
Localizing Globals and Statics to Make C Programs
Thread-Safe

Adam R. Smith∗ Prasad A. Kulkarni
University of Kansas

Department of Electrical Engineering and Computer Science
Lawrence, Kansas, USA

smith195@illinois.edu; prasadk@ku.edu

ABSTRACT

Challenges emerging from the exponential growth in CPU power
dissipation and chip hot spots with increasing clock frequencies
have forced manufacturers to employ multicore processors as the
ubiquitous platform in all computing domains. Embedded mo-
bile devices are increasingly adopting multicore processors to im-
prove program performance and responsiveness at low power lev-
els. However, harnessing these performance and power benefits
requires the construction of parallel programs, a task significantly
more complex than writing sequential code. Parallel code develop-
ment is also made more difficult by differences in the use of sev-
eral programming language constructs. Therefore, it is critical to
provide programmers with tools to ease the formidable task of par-
allelizing existing sequential code or developing new parallel code
for multicore processors.

In this work we focus on the use of static and global variables
that are commonly employed in C/C++ programs, the languages
of choice for developing embedded systems applications. Unpro-
tected use of such variables produces functions that are not thread-
safe, thereby preventing the program from being parallelized. Man-
ually eliminating global and static variables from existing sequen-
tial code is tedious, time-consuming and highly error-prone. While
no good solution to this problem currently exists, researchers have
proposed partial mitigation techniques that require massive changes
to linkers and runtime systems. In this work we study the character-
istics and effects of static and global variables in traditional bench-
mark programs, and propose, construct, and explore a compiler-
based, semi-automatic and interactive technique to handle such vari-
ables and generate thread-safe code for parallel programs.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Compilers; D.2.3
[Software Engineering]: Coding Tools and Techniques

∗Currently, a graduate student in the department of Computer Sci-
ence at the University of Illinois, Urbana, IL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms

Performance, Languages

Keywords

Thread-safe, Globals

1. INTRODUCTION
A microprocessor operating at a higher clock frequency con-

sumes more power. The power wall, which is a limit to the amount
of power that a microprocessor chip can dissipate without failing,
proved to be an impregnable barrier to the further scaling of mi-
croprocessor clock frequencies, effectively ending the era of high-
performance uniprocessor chips in the server and desktop PC do-
mains. Chip manufactures now exploit the continuous growth in
chip transistor count enabled by Moore’s law by placing multi-
ple simpler reduced clock-rate cores on a single processor die [2].
Advanced embedded applications are rapidly becoming more com-
plex, and high-end embedded processors are facing the same power
constraints that were earlier seen in PC processors. Consequently,
several embedded processor manufacturers and application devel-
opers are advocating the use of symmetric multiprocessing (SMP)
systems to realize the scalable performance and power require-
ments of existing and future embedded applications [11, 34].

Unfortunately, scalable performance on multicore processors can
only be achieved by parallel applications distributing their tasks
across multiple threads. Consequently, the migration to multicore
processors requires software developers to address two formidable
tasks: (a) generate new parallel applications, and (b) convert exist-
ing sequential programs to use multiple threads. Unfortunately, it
has been observed that writing scalable and error-free parallel code
is often substantially more difficult, time-consuming, and costly
as compared to writing an equivalent serial program [20]. Fur-
thermore, programming language constructs that are routinely em-
ployed during sequential coding may not be available or may re-
quire special handling during the generation of parallel code. There-
fore, software tools that can automatically manage such common
programming obstacles can greatly ease the task of producing multi-
threaded parallel applications for software developers.

In this work we focus on the use of static and global variables in
imperative language programs like C/C++. Global variables pro-
vide a convenient (albeit, occasionally error-prone) mechanism to
share information between multiple functions in the same program.
Static variables are also typically used to hold global state, but
the compiler restricts their visibility to only the function or file
where they are defined. Static and global variables are an indis-
pensable programming construct employed by C/C++ developers
in programs of all sizes. Indeed, the lack of these constructs will

make it substantially more cumbersome and tedious to program in
such languages.

By virtue of residing in the data region of the process address
space, only a single copy of each global and static variable is shared
among all threads in a multi-threaded process. Consequently, de-
pending on their purpose and use, each static or global variable
in a multi-threaded program needs to be assigned separate thread-
local storage, or its use needs to be guarded (typically by using
semaphores or mutexes) to enforce synchronized and atomic access
by each thread. However, manually eliminating or synchronizing
the use of statics and globals is extremely hard, time-consuming
and tedious. At the same time, several programming idioms can
be naturally and more efficiently expressed using static and global
variables. Therefore, researchers are exploring various mechanisms
to appropriately manage static and global variables in multi-threaded
programs without substantially restricting their use or significantly
changing their semantics. Most of these mechanisms require ma-
jor changes to existing threading libraries and the runtime system
to provide a new and distinct global storage area for each thread
in the process address space [33, 14, 13]. Additionally, in most
cases the user still needs to use special keywords to help the com-
piler/runtime place static and global variables in their appropriate
storage locations.

