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Abstract. Recent emergence of systems with multiple performance and
capacity tiers of memory invites a fresh consideration of strategies for
optimal placement of data into the various tiers. This work explores a
variety of cross-layer strategies for managing application data in multi-
tiered memory. We propose new profiling techniques based on the au-
tomatic classification of program allocation sites, with the goal of using
those classifications to guide memory tier assignments.We evaluate our
approach with different profiling inputs and application strategies, and
show that it outperforms other state-of-the-art management techniques.

1 Introduction

Systems with multiple tiers of memory that are directly accessible via processor-
memory buses are emerging. These tiers include (i) a limited capacity high-
performance MCDRAM or HBM tier, (ii) a traditional DDR3/4 DRAM tier,
and 3) a large capacity (∼terabytes) tier [1] whose performance may lag current
DDR technologies by only a small factor. For a virtuous blend of capacity and
performance from the multiple tiers, memory allocation needs to match different
categories of data to the performance characteristics of the tiers into which they
are placed, within the capacity constraints of each tier.

One approach is to exercise the faster, lower capacity tier(s) as a large,
hardware-managed cache. While this approach has the immediate advantage
of being backwards compatible and software transparent, it is not flexible and
imposes unpalatable architectural costs that are difficult to scale in line with ca-
pacity increases [2]. An alternative approach is for application and-or operating
system (OS) software to assign data into different memory tiers with facilities
to allow migration of data between those tiers as needed. Monitoring of per-
page accesses has been proposed recently [3, 4] with the goal of letting an OS
(re)assign tiers. While this approach preserves application transparency, it is
strictly reactive and relies on non-standard hardware. A third approach is anno-
tation of source code [5–7] by which developers take control of, and coordinate
tier assignments at the finer-grain of program objects. This approach requires
expert knowledge, manual modifications to source code, and risks making such
guidance stale as programs and configurations evolve.



Our work aims to combine the power and control of profile-guided and
application-directed management with the transparency of OS-based approaches
without relying on non-standard hardware. Allocation code paths are grouped
into various sets on the basis of prior profiling, and the sets are preference-tied
to different tiers in the underlying memory hardware. During execution, these
preferences guide the placement of data. This approach does not require source
code modifications and permits adapting to memory usage guidance for different
program inputs and alternating phases of execution. In this paper, we describe
the design and implementation of our automated application guidance frame-
work, and then compare its performance to other hardware- and software-based
hybrid memory management strategies using SPEC CPU2006 as workload.

This work makes the following important contributions: 1) We propose, de-
sign, implement and evaluate a multi-tiered allocation strategy that uses prior
information to group sites for automatic tier selection, 2) We build an open-
source simulation-based framework for instrumenting and evaluating it, includ-
ing a custom Pin binary instrumentation tool [8], as well as extensions to the
jemalloc arena allocator [9] and to Ramulator [10], 3) We show that a guidance-
based approach has the potential, even when guidance has some inaccuracy, to
outperform precise information based reactive placement of data, and 4) We find
that adapting to individual program phases has limited benefit, suggesting that
a simpler, static policy based on prior profiling is likely to be good enough.

2 Related Work

New frameworks, techniques, and strategies for managing heterogeneous memory
systems [5, 3, 7, 6, 11–13,4, 14] have emerged recently. Of these, several works [7,
6, 13, 14] employ profiling to find frequently accessed data structures, and trans-
late their findings into tiering hints that can be inserted into program source
code. Our approach combines runtime allocation site detection with a custom
arena allocator to enable memory usage guidance without altering source, and is
the first to explore impacts from variation in profiling inputs and from adapting
tiering to individual program phases.

Cross-layer management techniques have also been used to optimize data
placement across NUMA or other parts of the (single-tier) memory hierarchy [15–
18]. Some of these works [17, 18] rely on program profiling and analysis to guide
placement decisions. While this work employs similar techniques, the goals, ap-
plication, and effects of our proposed management strategies are very different.

