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Abstract

The problem of finding the most effective set and ordering of opti-
mization phases to generate the best quality code is a fundamental
issue in compiler optimization research. Unfortunately, the exorbi-
tantly large phase order search spaces in current compilers make
both exhaustive as well as heuristic approaches to search for the
ideal optimization phase combination impractical in most cases.
In this paper we show that one important reason existing search
techniques are so expensive is because they make no attempt to ex-
ploit well-known independence relationships between optimization
phases to reduce the search space, and correspondingly improve the
search time. We explore the impact of two complementary tech-
niques to prune typical phase order search spaces. Our first tech-
nique studies the effect of implicit application of cleanup phases,
while the other partitions the set of phases into mutually indepen-
dent groups and develops new multi-stage search algorithms that
substantially reduce the search time with no effect on best deliv-
ered code performance. Together, our techniques prune the exhaus-
tive phase order search space size by 89%, on average, (96.75%
total search space reduction) and show immense potential at mak-
ing iterative phase order searches more feasible and practical. The
pruned search space enables us to find a small set of distinct phase
sequences that reach near-optimal phase ordering performance for
all our benchmark functions as well as to improve the behavior of
our genetic algorithm based heuristic search.

Keywords optimization ordering, iterative compilation, search
space pruning

1. Introduction

Finding the best set and combination of optimization phases to ap-
ply is a fundamental, long-standing and persistent problem in com-
piler optimization research [11, 20, 25]. Each optimization phase in
a compiler applies a series of code transformations to improve pro-
gram quality with respect to performance, code size and/or power.
Successful application of an optimization phase often depends on
the availability of registers and the existence of specific instruction
and control-flow patterns in the code being optimized. The prob-
lem of optimization phase ordering is caused by the interactions
between optimization phases that create and destroy the conditions

for the successful application of successive phases. Consequently,
different phase orderings can generate different program represen-
tations with distinct performances.

Researchers have also discovered that there is no single or-
dering of phases that will produce the best code for all applica-
tions [6, 24, 26]. Instead, the ideal phase sequence depends on the
characteristics of the code being compiled, the compiler implemen-
tation, and the target architecture. Earlier research works uniformly
find that applying customized per-function or per-program opti-
mization phase sequences can significantly improve performance
– by up to 350% with GCC [10], up to 85% with SUIF / GCC [1],
up to 47% with their research compiler [2], and up to 33% with
VPO [19], compared to the fixed sequence used in their respective
compilers. It is also crucial in certain application areas, like embed-
ded systems, for the compiler to generate the best possible output
code. Small improvements in program speed, memory (code size),
and/or power consumption in such areas can result in huge savings
for products with millions of units shipped.

An exhaustive solution to the phase ordering problem attempts
to evaluate the performance of codes generated by all possible opti-
mization sequences to find the optimal solution for each function /
program. However, current compilers implement many optimiza-
tions, causing exhaustive phase order searches to operate in ex-
tremely large search spaces. Researchers have shown that, depend-
ing on the compiler employed, exhaustive phase ordering searches

in existing compilers may need to evaluate up to 1012 [6], 229 [24],

or 1544 [19] different phase combinations, making such an ap-
proach extremely time-consuming in most cases. In spite of such
high costs, exhaustive searches are still critical to: (a) understand
the nature of the phase order search space, (b) determine the per-
formance limits of the phase ordering problem for a compiler, and
(c) evaluate the effectiveness of faster, but imprecise, heuristic so-
lutions to the problem.

Researchers are also developing heuristic machine-learning and
statistical algorithms that can result in a more focused search, and
have been shown to often provide good phase ordering solutions.
Unfortunately, to be effective, even these heuristic algorithms still
need to evaluate hundreds of different phase sequences in most
cases. All search approaches that generate and evaluate several
function instances are called iterative search algorithms.

Hypothesis: In this paper we hypothesize that one reason for the
high search-time cost of existing iterative algorithms for phase or-
der search space exploration is that they do not take into account
intuitive and well-known relationships between specific groups of
optimization phases. Although the issue of phase ordering exists
due to unpredictable phase interactions, each phase may not inter-
act with every other phase in a compiler. In this work, we focus on
two important categories of phase independence relationships that
exist in our compiler. First, some optimization phases in a com-
piler, such as dead assignment elimination and dead code elimi-



nation, can be designated as cleanup phases that do not affect any
useful instructions in the program, and are thus unlikely to have
many interactions with other phases. Removing such phases from
the phase order search space and applying them implicitly after ev-
ery relevant phase may substantially prune the phase order search
space. Second, it may be possible to partition the set of optimization
phases into distinct branch and non-branch sets since these phases
are most likely to interact with phases within their sets, but show
minimal interactions with phases in the other set. Such phase set
partitioning may allow the phase order search to be conducted as
a series of smaller searches, each over fewer optimization phases.
Just as (m!+n!), for larger values of m and n, is much smaller than
(m+n)!, such staged phase order searches over smaller partitioned
optimization sets can result in huge search space reductions without
any loss in the performance of the best generated code.

Goal: The goal of this work is to validate and test this hypothesis
for our compiler and measure the resulting reduction in phase order
search space size and effect on best phase ordering performance.
Such innocuous search space reductions can make exhaustive and
heuristic phase order searches much more feasible and practical in
existing and future compilers. Thus, the primary contributions of
this work are:

1. This is the first work that employs independence characteristics
of optimization phases to prune the phase order search space.

2. This paper presents the first exploration of the effect of implic-
itly applying cleanup phases during the phase order search on
the size of the search space and best achieved performance.

3. This is the first investigation of the possibility and impact of
partitioning optimizations and performing phase order searches
in multiple stages over smaller disjoint subsets of phases. We
also design and implement the first algorithm to conduct ex-
haustive (multi-stage) phase order searches over partitioned sets
of phases.

4. We show how to use our observation regarding phase indepen-
dence to find a common set of near-optimal phase sequences,
and to improve heuristic genetic algorithm-based phase order
searches.

