
Eliminating False Phase Interactions to Reduce
Optimization Phase Order Search Space

Michael R. Jantz
Prasad A. Kulkarni

Department of Electrical Engineering and Computer Science
University of Kansas
Lawrence, KS 66045

{mikejant,prasadk}@ku.edu

ABSTRACT
Compiler optimization phase ordering is a longstanding problem,
and is of particular relevance to the performance-oriented and cost-
constrained domain of embedded systems applications. Optimiza-
tion phases are known tointeract with each other, enabling and
disabling opportunities for successive phases. Therefore, varying
the order of applying these phases often generates distinct out-
put codes, with different speed, code-size and power consumption
characteristics. Most current approaches to address this issue fo-
cus on developing innovative methods to selectively evaluate the
vast phase order search space to produce a good (but, potentially
suboptimal) representation for each program.

In contrast, the goal of this work is to study and identify com-
mon causes of optimization phase interactions across all phases,
and then devise techniques to eliminate them, if and when possi-
ble. We observe that several phase interactions are caused byfalse
register dependence during many optimization phases. We further
find that depending on the implementation of optimization phases,
even an increased availability of registers may not be able to sig-
nificantly reduce such false register dependences. We explore the
potential of cleanup phases, such asregister remappingandcopy
propagation, at reducing false dependences. We show that innova-
tive implementation and application of these phases to reduce false
register dependences not only reduces the size of the phase order
search space substantially, but can also improve the quality of code
generated by optimizing compilers.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors- compilers, opti-
mization

General Terms
Performance, Measurements, Algorithms.

Keywords
Phase Ordering, False Register Dependence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’10,October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

1. INTRODUCTION
Compiler optimization phase ordering and selection have been

longstanding and persistent problems for compiler writers and users
alike [27, 23, 10]. Each optimization phase applies a sequence of
transformations to improve the quality of the generated code for
some measure of performance, such as speed, code-size or power
consumption. Optimization phases require specific code patterns
and/or availability of architectural registers to do their work. Con-
sequently, phases interact with each other by creating or destroy-
ing the conditions necessary for the successful application of suc-
cessive phases. Unfortunately, no single ordering of optimization
phases is able to produce the best code for all programs in any in-
vestigated compiler [28, 8, 19, 26, 16]. Instead, the ideal phase se-
quence depends on the characteristics of the code being compiled,
the compiler implementation, and the target architecture.

The most common solution to the phase ordering problem em-
ploys iterative search algorithms to evaluate the performance of
the codes produced by many different phase sequences and select
the best one. Although this process may take longer than tradi-
tional compilation, longer compilation times are often acceptable
when generating code for embedded systems. Many embedded sys-
tem developers attempt to build systems with justenoughcompute
power and memory as is necessary for the particular task. Most em-
bedded systems are also constrained for power. Thus, reducing the
speed, code size, and/or power requirements is extremely crucial
for embedded applications, as reducing the processor or memory
cost can result in huge savings for products with millions of units
shipped.

However, the large number of optimization phases typically avail-
able in current compilers results in extremely large phase order
search spaces that are either infeasible or impractical to exhaus-
tively explore [22]. Therefore, reducing the compilation time of
iterative phase order space search is critical to harnessing the most
benefits from modern optimizing compilers. Shorter iterative com-
pilation times can be accomplished by two complementary approaches:

1. develop techniques to reduce the phase order search space
itself, or

2. devise new search strategies that can perform a moreintelli-
gentbut partial exploration of the search space.

Most recent and existing research effort issolely focused on the
second approach, and attempts to employ statistical or machine
learning methods, along with enhanced correlation techniques to
restrict the number of phase sequences that are reached and re-
quire evaluation during the iterative search. By contrast, the goal
of this work is to analyze and address the most common optimiza-
tion phase interactions and develop solutions that can substantially

reduce the phase order search space. We believe that such reduc-
tion will make exhaustive phase order searches more practical. At
the same time, understanding and resolving optimization phase in-
teractions can also enable better predictability and efficiency from
intelligent heuristic based searches.

Registers are an important resource during the application of
many optimization phases, especially in a compiler backend. It
is well recognized that the limited number of registers causes sev-
eral phase interactions and ordering issues by enabling phases when
registers become available and disabling transformations when all
registers are in use [4, 13]. Interestingly, our analysis of the phase
order search space found that many phase interactions are not caused
by register contention, but exist due to the dependences between
and during phase transformations that reuse the same register num-
bers. We term such dependences asfalsephase interactions.

In this work, we develop approaches to explore the extent and
impact of false phase interactions due to false register dependences
on the phase order search space size and generated code perfor-
mance. We find that techniques to reduce false register depen-
dencesbetweenphases has a huge limiting effect of the size of the
search space. We further find that reducing false dependencesdur-
ing phases can also provide additional optimization opportunities
and result in improving the quality of the code produced by such
phases. Thus, the work presented in this paper shows promise to
not only improve the state of iterative compilation for optimization
phase ordering, but also provideguidelinesfor compiler implemen-
tations to generate higher-quality code.

Thus, the major contributions of our research are:

1. This is the first research to analyze the optimization phase
interactions to reduce the phase order search space and im-
prove code quality.

2. We show that the problem of false register dependence is dif-
ferent from register pressure issues, and significantly impacts
the size of the phase order search space.

3. We develop techniques to reduce false register dependence
that substantially shrink the search space size and improve
the quality of code generated by compiler optimizations.

The rest of the paper is organized as follows. We describe related
work in the next section. In Section 3 we explain our observations
regarding false register dependence between phases. We present
our experimental framework in Section 4. In Section 5 we show
that the effects of false register dependence are often independent
of register pressure issues. We study the effect of eliminating false
register dependences on the size of the search space in Section 6. In
Section 7 we develop mechanisms to reduce false register depen-
dence to limit the size of the search space and improve code qual-
ity. We list avenues for future research in Section 8, and present
our conclusions in Section 9.