3 Feedback-Driven Data Placement for Hybrid Memories

Our approach uses a capacity normalized access metric to generate guidance:
informally, it seeks to favor placing smaller and hotter objects for allocation
into a higher performance tier. This metric is generated on the basis of prior
profiling, and is associated with the code paths (also called allocation sites4) by

4 This allocation site-based strategy for optimizing accesses-per-byte is designed to
obviate tracing or sampling on an object-by-object basis.



which objects are allocated. Since the number of allocation sites can be much
larger than the number of memory tiers, allocation sites are further grouped into
sets (as described shortly in Sec. 3.2) and this partitioning guides the placements
at run time.5 To bound evaluation scope, each application is assumed to execute
within a container with fixed upper tier capacity.

3.1 Allocation Site Partitioning: We propose two simple alternatives for
partitioning program sites into groups. The first alternative is called knapsack.
Inspired by [17], it uses a classical 0/1 knapsack formulation to produce group-
ings that collectively fit into a knapsack (of any capacity by which we want to
represent the upper tier) while maximizing aggregate access into it. The second
alternative is called hotset. It avoids a weakness of knapsack, namely, that knap-
sack may exclude an allocation site based on the raw capacity of that site, even
if allocations from it exhibit a high access count. In the hotset approach, we sort
allocation sites by accesses-per-byte scores and then select those with highest
scores until we exceed an alternate soft capacity. The limiting capacity for in-
ducing the hot-cold split in each case is taken as a fraction of an applications
total dynamic footprint, D. Thus, if this fraction is 12.5%, then the knapsack
approach selects allocation sites such that the aggregate size is just below D/8,
while the hotset approaches stops after D/8 is crossed.

3.2 Profile-Guided Management: During a guided run, the application ad-
dress space is divided into arenas, each of which is page-aligned and therefore
can be independently assigned to a memory tier. Using a system interface, such
as the NUMA API or memory coloring [16], the application or runtime can in-
struct the OS memory manager about preferred arena-to-tier assignments. Our
framework supports two schemes for using prior guidance: static arena allocation
and per-phase arena allocation. In the static scheme, the application creates two
arenas: hot and cold, and guides allocations from the hotset/knapsack partitions
into the hot (and all else into the cold) arena, with the guidance remaining fixed
across the run. The per-phase scheme is designed to adjust with changes of be-
havior during the run. It uses per-phase guidance for grouping sites into arenas
such that phase by phase, an arena can (optionally) swap tiers, but may never
be in more than one tier at a time.

Figure 1 illustrates the per-phase scheme. Program execution is divided into
phases. For N phases, an N bit vector per allocation site describes the sites
hot/cold classification phase by phase. For instance, if a site has a vector ‘10100’,
the vector indicates it is hot in phases 3 and 5, and cold in phases 1, 2, and 4,
across 5 phases. The total number of unique vectors determines the total num-
ber of arenas created at application startup time. During execution, sites with
matching bit vectors allocate data to the same arena. Upon a phase transition6,

5 The primary goal of this work is to study the potential benefits of automated applica-
tion guidance. While our simulation-based evaluation neglects overhead of profiling,
Sec. 4 covers how in practice, allocation site based guidance can be generated (either
online or offline) and applied in direct execution with negligible overhead.

6 Phase transitions may be detected online by several means, including through models
of instruction and data access behaviors, hardware event ratios, etc.
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Fig. 1. Per-phase strategy for managing hybrid memories. (a) In phase 1, A1 and A2
correspond to hot allocation sites and are originally mapped to the HBM tier. (b) On
transition to phase 4, the guidance indicates A3 will become hot, and A1 is now cold.
The application communicates this guidance to the lower-level memory manager, which
may now attempt to remap the data in A1 to DDR and the data in A3 to HBM.

the OS adjusts the hot/cold tier classification of each arena and migrates data
accordingly. This arena-based coarse-grained remapping of tiers to virtual ranges
permits efficiently amortized and application transparent migration.

4 Implementation Details

4.1 AssociatingMemory Usage Profiles with Program Allocation Sites:
To collect access profiles, we instrumented using the Pin framework (v. 2.14) [8].
Our custom Pintool7 intercepts all of the applications allocation and dealloca-
tion requests (specifically, all calls to malloc, calloc, realloc, and free). The
arguments to these routines are then used to build a shadow structure mapping
each allocated region to its allocation site with context. The tool captures the
estimated capacity (in peak resident set size, accounting for dynamic allocations
and unmaps) allocated at each allocation site; and, it computes an estimated ag-
gregate post-cache memory access counts over those allocations by filtering the
accessed addresses through an in-band cache simulator. At the end of application
execution, the tool outputs the allocation site profiles to a file.