In this paper we explore a new compiler-based semi-automatic
and interactive transformation to sanitize the use of static and global
variables in multi-threaded C applications. Our approach is semi-
automatic since, similar to existing techniques, the user is required
to indicate the category of each static or global variable as thread-

local, shared, or other. These categories are explained in more
detail in section 4. We develop an interactive framework to sim-
plify this categorization process. To handle variables in the thread-

local category, our compiler-based transformation constructs the
program call-graph, finds the definitions and uses of each vari-
able, and determines the closest dominator function to create a
thread-local copy for each such variable. The tool then moves the
static/global variable as a local into this dominator function, cor-
rectly initializes its stack storage, and then passes this variable by
reference to reach each function where it is needed. Shared cat-
egory variables can be locally handled by synchronizing their ac-
cesses using semaphores. Variables in the other category require
manual support. In this paper we describe the procedure, and ex-
plore the tradeoffs and limitations of handling the more challenging
thread-local category of static/global variables. In contrast to exist-
ing approaches for managing thread-local data, our method requires
no modifications to the language specifications, linker, loader, li-
braries, or the runtime system. Thus, a successful and low over-
head implementation of the proposed approach will not only ease
the immense task of converting existing serial C/C++ applications
to their parallel versions, but also enable the continued use of static
and global variables to simplify the writing of new parallel pro-
grams without additional language or runtime support. In this pa-
per we investigate the challenges in achieving this goal. Thus, we
make the following contributions in this paper:

1. Present characteristics on the use of static/global variables in
popular embedded and high-performance benchmarks,

2. Describe a novel semi-automatic procedure to transform vari-
ables with global process scope into variables with thread-
local scope to enable correct program parallelization,

3. Explore the space and performance trade-offs, as well as
identify the challenges for precise application of this trans-
formation, and

4. Illustrate the use of the viewer to enable user communication

with the compiler transformation.

2. RELATED WORK
Increasing availability of multicore/multiprocessor machines and

the growing demand for multi-threaded programs has resulted in
several approaches to ease the task of writing parallel applications.
In this section we describe previous efforts for providing thread-
local storage, specifications for parallel languages, and other li-
brary, tool and runtime level support for parallel programming.

Several high-level languages provide standard or non-standard
support for thread-local variants of traditional global and static vari-
ables. For example, Delphi provides the variable specifier thread-
var [27], GNU C/C++ provides the __thread specifier [33], the
unofficial new standard for C++ (C++0x) provides the thread_local
specifier [14], and C# allows variables to be marked with the Thread-

Static attribute [13] to specify thread-local storage for global data.
In contrast, our interactive approach does not require any changes
to the language specification. Additionally, more than the language
design, in this paper we focus on the implementation aspects of
providing thread-local storage for static and global variables.

Library and compiler implementation support is also available to
create thread-specific data. Thus, the POSIX thread interface [10],
Windows libraries [4], and the boost C++ libraries [3] provide API
functionality to create and manage thread-local storage for statics
and globals. Apart from learning a new API, such implementation
approaches are often cumbersome to use [14] and require signifi-
cant support from the linker, system libraries and the runtime sys-
tem [33]. Our tool employs a complementary and novel compiler-
based approach that not only provides thread-local storage without
any modifications to the library, linker, or runtime support, but can
also automatically synchronize access for shared global variables.

Researchers have also developed new programming languages
and extensions to existing languages to enable easier specification
of parallelism [15, 30, 23, 31, 12, 36], Parallel programming lan-
guages typically present a significantly different programming in-
terface than their sequential counterparts, and mark a steeper learn-
ing curve for many programmers. Traditional low-level multithread-
ing libraries, such as pthreads, allow the programmer to express
parallelism, but leave program and data partitioning, synchroniza-
tion, communication and deadlock management in the hands of
the programmer [25]. Concurrent programming has also been long
practiced in the scientific computing domain using data parallel lan-
guage extensions and message passing libraries [17, 16]. Our work
is an attempt to sanitize global/static variables while maintaining
the same programming interface.

Automatic compiler-based program parallelization achieved con-
siderable success on regular scientific programs by extracting DOALL
parallelism [21] from loop nests accessing arrays [7, 35]. Most of
these techniques employ intraprocedural analysis to exploit fine-
grained and vector parallelism, but were often not able to achieve
encouraging results for general-purpose applications. Inter-procedural
analysis required for coarse-grained parallelism is generally con-
sidered more complicated, and has only achieved limited success [18].
We are not aware of any automated inter-procedural technique that
attempts to globally modify function declarations, as is done by our
technique.

Bridges et al. propose a new source annotation and compiler
directive, called Commutative, to enable concurrent invocation of
functions with the property that multiple calls to that function are
interchangeable even though they share internal state [8]. Rinard
et al. developed a novel commutativity analysis to automatically
detect operations or functions that generate the same final result
regardless of the order in which they execute [32]. Although much

different than our techniques, such analysis can be employed in our
framework to support the handling of the shared category of static
and global variables that occur in commutative functions.

Some of our techniques are also related to the popular compiler
optimizations of scalar expansion and scalar privatization [21]. Scalar
expansion replaces a loop scalar with a compiler generated tempo-
rary array that has a separate location for each loop iteration. Loop
privatization is a slightly different way to achieve the same result
by declaring the local as private to each iteration of a loop. Appli-
cation of these techniques allow the loop to be vectorized or paral-
lelized at the cost of increased code size. However, as opposed to
our technique outlined in this paper, scalar expansion and privatiza-
tion achieve different goals, are transformations local to a function
and do not affect the calling interface of any function.

The ultimate goal of this effort is to develop a new code refac-
toring tool that can generally reassign storage between local and
global variables. Existing code refactoring tools are typically only
used to enhance non-functional aspects of the source code, includ-
ing program maintainability [28] and extensibility [22]. None of
these tools provide an ability as yet to transform global/local vari-
ables, as we propose in this work.

3. IMPLEMENTATION AND USE OF STATIC

/ GLOBAL VARIABLES
In this section, we present a brief primer on the purpose and im-

plementation of static and global variables in imperative languages
like C and C++.

3.1 Statics/Globals in the Process Address Space
A global variable declaration is one that exists outside the scope

and outlasts the life of any function. Global variables generally
enjoy visibility throughout the program. The static specifier can
be used during the declaration of any variable to extend its life for
the entire program execution. In spite of their global lifetime, static
variables enjoy restricted visibility that depends on where that static
has been declared. A static variable declared outside a function
definition has its scope restricted to the file where it is declared.
In contrast, static variables declared in a function are only visible
within that single function. All static and global variables are only
initialized once and retain their value across calls allowing the pro-
gram to store global state, whenever required.