The rest of the paper is organized as follows. We describe re-
lated work in the next section. Our compiler setup and experimental
framework are presented in Section 3. In Section 4, we describe our
observations regarding the pair-wise independence interactions be-
tween optimization phases to validate our hypothesis. In Section 5
we explore the effect of implicit application of cleanup phases on
the search space size and best performance delivered by exhaustive
phase order searches. In Section 6 we investigate the effect of parti-
tioning the set of optimization phases, and develop new algorithms
for exhaustive and heuristic phase order searches. We list future
work in Section 7 and present our conclusions in Section 8.

2. Related Work

Compiler researchers have investigated several strategies to explore
and address the phase ordering problem. Despite suggestions that
the phase ordering problem is theoretically undecidable [23], ex-
haustive evaluation of the compiler optimization phase order search
space has been conducted in some existing compilers, but is ex-
tremely time consuming [19]. Researchers have devised aggressive
techniques to detect redundancies in the phase order search space to
allow exhaustive search space enumeration for most of their bench-
mark functions [17, 18]. Enumerations of search spaces over sub-
sets of available optimization phases have also been attempted be-
fore. One such work exhaustively enumerated a 10-of-5 subspace
(optimization sequences of length 10 from 5 distinct optimizations)

for some small programs [2]. Another study evaluated different or-
derings of performing loop unrolling and tiling with different unroll
and tiling factors [16]. In this work, we employ an algorithm for ex-
haustive phase order search space exploration discussed in earlier
works [18, 19]. However, our techniques to prune the phase order
search space are novel and complementary to existing techniques.

Research for addressing the phase ordering/selection problem
has also focused on designing and applying heuristic algorithms
during iterative compilation to find good (but, potentially subopti-
mal) phase sequences relatively quickly. Cooper et al. were among
the first to apply machine-learning techniques to find good phase
orderings to reduce the code size of programs for embedded sys-
tems [6]. Genetic algorithms with aggressive pruning of identical
and equivalent phase orderings was employed by Kulkarni et al.
to make searches for effective optimization phase sequences faster
and more efficient [17]. Hoste and Eeckhout proposed a multi-
objective evolutionary technique to select a single setting of com-
piler optimization flags for the entire application [14]. Successful
attempts have also been made to use predictive modeling and code
context information to focus search on the most fruitful areas of the
phase order search space for the program being compiled [1]. Addi-
tionally, researchers have used static estimation techniques to avoid
expensive program simulations for performance evaluation [7, 24].
Our techniques described in this paper are complementary to all ex-
isting approaches and can further improve the solutions delivered
by heuristic search algorithms.

Several researchers have investigated the effect of the interde-
pendence between specific pairs of optimization phases on the per-
formance of generated code. For example, researchers have stud-
ied the interactions between constant folding & flow analysis, and
register allocation & code generation in the PQCC (Production-
Quality Compiler-Compiler) project [20], between code generation
& compaction for VLIW-like machines [25], as well as between
register allocation & code scheduling [3, 13, 22]. Many of these
studies suggested combining specific pairs of phases, if possible.
Another complementary study found that implicit application of
register remapping and copy propagation during the phase order
search removes phase interactions that do not contribute to quality
code and effectively reduces the search space [15]. Also related to
our approach are studies that attempt to exploit phase interaction
relationships to address the phase ordering problem. These include
strategies to use enabling and disabling interactions between op-
timization phases to automatically generate a single static default
phase ordering [26, 27], as well as to automatically adapt default
phase ordering at runtime for each application [18]. In contrast,
in this work we evaluate the potential of phase independence re-
lationships to prune the phase order search space to enable faster
exhaustive and heuristic phase order searches.

3. Experimental Framework

In this section we describe our compiler framework, benchmark
and experimental setup, and the algorithm we employ for our de-
fault exhaustive phase order searches.

3.1 Compiler Framework

The research in this paper uses the Very Portable Optimizer
(VPO) [4], which was part of the DARPA and NSF co-sponsored
National Compiler Infrastructure project. VPO is a compiler back-
end that performs all its optimizations on a single low-level inter-
mediate representation called RTLs (Register Transfer Lists). The
15 reorderable optimization phases in VPO are listed in Table 1.
For each optimization listed in column 1, column 2 presents the
code we use to identify that phase in later sections, and column
3 provides a brief description of each phase. Most phases in VPO
can be applied repeatedly and in an arbitrary order. Unlike the other



Optimization Phase Code Description

branch chaining b Replaces a branch/jump target with the target of the last jump in the chain.

common subexpression
elimination

c Performs global analysis to eliminate fully redundant calculations, which also includes global constant and copy
propagation.

dead code elimination d Removes basic blocks that cannot be reached from the function entry block.

loop unrolling g Reduces the number of comparisons and branches at run time and aids scheduling at the cost of code size increase.

dead assignment elim. h Uses global analysis to remove assignments when the assigned value is never used.

block reordering i Removes a jump by reordering blocks when the target of the jump has only a single predecessor.

loop jump minimization j Removes a jump associated with a loop by duplicating a portion of the loop.

register allocation k Uses graph coloring to replace references to a variable within a live range with a register.

loop transformations l Performs loop-invariant code motion, recurrence elimination, loop strength reduction, and induction variable
elimination on each loop ordered by loop nesting level.

code abstraction n Performs cross-jumping and code-hoisting to move identical instructions from basic blocks to their common
predecessor or successor.

evaluation order determ. o Reorders instructions within a single basic block in an attempt to use fewer registers.

strength reduction q Replaces an expensive instruction with one or more cheaper ones. For this version of the compiler, this means
changing a multiply by a constant into a series of shift, adds, and subtracts.

branch reversal r Removes an unconditional jump by reversing a conditional branch when it branches over the jump.

instruction selection s Combines pairs or triples of instructions that are are linked by set/use dependencies. Also performs constant
folding.

useless jump removal u Removes jumps and branches whose target is the following positional block.