4.2 Hybrid Memory Management: Evaluation requires two major compo-
nents: 1) an allocator that uses the above profiles to partition allocation sites
into arenas, and 2) a manager that models the effect of, and which applies,
guidance-based management strategies.

4.2.1 Arena Allocation: We employ shared library preloading to dynamically
link each evaluation run to a custom allocator that overrides allocation requests
with our own arena allocation routines based off of jemalloc [9]. Some calls to
realloc may request a different arena from that used for the original data, and
for those, the overriding call transfers the resized data into the new arena.

7 For direct execution, an alternative to Pin based instrumentation is to use LLVM
inserted wrappers (as described in Sec. 4.2.1), and to sample access rates through
hardware-based counters (e.g., using the PEBS facility on modern Intel processors).



Table 1. Benchmarks with usage statistics.

Benchmark MB Sites Allocs
LLCPKI

512 KB 8 MB

bzip2 853 10 174 15.43 -
gcc 901 19.6K 28.46M 32.18 -

mcf 1,683 5 6 95.26 46.17
milc 711 56 6.52M 47.77 23.72

cactusADM 668 5.3K 0.13M 15.46 5.07
leslie3d 146 101 0.31M 65.23 22.59
gobmk 39 175 0.66M 4.27 -

soplex 604 363 0.31M 57.30 22.07
hmmer 45 188 2.47M 46.31 -

GemsFDTD 884 509 0.75M 31.42 17.26
libquantum 105 10 180 40.95 29.06

h264ref 83 260 0.18M 7.39 -
lbm 415 4 5 66.72 38.75
sphinx3 72 281 14.22M 18.18 -

Average 514 1.9K 3.39M 38.85 25.59
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Fig. 2. Framework for simulating hy-
brid memory management.

To identify allocation sites during execution, our evaluation framework cur-
rently collects up to seven layers of call stack context using the backtrace rou-
tine from the C standard library. While straightforward and easy to implement,
this approach can incur substantial overhead if there are too many allocation re-
quests. In a set of native execution runs on an Intel Xeon-based server machine,
we found that using backtrace for context detection incurs an average overhead
of 3.6% for the 14 benchmarks listed in Table 1, with a maximum slowdown of
more than 40% for gcc.

To eliminate these overheads, we developed a static compilation pass in the
LLVM compiler infrastructure [19] that automatically creates a separate code
path for each hot call site and its context. Preliminary tests show that this static
pass completely eliminates the overhead of context detection for our benchmark
set, and is still able to identify the same set of hot data as the backtrace

technique.8 Since the primary goal of this work is to study the potential benefits
of automated application guidance during hybrid memory management, we leave
full evaluation of the accuracy and performance of static context detection as
future work. The simulation-based experiments in Sec. 6 assume no additional
overhead for context detection.

4.2.2 Simulation of Hybrid Memory Architectures: Our framework for modeling
the behavior and performance of hybrid memory systems adopts and extends
the Ramulator DRAM simulator [10]. Ramulator is a trace-based simulator that
provides cycle accurate performance models for a variety of DRAM standards,
including: conventional (DDR3/4), low-power (LPDDR3/4), graphics (GDDR5),
and die-stacked (HBM, WIO2) memories, as well as a number of other academic
and emerging memory technologies. For this work, we modified Ramulator’s
memory controller to support multiple tiers with distinct DRAM standards si-
multaneously. This extended simulator maintains a map of which physical pages
correspond to each tier, and sends each request to the appropriate DRAM model

8 Other, more compact encodings of the allocation sites may also be employed – e.g.,
a low-overhead approximate method in direct execution is to use a hash over (call-
return) last branch records (LBR) recorded by a processor’s monitoring unit.



depending on its address. It also accepts an alternative instruction trace format
with annotations describing the preferred tier of each memory request. When a
page is first accessed, the simulator uses the annotations to map the page to the
appropriate tier, depending on the current policy and system configuration.