2. RELATED WORK
In this section we describe previous work in the areas of un-

derstanding and addressing the issues of optimization phase or-
dering and selection. Researchers have observed thatexhaustive
evaluation of the phase order search space to find the optimal func-
tion/program instance, even when feasible, is generally too time-
consuming to be practical. Therefore, most research in addressing
phase ordering employs iterative compilation to partially evaluate
a part of the search space that is most likely to provide good so-
lutions. Many such techniques use machine learning algorithms,
such as genetic algorithms, hill-climbing, simulated annealing and

predictive modeling to find effective, but potentially suboptimal,
optimization phase sequences [8, 15, 19, 2, 1, 21, 14]. Other
approaches employ statistical techniques such as fractional facto-
rial design and the Mann-Whitney test to find the set of optimiza-
tion flags that produce more efficient output code [5, 12, 24]. Re-
searchers have also observed that when expending similar effort
most heuristic algorithms produce comparable quality code [2, 21].
Our results presented in this paper can enable iterative searches to
operate in smaller search spaces, allowing faster and more effective
phase sequence solutions.

Investigators have also developed algorithms to manage the search
time during iterative searches. Static estimation techniques have
been employed to avoid expensive program simulations for perfor-
mance evaluation [7, 22, 26]. Agakov et al. characterized programs
using staticfeaturesand developed adaptive mechanisms using sta-
tistical correlation models to reduce the number of sequences eval-
uated during the search [1]. Using program features they first char-
acterized an optimization space of 145 phase sequences, and then
employed statistical correlation models to speed up the search on
even the larger optimization spaces. Kulkarni et al. employed sev-
eral pruning techniques to detectredundantphase orderings that
are guaranteed to produce code that was already seen earlier dur-
ing the search to avoid over 84% of program executions during
their genetic algorithm search [17, 20]. However, in contrast to our
approach, none of these methods make any attempt to understand
phase interactions and alter the actual search space itself.

Research has also been conducted to completely enumerate and
explore components of the phase order search space. Most of these
research efforts have found the search space to be highly non-linear,
but with many local minima that are close to the global minimum [15,
2, 21]. Such analysis has helped researchers devise better heuris-
tic search algorithms. Kulkarni et al. developed a novel search
strategy to achieve exhaustive evaluation of the entire phase order
search space and find thebestphase ordering for most functions
in their embedded systems benchmarks, but the searches required
several hours to a few weeks in many cases [22]. We employ their
algorithm for exhaustive search space evaluation (described in Sec-
tion 4.2) in our current experiments and show that our techniques
to reduce false phase interactions result in much faster exhaustive
searches. Thus, our work to understand and reduce the phase or-
der search space will most likely further benefit all such exhaustive
enumeration schemes.

Research has also been conducted to understand and apply ob-
servations regarding optimization phase interactions. Some such
studies use static and dynamic techniques to determine the enabling
and disabling interactions between optimization phases. Such ob-
servations allow researchers to construct a singlecompromisephase
ordering offline [28] or generate abatchcompiler that can automat-
ically adapt its phase ordering at runtime for each application [18].
Although such custom phase orderings generally perform better
that the default sequence used in their compilers, none of these ear-
lier works made any attempt to understand the causes behind those
phase interactions.

Most related to our current research are studies that attempt to
analyze and correct the dependences between specific pairs of op-
timization phases. Leverett noted the interdependence between the
phases ofconstant foldingandflow analysis, andregister allocation
andcode generationin the PQCC (Production-Quality Compiler-
Compiler) project [23]. Vegdahl studied the interaction between
code generationand compactionfor a horizontal VLIW-like in-
struction format machine [27], and suggested various approaches
to combine the two phases together for improved performance in
certain situations. The interaction betweenregister allocationand

5. r[12] = Load[r[] + (r[12]{2)];0

1. r[12] = r[12] − 8;
2. r[1] = r[12];
3. r[1] = r[1]{2;
4. r[12] = r[13] + .LOC;
5. r[12] = Load[r[12] + r[1]];

(a). original code

2. r[1] = r[12] − 8;

4. r[12] = r[13] + .LOC;
5. r[12] = Load [r[12] + (r[1]{2)];

(b) instruction selection
 followed by common
 subexpression elimination

1. r[12] = r[12] − 8;

3. r[1] = r[12]{2;
4. r[12] = r[13] + .LOC;
5. r[12] = Load[r[12] + r[1]];

(c) common subexpression

 by instruction selection
 elimination followed

1. r[12] = r[12] − 8;

 removes false register
 dependence

(d) register remapping

4. r[] = r[13] + .LOC;0

Figure 1: Using register remapping to eliminate false register dependence

1. r[18] = Load [L1];

5. r[5] = Load [r[18]];

2. r[7] = r[18];
1. r[18] = Load [L1];

5. r[5] = Load [r[18]];

2. r[7] = Load[L1];

5. r[5] = Load[r[7]];

1. r[18] = Load [L1];
2. r[7] = r[18];
3. r[21] = r[7];
4. r[24] = Load[r[21]];
5. r[5] = r[24];

18

(d) copy propagation
 removes false register
 dependence

(b) instruction selection
 followed by common
 subexpression elimination

(c) common subexpression

 by instruction selection
 elimination followed

(a). original code

6. = r[7]; 6. = r[7]; 6. = r[7]; 6. = r[];

Figure 2: Using copy propagation to eliminate false register dependence

code schedulinghas been studied by several researchers. Sug-
gested approaches include using postpass scheduling (afterregis-
ter allocation) to avoid overusing registers and causing additional
spills [13, 9], construction of a register dependence graph (used
by instruction scheduling) during register allocation to reduce false
scheduling dependences [25, 3], and other methods to combine the
two phases into a single pass [10]. Earlier research has also studied
the interaction betweenregister allocationand instruction selec-
tion [4], and suggested using a common representation language
for all the phases of a compiler, allowing them to be re-invoked re-
peatedly to take care of several such phase re-ordering issues. Un-
like our current research, most of these earlier works only studied
pair-wise andtrue phase interactions between optimization phases
and did not study the effect of removing these interactions on the
size of the phase order search space. Rather than focus on spe-
cific phases, our research attempts to discover and address causes
of falsephase interactions between all compiler phases to reduce
the phase ordering search space.

