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ABSTRACT
Recent trends have led to the adoption of larger and more complex

memory systems, often with multiple tiers of memory performance

within the same platform. To utilize complex memory systems effi-

ciently, current data management strategies must be altered to map

usage demands to the underlying hardware. Applications, as the

generators of memory accesses, are well-suited to guide this pro-

cess, but building and maintaining separate source code versions

for different memory systems is not feasible in most cases. One

potential solution is to employ automated program profiling and

analysis to facilitate the production of application-based guidance.

By attaching memory usage information to static or lightweight

program features, compilers and runtime systems can generate

fine-grained guidance without additional efforts from users or de-

velopers. Recent works have employed this approach with some

success, but it is not clear which program features are most useful

for guiding data management.

This work evaluates the effectiveness of using different program

data features to predict memory usage and guide memory manage-

ment. It employs a custom set of simulation tools, based in the Intel
®

Pin framework, to collect and analyze the usage characteristics of

application data associated with common program data features,

such as allocation sites, types, and context. The results show that

even relatively simple features, such as object size, are useful for

selecting data with similar usage properties, but finer-grained fea-

tures, such as the instructions that access a particular object, are

often much more effective. Additionally, this work evaluates the

performance of using different data features and different program

inputs to guide data placement on a heterogeneous memory plat-

form with a limited amount of high performance memory.
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1 INTRODUCTION
Recent years have witnessed the emergence of several new mem-

ory technologies, each with their own advantages and drawbacks.

For example, “on-package” or “die-stacked” memories [6, 17] en-

able higher bandwidth, but are only available in limited capacity,

while storage class memories (SCMs) [19, 33] can provide non-

volatile memory storage with much larger capacity, but have less

bandwidth and longer latencies for reads and writes [16]. As a re-

sult, many high-end computer systems have begun to incorporate

multiple types of memory devices in separate storage tiers. Such

heterogeneous memory systems sacrifice simplicity and uniform

access for the potential to achieve the benefits of multiple memory

technologies simultaneously.

Existing data management strategies need to be altered to utilize

heterogeneous memories efficiently, but doing so remains a signifi-

cant research challenge. One common approach empowers applica-

tion software with facilities to assign and migrate data objects into

different device tiers as needed [1, 12, 38, 46]. These fine-grained

controls allow developers to coordinate tier assignments with data

allocation and usage patterns, and can potentially expose new and

powerful efficiencies. However, such software-directed approaches

require expert knowledge and source code modifications to adapt

each application’s data usage to the available memory hardware.

Previous works have sought to automate the production of mem-

ory management guidance through the use of program profiling

https://doi.org/10.1145/3357526.3357537
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and analysis. Due to the large volume of memory addresses and

accesses generated by most applications, data profiles are typically

combined and associated with some program features that are ei-

ther static or easy to detect during execution. For example, the

application might combine guidance for all objects of the same size

or allocated from the same source code instruction. In addition to

summarizing memory behavior, this approach can potentially make

guidance more efficient if the selected features accurately distin-

guish data with similar usage. Specifically, if the application is able

to determine that new or recently allocated data has similar fea-

tures as data that has already been profiled, it could apply guidance

to the new data prior to its first use. Indeed, many recent works

have deployed this strategy on both traditional and heterogeneous

memory systems for a variety of purposes, including to: allocate

high bandwidth data into a capacity-constrained high performance

tier [23, 48, 51], steer writes to memory devices with better en-

durance [5], control memory power consumption [36, 47], reduce

garbage collection (GC) effort [9, 13, 29], as well as for several other

purposes described in Section 2.

While there are many potential benefits to guiding memory man-

agement with application intelligence, guidance that mispredicts

memory usage can reduce or completely negate the effectiveness

of this approach. Constructing accurate guidance for feedback-

directed optimizations (FDOs) in memory systems is particularly

challenging due to the need to exert fine-grained control over a

large amount of unstructured and often transient program data.

Linking memory usage to data features can help address these chal-

lenges, but certain features are more useful than others for guiding

memory management. Some features might be very useful for dis-

tinguishing certain behaviors, but are too expensive to determine

during execution or are only associated with a small amount of

data. Other features might be easier to profile, but overlap data with

dissimilar usage. For example, it might be intuitive to aggregate

profiles of objects allocated as the same data type, but objects of

the same type may or may not exhibit similar access intensities or

utilize caches with the same efficiency.