Figure 2 illustrates our approach. At startup, the application connects to
a custom Pintool, which filters each load/store through an online cache model
and emits a post-cache instruction trace into the extended Ramulator. At the
same time, the custom allocator automatically partitions the allocation sites into
arenas according to the pre-computed guidance files, and the Pintool inserts the
preferred tier into the trace. Ramulator interprets the trace, one request at a
time, mapping new data to the appropriate memory tier, until completion.

5 Experimental Framework

5.1 Simulation Platform: Ramulators execution model includes a 3.2 GHz,
4-wide issue CPU with 128-entry re-order buffer, and assumes one cycle for
each non-memory instruction. To estimate the impact of various hybrid memory
strategies we simulated with two processor cache configurations: 1) a single-level,
512 KB, 32-way cache, which would be suitable for embedded devices, and 2) a
two-level cache with 32 KB, 32-way L1, and an 8MB, 16-way L2, which is more
typical for desktop and server machines.

We added logic to Ramulator for simulating a hybrid memory architecture
with two tiers: a high-performance tier with configurable, limited capacity, and a
slower tier with no capacity bound. We experimented with a range of capacities
for the upper tier, and opted to use 12.5% of peak resident set size (RSS) (i.e., 1:8
ratio across tiers) in our evaluations. The choice of 1:8 reasonably approximates
the expected capacity ratios of typical (current [20] and expected [1]) hybrid
memory systems.

All experiments use the (unmodified) HBM standard included with Ramu-
lator to simulate the fast tier, and use either the DDR3 or DDR4 standard to
simulate the slow tier. Detailed statistics about each standard, including rate,
timing, bus width, and bandwidth, are listed in Table 4 of [10]. Although we
evaluate all of the proposed strategies with an HBM-DDR4 configuration, our
detailed experimental results use HBM-DDR3 to model a wider asymmetry be-
tween the upper and lower tiers. A summary of our performance results for both
platform configurations is presented in Sec. 6.5.

Some of our studies include migration of data between memory tiers. To
model the cost of data movement, we folded penalties for migration into our
simulations experiments as described in [3], which are as follows. Page faults
and TLB shootdowns incur fixed penalties of 5µs and 3µs, respectively. The
experimental framework further adds execution time for data migrations, which
is a function of the bandwidth of the lower tier.

For a faithful reflection of the effects that guidance-based strategies have on
allocation behavior and heap layout, each experiment executes the entire pro-
gram run from start to finish. However, detailed cache and memory simulations
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guidance strategies relative to DDR3-only.

are limited to only a representative portion of the run using Simpoints [21]. Un-
less stated otherwise, all of the experiments simulate a single, large, contiguous
slice of 64 billion program instructions. With our simulation framework, this
volume of instructions corresponds to at least 5 full seconds of execution time
(measured in CPU cycles), and a typical execution time of 20 to 30 seconds.

5.2 Benchmarks Description: For our evaluation, we used the standard
SPEC CPU2006 benchmark suite [22]. We compiled the benchmarks using gcc
(version 4.8.5) with -O2. Profile guidance is collected using both the train and
ref inputs, and all evaluation is performed using the ref input. In cases where
the benchmark-input pair requires multiple invocations of the application, we
conduct independent experiments for each invocation and aggregate the results
to compute a single score for each benchmark.

To identify applications where efficient utilization of the upper-level mem-
ory can have a significant impact on program performance, we conducted pilot
measurements using shorter simulations of up to 10 program phases and 1 bil-
lion instructions per phase for each program run.9 For these experiments, we
evaluated each benchmark against the two cache configurations and against Ra-
mulators default memory model with 1) a single-tier of (unlimited capacity)
HBM (HBM-only) and 2) a single-tier of DDR3 (DDR3-only).

The results of the pilot measurements showed that there is significant poten-
tial to improve performance with HBM. 14 (of 28) benchmarks exhibited more
than 10% IPC improvement with HBM relative to DDR3 with the 512 KB cache,
while 8 benchmarks show similar improvements with the 8 MB cache. The re-
mainder of this work focuses on this limited set of benchmark-cache pairs. Table 1
lists our selected benchmarks along with their memory usage information.

