which
would not need execution or simulation. Also worth researching are ways to
find the best sequence earlier in the search process, so that it would be possible
to run the search for fewer generations.

All of the experiments in our study involved selecting optimization-phase se-
quences for entire functions. Since we also have the ability in VISTA to limit the
scope of an optimization phase to a set of basic blocks, it would be interesting to
perform genetic algorithm searches for different regions of code within a func-
tion. For frequently executed regions, we could attempt to improve speed and
for infrequently executed regions we could attempt to improve space. Selecting
sequences for regions of code may result in the best measures when both speed
and size are considered. It would be even more interesting if we could automate
the process of limiting the scope, based on program profile measurements.

In the future we also plan to work on reducing the time required for the sim-
ulations. In addition to the cycle accurate simulator, the SimpleScalar toolset
also includes a fast functional simulator, which only measures the dynamic in-
struction count. Since we only measure cycles in the current function, we could
evaluate that part of the application with the slow-cycle simulator. The rest of
the program can be simulated using the fast-functional simulator. We antici-
pate this would result in only a small inaccuracy compared to using the cycle
simulator for the entire simulation. We are in the process of integrating the
two simulators to allow switching back and forth between the slow and the fast
modes.

9. CONCLUSIONS

We have described a new code improvement paradigm that changes the
role of low-level code improvers. This new approach can help achieve the
cost/performance tradeoffs that are needed for tuning embedded applications.
By adding interaction to the code improvement process, the user can gain an
understanding of code improvement tradeoffs by examining the low-level pro-
gram representation, directing the order of code improvement phases, applying
user-specified code transformations, and visualizing the impact on performance.

The ability to automatically provide feedback information after each success-
fully applied optimization phase allows the user to gauge the progress when

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 861

tuning an application. The structured constructs allow the conditional or itera-
tive application of optimization phases and, in essence, provides an optimization
phase programming language. We have also provided constructs that automat-
ically select optimization phase sequences based on specified fitness criteria. A
user can enter specific sequences and the compiler chooses the sequence that
produces the best result. A user can also specify a set of phases, along with op-
tions for exploring the search space of possible sequences. The user is provided
with feedback describing the progress of the search and may abort the search
and accept the best sequence found at that point.

We have also performed a number of experiments to illustrate the effec-
tiveness of using a genetic algorithm to search for efficient sequences of opti-
mization phases. We found that significantly different sequences are often best
for each function even within the same program or module. However, we also
found that certain optimization phases appear to enable other specific phases.
We showed that the benefits can differ, depending on the fitness criteria, and
that it is possible to use fitness criteria that takes both speed and size into
account. While we demonstrated that iteratively applying optimization phases
until no additional improvements are found in a batch compilation can miti-
gate many phase-ordering problems with regard to dynamic instruction count,
we found that dynamic improvements could still be obtained from this aggres-
sive baseline using a genetic algorithm to search for effective optimization phase
sequences.

An environment that allows a user to easily tune the sequence of optimiza-
tion phases for each function in an embedded application can be very beneficial.
This system can be used by embedded systems developers to tune application
code, by compiler writers to prototype, debug, and evaluate proposed code trans-
formations, and by instructors to illustrate code transformations.

ACKNOWLEDGMENTS

Clint Whaley and Bill Kreahling provided helpful suggestions that improved
the quality of the paper. We also appreciate the helpful comments given by Erik
Goulding, who reviewed an intermediate version of the paper.

REFERENCES

ANDREWS, K., HENRY, R., AND YAMAMOTO, W. 1988. Design and implementation of the UW illus-

trated compiler. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. 105–114.

APPELBE, B., SMITH, K., AND MCDOWELL, C. 1989. Start/pat: A parallel—programming toolkit. In

IEEE Software . 4, 6, 29–40.

BENITEZ, M. E. AND DAVIDSON, J. W. 1988. A portable global optimizer and linker. In Proceedings of
the SIGPLAN’88 conference on Programming Language Design and Implementation. ACM Press,

New York. 329–338.

BENITEZ, M. E. AND DAVIDSON, J. W. 1994. The advantages of machine-dependent global opti-

mization. In Proceedings of the 1994 International Conference on Programming Languages and
Architectures. 105–124.

BOYD, M. AND WHALLEY, D. 1993. Isolation and analysis of optimization errors. In

ACM SIGPLAN Conference on Programming Language Design and Implementation. 26–

35.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

862 • P. Kulkarni et al.

BOYD, M. AND WHALLEY, D. 1995. Graphical visualization of compiler optimizations. Programming
Languages 3, 69–94.

BROWNE, J., SRIDHARAN, K., KIALL, J., DENTON, C., AND EVENTOFF, W. 1990. Parallel structuring of

real-time simulation programs. In COMPCON Spring ’90: Thirty-Fifth IEEE Computer Society
International Conference. 580–584.

BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, version 2.0. SIGARCH Comput.
Archit. News 25, 3, 13–25.

CHOW, K. AND WU, Y. 1999. Feedback-directed selection and characterization of compiler opti-

mizations. In Workshop on Feedback-Directed Optimization.