Due to their global lifetimes, the compiler detects all static and
global variables during program compilation and allocates them
space in the data area of the process address space. Figure 1 shows
a program snippet to illustrate the use of local (loc_i), function
argument (prm_i), static (stc_cnt) and global (gbl_iter) vari-
ables. Depending on the variable kind, the compiler allocates them
space in different regions of the process address space, as illus-
trated in Figure 2(a). While local variables and function arguments
are allocated space in the function activation record on the process
stack, global and static variables reside in the data region of the
address space. Variables in the function activation records are reas-
signed space on every function invocation and reclaimed on func-
tion return. In contrast, only one instance of each static and global
variable is available at any instance during program execution.

For a process with multiple threads, each thread gets its own
stack space (along with a few other thread-level values maintained
by the operating system), but shares the remaining regions with
the other threads in the same process. Consequently, each thread
gets its own copy of local variables and function arguments, and so
these are referred to as thread-local storage. However, by virtue of
residing in the data region of the process address space, a single

void foo(int prm_i) {

 if(prm_i < gbl_iter){

 stc_cnt++;

 foo(prm_i+1);

 }

}

 static stc_cnt;

int gbl_iter = 10;

 int loc_i = 0;

 foo(loc_i);

}

void main() {

Figure 1: Declaration and Use of Static Variables

copy of each static and global variable is shared by all threads.
The process address space for a multi-threaded process, and the
sharing of variables in the data region is illustrated in Figure 2(b).
Therefore, for correct program operation, updates to these static
and global variables need to be synchronized between threads, or
such variables should be converted into thread-local storage. In
this paper we describe a novel method that employs an interactive
compiler-based transformation to appropriately handle static and
global variables in multi-threaded programs.

4. OUR APPROACH TO LOCALIZE GLOBAL

AND STATIC VARIABLES
In this section we outline our general approach to privatize global

and static variables to construct thread-safe programs. In section 4.1
we categorize global/static variables in single-threaded programs
based on how they should be handled in thread-safe multi-threaded
programs. Next, we employ an example program in section 4.2 to
describe the actions to be taken by the user and the work that can be
performed automatically by our tool to make programs thread-safe.
Finally, in section 4.3 we present further details on the techniques
and algorithms that we use during our transformation.

4.1 Categories of Statics and Globals
Depending on their use and program implementation, statics and

globals in multi-threaded programs can be categorized as follows:

Category I: Global/static variable that holds and manipulates un-
related and independent values in each thread of the process.
Our tool automatically assigns distinct thread-local storage
to such variables.

Category II: Global/static variable that holds a value that is shared
between threads, and the value is managed by the threads in
no particular order. Our tool can automatically synchronize
write access to such variables using a semaphore-like mech-
anism.

Category III: Global/static variable that holds a shared value, which
must be managed by individual threads running in a specific
order. This group of variables is difficult to handle automati-
cally and may require manual user support, including chang-
ing the parallel algorithm.

Our compiler-based tool requires user input for correct program
transformation. Therefore, we use the the VISTA interactive viewer [24]
to query the category of each static and global variable from the
user. Our tool can then automatically handle static/global variables
in categories I and II to generate a thread-safe version of the pro-
gram, but leaves variables in the final category unchanged.

4.2 Separation of Manual and Automatic Work
During Our Transformation

stack pointer

program
counter

registers

stack pointer

program
counter

registers

stack pointer

program
counter

registers

gbl_iter = 10

foo() prm_i = 0

foo() prm_i = 1

gbl_iter = 10

foo() prm_i = 0

foo() prm_i = 1

foo() prm_i = 0

foo() prm_i = 1

stc_cnt =

foo() prm_i = 2

text

data and
.bss

heap

stack

text

data and
.bss

heap

Thread 1
stack

stack
Thread 2

main() loc_i = 0

main()

 foo ()

main()

 foo ()

main() loc_i = 0

main() loc_i = 0

(a) Single thread (b) Multiple threads

4stc_cnt = 1

Figure 2: Process Address Space for Single and Multi-Threaded Programs

Our transformation is only targeted to make programs thread-
safe and cannot automatically parallelize a sequential program. There-
fore, in addition to specifying the category of each global and static,
the user is also responsible for writing the parallel program that
can create multiple threads and distribute the work amongst these
threads. In this section we employ a hypothetical program to illus-
trate the distribution of work done manually by the user as com-
pared to that performed automatically by our tool. We will also use
this example to explain the workings of our transformation.

The example program presented in Figure 3(a) is derived from
the main loop of a realistic sequential compiler. The compiler loop
transforms the input code by reading, optimizing, and writing out
functions one at a time. The original sequential program consists of
all source lines in Figure 3(a), except those indicated in a bold font.
The program uses three global variables: in_fp to hold the current
location in the source file, out_fp to point to the next location
in the output file for the compiled code, and fn, which points to
the structure containing information regarding the current function
to optimize. Based on user options, the compile() function can
either send the function for low-quality fast transformation or high-
performance optimization. The functions opt1() and opt2() use
the global variable fn to optimize the code.

On multi-processor machines, the user can achieve faster com-
pilation by concurrently transforming multiple functions from the
input file on separate cores. In order to achieve this goal using our
framework, the programmer is first required to manually port the
sequential application to create and use multiple threads to com-
pile different functions in parallel. For our example program in
Figure 3(a), the user can create a parallel variant of the original
program by adding the lines of code indicated by a bold font to this
sequential program, and replacing the function call to compile()

in function main() to instead call function compile_thread().
The new parallel program creates a new thread to compile each
input function. Given multiple processing units, each parallel pro-
gram thread still reads the input function and writes the transformed
code sequentially, but can perform the optimization step in parallel.
However, the parallel program in Figure 3(a) is not thread-safe due

to its unprotected use of global variables. Therefore, its execution
will most likely produce incorrect output code. In the following
section we describe how our automatic tool can be employed to
make this parallel program thread-safe.