6 Evaluation

6.1 Baseline Configurations: For baseline comparison, we implement two
strategies that have been common in hybrid memory systems. The first uses
the upper tier as a large direct-mapped cache to hold data brought in from
an even larger lower tier [20]. We refer to this type of hardware based tiering

9 We had to omit zeusmp due to an incompatibility with our adopted basic block
vector collection tool [23].



as cache mode (not to be confused with processor caches). The other baseline
strategy is the static first touch (FT) [3] policy. Under static FT, when a page is
first touched, it is instantiated in HBM if possible and in DDR (the lower tier)
otherwise; and, remains there until unmapped.

Figure 3 shows the performance (IPC) of the two baseline policies– cache
mode and static FT in a hybrid HBM-DDR3 system where the capacity of
the HBM tier is 12.5% of the DDR3 tier. For each benchmark, the IPC in
Fig. 3 is shown relative to the IPC of the DDR3-only configuration. Hence, while
cache mode outperforms static FT for a few benchmarks (e.g., gcc and hmmer)
static FT is the superior choice. On average, static FT allocation improves IPC
(over DDR3-only) by 22% and 9% for the 512 KB and 8 MB CPU cache sizes,
respectively. In cache mode, the average IPC change is 17% better for the 512 KB
CPU cache but 17% worse for the 8MB CPU cache. Our simulation diagnostics
show that the degradation in cache mode occurs due to a high miss rate (over
67% for the 8MB cache) resulting in higher overheads for memory traffic. A third
bar in Fig. 3 also shows that in the idealized HBM-only case, the average IPC
is better by 61.9% and 30.1% respectively for the small and large CPU caches.

6.2 Static Application Guidance: We next introduce a static guidance hy-
brid management policy that uses prior profiling to partition allocation sites
into hot and cold subsets, and then applies the static arena allocation scheme to
separate hot and cold data in the evaluation run. The hot space places data in
the HBM tier on a first touch basis, while cold data is always assigned to DDR.

We conducted an initial set of shorter simulations (10 phases, 1B instructions
per phase) to assess the impact of different strategies for selecting hot subsets.
For these experiments, we compute profiling with the ref and train program
inputs and construct hot subsets using the knapsack and hotset strategies with
capacities of 3.125%, 6.25%, 12.5%, 25.0%, and 50.0%. We find that the best
size for each approach varies depending on the benchmark and profile input.
Knapsack achieves its best performance with the largest capacity (50.0%), while
hotset does best with sizes similar or smaller than the upper tier capacity limit
(of 12.5%). Across all benchmarks, the best hotset outperforms the best knapsack
by 4.4% with the train profile and by 4.2% with the ref profile, on average. This
outcome lends strength to the idea that being too conservative in cases where
an allocation site with very hot data does not fit entirely in the upper tier is less
effective than allowing a portion of the sites data to map to the faster device. We
therefore continue using only the hotset strategy and select the hotset capacity
that performs best on average, as follows: 12.5% for train and 6.25% for ref with
the smaller cache, and 25% for both train and ref with the larger cache.

Figure 4 shows the IPC of the benchmarks with the static hotset guidance
approaches with train and ref profiling inputs (respectively labeled as static-
train and static-ref ) relative to single-tier DDR3. Thus, application guidance,
whether based on profiles of the train or ref input, does better than static FT
during the evaluation run. On average, the more accurate ref profile enables
static-ref to outperform static-train by more than 12%, when the CPU cache is
small (512 KB), but the difference is negligible when the cache is larger (8MB).
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Surprisingly, with the 8 MB cache, static-train performs slightly better due to a
skewed result from the lbm benchmark. Further analysis shows that lbm produces
about the same amount of traffic into the upper tier with both static-ref and
static-train, but the disparity is primarily due to an effect on spatial locality
caused by different data layouts. We plan to fully evaluate the impact of our
technique on spatial locality in future work.

6.3 Adaptive Application Guidance: We next examine the potential benefit
of adapting guidance to changing access patterns, rather than being locked into
static guidance policies. To study this effect, we design and evaluate the adaptive-
ref policy, described below.

For each benchmark, we use Simpoints to divide the evaluation (ref input)
run into slices of dynamic instructions (of length l), and then classify each slice
into one of up to k program phases. We then conduct profiling and compute hot-
sets for each program phase, and use this guidance to apply the per-phase arena
allocation scheme during the evaluation run. When the application enters a new
phase, it suspends execution, and attempts to migrate data in each arena to
the appropriate tier using the guidance for the upcoming program phase. Since
our goal is to investigate the potential advantages of this approach, our exper-
iments assume the application is always able to detect program phase changes
accurately and immediately.