COOPER, K. D., SCHIELKE, P. J., AND SUBRAMANIAN, D. 1999. Optimizing for reduced code space

using genetic algorithms. In Proceedings of the ACM SIGPLAN 1999 Workshop on Languages,
Compilers, and Tools for Embedded Systems. ACM Press, New York. 1–9.

DAVIDSON, J. W. AND WHALLEY, D. B. 1989. Quick compilers using peephole optimization.

Software—Practice and Experience 19, 1, 79–97.

DAVIDSON, J. W. AND WHALLEY, D. B. 1991. A design environment for addressing architecture and

compiler interactions. Microprocessors and Microsystems 15, 9 (Nov.), 459–472.

DOW, C.-R., CHANG, S.-K., AND SOFFA, M. L. 1992. A visualization system for parallelizing pro-

grams. In Supercomputing. 194–203.

GRANLUND, T. AND KENNER, R. 1992. Eliminating branches using a superoptimizer and the GNU

C compiler. In Proceedings of the SIGPLAN ’92 Conference on Programming Language Design
and Implementation. 341–352.

GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN, T. M., MUDGE, T., AND BROWN, R. B. 2001.

MiBench: A free, commercially representative embedded benchmark suite. IEEE 4th Annual
Workshop on Workload Characterization.

HARVEY, B. AND TYSON, G. 1996. Graphical user interface for compiler optimizations with Simple-

SUIF. Technical Report UCR-CS-96-5, Department of Computer Science, University of California

Riverside, Riverside, CA.

KISUKI, T., KNIJNENBURG, P. M. W., AND O’BOYLE, M. F. P. 2000. Combined selection of tile sizes and

unroll factors using iterative compilation. In IEEE PACT. 237–248.

KNIJNENBURG, P., KISUKI, T., GALLIVAN, K., , AND O’BOYLE, M. 2000. The effect of cache models on

iterative compilation for combined tiling and unrolling. In Proc. FDDO-3. 31–40.

KULKARNI, P., ZHAO, W., MOON, H., CHO, K., WHALLEY, D., DAVIDSON, J., BAILEY, M., PAEK, Y., AND GALLIVAN,

K. 2003. Finding effective optimization phase sequences. In Proceedings of the 2003 ACM
SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems. ACM Press,

New York. 12–23.

KULKARNI, P., HINES, S., HISER, J., WHALLEY, D., DAVIDSON, J., AND JONES, D. 2004. Fast searches for

effective optimization phase sequences. In Proceedings of the ACM SIGPLAN ’04 Conference on
Programming Language Design and Implementation.

LIAO, S.-W., DIWAN, A., ROBERT P. BOSCH, J., GHULOUM, A., AND LAM, M. S. 1999. SUIF Explorer:

An interactive and interprocedural parallelizer. In Proceedings of the seventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. ACM Press, New York. 37–48.

MARWEDEL, P. AND GOOSSENS, G. 1995. Code Generation for Embedded Processors. Kluwer Aca-

demic Publishers, Boston, MA.

MASSALIN, H. 1987. Superoptimizer: A look at the smallest program. In Proceedings of the 2nd
International Conference on Architectural Support for Programming Languages and Operating
Systems. 122–126.

NISBET, A. 1998. Genetic algorithm optimized parallelization. In Workshop on Profile and Feed-
back Directed Compilation.

NOVACK, S. AND NICOLAU, A. 1993. VISTA: The visual interface for scheduling transformations

and analysis. In Languages and Compilers for Parallel Computing. 449–460.

POLYCHRONOPOULOS, C., GIRKAR, M., HAGHIGHAT, M., LEE, C., LEUNG, B., AND SCHOUTEN, D. 1989.

Parafrase–2: An environment for parallelizing, partitioning, and scheduling programs on mul-

tiprocessors. In International Journal of High Speed Computing. 1, vol. 1. Pennsylvania State

University Press, 39–48.

VEGDAHL, S. R. 1982. Phase coupling and constant generation in an optimizing microcode com-

piler. In Proceedings of the Fifteenth Annual Workshop on Microprogramming. 125–133.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

VISTA: VPO Interactive System for Tuning Applications • 863

WHALEY, R., PETITET, A., AND DONGARRA, J. 2001. Automated empirical optimization of software

and the ATLAS project. In Parallel Computing. 1-2, vol. 27. 3–25.

WHITFIELD, D. L. AND SOFFA, M. L. 1997. An approach for exploring code improving transforma-

tions. ACM Transactions on Programming Languages and Systems (TOPLAS) 19, 6, 1053–1084.

ZHAO, W., CAI, B., WHALLEY, D., BAILEY, M. W., VAN ENGELEN, R., YUAN, X., HISER, J. D., DAVIDSON, J. W.,

GALLIVAN, K., AND JONES, D. L. 2002. VISTA: a system for interactive code improvement. In

Proceedings of the Joint Conference on Languages, Compilers and Tools for Embedded Systems.

ACM Press, New York. 155–164.

ZHAO, W., KULKARNI, P., WHALLEY, D., HEALY, C., MUELLER, F., AND UH, G.-R. 2004. Tuning the wcet

of embedded applications. In 10th IEEE Real-Time and Embedded Technology and Applications
Symposium.

Received April 2004; revised May 2005 and January 2006; accepted February 2006

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.