Table 1. Candidate Optimization Phases Along with their Designations

Category Program
Files/

Description
Funcs.

auto bitcount 10 18 bit manipulation operations
qsort 1 2 sort strings using quicksort

network dijkstra 1 6 Dijkstra’s shortest path algorithm
patricia 2 9 patricia trie for IP traffic

telecomm fft 3 7 fast fourier transform
adpcm 2 3 compress 16-bit PCM samples

consumer jpeg 7 62 image compress/decompress
tiff2bw 1 9 convert color tiff image to b&w

security sha 2 8 secure hash algorithm
blowfish 6 7 symmetric block cipher with

variable length key

office search 4 10 searches for words in phrases
ispell 12 110 fast spelling checker

Table 2. MiBench Benchmarks Used

VPO phases, loop unrolling is applied at most once in each phase
sequence. Our current experimental setup is tuned for generating
high-performance code while managing code-size for embedded
systems, and hence we use a loop unroll factor of 2. In addition, reg-
ister assignment, which is a compulsory phase that assigns pseudo
registers to hardware registers, is implicitly performed by VPO
before the first code-improving phase in a sequence that requires
it. After applying the last code-improving phase in a sequence,
VPO performs another compulsory phase that inserts instructions
at the entry and exit of the function to manage the activation record
on the run-time stack. Finally, the compiler performs instruction
scheduling before generating the final assembly code.

For our experiments in this paper, VPO is targeted to generate
code for the ARM processor running the Linux operating system.
We use a subset of the benchmarks from the MiBench benchmark
suite, which are C applications targeting specific areas of the em-
bedded market [12]. We randomly selected two benchmarks from
each category of applications present in MiBench. Table 2 contains
descriptions of these programs. More importantly, VPO compiles
and optimizes individual functions at a time. The 12 selected bench-
marks contain a total of 246 functions, out of which 87 are executed
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Figure 1. DAG for Hypothetical Function with Optimization
Phases a, b, and c

(at least once) with the standard small input data set provided with
each benchmark.

3.2 Setup for Exhaustive Search Space Enumeration

Our research goal is to investigate the impact of techniques that
exploit phase independence to prune the phase order search space
size, while achieving the best phase ordering performance. As
such, we implemented the framework presented by Kulkarni et
al. to generate per-function exhaustive phase order search spaces
[19]. Our exhaustive phase order searches use all of VPO’s 15
reorderable optimization phases. In this section we briefly describe
this algorithm.

The algorithm to evaluate per-function exhaustive phase order
search spaces generates all possible function instances that can be
produced for that function by applying any combination of opti-
mization phases of any possible sequence length (to account for
repetitions of optimization phases in a single sequence). This in-
terpretation of the phase ordering problem allows the phase order
search space to be viewed as a directed acyclic graph (DAG) of dis-
tinct function instances. Each DAG is function or program specific.
For instance, the example DAG in Figure 1 represents the search
space for a hypothetical function and for the three optimization
phases, a, b, and c. Nodes in the DAG represent function instances,
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Figure 2. Exhaustive phase order search space size (number of distinct function instances) for all enumerated benchmark functions

and edges represent transition from one function instance to another
on application of an optimization phase. The unoptimized function
instance is at the root. Each successive level of function instances is
produced by applying all possible phases to the distinct nodes at the
preceding level. This algorithm uses various redundancy detection
schemes to find phase orderings that generate the same function
instance as the one produced by some earlier phase sequence dur-
ing the search. Such detection enables this algorithm to prune away
significant portions of the phase order search space, and allows ex-
haustive search space enumeration for most of the functions in our
benchmark set with the default compiler configuration. The algo-
rithm terminates when no additional phase is successful in creating
a new distinct function instance at the next level.

When restricting each individual search time to a maximum of
two weeks, this algorithm allows exhaustive phase ordering search
space enumeration for 236 of our 246 benchmark functions (includ-
ing 81 of 87 executed functions). We measure the size of the phase
order search space in terms of the number of distinct function in-
stances produced by the exhaustive search algorithm. Figure 2 plots
the number of distinct function instances found by the exhaustive
search algorithm for each of our 236 enumerated benchmark func-
tions. In this graph, and in similar later graphs, the functions along
the X-axis are sorted by the size of their phase order search space
and a horizontal line marks the average. Thus, we can see that, for
our benchmark functions, the number of distinct function instances
found by the exhaustive search algorithm range from only a few
to several millions of instances. One of the primary goals of this
work is to uncover redundancy in the phase ordering search space
and reduce the time for exhaustive phase order searches, while still
producing the original best code.

3.3 Setup for Evaluating Code Performance

Our exhaustive search framework uses function-level dynamic in-
struction counts supplemented with whole-program simulated cy-
cle counts (using ARM-SimpleScalar [5]) and actual program run-
times (on ARM ‘pandaboard’ processors) to validate generation of
the original best codes with the pruned search spaces. In this section
we describe our setup for evaluating generated code performance.

Each per-function exhaustive phase order search space experi-
ment requires the algorithm to evaluate the performance of all the
(possibly, millions of) generated distinct function instances to find
the best one. It is impractical to perform these evaluations using
slow cycle-accurate simulations or with our available ARM hard-
ware resources. Additionally, the validated SimpleScalar cycle-
accurate simulator and the native program runs (without intrusive
noise-inducing instrumentations) only provide measures over the
whole program, and not at the granularity of individual functions.