4.3 Algorithm for Generating Thread-Safe Pro-
grams

Our tool accepts a non-thread-safe parallel program from the
user. We have interfaced our compiler-based transformation with
the interactive VISTA viewer to get two more pieces of informa-
tion from the user. First, our tool requires the user to indicates the
entry function for each (set of) thread (function compile in Fig-
ure 3(a)). The user can simply click on the entry function node in
the call-graph structure presented by the viewer, and as displayed
in Figure 4 for the program in Figure 3. In our current implemen-
tation, the user can only specify a single thread entry function at a
time. Extending our tool to specify multiple functions for threads
starting from different entry points should be straight-forward, and
we leave its implementation as a part of future work. Second, our
tool detects all global and static variables used in the subtree rooted
at the thread entry function and presents this list to the user. The
user is then expected to correctly specify the category of each static
and global variable, as described in section 4.1. For this example,
the variable fn belongs to category I, while variables in_fp and
out_fp belong to category II.

Presented with the set of input source files, an indication of the
thread entry function and a description of the category of each
global/static variable used in the relevant part of the program, our
tool can then proceed with the transformation to make the pro-
gram thread-safe. Our transformation algorithm carries out differ-
ent steps to handle each category of global and static variables for
generating a thread-safe program. Variables belonging to category
I require more extensive handling. The steps for managing category
I globals and statics are described below:

1. The compiler scans the source files to generate a call-graph
for the application. During the call-graph construction, the
compiler stores information regarding the definitions and uses
of all relevant global and static variables. At the same time,

FILE *in_fp;

FILE *out_fp;

struct FN *fn;

int main() {

 while (more_functions){

 compile();

 }

 // compile_thread();

}

void compile_thread() {
 // create new thread
 create_thread(&compile);
}

void compile() {

 read_next_function();

 if(user_opt == 1)

 fast_optimize();

 else

 optimize();

 write_opt_function();

}

 // function from file in_fp
}

 // write optimized function
 // fn to file out_fp
}

void fast_optimize() {

 opt1();

}

void optimize() {

 opt1();

 opt2();

}

void opt1(){

 // optimize and modify function
 // pointed to by fn
}

void opt2(){

 // optimize and modify function
 // pointed to by fn
}

 // set fn by reading next
void read_next_func() {

void write_opt_func() {

(a) Non-Thread-Safe Program

FILE *in_fp;

FILE *out_fp;

int main() {

 while (more_functions){

// struct FN *fn;

 }
}

void compile_thread() {

 // create new thread

 create_thread(&compile);

}

void compile() {

 read_next_function(&loc_fn);

 if(user_opt == 1)

 fast_optimize(&loc_fn);
 else

 optimize(&loc_fn);
 write_opt_function(&loc_fn);
}

 compile_thread();

}
 // unlock file in_fp

}
 // unlock file out_fp

void fast_optimize(struct FN **p_fn) {
 opt1(p_fn);
}

void optimize(struct FN **p_fn) {
 opt1(p_fn);
 opt2(p_fn);
}

void opt1(struct FN **p_fn){
 // optimize and modify function
 // pointed to by p_fn
}

void opt2(struct FN **p_fn){
 // optimize and modify function
 // pointed to by p_fn
}

 struct FN *loc_fn = 0;

 // lock file in_fp

void write_opt_func(struct FN **p_fn) {
 // lock file out_fp

void read_next_func(struct FN **p_fn) {

 // set p_fn by reading next

 // function from file in_fp

 // write optimized function

 // p_fn to file out_fp

(b) Multi-Threaded Thread-Safe Program

Figure 3: Example of a sequential program with its semantically equivalent thread-safe multi-threaded version

the compiler also determines the data type and initialization
values for each global and static variable.

2. For each global/static variable, our tool uses the Lengauer-
Tarjan algorithm [26] to find the closest dominator function
for the set of functions that use that particular variable. A
dominator for a control flow graph node n is defined as a
node d such that every path from the entry node to n must go
through d [5]. For static variables, the dominator function is
simply the immediate dominator of the function containing
the static. The global dominators are more difficult to deter-
mine, since a global may be used in any number of functions.

The global dominator is then determined by locating the first
common dominator of all the functions that use that global.
Thus, as an example the global variable fn that is used in
two functions, opt1() and opt2(), in Figure 3(a) has the
function compile() as its common dominator. The trans-
formation will merge aliased locations into a single location
for the purpose of finding dominators.

3. Next, our transformation moves each global/static variable as
a local variable to its dominator function. Additional space
is created on the stack of the dominator function for this def-
inition of the local. The transformation also adds new in-

Figure 4: Viewer window showing the call-graph for the pro-

gram in Figure 3(b)

structions to this function to correctly initialize the new local
variable. In the program displayed in Figure 3(a), the global
variable fn is moved to the function compile() and initial-
ized to zero. Since the local variables reside on the stack,
we can now ensure a distinct copy of each static and global
variable for every thread.

4. The next step involves finding the functions in the call-graph
between the common dominator and all the functions where
the global/static is used. We call this set of functions as the
global/static’s frontier. The local copy for each global/static
variable needs to be passed by reference to each of its frontier
functions in order to reach their appropriate end locations,
where they are used. This requires modifying the calling in-
terface of each frontier function. Thus, in program 3(a), the
local copy of global fn is passed by reference to all its fron-
tier functions, namely fast_optimize() and optimize().

5. The next step in our transformation is to modify the calling
interface of the end functions for each global/static to get
the additional arguments corresponding to the thread-local
variants of globals and statics. Thus, the calling interface
of functions opt1() and opt2() is updated to accept the
address of the local variant of fn as an argument. Finally,
our tool also updates every use of each global/static to instead
use the corresponding local/argument.