We conducted a series of experiments with the adaptive-ref policy varying the
length (l) and maximum number of program phases (k). For k values of 2, 8, and
32, Fig. 5 plots a line showing the average performance (IPC) of the adaptive-
ref policy, relative to DDR3-only, with phase lengths of 10 million (M), 100M,
1 billion (B), and 8B dynamic instructions. Additionally, we plot dashed lines
to show the average IPC of the static-ref policy with each cache size. Detailed
results comparing the static-ref and best adaptive-ref configuration (with k = 8,
l =100M) for each benchmark are shown in Fig. 6.

In most cases, we find that adaptive-ref exhibits similar performance as static-
ref, even with the idealistic assumption of accurate phase detection. Different
phase lengths have little impact on the proportion of accesses to the HBM tier,
but selecting a length that is too short will incur significant data migration
overheads, and result in worse overall performance. For a few workloads, such
as milc and cactusADM, increasing the number of program phases does produce
benefits, but on average the impact is small. Additionally, we find that the best



Table 2. % of accesses to upper-level memory and data migrated (in GB).

Benchmark
% of accesses to upper-level memory GBs migrated

cache- static static static adaptive FTHP cache- FTHP adaptive
mode FT train ref ref 1s mode 1s ref

512 KB cache

bzip2 80.92 69.03 77.08 70.59 81.06 94.09 207.44 0.99 16.94

gcc 96.17 16.78 24.61 80.57 70.14 69.24 68.70 3.73 16.99
mcf 20.04 48.80 48.50 48.48 48.50 63.39 256.59 6.15 0.00

milc 80.97 31.58 32.54 27.16 53.80 56.98 55.36 0.50 19.75
cactusADM 79.27 46.89 46.70 46.69 46.54 44.37 57.24 0.66 0.00
leslie3d 76.12 28.21 27.83 28.76 18.10 37.17 106.71 0.15 0.00

gobmk 95.39 27.84 13.78 14.90 14.18 37.53 13.19 0.04 0.00
soplex 59.65 15.87 46.37 52.92 61.66 51.52 137.88 0.12 0.13

hmmer 96.04 63.31 34.41 75.00 75.79 71.08 59.20 0.01 0.00
GemsFDTD 11.05 13.46 15.56 21.55 12.93 17.70 79.66 2.02 63.95
libquantum 99.53 11.55 11.54 11.54 11.54 13.53 1.04 0.02 0.00

h264ref 95.63 72.13 85.55 86.84 88.21 77.83 32.04 0.02 0.75
lbm 94.97 12.77 12.72 12.72 12.51 10.64 145.82 0.55 29.81

sphinx3 62.65 45.66 59.33 61.83 57.25 69.18 29.74 0.01 0.17
Average 74.88 35.99 38.32 45.68 46.59 51.02 89.33 1.07 10.61

8 MB cache

mcf 17.77 24.78 24.88 25.22 24.88 43.24 137.19 5.60 0.00

milc 57.89 15.48 16.09 21.58 32.42 29.44 43.87 0.58 20.92
cactusADM 30.58 29.74 29.74 29.69 32.66 27.31 13.69 0.52 0.00

leslie3d 43.66 20.81 20.96 20.75 20.04 14.74 52.86 0.10 0.00
soplex 43.93 30.85 19.64 30.39 35.40 30.16 80.07 0.11 2.17

GemsFDTD 4.72 14.40 15.00 14.99 11.87 9.60 62.14 1.38 61.97
libquantum 99.97 12.50 0.00 12.49 12.49 11.33 0.03 0.01 0.00
lbm 84.00 12.71 12.79 12.79 12.47 11.73 50.37 0.10 30.01

Average 47.82 20.16 17.39 20.99 22.78 22.19 55.03 1.05 14.38

adaptive-ref configuration drives only slightly (< 2%) more traffic to the HBM
tier than the static approach, as shown in Table 2. Thus, static-ref makes nearly
as-good placement decisions across phases as adaptive-ref, even though it is not
capable of adapting to the individual program phases.