Therefore, our framework employs a technique that generates quick
dynamic instruction counts for all function instances, while only
requiring a program simulation on generating an instance with a
yet unseen control-flow [7, 19]. Such function instances with un-
seen control-flows are instrumented and simulated to determine the
number of times each basic block in that control-flow is reached
during execution. Then, the dynamic instruction count is calculated
as the sum of the products of each block’s execution count times the
number of static instructions in that block. Researchers have previ-
ously shown that dynamic instruction counts bear a strong correla-
tion with simulator cycles for simple embedded processors like the
ARM SA-11xx [19]. Figure 3(a) plots the ratio of dynamic instruc-
tion count of the best function instance found by exhaustive phase
order search to the default (batch) VPO compiler. The default VPO
optimization sequence aggressively applies optimizations in a loop
until there are no more code changes. In spite of this aggressive
baseline, we find that over our 81 executed benchmark functions the
best phase ordering sequences improve performance by as much as
33.3%, and over 4.0% on (geometric) average. Throughout the rest
of this article, we report the arithmetic mean to summarize raw val-
ues and the geometric mean to summarize normalized values [9].

Next, to validate the dynamic instruction count benefit of per-
function phase ordering customization, we compile each bench-
mark program such that individual executed program functions are
optimized with their respective best phase ordering sequence found
by the exhaustive search using dynamic instruction count estimates.
We then employ the cycle-accurate SimpleScalar simulator and na-
tive execution on the ARM Cortex A9 processor to measure the
whole program performance gain of function customization over
an executable compiled with the VPO batch compiler. The Sim-
pleScalar cycle-accurate simulator models the ARM SA-1 core that
emulates the pipeline used in Intel’s StrongARM SA-11xx proces-
sors. SimpleScalar developers have validated the simulator’s timing
model against a large collection of workloads, including the same
MiBench benchmarks that we also use in this work. They found that
the largest measured error in performance (CPI) to be only 3.2%,
indicating the preciseness of the simulators [12]. Our OMAP4460
based pandaboard contains a 1.2GHz dual-core ARM chip imple-
menting the Cortex A9 architecture. We installed a recent release of
the Ubuntu Linux operating system (version 10.10) on this board.

The VFP (Vector Floating Point) technology used by the ARM
Cortex A9 to provide hardware support for floating-point opera-
tions is not opcode-compatible with the SA-11xx’s FPA (Float-
ing Point Accelerator) architecture that is emulated by Sim-
pleScalar.Therefore, we were only able to run the seven (out of 12)
integer benchmarks on the ARM A9 hardware platform – adpcm,
dijkstra, jpeg, patricia, qsort, sha, and stringsearch. Additionally,
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Figure 3. Performance of the default exhaustive phase order search space size. (a) shows the dynamic instruction count of the best function
instance found by exhaustive phase order search compared to the default batch VPO compiler, and (b) shows the whole program performance
benefit with the SimpleScalar cycle-accurate simulator counts and native execution on ARMA9 processor. The following benchmarks contain
floating-point instructions and do not execute on the ARM A9 with VPO generated codes: blowfish, bitcount, fft, ispell, and tiff.

the Cortex A9 implements an 8-stage pipeline (as opposed to the 5-
stage pipeline used by the SA-11xx ARM cores) as well as different
different instruction/data cache configurations than those simulated
by SimpleScalar. Therefore, it is hard to directly compare the ben-
efit in program execution cycles provided by SimpleScalar with
the run-time gains on the ARM Cortex A9 hardware. However, our
techniques in this work intend to prune the size of the phase order
search spaces without negatively affecting the performance of the
best generated codes. Therefore, the native performance results in
this paper are still valuable for providing such validation of our
techniques on the latest ARM micro-architecture.

The exhaustive phase order search space exploration may find
multiple phase sequences (producing distinct function instances)
that yield program code with the same best dynamic instruction
counts for each function. Therefore, for each of these whole pro-
gram experiments, VPO generates code by randomly selecting one
of its best phase sequences for each executed function, and using
the default batch sequence for the other compiled program func-
tions. We perform 100 such runs and use the best cycle-count /
run-time from these 100 runs for each benchmark and experiment.
Additionally, while simulator cycle counts are deterministic, actual
program run-times are not due to unpredictable hardware, timer,
and operating system effects. Therefore, for all the native ARM ex-
periments, we run each generated binary file 61 times (including
one startup run), and gather the average run-time and 95% confi-
dence interval over the final 60 runs.

Figure 3(b) plots the ratio of best simulator cycles and program
run-time of code generated using the best customized per-function
phase sequences over the batch compiler generated code for all our
benchmarks. In this graph, and in similar later graphs, the two right-
most bars show the (geometric) average performance with simula-
tor counts and native execution, respectively. Thus, we can see that
using customized optimization sequences, whole program proces-
sor cycles reduce by up to 16.3%, and 2.3% on average. We em-
phasize that whole-program cycles / run-time includes the portion
spent in (library and OS) code that is not compiled by VPO and
not customized using our techniques. This is likely the reason our
average whole-program processor cycle-count benefit is lower than
the average per-function benefit of customizing optimization phase
orderings. We also find that native program run-time on the ARM
Cortex A9 processor improves by up to 22% (with stringsearch)
and 13.9%, on average, with our custom per-function phase se-
quences over the batch VPO compiler. Thus, customizing optimiza-
tion phase orderings results in performance gains for many func-
tions and programs in our set of benchmarks.

4. Phase Independence

Our techniques to prune the phase order search space are based
on exploiting the independence relationship between optimization
phases. Phase independence measures the probability of interde-
pendence between each pair of optimization phases. Two phases
can be considered to be independent if their application order does
not matter to the final code that is produced. Thus, if an optimiza-
tion phase is detected to be completely independent of all other
phases, then removing it from the set of reorderable phases used
during the phase order search space algorithm, and applying it im-
plicitly at any point will make no difference to the final code gen-
erated. Our goal for this work is to use this observation to achieve
substantial pruning of the phase order search space.