This work investigates the effectiveness of using different pro-

gram data features to characterize memory usage and guide mem-

ory management. It employs detailed simulations of full-scale appli-

cations to collect usage statistics for individual data objects, includ-

ing: physical capacity requirements, data reads and writes, cache

utilization, and data lifetime. Objects and their usage profiles are

then categorized and aggregated across a variety of data features,

including: sizes, types, execution contexts, allocation sites, as well

as others. Using this framework, we evaluate the effectiveness of

each feature for characterizing different memory behavior when: 1)

the profiled execution matches closely with guided execution, and

2) the profiled execution uses a different (smaller) input than the

guided execution. Additionally, we employ this approach to study

the impact of using different data features to guide data tiering on

a heterogeneous memory platform with a tier of high-performance

memory with limited capacity.

The main contributions of this work are as follows:

1. We design and implement a simulation framework, based in

the Intel
®
Pin framework, to evaluate the accuracy and utility

of using different program data features to characterize and

guide memory usage behavior.

2. We find that accurate profiles of even very simple features,

such as object sizes, can characterize memory usage behavior

effectively, but more complex features, such as the set of

instructions that access an object, significantly improve the

accuracy of memory usage characterization.

3. We show that profile input has a substantial impact on the

effectiveness of feature-based guidance, and that many fea-

tures that work well for summarizing accurate profiles of the

same program input are much less effective for predicting

behavior across different program inputs.

4. We find that allocation context is the most effective feature

for use with software-guided data tiering when the profiled

and guided execution use different program inputs. In the

system configuration we analyzed, this approach correctly

classifies objects corresponding to 93% and 87% of the capac-

ity and bandwidth generated by an application, respectively,

compared to the ideal approach with accurate knowledge of

the behavior of individual data objects.

2 RELATEDWORK
2.1 Application Guided Data Management
Many prior works have successfully used program profiling and

analysis to improve data management across the cache and mem-

ory hierarchies. Some researchers have proposed static techniques

with offline profiling and/or source code analysis to allocate hot

fields and objects closer together, thereby improving caching effi-

ciency [11, 31, 37, 41, 50]. Others have combined online profiling

with high-level language features and services, such as object indi-

rection and garbage collection, to enable similar benefits transpar-

ently, and in an adaptive runtime environment [10, 14, 15, 24, 27,

28, 30, 55, 63, 64, 68].

A number of other techniques integrate application-level guid-

ance with physical data management in the operating system and

hardware. Several previous efforts have employed these cross-layer

approaches with automated collection of high-level guidance to ad-

dress a variety of issues, including: DRAM energy efficiency [36, 47],

cache pollution [26], traffic congestion for non-uniform memo-

ries [20], and data movement costs for non-uniform caches [43, 59].

In recent years, application guidance has also become a useful

tool for adapting existing programs to emerging heterogeneous

memory platforms. For example, the memkind API provides an

option to bind all data objects larger than a specified size to a

particular memory tier [12]. Some other projects allow applications

to tag and profile certain program data, and then use classification

heuristics to assign data to the appropriate tier [4, 5, 22, 49]. Several

works have also proposed static analyses and runtime support to

associate tiering guidance with program phases and allocation sites

to help further automate this approach [23, 48, 51, 60, 65].

All of these works highlight the power and importance of appli-

cation guidance for addressing a broad range of data management

challenges for modern programs. In contrast to these prior efforts,

this work does not attempt to create novel memory management

FDOs to increase program performance or efficiency. Rather, it aims

to evaluate the effectiveness of different data features for summariz-

ing and characterizing memory usage behavior in order to increase

understanding and facilitate further research in this area.
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2.2 Accuracy and Effectiveness of Profiling
Researchers have also proposed strategies to improve the quality

of program profiling. Some works have examined how the rate

and pattern of sampling-based profiling affects its accuracy [7, 44].

Several others have developed online profiling tools that employ

under-utilized computing cores or other architectural features to

reduce the overhead of online profiling [32, 42, 62, 67, 69]. While

these works also investigate issues that can limit the effectiveness

of profile-based guidance, their focus and goals are different from

those of this work; we aim to understand and describe the benefits

and drawbacks of associating usage profiles with different data

features, even when the usage profiles can be collected accurately.

Other works have investigated the impact of program input on

optimization behavior with the goal of improving FDO in ahead-of-

time compilers [8, 61]. Another study explored challenges related to

summarizing and structuring profile data that can limit its effective-

ness for guiding certain VM tasks [35]. This research is particularly

relevant because it investigates issues that can also limit the per-

formance of memory management FDOs. However, our work is

the first to study how and whether aggregating usage profiles with

different data features addresses these issues effectively.

3 METHODOLOGY
This study employs dynamic binary instrumentation (DBI) to sim-

ulate and profile application memory behavior. For each program

run, the DBI outputs memory usage statistics, as well as feature

identifiers, for each data object, aggregated over its entire lifetime.

This information is used to model the memory behavior of larger

sets of program data by combining the usage profiles of specific

program objects or of objects that share common features.