Global and static variables belonging to category II can be more
easily handled by maintaining them as globals, but synchronizing
their accesses using a semaphore-like mechanism. Thus, the appli-
cation of our tool transforms the non-thread-safe parallel program
in Figure 3(a) to the thread-safe parallel program in Figure 3(b).
The parts of the program that are modified by our transformation
are indicated in bold fonts.

5. OBSERVATIONS AND RESULTS

In this section we present our observations regarding the use of
globals and statics in benchmark programs. We further describe the
code changes and performance effects of our transformation.

5.1 Experimental Framework
The research described in this paper can be conducted as a source-

to-source or a source-to-binary transformation. Our existing proto-
type uses the VISTA (VPO Interactive System for Tuning Appli-
cations) [24] interactive compilation framework. VISTA employs
the EDG compiler frontend and the VPO (Very Portable Optimizer)
compiler backend [6], and provides an intuitive interface for users
to interact with the compiler backend. The backend VPO compiler
performs its analyses and optimizations on a low-level program
representation called Register Transfer Lists (RTL). Our configura-
tion of VPO for this work generates code for the ARM architecture.
The VISTA user interface can be used to view the program source
or its assembly form, to select VPO optimizations and to see the
state of the program at various stages of the compilation process.
We have integrated our prototype implementation for handling stat-
ics and globals in multi-threaded programs within VPO, and have
extended the VISTA user interface to enable the user to view the
definition and uses of global and static variables and select their
category as detailed in section 4.

Our selected benchmark set for this study include six bench-
marks from the MiBench benchmark suite, which are C applica-
tions targeting specific areas of the embedded market [19]. We
also include all C programs (except 462.libquantum, which did
not build with the default version of our compiler frontend) from
the CPU-intensive SPEC CPU CINT2006 benchmark suite [1] to
experiment with more complex applications. Table 1 contains de-
scriptions of our benchmark programs.

5.2 Characteristics of Statics and Globals in
Benchmark Programs

Global and static variables are very commonly employed in most
C/C++ programs. In this section we study various statistics on the
use of such variables in our benchmark programs, and their effect
on the thread-safety of each function. We believe that such infor-
mation is important to understand the factors to be considered dur-
ing the construction of complex thread-safe parallel programs.

Table 2 reveals several properties of statics and globals in our
benchmark programs. The first column lists the benchmark name.
The next three columns present the number of read/write-only (RWO),
read and write (RW), and unknown (UK) static variables. Read/write-
only statics do not require any further handling since a single copy
of such variables can be harmlessly shared between all threads.
Read and write statics may need to be assigned separate storage for
each thread. The unknown (UK) category includes those variables
for which we are unable to derive any access information. Further
analysis reveal that in most such cases only the address of the vari-
able is used or is passed as an argument to some other function(s)
that may manipulate its value. The next three columns present sim-
ilar information regarding the number of read-only or write-only
(RWO), read and write (RW) and unknown (UK) global variables.
In addition, we observe that a significant number of global vari-
ables were declared but never used in any function reachable from
main() in our call-graph.1 This number is listed in the next column
(labeled US). Thus, we can see that most of our benchmarks make
generous use of static, and in particular, global variables. More-
over, the use of such variables becomes more prominent with grow-

1One important reason for unreachable functions, which is ex-
plained shortly, is the presence of indirect function calls.

Benchmark Suite LOC Funcs. Description

400.perlbench SPEC CINT 43,722 1,984 cut-down version of the scripting language Perl v5.8.7

401.bzip2 SPEC CINT 2,852 103 popular compression program v1.0.3

403.gcc SPEC CINT 145,410 5,675 based on gcc Version 3.2 for Opteron

429.mcf SPEC CINT 699 24 network simple algorithm for vehicle scheduling

445.gobmk SPEC CINT 39,106 2,681 plays the simple but complex AI game Go

456.hmmer SPEC CINT 12,039 540 protein sequence analysis using hidden Markov models

458.sjeng SPEC CINT 4,935 145 a highly-ranked chess program

464.h264ref SPEC CINT 16,736 591 a reference implementation of H.264/AVC

adpcm MiBench 114 4 compress 16-bit linear PCM samples to 4-bit samples

blowfish MiBench 299 8 symmetric block cipher with variable length key

dijkstra MiBench 70 7 Dijkstra’s shortest path algorithm

ispell MiBench 2,802 112 fast spelling checker

jpeg MiBench 1,256 62 image compression and decompression

stringsearch MiBench 134 10 searches for given words in phrases

Table 1: Our set of benchmark programs (LOC – counts the number of lines containing a semi-colon; Funcs. – counts the number

of static function definitions in each program).

Benchmark
Statics Globals Reach Non-thread-safe Fn.

RWO RW UK RWO RW UK US Funcs Statics Globals Total

400.perlbench 4 2 5 31 277 17 208 608 322 515 517

401.bzip2 0 0 0 8 8 0 14 81 0 16 16

403.gcc 19 49 4 187 919 34 386 3890 2552 3174 3178

429.mcf 0 0 0 0 6 1 1 24 0 6 6

445.gobmk 5 22 2 26 264 12 10111 716 201 554 558

456.hmmer 6 15 1 15 11 2 14 208 15 29 32

456.sjeng 17 5 0 42 161 4 26 120 3 101 101

464.h264ref 37 8 7 77 355 8 88 504 32 334 335

adpcm 0 0 0 2 3 0 0 3 0 2 2

blowfish 0 0 0 0 1 0 1 4 0 2 2

dijkstra 0 0 0 1 9 0 0 7 0 6 6

ispell 1 5 2 4 83 1 15 108 50 84 84

jpeg 0 1 0 0 3 1 1 19 3 5 5

stringsearch 0 0 0 0 3 0 5 3 0 3 3

Table 2: Statistics and effect of global and static variables

ing program size, which indicates the benefit of these variables for
writing complex code. Our approach to make the program thread-
safe converts static and global variables in the columns RW and
UK by either synchronizing their accesses or by moving them to
their respective dominator functions as locals, initializing them and
passing them as arguments to all their end-point functions.