While the interactions between several optimization phases are
hard to predict, there are some phases that seem unlikely to inter-
act with each other. For example, cleanup phases, such as dead
code elimination and dead assignment elimination, only remove
instructions that are either unreachable or calculate useless values.
Therefore, it seems reasonable that interchanging the application
order of such cleanup phases with any other phase should not af-
fect the final code that is produced. Similarly, interchanging the
order of phases that work on distinct code regions and do not share
any resources can also be expected to produce identical codes. For
example, most phases (in VPO) can be partitioned into control-
flow changing phases (branch phases) and phases that do not affect
the control-flow of the function (non-branch phases). Thus, phases
such as branch chaining or branch reversal only affect the branch
instructions and no other computational instruction. In contrast, it
is uncommon for non-branch phases, such as instruction selection
and common subexpression elimination, to affect the function con-
trol flow. Consequently, applying the set of branch and non-branch
phases in either order should typically produce the same code. Note
that branch phases can still be enabled by other non-branch phases
by producing code patterns that facilitate their application. How-
ever, unlike the issue of phase independence, a purely enabling re-
lationship between phases can be more easily resolved by applying
a single ordering of the involved phases in a loop until no phase
finds any further code transformation opportunities.

To confirm our intuition regarding the independence of cleanup
phases, and the mutual independence of branch and non-branch
phases, we calculate pair-wise phase independence relationship [18]
between all VPO phases and over all our 236 benchmark functions.
Table 3 illustrates this independence relationship for all 15 VPO
phases, where each row and column is labeled by an optimization



Phase b u d r i s o j h k c q l n g

b 0.99 0.86 0.95 0.99 0.96 0.98 0.94 0.08

u 0.99 0.68 0.97 0.99

d

r 0.86 0.22 0.86 0.99 0.98

i 0.95 0.68 0.22 0.60 0.98 0.99 0.98 0.99 0.46

s 0.71 0.92 0.80 0.75 0.93 0.93 0.92

o 0.71

j 0.86 0.60 0.97 0.75

h 0.85 0.98 0.99 0.92 0.93

k 0.99 0.97 0.98 0.92 0.97 0.85 0.75 0.23 0.96 0.93

c 0.96 0.99 0.99 0.80 0.98 0.75 0.98 0.92 0.79 0.85

q 0.75 0.99 0.98 0.99 0.87

l 0.98 0.99 0.98 0.98 0.93 0.75 0.92 0.23 0.92 0.99 0.85 0.79

n 0.94 0.99 0.93 0.96 0.79 0.85 0.94

g 0.08 0.46 0.92 0.93 0.93 0.85 0.87 0.79 0.94

Table 3. Independence relationship among optimization phases. Blank cells indicate an independence probability of greater than 0.995.

phase code as indicated in Table 1. The relationship between each
pair of phases a and b is represented in Table 3 as a fraction of the
number of times application orders a–b and b–a at any function
node produced identical codes to the number of times phases a and
b were both simultaneously active at any node, on average. We call
applied phases active when they produce changes to the program
representation. Thus, the closer a value in this table is to 1.00, the
greater is the independence between that pair of phases.

The phase independence results in Table 3 reveal some inter-
esting trends. First, most phases are highly independent of most
other phases. This result is expected and is the primary reason that
in spite of the prohibitively large phase order search space size, the
search algorithm is able to exhaustively enumerate the search space
in most cases. In other words, the high phase independence causes
the number of distinct function instances in the search space to be a
small fraction of the number of possible phase sequences. Second,
very few phases are completely independent of all others. Thus, ex-
cept for dead code elimination (phase ‘d’) all remaining phases at
least interact with four other phases. Third, our intuition regarding
cleanup phases is also mostly correct. Thus, dead code elimina-
tion is completely independent, while dead assignment elimination
(phase ‘h’) only has small dependencies with a few other phases.
Fourth, the table also reveals that the branch and non-branch phases
mostly interact with other phases in their own groups, but do have
small dependencies with phases in the other group. Most promi-
nently, phases such as loop unrolling (phase ‘g’) in VPO performs
both control-flow and non-control-flow changes to the code. The
implications of such cross-group phase interactions on our ability
to partition the set of reorderable phases is explored in Section 6. In
the next two sections we develop various algorithms to exploit our
observations regarding phase independence in this section to more
effectively prune the phase order search space.

5. Implicit Application of Cleanup Phases During

Exhaustive Phase Order Search

Dead code elimination in VPO eliminates unreachable basic
blocks, while dead assignment elimination removes instructions
that generate values not used later in the program. We term these
two phases as cleanup phases. In this section we perform experi-
ments that exclude cleanup phases from the optimization list used
during exhaustive phase order searches. Instead, these phases are
now implicitly applied after each phase that can potentially produce
dead code or instructions. We study the search space size and best
code performance delivered by these new search configurations.

Figure 4 compares the number of distinct function instances
(search space size) generated with our new exhaustive search con-

figuration (that applies the cleanup phases implicitly) to the de-
fault exhaustive phase order search space algorithm. The functions
along the horizontal axis in Figures 4 are sorted in ascending or-
der of their original exhaustive search space size. Additionally, the
rightmost bar in these graphs plots the overall geometric mean.
Thus, we can see that the phase order search space size with our
new search configuration is less than 45% of the original exhaus-
tive search space size, on average. Additionally, we find that func-
tions with larger search spaces witness a greater reduction in the
search space size. Indeed, if we aggregate the search space sizes
over all benchmark functions and compare this total search space
size, then we find that our new configuration reduces the space by
more than 78% over the default exhaustive configuration. At the
same time, our function-level dynamic instruction count measure-
ments reveal that the phase order search space generated for 79 (out
of 81) functions by our new search configuration includes at least
one function instance that reaches the same best performance as
achieved by the original exhaustive search. The best dynamic in-
struction count reduces for two functions, by 9% and less than 1%
respectively, with an average performance loss of 0.1% over the 81
executed benchmark functions. We used our performance valida-
tion setup described earlier in Section 3.3 and confirmed that, ex-
cept for bitcount cycle counts, all our benchmark programs achieve
the same best phase ordering performance (both for program-wide
simulator cycles and statistical native runtime on the ARM proces-
sor) with and without this configuration of implicit application of
cleanup phases. The simulated cycle counts for the benchmark bit-
count degrade by 1.28%. Over all benchmarks, the geometric mean
of best program performance ratios with and without implicit ap-
plication of cleanup phases for simulator cycles and native program
run-time is 1.001 and 1.006 respectively. Thus, implicit application
of cleanup phases allows massive pruning of the exhaustive phase
order search space while realizing the ideal phase ordering perfor-
mance in most cases.