6.4 Comparison with OS/Architectural Reactive Profiling: Using our
simulation framework, we implemented the first-touch-hot-page (FTHP) reactive
profiling approach from Meswani et al. [3]. FTHP uses non-standard page access
counters in hardware to identify recently hot physical pages and migrate them at
epoch boundaries. We evaluate FTHP using two epoch lengths of 1s and 100ms.
For our comparisons, we chose the 1s epoch because it achieves slightly (1.2%)
better performance with our benchmarks.

Referring again to Fig. 6, a third bar shows the results for FTHP relative
to DDR3-only, on an identical HBM-DDR3 platform with 12.5% HBM capac-
ity. Thus, even though they do not have the benefit of dynamic feedback from
specialized hardware, the application guidance policies often achieve similar per-
formance as FTHP. With the 512 KB cache, static-ref and adaptive-ref respec-
tively outperform FTHP by 2.8% and 2.9%, while with the 8 MB cache, static-
ref performs slightly (1.9%) worse, and adaptive-ref performs 5.3% better. Even
static-train (shown in Fig. 4) performs slightly (1.5%) better than FTHP with
the larger cache, but does exhibit some slowdown (9.6%) with the smaller cache.

Both adaptive-ref and FTHP limit the frequency of data migration to amor-
tize the cost of page faults and TLB synchronization. The final three columns
of Table 2 show the amount of data migrated (in GB) for each adaptive policy.



Note also that the amount of migration for both FTHP and adaptive-ref depends
on the length of each epoch/phase. For instance, compared to the adaptive-ref
configuration in the table (with k =8, l =100M), adaptive-ref with l =10M
migrates almost 2.4x more data over the course of each run, on average. Con-
sidering these results with the performance results in Fig. 6 and HBM traffic
comparison in Table 2, we conclude that, although more frequent migration can
steer a higher portion of traffic to the HBM, the additional costs often outweigh
the performance benefits for our selected benchmarks.

Table 3. Performance (IPC) summary of
different allocation strategies.

Policy
512 KB cache 8 MB cache
HBM- HBM- HBM- HBM-
DDR3 DDR4 DDR3 DDR4

cache-mode 1.173 1.173 0.833 0.907
static-FT 1.223 1.165 1.094 1.045

static-train 1.269 1.226 1.136 1.115
static-ref 1.393 1.325 1.102 1.113

adaptive-ref 1.393 1.323 1.173 1.099
FTHP 1.347 1.272 1.107 1.084

HBM-only 1.838 1.568 1.466 1.255

6.5 Performance Summary: Ta-
ble 3 presents the average IPC of all
of the management policies for both
HBM-DDR3 and HBM-DDR4 plat-
forms with 12.5% capacity in the HBM
tier. Each set of results uses the corre-
sponding DDR3/4-only configuration
as its baseline. As expected, the poli-
cies on the HBM-DDR4 platform ex-
hibit similar performance trends as on
the HBM-DDR3 platform. On average, the application-guided policies achieve
the best performance on HBM-DDR4, boosting performance with the small and
large caches by more than 15% and 20% compared to cache mode, by 16% and
7% compared to static FT, and by 5% and 3% compared to FTHP.

7 Conclusions & Future Work

This work demonstrates that emerging hybrid memory systems will not be able
to rely solely on conventional hardware-based caching or coarse-grained software
approaches, such as static NUMA assignments, and stand to benefit greatly
from fine-grained, application-level guidance. The results point to a need for
developing new source, binary, and run-time capabilities to make application
guided memory tiering practical. While the current evaluation uses simulation,
our goal is to adapt our automated guidance framework for direct execution on
real hybrid memory hardware. The immediate next steps include development
of hardware-based sampling to profile memory accesses during native execution
and low-overhead context detection techniques as described in Sec. 4.

Other findings in this study warrant additional investigation. In many cases,
we found that using tailoring application guidance to each program phase has a
relatively small impact on program performance. Further research is necessary
to understand the relationship between program phases and memory behavior,
and whether this result is specific to our selected benchmarks and experimental
configuration, or if it reflects a more fundamental property of hybrid memory
systems. While investigating these issues, we also plan to explore the feasibility
of using pure static analysis, without program profiling, to guide hybrid memory
management. Finally, we plan to evaluate the potential of extending guidance
to other parts of the memory hierarchy, such as caching or prefetching.
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