In addition to enabling static comparisons of different sets of

program data, this approach provides knowledge and control of

the usage associated with individual program objects. Since most

applications allocate and manage data at the object level, this in-

formation can be used to model different data placement decisions.

While the static profiles are not able to distinguish usage behavior

during different portions of an object’s lifetime, many modern run-

time systems, especially those used with non-managed languages

such as C and C++, do not attempt to migrate program data after its

initial placement due to the high costs associated with data move-

ment. Thus, the DBI profiles are an effective means to study the

impact of realistic data placement and management policies.

The remainder of this section presents an overview of the de-

sign of our DBI-based toolset for simulating and profiling memory

usage associated with program data features. Later, it describes the

features we selected for this study, provides details about how we

detected each feature in simulation, and discusses potential chal-

lenges for detecting each feature in non-simulation environments.

3.1 Memory Usage Simulation and Profiling
Our memory usage simulation and profiling tool, which we call

memtracer, is implemented as a Pintool in the Intel
®
Pin framework.

Figure 1 illustrates the main components of memtracer. When an

application binary image is loaded, memtracer inserts callbacks to

invoke custom instrumentation at each (a) basic block entry point,

(b) memory access instruction (e.g., memory load or store), and (c)

object allocation and deallocation routine (e.g., malloc or free).

Application

memtracer

malloc / 
free

Memory
reads / writes

Size: 20
Type: int
Site: 0xabc

Object 
records

Features

…

size alloc
phase

alloc
site

Basic block
entries

SMARTS

Program 
phase 

detection

Memory access filtering

Processor /
in-memory 

caches

Physical memory /
bandwidth simulation

(a) (b) (c)

Figure 1: memtracer: dynamic binary instrumentation for
memory usage simulation and profiling. memtracer includes
three instrumentation points: (a) basic block entry to select
representative program intervals for accelerated simulation
and to track program phase behavior, (b) memory access in-
structions to simulate cache and memory usage, and (c) ob-
ject allocation / deallocation routines to associate memory
usage with program data objects and features.

The basic block instrumentation implements the SMARTS strat-

egy for accelerating microarchitectural simulation [66]. SMARTS

divides program execution into a set of regular intervals, and selects

only a small portion of instructions within each interval for detailed

simulation. memtracer employs this approach to limit memory us-

age simulation to a subset of dynamic instructions that are repre-

sentative of the entire application. Specifically, memtracer ignores

memory access instructions if they occur outside a simulation in-

terval. Otherwise, it converts each accessed virtual address to its

corresponding physical address on the host platform (using the

Linux pagemap facility [2]), and filters the physical address through
a set of built-in cache simulators. Further accounting keeps track

of the number and type of accesses and bandwidth to each physical

memory page and cache line.

To relate the simulatedmemory behavior to program data objects

and features, memtracer maintains a shadow structure that maps

the virtual addresses of each heap object to an internal record. Each

object record includes several fields to keep track of various usage

behaviors, including: counters for data accesses of different types

and at different levels of the cache and memory hierarchy, a set of

physical addresses corresponding to the cache lines accessed by

the object, and dynamic instruction counts denoting the beginning

and end of the life of the object. Additionally, the records store

identifiers and other information to describe features associated

with the object, which are described in the next subsection.

memtracer creates a record for each new object at the time it

is allocated, and updates its usage and features until the object is

deallocated or until the application terminates. When an object

reaches the end of its life, memtracer finalizes its usage and feature
information, removes its record from the shadow structure, and

outputs its record to a file on disk. To ensure the object usage

profiles are both complete and accurate, memtracer instruments

every object allocation and deallocation event, whether it occurs

within a SMARTS simulation interval or not.
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Feature Code Online Distinguishes objects ...detection?
application app yes in the same application

size sz yes allocated with exactly the same size

size bucket sb yes allocated with similar, but not necessarily identical, sizes

type ty maybe with the same data type

allocation phase aph maybe allocated during the same program phase

phase signature phs no alive during the same set of program phases

access signature acc no accessed by the same set of program instructions

allocation site st yes allocated from the same program instruction

allocation context st + cn maybe allocated from the same call stack context (up to depth n)

Table 1: Program Data Features. For each feature, the columns show: a short code used to refer to the feature, whether it is
feasible to detect the feature during execution, and a short description of the objects that share each feature.

3.2 Program Data Features
This study identifies nine features for summarizing memory usage

profiling, which are shown in Table 1, and described below.

Application: One option for summarizing memory usage is to not

use any features to distinguish program data, but rather employ a

single coarse-grain profile for the entire application. This approach

is trivial to implement because it does not attempt to distinguish

data with different properties.