6. Exploiting Phase Independence Between Sets

of Phases

Our second strategy to make exhaustive phase order searches more
practical is to partition the set of optimization phases into disjoint
sub-groups such that phases in each sub-group interact with each
other, but not with any phases in the other sub-group(s). Our knowl-
edge of compiler optimizations in general, and the VPO phases in
particular, lead us to believe that branch optimization phases should
only have minimal interactions with non-branch phases. Branch
phases (in VPO) only affect the control-flow instructions in the
program and do not require registers for successful operation. On
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Figure 4. Comparison of search space size (over 236 benchmark functions) achieved by our configuration with cleanup phases implicitly
applied to the default exhaustive phase order search space. Rightmost bar illustrates the geometric average.

the other hand, most non-branch phases do not alter the function
control-flow structure, even when they enable more opportunities
for branch phases. Our intuition is also backed by the data in Ta-
ble 3, which shows a high degree of independence between most
branch and non-branch optimization phases. Loop unrolling is an
anomaly since it performs control-flow changes, may require reg-
isters, and also updates other computation instructions in the pro-
gram. In this section, we present our novel multi-stage exhaustive
search algorithm that employs a partitioned phase set and describe
the impact of this algorithm on the search space size and perfor-
mance of the best code. We then develop techniques that employ
partitioned sets of optimization phases to construct a minimal set of
good phase orderings and to improve our genetic algorithm based
heuristic search.

6.1 Faster Exhaustive Phase Order Searches

For this study, we first partition the VPO optimization phases
into two sets, six branch phases (branch chaining, useless jump
removal, dead code elimination, branch reversal, block reorder-
ing and loop jumps minimization), and the remaining nine (non-
branch) phases. Then, our multi-stage exhaustive search strategy
applies the default exhaustive search algorithm over only the branch
phases in the first stage, and finds all function instances that pro-
duce the best code in this stage. The next stage takes the the best
code instances generated by the preceding stage and applies the
default search algorithm over only the non-branch phases. Our al-
gorithm is unaffected by the interaction between the branch phases
and loop unrolling, since loop unrolling in VPO is only activated
after register allocation, which is applied in the second stage. Since
we need to evaluate the function instances to determine the best
instances in the first stage to input to the next stage, we conduct
these experiments only on our 81 executed benchmark functions.
We measure the search space size as the sum of the distinct function
instances produced by the algorithm at each stage.

Figure 5 plots the impact of our multi-stage exhaustive search
algorithm on search space size as compared to the default exhaus-
tive phase order search space approach. Thus, we can see that the
multi-stage configuration reduces the search space size by 76%, on
(geometric) average. Additionally, only two out of our 81 executed
benchmark functions notice any degradation in the best generated
dynamic instruction counts (by 3.47% and 3.84%) for an average
degradation by less than 0.1%. Similar to our observations in Sec-
tion 5, our new configuration has a greater impact on functions with
larger default search spaces, reducing the total search space size by
about 90%.
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Figure 5. Comparison of search space size achieved by our multi-
stage search algorithm as compared to the default exhaustive phase
order search space

We further analyzed the degradation in performance witnessed
by the two functions with our multi-stage configuration. We discov-
ered that the degradations occur due to branch phases being enabled
during the second stage of our multi-stage configuration. Since our
new configuration only applies the branch phases in the first stage,
our existing algorithm is unable to resolve these additional oppor-
tunities. To address this issue, we changed our multi-stage configu-
ration to perform a search over all phases in the second-stage. The
first stage of this new algorithm still performs the search over only
the branch phases. Interestingly, this change removes all dynamic
instruction count degradations, while achieving almost identical
(75% per function geometric mean, 88.4% total) search space size
reductions. Using our performance validation setup we found that,
except for bitcount’s simulated cycle counts, all other benchmark
programs achieve the same best phase ordering performance (both
simulator cycle counts and (statistical) native ARM runtime) with
and without this technique of partitioning branch and non-branch
optimization phases. The simulator cycle counts for the benchmark
bitcount degrade by 7%. Over all programs, the geometric mean of
best program performance ratios (both simulator cycles and native
program run-time) with and without this technique of phase parti-
tioning is 1.006 in both cases.

Furthermore, combining our two complementary search space
pruning techniques (implicit application of cleanup phases and
multi-stage search over partitioned sets of phases) achieves an 89%
and 96.75% reduction in the average and total exhaustive search
space size, respectively, with the same average dynamic instruc-
tion count loss of 0.1% due to the implicit application of cleanup



Seq. # Covered Sequence

1 33 b u i r d r o s k s n c s h g

2 11 u r u b r i s k s l c h l s g

3 8 u r u b r i o c s k l s c s h

4 5 b j d i r j c l c s k s h c h

5 4 b u i r d r s h k l s k l c g

6 3 u r u b r i o h s k s l s h g

7 3 b j d i r j s o s c h k s l g

8 2 u r u b r i s o h k s k c s h

9 2 b u i r d r s o k s c l s l c

10 1 u r u b r i o l s c h k c s h

11 1 u r u b r i o c s c s k c s g

12 1 b u i r d r s k s l s l s l s

13 1 b u i r d r s k l c h k c s g

14 1 b u i r d r s k c g l h c s c

15 1 b u i r d r s o s h s k s l c

16 1 b u i r d r s o k l s h l c g

17 1 b u i r d r c s k c l g h c s

18 1 b u i r d r o h l s h k s k s

19 1 b j d i r j s k c k s l c l c

Table 4. Covering Set of Phase Sequences. Optimization phases
corresponding to the codes shown here are in Table 1.

phases as seen in Section 5. Thus, we can conclude that exploiting
optimization phase independence can have a huge impact in mak-
ing exhaustive phase order searches to find the best phase ordering
more feasible and practical in existing compilers.