The next column, labeled Reach Funcs, shows the count of the
number of functions in the call-graph for each benchmark that are
reachable from the start function main(). The final three columns
in Table 2 present the number of non-thread-safe functions (consid-
ering main() as the thread entry function) in each benchmark pro-
gram due to the presence of statics, globals and their union (total).
We consider a function as non-thread-safe if it uses a global or static
variable in the RW or UK categories, or if it calls a non-thread-
safe function. By this metric, a significant majority of reachable
functions in most of our benchmark programs are non-thread-safe.
This metric demonstrates the importance of appropriately address-
ing this issue to generate parallel programs for current and future
shared-memory multi-processor machines.

Our approach to localize category I static and global variables
requires the construction of a precise call-graph for each program.
The presence of indirect function calls via function pointers makes
precise call-graph construction difficult in languages like C/C++.
Table 3 shows statistics regarding the use of indirect function calls
in our benchmark programs. The columns labeled Num and Funcs

respectively present the number of indirect function calls and the
number of unique functions invoking such calls for each benchmark
program. Thus, we find that most larger benchmarks make gener-
ous use of indirect function calls. Unfortunately, the VPO compiler
does not yet perform the pointer analysis necessary for the proper
resolution of function pointers. This limitation is a source of in-
accuracy in some of our current results. However, please note that
this aspect is not a limitation of the general technique, since pre-
cise function pointer analysis and call-graph construction has been
shown to be feasible for most programs in earlier studies [29].

The next two columns in Figure 3 show the number of Total and
Orphan functions in each benchmark program. Total functions is
the number of nodes in the call-graph for each function. Our com-
piler creates a call-graph node for every distinct function defined or
invoked in the benchmark program, and thus also includes library
functions. Orphan functions are those that cannot be reached from
the main() function and are, therefore, purged from the call-graph.
The large number of orphan functions is partly an artifact of the
limitation of our current call-graph construction algorithm, which
is unable to resolve indirect function calls producing no edges for
such calls in the call-graph. This limitation in our compiler frame-
work will be resolved as part of future work by providing a more
precise implementation of function pointer analysis.

Benchmark
Indirect Calls Functions

Benchmark
Indirect Calls Functions

Num Funcs Total Orphan Num Funcs Total Orphan

400.perlbench 137 99 1982 1330 401.bzip2 20 5 121 24

403.gcc 461 239 5684 1729 429.mcf 0 0 39 1

445.gobmk 44 20 2726 1968 456.hmmer 8 4 601 342

456.sjeng 1 1 176 26 464.h264ref 368 29 636 88

adpcm 0 0 8 1 blowfish 0 0 16 4

dijkstra 0 0 15 0 ispell 0 0 171 4

jpeg 108 37 88 47 stringsearch 0 0 19 13

Table 3: Number of indirect function invocations and number of Functions containing indirect calls per benchmark

Benchmark Statics Globals Stc Frontier Gbl Frontier Arguments
Num Size Num Size Max Avg Max Avg Before After

400.perlbench 7 216 294 12484 501 352.14 494 360.49 1.77 181.64

401.bzip2 0 0 8 2133 0 0.00 9 2.75 2.15 2.62

403.gcc 53 503 953 612197 1517 287.23 2500 274.48 1.96 73.95

429.mcf 0 0 7 6148 0 0.00 0 0.00 2.50 2.88

445.gobmk 24 70919 276 1687299 174 47.50 425 78.97 2.46 35.95

456.hmmer 16 348 13 81651 3 1.06 8 1.62 2.63 3.03

456.sjeng 5 20 165 2572792 0 0.00 35 7.96 1.32 18.18

464.h264ref 15 1272 363 186394 11 3.33 192 8.32 1.90 10.32

adpcm 0 0 3 2504 0 0.00 0 0.00 1.33 2.33

blowfish 0 0 1 4168 0 0.00 0 0.00 3.75 4.00

dijkstra 0 0 9 40828 0 0.00 1 0.11 2.00 4.00

ispell 7 8585 83 32848 33 9.86 55 7.11 2.19 10.54

jpeg 1 4 4 188 0 0.00 0 0.00 1.84 2.32

stringsearch 0 0 3 1032 0 0.00 0 0.00 0.67 2.67

Table 4: Static results of the transformation to localize static and global variables

5.3 Static Code Changes and Dynamic Effects
of Our Transformation

In this section we attempt to evaluate the impact of our approach
in terms of static code changes and dynamic performance effects.
However, measuring the effects of our transformation on program
performance is non-trivial. Similar to all existing schemes to han-
dle global/static variables in multi-threaded programs, application
of our transformation also requires user knowledge to update the
original sequential program to create and use threads, identify the
thread entry functions, and categorize each global and static vari-
able, as described in section 4. In the absence of suitable multi-
threaded benchmarks and necessary program knowledge, we make
the following assumptions for our results with the chosen single-
threaded benchmarks in this section: (1) The function main() is
selected as the entry point for each thread, which means that all

read-write static and global variables in the entire program need
to be handled based on their category. (2) All relevant static and
global variables belong to category I, which requires all such vari-
ables to be converted into thread-local storage as explained in Sec-
tion 4.3. We believe that the handling of category I globals pro-
vides the most interesting and novel component of our transforma-
tion. (3) We do not manually parallelize our sequential benchmark
programs (as described in Section 4.2). Therefore, we only mea-
sure the static and runtime statistics of the single-threaded program
before and after our transformation. The measured statistics thus
quantify the scenario where all global and static variables are lo-
calized and all reachable program functions are made thread-safe.