3. FALSE PHASE INTERACTIONS
Architectural registers are a key resource whose availability, or

the lack thereof, can affect (enable or disable) several compiler
optimization phases. It is well-known that the limited number of
available registers in current machines and the requirement for par-
ticular program values (like arguments) to be held in specific regis-
ters hampers compiler optimizations and is a primary cause for the
phase ordering problem [4]. Our goal for this work is to study the
effect of register availability and assignment on phase interactions,
and the impact of such interactions on the size of the phase order
search space.

Towards this goal, we employed existing strategies [22] to gen-
erate the exhaustive phase order search spaces for a few of our

benchmark functions. We also designed several scripts to assist our
manual study of these search spaces to detect and analyze the most
common phase interactions. Surprisingly, we observed that many
individual phase interactions occur, not due to conflicts caused by
limited number of available registers, but by the particular register
numbersthat are used in surrounding instructions. The limited sup-
ply of registers on most conventional architectures force optimiza-
tion phases to minimize their use, and recycle register numbers as
often as possible. Many compilers also use a fixed order in which
free registers are assigned, when needed. Different phase order-
ings can assign different registers to the same program live ranges.
These different register assignments sometimes result in false reg-
ister dependences that disable optimization opportunities for some
phase orderings while not for others, and cause optimizations ap-
plied in different orders to produce distinct codes. Such false reg-
ister dependence may result in additionalcopy(register to register
move) instructions in certain cases, or may cause optimizations to
miss opportunities at code improvement due to unfavorable reuse
of certain registers at particular program locations. We call phase
interactions that are caused by false register dependences asfalse
interactions. Such false interactions are often quite arbitrary and
not only impact the search space size, but also make it more diffi-
cult for manual and intelligent heuristic search strategies topredict
good phase orderings.

Figures 1 and 2 illustrate examples of phase interactions due to
false register dependence betweeninstruction selectionandcom-
mon subexpression elimination (CSE). 1 In the first example, Fig-
ure 1(a) shows the code before applying either of these two phases.
Figures 1(b) and 1(c) show code instances that are produced by
applying CSE and instruction selection in different orders. Without

1The description of these phases can be found in Table 1.

Optimization Phase Description

branch chaining Replaces a branch or jump target with the target of the last jumpin the jump chain.
common subexpression
elimination

Performs global analysis to remove fully redundant calculations. Also includes global constant and copy propagation.

remove unreach. code Removes basic blocks that cannot be reached from the functionentry block.
loop unrolling Potentially reduce the number of comparisons/branches at runtime and assist scheduling at the cost of code size increase.
dead assign. elim. Uses global analysis to remove assignments when the assigned value is never used.
block reordering Removes a jump by reordering blocks when the target of the jump has only a single predecessor.
minimize loop jumps Removes a jump associated with a loop by duplicating a portion of the loop.
register allocation Uses graph coloring to replace references to a variable within a live range with a register.
loop transformations Performs loop-invariant code motion, recurrence elimination, loop strength reduction, and induction variable elimination

on each loop ordered by loop nesting level.
code abstraction Performs cross-jumping and code-hoisting to move identical instructions from basic blocks to their common predecessor

or successor.
eval. order determ. Reorders instructions within a single basic block in an attempt to use fewer registers.
strength reduction Replaces an expensive instruction with one or more cheaper ones. For this version of the compiler, this means changing

a multiply by a constant into a series of shift, adds, and subtracts.
reverse branches Removes an unconditional jump by reversing a cond. branch whenit branches over the jump.
instruction selection Combines pairs or triples of instructions together where theinstructions are linked by set/use dependencies. Also per-

forms constant folding and checks if the resulting effect is alegal instruction before committing to the transformation.
remove useless jumps Removes jumps and branches whose target is the following positional block.

Table 1: VPO Optimization Phases

going into the specific details of what this code does2 we wanted to
note that the code in Figure 1(c) is inferior due to the reuse of regis-
terr[12], which prevents instruction selection (applied after CSE)
from combining instructions numbered 3 and 5, and thus leaving an
additional instruction in the generated code. Applying instruction
selection before CSE avoids this false register dependence issue,
producing better code in Figure 1(b). Similarly, in the second ex-
ample shown in Figure 2, applying CSE before instruction selection
leaves a redundant copy instruction in the code (Figure 2(c)) due to
an unfavorable register assignment. Even later and repeated appli-
cation of optimization phases are often not able to correct the ef-
fects of such register assignments. Thus, phase interactions due to
false register dependences can produce distinct function instances.
Successive optimization phases working on such unique function
instances produce even more distinct points in the search space in
a cascading effect that often causes an explosion in the size of the
phase order search space. Before describing our proposed solution
and experimental results, we present our experimental framework
in the next section.

4. EXPERIMENTAL SETUP
In this section we describe our compiler framework and the setup

employed to perform our studies.

4.1 Compiler Framework
The research in this paper uses the Very Portable Optimizer (VPO) [4],

which is a compiler back-end that performs all its optimizations on
a single low-level intermediate representation called RTLs (Reg-
ister Transfer Lists). VPO applies several low-level optimization
phases that involve registers, providing us with an ideal framework
to investigate register dependence effects during phase orderings.