6.2 Finding a Covering Set of Phase Sequences

Although earlier works have shown that no single order of op-
timization phases can achieve the best performance for all func-
tions [6, 24, 26], it is not yet clear if a small number of phase or-
derings can obtain near-optimal performance for every function. In
this section we present novel schemes that use our observations re-
garding independent sets of phases to investigate this question.

The typical phase order search space is exorbitantly large, and
prohibits any naı̈ve attempt at evaluating all possible optimization
phase orderings of any length. For example, the longest possible ac-
tive sequence length during the exhaustive phase order search over
our benchmark functions is 37 phases. Thus, in the worst case, any
algorithm to determine the set of best phase sequences must con-

sider 1537 sequences. Our exhaustive search algorithm prunes away
much of the redundancy in this search space. Every path in each
phase order search space DAG corresponds to a phase sequence
that produces a distinct function instance (corresponding to the fi-
nal node in the path). Unfortunately, even with this reduction, the
combined set of paths in the search space for our benchmark set is

still too large (over 1.8∗1016 total paths) to search completely.
Interestingly, in the previous section, we show that partitioning

the phase order search space over sets of branch and non-branch
phases does not impact the best performance achieved by the ex-
haustive phase order search. In this section, we use our reduced
search space from Section 6.1 to develop techniques that construct
a small set of phase sequences that achieve close-to-optimal perfor-
mance for all our functions.

The first step in our algorithm is to find the best branch-only
phase orderings over our benchmark functions. We express the
problem of finding the minimal number of the best branch-only
phase orderings as the classical set-cover problem [8]. Our com-
piler includes six branch phases, so we apply every possible branch-
only sequence of length six to each of our benchmark functions
and evaluate the code produced. Our technique generates a set of
functions for each branch-only sequence, where a function is in a
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Figure 6. Average performance improvement over the default
compiler after applying n of the 19 sequences listed in Table 4
to each benchmark function. The dashed line shows the average
improvement achieved by the individual best phase ordering se-
quences (found by our exhaustive search algorithm) over the de-
fault compiler performance.

particular sequence’s set if that sequence achieves the best branch-
only solution for that function. The set-cover problem is to find the
minimum number of branch-only phase orderings such that their
corresponding sets cover all benchmark functions. Since this prob-
lem is NP-hard, we use a greedy algorithm to approximate the set
cover. We find that only three branch sequences are needed to reach
the best branch-only performance in all our 81 functions (a single
sequence covers 85% of the functions).

The next step is to combine these three branch-only sequences
(of length 6) with sequences consisting of the nine non-branch
phases. We generate all non-branch sequences of length nine and

append each to the three branch-only sequences (for a total of 3∗99

candidate sequences of length 15). We then generate sets of bench-
mark functions that reach the best performance with each sequence
(similar to our approach with the branch-only sequences). Apply-
ing the greedy set-cover algorithm to these sets yields 19 sequences
that are needed to reach the best phase-ordering performance for
all 81 functions. It is important to note that this algorithm restricts
each sequence length to 15 phases. These 19 sequences are shown
in Table 4. The first column ranks the sequence, the second lists the
number of functions covered during the set covering algorithm by
each sequence, and the third column presents the actual sequence.

We evaluate the performance delivered by our covering se-
quences by incrementally applying them in descending order of the
number of functions they cover. We also employ the standard leave-
one-out cross validation scheme, which ensures that sequences that
cover only a single benchmark function are not used to evaluate
that function. This experiment applies a certain number (n) of our
covering sequences one at a time in the order shown in Table 4,
and reports the best performance of each program for any of the
n sequences. For each point along the X-axis, the plot in Figure 6
averages and compares this best performance (over all 81 executed
functions) achieved by the n covering sequences with the average
performance obtained by the default (batch) compiler. In the batch
mode, VPO applies a fixed ordering of optimization phases in a
loop repeatedly until no phase is able to make any further changes
to the code. Thus, the batch compiler sequence is not restricted to
a length of 15, and therefore achieves better performance than any
of our individual 19 phase sequences. However, even with this ag-
gressive batch sequence, only three covering sequences are able to
improve performance (by 0.5%) over the batch compiler. Applying
all 19 sequences yields an average speedup of 3.1%. Additionally,
we use our performance validation setup (described in Section 3.3)
to evaluate our covering sequences. Figure 7 compares the full pro-
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Figure 7. Whole program performance benefit of using the best
code generated by the 19 sequences listed in Table 4 over VPO
batch compiler with SimpleScalar cycle-accurate simulator counts
and native execution on ARM A9 processor.

gram simulation and native performance of code compiled with the
batch sequence to the best run with randomly chosen (leave-one-
out) covering sequences for each benchmark function (out of 100
such runs). Thus, the covering sequences either improve or achieve
the same full-program simulation cycle count as the batch com-
piler sequence, with a maximum improvement of 13.5% (sha) and
an average improvement of 2.5%. The native program run-time
on the ARM Cortex A9 improves as well by up to 16.8% (with
stringsearch), and yields an 11.2% average improvement. Thus, the
covering sequences significantly improve performance over the de-
fault compiler sequence for our benchmark programs.