Table 4 presents the static results of applying our transforma-
tion to the benchmark programs. For each benchmark, columns
two and three show the number and total size (in bytes) of static
variables that are localized. Similarly, the next two columns show
the number and size of global variables that are assigned thread-
local storage. Thus, the columns labeled by Size indicate the addi-

tional number of bytes that need per-thread allocation on the stack
(in their respective dominator functions), and have to be initialized
by each thread at runtime. Our transformation adds instructions
to allocate space and initialize this new stack storage. Such vari-
ables also need to be passed around as additional arguments from
their point of declaration to the respective functions where they are
set/used. Thus, precise inter-procedural and alias-based detection
of global and static variable access types (read/write) is critical to
accurately determine the number of variables to handle and limit
the performance cost of this transformation.

Our transformation modifies each function interface to accept the
additional number of function arguments. The next four columns in
Table 4 list the maximum and average number of frontier functions
for each benchmark. Frontier functions reside between the decla-
ration and use points for each static/global and transfer the vari-
ables between these points. Our algorithm attempts to place each
static/global variable in the function that is closest to its points of
use to minimize the number of frontier functions and associated ar-
gument passing overhead. Even then, several (particularly, larger)
benchmarks contain large number of frontier functions. The final
two columns show the number of average function arguments be-
fore and after our transformation. Thus, the average number of
function arguments is seen to increase dramatically in many cases
and tracks the number of frontier functions.

Finally, we present results of experiments that quantify the per-
formance effect of our transformation. Unlike static and global
variables that are implicitly zeroed by the operating system, local
variables need explicit initialization within the program. Thus, our
transformation not only requires additional storage space on the
process stack, but also adds instructions to initialize the new lo-
cals in the respective dominator functions. New instructions are
also needed to pass arguments around. The number and kind of
such instructions depend on the machine’s calling conventions, and

(a) Dynamic Instruction Counts (b) Dynamic Memory References

Figure 5: Effects of our transformation for localizing globals/statics on program performance

whether the arguments are passed in registers or in memory (stack).
All these added instructions can impose performance overheads
for the transformed programs. At the same time, the compiler of-
ten generates more efficient code for accessing locals/arguments as
compared to referencing globals. Also, most compilers are more
aggressive at assigning locals/arguments to registers. Such effects
can also improve program performance with our transformation.

We use the SimpleScalar set of functional simulators for the
ARM platform [9] to derive accurate dynamic statistics for a single-

threaded run of these benchmarks before and after our transforma-
tion.2 All binary executables are fully optimized by VPO. We only
collect the dynamic measurements for the six MiBench programs.
Collecting dynamic results for most SPEC benchmarks is currently
impractical due to their long simulation times. Moreover, impre-
cise call-graphs that are currently created by our compiler in the
presence of indirect function calls for many of the SPEC CINT
benchmarks result in incorrect code being produced for some of
these programs after our transformation.3

Figure 5 presents the performance cost of our transformation
in terms of dynamic instruction counts and dynamic number of
load/store instructions for the MiBench programs. Our results re-
veal that while localizing a small number (and size) of static and
global variables has minimal effect on performance, the overhead
can become significant for benchmarks (like ispell) with large num-
ber and size of such variables. At the same time, conversion of
globals to local variables can improve performance for benchmarks
(like dijkstra) with comparatively small initialization and argument
passing costs. Thus, implementing analysis algorithms to accu-
rately identify and restrict the number of variables to localize is
critical to the feasibility of this approach for larger benchmarks.
Additionally, new optimization techniques may also help to man-
age the single-thread performance loss (for example, by eliminating
initialization instructions if the variables are guaranteed to be over-
written before use, by combining multiple arguments that are al-
ways/mostly passed as a unit in a structure, and by more efficiently
initializing blocks of storage by using a function such as mmap).

6. FUTURE WORK
There are a number of improvements that are necessary to ad-

dress the limitations of our existing implementation, and increase
the performance and attractiveness of the presented transformation.

2Performance with multiple threads and on multicore machines
will depend on the scalability achieved by the parallel program im-
plementation.
3We manually verified that none of the functions invoked indirectly
in the benchmark jpeg use static or global variables.

First, we plan to implement pointer analysis and improve alias anal-
ysis in VPO. Pointer analysis is necessary to resolve indirect func-
tion calls and build a precise call-graph for each benchmark. More
accurate alias analysis will allow the transformation to precisely
detect and merge all aliased variable names. Second, by consider-
ing main as the thread-entry function allowed our existing imple-
mentation to ignore the possible cases where the closest common
dominator for a global variable is before the threads are spawned.
Our future implementation will include techniques to handle such
cases. Third, we will implement enhanced analysis schemes to cor-
rectly identify the read/write status of static and global variables to
provide more accurate information to the user and correctly local-
ize only the necessary variables. Fourth, further research is needed
to investigate the causes of performance overhead and develop op-
timizations to address them. Fifth, this transformation requires the
user to accurately characterize globals and statics in the original
code to generate its correct semantically equivalent thread-safe ver-
sion. Further research will be needed to provide users with a more
intuitive and precise user interface. Finally, we also plan to perform
case-studies that involve parallelizing real programs to validate the
feasibility of our interactive framework and assess the benefit of
our technique during program parallelization efforts.

7. CONCLUSIONS
As the era of multi/many-core processors dawns on the comput-

ing community, it is becoming increasingly crucial to build par-
allel applications and convert existing sequential programs to use
multiple cores. Automatic software techniques and tools have the
potential of considerably easing this formidable software engineer-
ing task. The use of global and static variables produces non-
thread-safe code, preventing their use in multi-threaded programs.
Our results show the widespread use of such variables in exist-
ing programs, and motivate the importance of providing users with
tools to appropriately handle them in parallel codes. In this paper
we present a semi-automatic and interactive compiler-based ap-
proach to convert global and static variables in parallel programs
into thread-safe storage. Unlike any existing solutions, our novel
approach is completely compatible with current language, library
and runtime systems. We provide a simple implementation of our
transformation to primarily explore necessary analysis capabilities,
its functional and performance characteristics, and identify avenues
for performance improvements. From this study, we conclude that
accurate implementation of our transformation is possible and is
likely to enormously benefit program parallelization efforts to gen-
erate programs that remain compatible with existing software sys-
tems.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-

ments and suggestions. This research was supported in part by NSF
grant CNS-0953268.