The 15reorderableoptimization phases currently implemented
in VPO are listed in Table 1. Most of these phases can be applied
repeatedly and in an arbitrary order. Unlike the other VPO phases,
loop unrolling is applied at most once and with a loop unroll factor
of 2 for our current experiments. The VPO compiler is tuned for
generating high-performance code while managing code-size for

2The ’{’ operator in the instructions in Figure 1 performs a left
shift.

Category Program
Files/

Description
Funcs.

auto bitcount 10 18 test proc. bit manipulation abilities
network dijkstra 1 6 Dijkstra’s shortest path algorithm
telecomm adpcm 2 3 compress 16-bit PCM samples
consumer jpeg 7 62 image compression and decomp.
security sha 2 8 secure hash algorithm
office search 4 10 searches for given words in phrases

Table 2: MiBench Benchmarks Used

embedded systems, and hence uses a loop unroll factor of 2. In
addition,register assignment, which is a compulsory phase that as-
signs pseudo registers to hardware registers, is implicitly performed
by VPO before the first code-improving phase in a sequence that
requires it. After applying the last code-improving phase in a se-
quence, VPO performs another compulsory phase that inserts in-
structions at the entry and exit of the function to manage the acti-
vation record on the run-time stack. Finally, the compiler also per-
forms instruction schedulingbefore generating the final assembly
code.

For our experiments in this paper, VPO has been targeted to gen-
erate code for the StrongARM SA-100 processor using Linux as
its operating system. The ARM is a simple 32-bit RISC instruc-
tion set. The relative simplicity of the ARM ISA combined with
the low-power consumption of ARM-based processors have made
this ISA dominant in the embedded systems domain. We use the
SimpleScalar set of functional simulators [6] for the ARM to get
dynamic performance measures.

For this work we use a subset of the benchmarks from theMiBench
benchmark suite, which are C applications targeting specific areas
of the embedded market [11]. We selected one benchmark from
each of the six categories of applications present in MiBench. Ta-
ble 2 contains descriptions of these programs. VPO compiles and
optimizes individual functions at a time. The 6 selected bench-
marks contain a total of 107 functions, out of which 37 are ex-
ecuted (at least once) with the standard input data provided with
each benchmark.

a

a a

a

b c

b c

c b c

b

b

c b

1

2 3 4

5 6 7 8

9 10 11 12

13

Figure 3: DAG for Hypothetical Function with Optimization
Phasesa, b, and c

4.2 Algorithm for Exhaustive Search Space Enu-
meration

Our goal in this research is to understand the effect of false reg-
ister dependences on the size of the phase order search space. To
generate these per-function exhaustive phase order search spaces
we implemented the framework presented by Kulkarni et al. [22].
Our exhaustive phase order searches use all of VPO’s 15 reorder-
able optimization phases. In this section we describe this algorithm
to generate exhaustive phase order search spaces.

A naive approach to enumerate the exhaustive phase order search
space would be to generate (and evaluate the performance of) all
possible combinations of optimization phases. This naive approach
is clearly intractable because it does not account for the fact that
many such sequences may produce the same code (also calledfunc-
tion instance). Another way of interpreting the phase ordering
problem is to enumerate all possible function instances that can
be produced by any combination of optimization phases for any
possible sequence length (to account for repetitions of optimiza-
tion phases in a single sequence). Such an interpretation makes the
problem of exhaustive phase order enumeration much more practi-
cal because it is observed that different phase sequences display a
lot of redundancy and frequently result in generating the same code
as some earlier sequence. Thus, this interpretation of the phase or-
dering problem allows the phase order search space to be viewed
as a directed acyclic graph (DAG) ofdistinct function instances.

Each DAG is function or program specific, and may be repre-
sented as in Figure 3 for a hypothetical function and for the three
optimization phases,a, b, andc. Nodes in the DAG represent func-
tion instances, and edges represent transition from one function
instance to another on application of an optimization phase. The
unoptimized function instance is at the root. Each successive level
of function instances is produced by applying all possible phases
to the distinct nodes at the preceding level. It is assumed in Fig-
ure 3 that no phase can be successful multiple times consecutively
without any intervening phase(s) in between. This algorithm uses
various redundancy detection schemes to find phase orderings that
generate the samefunction instanceas the one produced by some
earlier phase sequence during the search. Such detection enables
this algorithm to prune away significant portions of the phase order
search space, and allows exhaustive search space enumeration for
all functions in our benchmark set with the default compiler con-

figuration. The algorithm terminates when no additional phase is
successful in creating a new distinct function instance.

Thus, this approach can make it possible to generate/evaluate
the entire search space, and determine theoptimal function in-
stance. Furthermore, any phase sequence from the phase order
search space can be mapped to a node in the DAG of Figure 3.
This space of all possibledistinct function instancesfor each func-
tion/program is, what we call, theactualoptimization phase order
search space, and the size of each search space is measured as the
number of nodes in this DAG. All our search space comparisons
in this paper evaluate the reduction in the number of nodes of the
exhaustive search space DAG of the unmodified compiler that is
accomplished by each technique.

4.3 Dynamic Performance Measurements
Invoking thecycle-accuratesimulator for evaluating the perfor-

mance of every distinct phase sequence produced by the search al-
gorithm is prohibitively expensive. Therefore, we have adopted an-
other technique that can provide quickdynamic instruction counts
for all function instances with only a few program simulations per
phase order search [7, 22]. In this scheme, program simulation is
only needed on generating a function instance during the exhaus-
tive search with a yet unseencontrol-flow. Such function instances
are then instrumented and simulated to determine the number of
times each basic block in that control-flow is reached during ex-
ecution. Then, dynamic performance is calculated as the sum of
the products of each block’s execution count times the number of
static instructions in that block. Interestingly, researchers have also
shown that dynamic instruction counts bear a strong correlation
with simulator cycles for simple embedded processors [22]. Note
also, that the primary goal of this work is to uncover further re-
dundancy in the phase order search space and reduce the time for
phase order searches, while still producing the original best phase
ordering code. Thus, although we do not use performance numbers
obtained from a cycle-accurate simulator, our dynamic instruction
counts are sufficient to validate such performance comparisons.