6.3 Better Genetic Algorithm Searches

Finally, we explore if our observations regarding search space prun-
ing by exploiting phase independence relationships can improve
heuristic search techniques. Machine-learning based genetic al-
gorithms (GA) [21] are a popular mechanism to develop such
heuristic search techniques. Unlike the exhaustive searches, GA-
based searches do not guaranty reaching the optimal phase order-
ing performance, but often produce quite effective phase ordering
sequences. Therefore, we adapt a variant of a popular GA-based
search technique for our experiments in this section [6]. Genes in
the genetic algorithm correspond to optimization phases, and chro-
mosomes correspond to optimization phase sequences. The set of
chromosomes currently under consideration constitutes a popula-
tion. The number of generations is how many sets of populations
are to be evaluated. Chromosomes in the first generation are ran-
domly initialized. After evaluating the performance of each chro-
mosome in the population, they are sorted in decreasing order of
performance. During crossover, 20% of chromosomes from the
poorly performing half of the population are replaced by repeatedly
selecting two chromosomes from the better half of the population
and replacing the lower half of the first chromosome with the up-
per half of the second and vice-versa to produce two new chromo-
somes each time. During mutation we replace a phase with another
random phase with a small probability of 5% for chromosomes in
the upper half of the population and 10% for the chromosomes in
the lower half. The chromosomes replaced during crossover are
not mutated. Our genetic algorithm uses 20 sequences (chromo-
somes) per generation, and iterates the GA for 200 generations.
The batch VPO compiler aggressively applies hundreds of opti-
mization phases to the code, a fraction of which are actually suc-
cessful (or active) in changing the code. Thus, the number of active
batch phases can vary for every function. We use 1.25 times this
active batch sequence length as the number of phases in each chro-
mosome of the GA with a minimum chromosome length of 20. The

-4

-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200

P
ct

. 
p

e
rf

o
rm

a
n

ce
  

im
p

ro
v

e
m

e
n

t 
o

v
e

r 
b

a
tc

h
 

Generations 

default

branch bias

full bias

Figure 8. Improvement achieved by the default and biased GA
configurations over the batch VPO performance in each generation

fitness criteria used by the GA searches is the dynamic instruction
counts of the code generated by each chromosome.

Our aim here is to employ the covering sets of phase sequences
(from Section 6.2) to expedite and assist the GA-based search.
We develop two new configurations that use the covering sets to
bias chromosomes in the first generation. In each configuration, we
again employ cross-validation so that the branch and covering se-
quences are only generated from the training data that uses all pro-
grams except the one to be optimized. In the branch bias configu-
ration, chromosomes in the first generation of our modified GA are
produced by prepending one of the three set-covering branch phase
orderings (of length six) to a randomly generated phase sequence
of length n - 6, where n is the length of each chromosome in the de-
fault GA configuration. Each of the set-covering branch sequences
is used at least once, and the prefixes to the remaining chromo-
somes are chosen depending on the ratio of benchmark functions
each branch sequence covers. In the full bias configuration, chro-
mosomes are produced by prepending each of the 19 set-covering
sequences consisting of both branch and non-branch phases (shown
in Table 4) to randomly generated phase sequences of length n−15.
The last chromosome in the initial population is randomly gener-
ated. The rest of the GA proceeds as in the original algorithm.

Figure 8 compares the improvement achieved by the best chro-
mosome in each generation over the batch VPO performance for
each of the default and modified genetic algorithms, averaged over
all 81 executed benchmark functions. Thus, we can see that the
branch-bias configuration is able to focus the search to the more
useful sections of the search space sooner and allows the GA to
converge on its final solution faster than the original algorithm.
The full bias GA shows clear improvements over the other config-
urations because the set-covering sequences used to bias this con-
figuration achieve very good performance by themselves. At the
same time, it is also interesting to note that the genetic algorithm
is powerful enough to further improve the performance of the full
bias configuration after the first generation. Of course, several other
changes to the GA (and to other heuristic algorithms) that attempt
to exploit the phase independence relationship are possible and may
show varying improvements. However, our results show that ex-
ploiting phase interactions is a fruitful direction to improve future
heuristic algorithms for addressing the phase ordering problem.

7. Future Work

There are several avenues for future work. First, we plan to inves-
tigate new algorithms that will employ the independence and other
phase relationships to automatically partition the phase set into
smaller subsets. Second, we will explore the impact of our tech-
niques on reducing the search time for heuristic algorithms besides
GAs. We also plan to study the benefits of combining our tech-



niques with the strategy of using function characteristics to focus
heuristic searches. Third, we wish to implement our techniques in
other compilers to validate their broader applicability and under-
stand the effect of phase implementation on the resulting search
space size and performance benefits. Finally, we will attempt to de-
vise algorithms to find the minimal set of optimization sequences,
one of which will achieve optimal phase ordering performance for
all functions.

8. Conclusions

The long-standing problem of optimization phase ordering exists
due to hard-to-predict interactions between phases. The primary
contribution of this work is suggesting and validating the hypothe-
sis that not all optimization phases interact with each other, and that
it is possible to develop mechanisms that exploit this observation
to substantially improve the exhaustive and heuristic phase order
search times, while almost always delivering the same best phase
ordering solutions. Our first technique employs the independence
of cleanup phases to reduce the exhaustive search space by a total
of 78% and over 55%, on average. Only 2 of 81 benchmark func-
tions do not generate the same best code instance, and the average
performance loss is 0.1%. Our second technique develops a novel
multi-stage exhaustive search strategy over independent sub-groups
of branch and non-branch phases. This technique prunes the search
space size by about 75%, on average, (88.4% total) with no loss in
best phase ordering performance. Together, our techniques achieve
a 89% reduction in average search space size, and a 96.75% re-
duction in the total search space, combined over all functions.

We also develop new algorithms that employ our phase inde-
pendence observations to find a small set of near-optimal phase se-
quences and to improve genetic algorithm performance. Our tech-
niques presented in this paper are simple and general enough to
be applicable and effective in several other compiler frameworks.
Most compilers are likely to have at least a few “cleanup” phases.
Similarly, we also expect branch and non-branch phases in several
other compilers to display similar independence relationships as
seen in VPO. Thus, our results show that the phase ordering search
overhead can be significantly reduced, perhaps to a tolerable level,
by exploiting specific relationships between optimization phases.
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