9. REFERENCES

[1] Standard performance evaluation corporation (spec).
http://www.spec.org/benchmarks.html, 2006.

[2] International technology roadmap for semiconductors.
accessed from
http://www.itrs.net/Links/2008ITRS/Home2008.htm, 2008.

[3] Boost c++ libraries, boost 1.42.0 library documentation
(chapter 21). Published at
http://www.boost.org/doc/libs/1_42_0, February 2010.

[4] Msdn library, using thread local storage. Windows Developer
Center, February 2010.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing, 2006.

[6] M. E. Benitez and J. W. Davidson. A portable global
optimizer and linker. In Proceedings of the SIGPLAN’88

Conference on Programming Language Design and

Implementation, pages 329–338. ACM Press, 1988.

[7] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger,
D. Padua, P. Petersen, B. Pottenger, L. Rauchwerger, P. Tu,
and S. Weatherford. Polaris: The next generation in
parallelizing compilers. In Workshop on Languages and

Compilers for Parallel Computing, pages 10–1, 1994.

[8] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and
D. August. Revisiting the sequential programming model for
multi-core. In 40th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 69–84, 2007.

[9] D. Burger and T. Austin. The SimpleScalar tool set, version
2.0. SIGARCH Comput. Archit. News, 25(3):13–25, 1997.

[10] D. R. Butenhof. Programming with POSIX threads.
Addison-Wesley Longman Publishing, 1997.

[11] B. Carlson and S. Jahnke. Leveraging the benefits of
symmetric multiprocessing (smp) in mobile devices. Texas
Instruments white paper, 2009.

[12] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language. Int. J. High

Perform. Comput. Appl., 21(3):291–312, 2007.

[13] M. Corporation. Microsoft C# Language Specifications.
Microsoft Press, Redmond, WA, USA, 2001.

[14] U. Drepper. Elf handling for thread-local storage. Red Hat
Inc., people.redhat.com/drepper/tls.pdf, December 2005.

[15] T. El-Ghazawi and F. Cantonnet. Upc performance and
potential: a npb experimental study. In Proceedings of the

2002 ACM/IEEE conference on Supercomputing, pages
1–26, 2002.

[16] M. P. I. Forum. Mpi2: A message passing interface standard.
High Performance Computing Applications, 12(1–2):1–299,
1998.

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam. Pvm: Parallel virtual machine – a users
guide and tutorial for network parallel computing. MIT
Press, 1994.

[18] D. Grove and L. Torczon. Interprocedural constant
propagation: a study of jump function implementation. In
Proceedings of the 1993 conference on Programming

language design and implementation, pages 90–99, 1993.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. IEEE 4th Annual

Workshop on Workload Characterization, December 2001.

[20] L. Hochstein, J. Carver, F. Shull, S. Asgari, and V. Basili.
Parallel programmer productivity: A case study of novice
parallel programmers. In Proceedings of the 2005

ACM/IEEE conference on Supercomputing, page 35, 2005.

[21] K. Kennedy and J. R. Allen. Optimizing compilers for

modern architectures: a dependence-based approach.
Morgan Kaufmann Publishers, 2002.

[22] J. Kerievsky. Refactoring to Patterns. Pearson Higher
Education, 2004.

[23] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele,
Jr., and M. E. Zosel. The high performance Fortran

handbook. MIT Press, Cambridge, MA, USA, 1994.

[24] P. Kulkarni, W. Zhao, S. Hines, D. Whalley, X. Yuan, R. van
Engelen, K. Gallivan, J. Hiser, J. Davidson, B. Cai,
M. Bailey, H. Moon, K. Cho, and Y. Paek. Vista: Vpo
interactive system for tuning applications. Transactions on

Embedded Computing Systems, 5(4):819–863, 2006.

[25] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[26] T. Lengauer and R. E. Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on

Programming Language Systems, 1(1):121–141, 1979.

[27] R. Lischner. Delphi in a Nutshell: A Desktop Quick

Reference. O’Reilly & Associates, 2000.

[28] R. C. Martin. Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice Hall PTR, 1 edition, 2008.

[29] A. Milanova, A. Rountev, and B. G. Ryder. Precise call
graphs for c programs with function pointers. Automated

Software Engg., 11(1):7–26, 2004.

[30] R. W. Numrich and J. Reid. Co-array fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[31] K. H. Randall. Cilk: Efficient multithreaded computing.
Technical report, Cambridge, MA, USA, 1998.

[32] M. Rinard and P. Diniz. Commutativity analysis: A new
analysis technique for parallelizing compilers. ACM

Transactions on Programming Languages and Systems,
19(6):942–991, Nov. 1997.

[33] R. M. Stallman and G. DeveloperCommunity. Using The

Gnu Compiler Collection: A Gnu Manual For Gcc Version

4.3.3. CreateSpace, Paramount, CA, 2009.

[34] W. R. Systems. Realize the promise of multi-core.
http://www.windriver.com/announces/do-more-with-less/,
2011.

[35] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe,
J. M. Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng,
M. W. Hall, M. S. Lam, and J. L. Hennessy. Suif: an
infrastructure for research on parallelizing and optimizing
compilers. SIGPLAN Not., 29(12):31–37, 1994.

[36] K. Yelick, L. Semenzato, G. Pike, C. M. B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: a high-performance java
dialect. Concurrency: Practice and Experience,
10(11–13):825–836, December 1998.