4.4 Parallel Searches
While the techniques described earlier have made exhaustive searches

much more efficient, enumerating the search space for several of
our benchmark functions still requires several days (or longer) of
computation. The results in this paper required several hundred ex-
haustive phase order searches across all benchmark functions and
experimental configurations. The experiments described in this pa-
per were only made possible due to our access to a high perfor-
mance computing cluster to run our compute-intensive and inde-
pendent experiments. The Bioinformatics Cluster at the Informa-
tion and Telecommunication Technology Center (ITTC) at the Uni-
versity of Kansas contains 176 nodes (with 4GB to 16GB of main
memory on each node) and 768 total processors (with frequencies
ranging from 2.8GHz to 3.2GHz). With this computing power, we
were able to parallelize the phase order searches by running many
different searches on individual nodes of the cluster. As an indi-
cation of the compute-intensiveness of this study, we note that the
usage logs from the cluster show that experiments related to this
project would have required several years of single CPU time. De-
spite the available computing power, we were unable to completely
enumerate the exhaustive phase order space for all of our bench-
mark functions with some of the experimental configurations of
VPO due to time / space constraints. Individual exhaustive searches
that took longer than two weeks or generated raw data files larger
than the maximum allowed on our 32 bit system (2.1GB) were sim-
ply stopped and discarded.

5. EFFECT OF REGISTER PRESSURE ON
PHASE ORDER SPACE AND PERFOR-
MANCE

We have seen that several optimization phase interactions are
caused by different register assignments produced by different phase
orderings. Such effects can cause a false register dependence to
disable optimization opportunities for some phase orderings while
not for others. False register dependence is probably an artifact of
the limited number of registers available on most machines. Such
register scarcity forces optimization phases to be implemented in a
fashion that reassigns the same registers often and as soon as they
become available. If phases are implemented correctly, then a de-
crease in register pressure should also reduce false register depen-
dences. If so, then we should expect the phase order search space
to shrink with increasing register availability. However, a greater
number of registers may alsoenableadditional phase transforma-
tions, expanding the phase order search space and made visible by
some increase in performance of the best code generated during
the search as compared to the default. In this section we present
the first study of the effect of different number of available regis-
ters on the size of the phase order search space and the performance
of the best code that is generated.

The ARM architecture provides 16 general-purpose registers, of
which three are reserved by VPO (stack pointer, program counter,
and link register). We modified the VPO compiler to produce code
with several other register configurations ranging from 24 to 512
available registers. We perform experiments to measure the phase
order search space size for our 107 benchmark functions in all reg-
ister configurations.

Since the code generated by VPO with the otherillegal regis-
ter configurations cannot be simulated, we used a novel strategy
to evaluate code performance in such cases. As described earlier,
measuring dynamic performance during our search space explo-
ration only requires program simulations for instances with unseen
basic block control-flows. Thus, until the generation of a new
control-flow, there is no need for further simulations. Our per-
formance evaluation strategy stores all the control-flow informa-
tion generated for each function during its exhaustive search space
search with 16 registers, and reuses that information to collect dy-
namic performance results during the other illegal VPO register
configurations. We found that no additional control flows were
generated for 32 of the 37 executed benchmark functions for these
other VPO configurations. Thus, our scheme allows us to measure
and compare the dynamic performance for 32 executed functions
in all register configurations.

Figure 5 illustrates the impact of various register configurations
on the size of the phase order search space, averaged over all 107
benchmark functions, as compared to the default search space size
with 16 registers. Thus, we can see that the search space, on av-
erage, increases mildly with increasing number of available regis-
ters, and reaches a steady state when the additional registers are no
longer able to create any further optimization opportunities for any
benchmark functions. Figure 5 shows the number of functions that
notice a difference in the size of the search space with changing
number of available registers. Thus, we observe that there is an
almost equal number of functions that see a search space increase
as the number that show a decrease, for all register configurations.
Performance for all, except one, of the 32 executed functions either
improves or remains the same, resulting in an average improvement
of 1.1% in all register configurations over the default.

The overall increase in the search space size indicates that the
expansion caused by additional optimization opportunities gener-

Figure 4: Search space size compared to default for different
register configurations

Figure 5: Number of functions with different search space size
compared to default for different register configurations

ally exceeds the decrease (if any) caused by reduced phase inter-
actions. In fact, we have verified that the current implementation
of phases in VPO assumes limited registers and naturally reuses
them whenever possible, regardless of prevailing register pressure.
Therefore, limited number of registers is not the sole cause for false
register dependences. Consequently, more informed optimization
phase implementations may be able to minimize false register de-
pendences and reduce the phase order search space. We explore
this possibility further in the next two sections.

6. MEASURING THE EFFECT OF FALSE
REGISTER DEPENDENCE ON THE PHASE
ORDER SPACE

Our results in the previous section suggests that current imple-
mentation of optimization phases typically do not account for the
effect of unfavorable register assignments producing false phase
interactions. Rather than altering the implementation of all VPO
optimization phases, we propose and implement two new transfor-
mations in VPO,register remappingand copy propagation, that
are implicitly applied after every reorderable phase during our it-
erative search space algorithm to reduce false register dependences
between phases. In this section, we show that removing such false
phase interactions can indeed result in a dramatic reduction in the
size of the phase order search space in a compiler configuration
with sufficient (512) number of registers to avoid register pressure
issues. In the next section we adapt and employ our techniques to
reduce search space size and improve performance in the default
ARM-VPO configuration with 16 registers.

Figure 6: Search space size with register remapping compared
to default (512 registers)

6.1 Register Remapping to Remove False Reg-
ister Dependences

Registerremappingor renamingreassigns registers to live ranges
in a function, and is a transformation commonly employed before
instruction schedulingto reduce false register dependences and in-
crease instruction level parallelism [9]. Figure 1(d) illustrates the
effect of applying register remapping (after every phase) to the code
in Figure 1(c) to remove the false interaction between instruction
selection and CSE in Figure 1. In this study we use 512 available
registers to remap as many of the conflicting live ranges as possi-
ble to unique register numbers. We apply this transformation after
each regular optimization during the exhaustive phase order search
space exploration for each function.

Figure 6 shows the effect of implicitly applying register remap-
ping after every reorderable phase during the exhaustive search
space exploration on the size of the search space for all 107 bench-
mark functions. In this figure, and in each of the subsequent fig-
ures presented in this paper, functions are sorted from smallest to
largest default search space size and are displayed in this order in
the graphs. The rightmost bar in each figure presents the average.
Thus, on average, our compiler configuration with implicit register
remapping is able to reduce the search space size by over 13% per
function. Interestingly, this technique has a more significant impact
on functions with larger default search spaces. Thus, summing up
the search space sizes over all 107 functions, we find that the num-
ber of total distinct function instances reduces by 37.4% compared
to the default.

Although register remapping cannot directly impact dynamic per-
formance, it is anenablingphase that can provide more opportuni-
ties to optimizations following it. These new opportunities increase
the size of the search space for several functions. Indeed,explicitly
including register remapping as the 16th reorderable phase in VPO
during the exhaustive phase order searches causes an unmanage-
able increase in the size of the search space for all functions, pre-
venting the searches for many functions from finishing even after
several weeks. Therefore, it seems even more noteworthy that our
configuration thatimplicitly applies this transformation after every
phase can reduce the search space size so substantially even as it
enables more phases. We also found that the additional optimiza-
tion opportunities due to implicit application of register remapping
only marginally affect the best code performance found during the
exhaustive phase order search for a few functions, and results in an
average performance improvement of 0.4%.

Figure 7: Search space size with copy propagation compared to
default (512 registers)

6.2 Copy Propagation to Remove False Regis-
ter Dependences

Next, based on our manual analysis of false phase interactions
in VPO, we implementedcopy propagationas another transfor-
mation to potentially further minimize the effects of unfavorable
register assignments. Copy propagation is often used in compilers
as aclean-upphase to remove copy instructions by replacing the
occurrences of targets of direct assignments with their values. Fig-
ure 2(d) shows the result of applying copy propagation (after every
phase) to the code in Figure 2(c). Thus, we can see that applying
copy propagation transmits and replacesr[7] by r[18] on line 6
of Figure 2(d) and eliminates the dead copy instruction on line 2.
Thus, the resulting code in Figure 2(d) is now equivalent to that
in Figure 2(b). We performed experiments to study the impact of
implicitly applying copy propagation to reduce false phase interac-
tions on the size of the phase order search space.

Figure 7 shows the change in the phase order search space size
compared to default if every original VPO phase when success-
ful is followed by the clean-up phase of copy propagation during
exhaustive phase order space search for each function. Thus, on
average, the application of copy propagation is able to reduce the
size of the search space by over 30.5% per function. Similar to
our earlier approach with register remapping, this technique has
a much more significant impact on functions with larger default
search space sizes. Indeed, the sum the of the search space sizes
across all functions with this configuration compared to the sum of
search space sizes with the default VPO configuration (with 512
registers) shows a total search space reduction of more than 68%.
Unlike the enabling effect produced by register remapping, copy
propagation can directly improve performance by eliminating copy
instructions. We found thatimplicitly applying copy propagation
after every phase allows the exhaustive phase order searches to gen-
erate best function instances that achieve 0.55% better performance
that default, on average. At the same time, we also observed that
including copy propagationexplicitly as a distinct (16th) reorder-
able phase during the search space exploration (and not applying it
implicitly after every phase) has no additional benefit in producing
better code instances. Moreover, we observed that such a VPO con-
figuration that explicitly applies copy propagation, instead of re-
ducing the search space, doubles the size of the phase order search
space per function, on average.

Figure 8: Search space size with register remapping, copy
propagation compared to default (512 registers)

6.3 Combining Register Remapping and Copy
Propagation

Interestingly, combining our two techniques is able to further
reduce false register dependences and the size of the phase order
search spaces. Thus, as shown in Figure 8, implicitly applying both
register remapping and copy propagation after every phase reduces
the size of the phase order search spaces by over 43.8%, on aver-
age, while marginally improving the best average performance by
0.57%. This technique also has a much more significant effect on
functions with larger default search spaces. Thus, this configura-
tion reduces the total number of distinct function instances gener-
ated across all functions by an impressive 89.7%. Since both our
implicit phases reduce false register dependences, our results in this
section demonstrate that false phase interactions caused by differ-
ing register assignments are responsible for significantly contribut-
ing to the size of the phase order search space.

7. ELIMINATING FALSE REGISTER DE-
PENDENCE ON REAL EMBEDDED AR-
CHITECTURES

In the previous section, we showed that applying register remap-
ping and copy propagation effectively reduces the phase order search
space in a machine with virtually unlimited registers. Unfortu-
nately, both these transformations show a tendency to increase reg-
ister pressure, which can affect the operation of successive applied
phases. In this section we show how we can employ our observa-
tions from the last section to adapt the behavior and application of
these transformations for use on real embedded hardware to reduce
search space size and improve generated code quality.

7.1 Reducing the Search Space with Copy Prop-
agation

Aggressive application of copy propagation can increase register
pressure and introduce register spill instructions. Increased reg-
ister pressure can further affect other optimizations, that may ul-
timately result in changing the shape of the original phase order
search space and eliminate the best code instance that is detected
during the default search. For this reason, we developed a conser-
vative implementation of copy propagation that is only successful
in cases where the copy instruction becomes redundant and can be
removed later. Thus, our transformation only succeeds in instances
where we can avoid increasing the register pressure. Our aim here

Figure 9: Search space size with copy propagation compared to
default (16 registers)

is to reduce the phase order search space size, but still achieve that
same best performance as detected by the default search.

We now apply our version of conservative copy propagation im-
plicitly after each reorderable optimization phase during exhaustive
phase order search space exploration (similar to its application in
the last section). Figure 9 plots the size of the search space for each
of our benchmark functions. Thus, we can see that, similar to our
results in the last section, our technique here reduces the size of
the search space, on average, by 27.7% per function, and the total
number of distinct function instances by 55.4%. Similarly, implicit
application of copy propagation during the exhaustive search algo-
rithm improves the best generated code for a few functions, im-
proving average performance by 0.50%. Thus, prudent application
of techniques to remove false register dependences can be very ef-
fective at reducing the size of the phase order search space on real
machines.

7.2 Improving Performance with Localized Reg-
ister Remapping

We have found that developing a similar conservative version
of register remapping for implicit application during phase order
searches is more difficult. Instead, we employ register remapping
to show how removing false register dependencesduringtraditional
optimization phases can be used to increase optimization opportu-
nities and improve the quality of the generated code.

We select instruction selection to demonstrate our application of
localizedregister remapping, but the same technique can also be
applied to other phases. As illustrated in Figure 1(c), instruction se-
lection (or some other optimization phase) might miss optimization
opportunities due to some false register dependences. We modify
instruction selection to only remap those live ranges that are block-
ing its application due to a false register dependence, if the trans-
formation would be successful otherwise. Thus, when instruction
selection fails to combine instructions due to one or more register
conflicts, we identify the conflicting live ranges in these instruc-
tions, attempt to remap these so that they no longer conflict, and
then attempt to combine the instructions again. Such localized ap-
plication of register remapping can minimize any increase in reg-
ister pressure as well as potentially provide further optimization
opportunities and generate better code.

An instruction selection transformation that is unable to combine
instructions due to false register dependence, may still fail after our
localized register remapping due to some other issues. Our first im-
plementation of this transformation left such futile remappings in
place introducing new (locally remapped) function instances in the

Figure 10: Performance with instruction selection remapping
transformation compared to default (16 registers)

search space. This issue causes an explosion in the size of the phase
order search space in several functions and results in an average per
function search space size increase of 315%. Furthermore, due to
the increased search space sizes, we were not able to complete the
exhaustive search for 5 of our 107 benchmark functions (2 of which
were executed).

Despite these issues, we found that the performance of the code
generated with this technique improved considerably. Figure 10
shows the improvement in the performance of the best code found
by the exhaustive phase order search space algorithm with the mod-
ified instruction selection for each of the 35 executed benchmark
functions over the default. We found that the best code performance
improved by 2.77%, on average. Further, we tested the usefulness
of this approach during the conventional (batch) compilation. The
batch VPO compiler applies a fixed order of optimization phases in
a loop until there are no additional changes made to the program
by any phase. We found that our modified instruction instruction
enabled the batch compiler to improve the performance of the gen-
erated code by a healthy 1.46%, on average.

Please note that in addition to instruction selection, localized reg-
ister remapping may also benefit several other low-level optimiza-
tion phases. Therefore, we believe that the concept of addressing
false dependences during optimization phases to improve the qual-
ity of generated code shows immense promise during iterative as
well as conventional compilation.

8. FUTURE WORK
There are several avenues for future work. For our current re-

search we focused on phase interactions produced by false register
dependences and different register assignments. In the future we
plan to study other causes of false phase interactions and investigate
possible solutions. We believe that eliminating such false interac-
tions will not only reduce the size of the phase order search space,
but will also make the remaining interactions more predictable. We
would like to explore if this predictability can allow heuristic search
algorithms to detect better phase ordering sequences faster. In this
work we integrated localized register remapping with instruction
selection to produce higher-quality code. In the future, we will
explore the possibility of a more conservative version of register
remapping to limit the bloat in the size of the phase order search
space, while still retaining the performance benefits. At the same
time, we will attempt to similarly modify other compiler optimiza-
tions and study their effect on performance. Finally, we plan to ex-
plore if it is possible to implicitly apply other optimization phases

outside the phase order search to reduce the search space size with-
out affecting the best achievable performance.

9. CONCLUSIONS
Effectively addressing the optimization phase ordering problem

is important for applications in the embedded systems domain. We
found that the problem of huge phase order search spaces is partly
a result of the interactions between optimization phases that are
caused by false register dependences. We also discover that due to
the current implementation of optimization phases, even reducing
the register pressure by increasing the number of available registers
is not sufficient to eliminate false register dependences. Our new
transformations, register remapping and copy propagation, to re-
duce false register dependences are able to substantially reduce the
size of the phase order search spaces, but at the cost of increased
register pressure that is not sustainable on real machines. We then
showed that conservative implementation of these transformations
during and between phases can still achieve impressive reductions
in the search space size, while also achieving better code quality.

10. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-

ments and suggestions. This research was supported in part by NSF
grant CNS-0953268.

11. REFERENCES
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,

M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I.
Williams. Using machine learning to focus iterative
optimization. InCGO ’06: Proceedings of the International
Symposium on Code Generation and Optimization, pages
295–305, Washington, DC, USA, 2006.

[2] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W.
Reeves, D. Subramanian, L. Torczon, and T. Waterman.
Finding effective compilation sequences. InLCTES ’04:
Proceedings of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for
Embedded Systems, pages 231–239, 2004.

[3] W. Ambrosch, M. A. Ertl, F. Beer, A. Krall, M. Anton,
E. Felix, and B. A. Krall. Dependence-conscious global
register allocation. InIn proceedings of PLSA, pages
125–136. Springer LNCS, 1994.

[4] M. E. Benitez and J. W. Davidson. A portable global
optimizer and linker. InProceedings of the SIGPLAN’88
Conference on Programming Language Design and
Implementation, pages 329–338, 1988.

[5] G. E. P. Box, W. G. Hunter, and J. S. Hunter.Statistics for
Experimenters: An Introduction to Design, Data Analysis,
and Model Building. John Wiley & Sons, 1 edition, June
1978.

[6] D. Burger and T. Austin. The SimpleScalar tool set, version
2.0.SIGARCH Comput. Archit. News, 25(3):13–25, 1997.

[7] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. Acme:
adaptive compilation made efficient. InLCTES ’05:
Proceedings of the 2005 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for
embedded systems, pages 69–77, 2005.

[8] K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic algorithms.
In Workshop on Languages, Compilers, and Tools for
Embedded Systems, pages 1–9, May 1999.

[9] P. B. Gibbons and S. S. Muchnick. Efficient instruction
scheduling for a pipelined architecture.Proceedings of the
SIGPLAN ’86 Conference on Programming Language
Design and Implementation, pages 11–16, June 1986.

[10] J. R. Goodman and W.-C. Hsu. Code scheduling and register
allocation in large basic blocks. InICS ’88: Proceedings of
the 2nd international conference on Supercomputing, pages
442–452, 1988.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite.IEEE 4th Annual
Workshop on Workload Characterization, December 2001.

[12] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff.
Automatic selection of compiler options using
non-parametric inferential statistics. InPACT ’05:
Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, pages 123–132,
Washington, DC, USA, 2005. IEEE Computer Society.

[13] J. L. Hennessy and T. Gross. Postpass code optimization of
pipeline constraints.ACM Transactions on Programming
Languages and Systems, 5(3):422–448, 1983.

[14] K. Hoste and L. Eeckhout. Cole: Compiler optimization level
exploration. Inaccepted in the International Symposium on
Code Generation and Optimization (CGO 2008), 2008.

[15] T. Kisuki, P. Knijnenburg, , and M. O’Boyle. Combined
selection of tile sizes and unroll factors using iterative
compilation. InInternation Conference on Parallel
Architectures and Compilation Techniques, pages 237–246,
2000.

[16] T. Kisuki, P. Knijnenburg, M. O’Boyle, F. Bodin, , and
H. Wijshoff. A feasibility study in iterative compilation. In
Proceedings of ISHPC’99, volume 1615 of Lecture Notes in
Computer Science, pages 121–132, 1999.

[17] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase
sequences. InProceedings of the ACM SIGPLAN ’04
Conference on Programming Language Design and
Implementation, pages 171–182, Washington DC, USA, June
2004.

[18] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson.
Exhaustive optimization phase order space exploration. In
Proceedings of the Fourth Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pages
306–308, March 26-29 2006.

[19] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley,
J. Davidson, M. Bailey, Y. Paek, and K. Gallivan. Finding
effective optimization phase sequences. InProceedings of the
2003 ACM SIGPLAN Conference on Languages, Compilers,
and Tools for Embedded Systems, pages 12–23, 2003.

[20] P. A. Kulkarni, S. R. Hines, D. B. Whalley, J. D. Hiser, J. W.
Davidson, and D. L. Jones. Fast and efficient searches for
effective optimization-phase sequences.ACM Transactions
on Architecture and Code Optimization, 2(2):165–198, 2005.

[21] P. A. Kulkarni, D. B. Whalley, and G. S. Tyson. Evaluating
heuristic optimization phase order search algorithms. In
CGO ’07: Proceedings of the International Symposium on
Code Generation and Optimization, pages 157–169, 2007.

[22] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W.
Davidson. Practical exhaustive optimization phase order
exploration and evaluation.ACM Transactions on
Architecture and Code Optimization, 6(1):1–36, 2009.

[23] B. W. Leverett, R. G. G. Cattell, S. O. Hobbs, J. M.

Newcomer, A. H. Reiner, B. R. Schatz, and W. A. Wulf. An
overview of the production-quality compiler-compiler
project.Computer, 13(8):38–49, 1980.

[24] Z. Pan and R. Eigenmann. Fast and effective orchestration of
compiler optimizations for automatic performance tuning. In
CGO ’06: Proceedings of the International Symposium on
Code Generation and Optimization, pages 319–332, 2006.

[25] S. S. Pinter. Register allocation with instruction scheduling.
In PLDI ’93: Proceedings of the ACM SIGPLAN 1993
conference on Programming language design and
implementation, pages 248–257, New York, NY, USA, 1993.
ACM.

[26] S. Triantafyllis, M. Vachharajani, N. Vachharajani and D. I.
August. Compiler optimization-space exploration. In
Proceedings of the International Symposium on Code
Generation and Optimization, pages 204–215, 2003.

[27] S. R. Vegdahl. Phase coupling and constant generation in an
optimizing microcode compiler. InProceedings of the 15th
Annual Workshop on Microprogramming, pages 125–133.
IEEE Press, 1982.

[28] D. Whitfield and M. L. Soffa. An approach to ordering
optimizing transformations. InProceedings of the second
ACM SIGPLAN symposium on Principles & Practice of
Parallel Programming, pages 137–146, 1990.