Size and Size Bucket: The size feature distinguishes data objects
with the same allocated size (in bytes). In both simulation and non-

simulation environments, object sizes can easily be detected in the

data allocator, which uses the size to allocate the proper amount of

space for the object. In some cases, the exact size of an object is less

important than whether the difference between sizes is relatively

large or small. The size bucket feature distinguishes objects with

sizes that fall within some pre-defined range of values. For this

work, the ranges are defined as follows: sizes under 10 bytes are all

distinct, sizes 10 through 99 use ranges of size 10 (e.g., 10-19, 20-29,

etc.), sizes 100 through 999 use ranges of size 100 (e.g., 100-199,

200-299, etc.), and so on. Similar to the size feature, size buckets are

easy to detect in both simulation and non-simulation environments.

Type: The type feature distinguishes objects with the same data

type. Many modern high-level languages, such as Java and Python,

support type introspection for arbitrary data objects. However,

some older yet still popular languages, such as C and Fortran, do

not have any way to determine object types during execution. Since

many of the applications we use for this study are written in such

languages, we created an alternative mechanism to detect objects

with different data types.

Our approach employs a custom LLVM compiler pass to in-

strument each cast instruction in the LLVM IR with a callback to

memtracer. Using this instrumentation, memtracer records the set

of types to which each object is cast, and uses this set to identify the

type of the object. While this approach is useful for distinguishing

data used as different types, it has some limitations, specifically:

1) it incurs high overheads not suitable for non-simulation envi-

ronments, 2) since types are constructed dynamically, the full type

of a data object may not be known until after its use, and 3) the

LLVM cast instruction does not distinguish pointer types from ar-

ray types. Languages with native support for type introspection

can address all of these limitations, and could potentially improve

the effectiveness of this approach.

Allocation Phase and Phase Signature: Previous studies have

shown that some program behaviors (e.g., instructions per cycle,

branch prediction, etc.) are correlated with distinct and repeatable

phases of program execution [25, 52, 53]. For this work, we aim to

evaluate the potential of using program phases to distinguish appli-

cation data with similar behavior. Specifically, this study includes

two features that use program phases to categorize program data:

1) the allocation phase distinguishes data allocated during the same

program phase, and 2) the phase signature distinguishes data alive

during the same set of program phases.

Both features rely on an online phase tracking component to

categorize recent execution intervals into distinct program phases.

Several previous works have proposed techniques to detect program

phases with low overhead, but such strategies often require runtime

or hardware support that are not commonly available [21, 45, 54].

Given such a capability, allocation phases can distinguish program

data prior to its first use, but phase signatures are only useful for

offline data classification.

To implement online phase detection, we extended memtracer
with the architectural phase tracking technique proposed by Sher-

wood et al. [54]. The adopted approach divides the application’s

instruction stream into regular length intervals, computes the ex-

ecution frequency of each basic block within each interval, and

stores the normalized frequencies in a basic block vector (BBV) for
each interval. At the end of each program interval, the online com-

ponent computes the distance between the current BBV and all

previous BBVs that correspond to a unique program phase. If the

distance to the closest BBV is larger than some threshold value, the

current BBV is categorized as a new and unique program phase,

and otherwise, as a re-occurrence of the phase corresponding to

the closest BBV. For this study, we configured memtracer to use

intervals of length 2
26 ≈ 67M instructions and a unique phase

threshold of 2
19 ≈ 524K for all program phase tracking.

Access Signature: The access signature feature distinguishes data
objects that are accessed by the same set of program instructions.

Some offline profiling and debugging tools use the locations of

memory access instructions to track and identify data with similar

usage [3, 18]. However, access signatures are not often used in

feedback-directed optimizations due to their high detection cost

and because they cannot be determined until after the data has

been used. To construct access signatures for each data object,

memtracer inserts the address of each instruction that accesses a

data object into a set on the corresponding object record. The set
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Benchmark Objects Accessed Accesses RD/WR PC BW PC BW PC Hit MC BW MC Hit Dyn. Inst. Sim.
Lines (MB) (billions) Accesses (MB) on Heap Rate (MB) Rate (trillions) Hours

perlbench 803,173 1,084.4 5,997 4.03 761.8 0.954 0.998 1,247.8 0.3693 9.565 100.5

gcc 4,776,195 11,650.4 3,008 4.65 7,798.8 0.905 0.958 11,096.5 0.5811 8.441 113.3

mcf 117,316 1,051.3 4,127 3.03 20,627.9 0.998 0.918 32,630.4 0.4252 1.243 17.0

omnetpp 40,226,296 8,282.3 3,111 3.33 13,198.6 0.960 0.939 19,136.6 0.5356 20.481 137.1

xalancbmk 3,826,285 2,466.1 5,130 10.37 1,583.5 0.793 0.996 2,010.4 0.7247 8.030 71.5

x264 3,791 272.3 6,625 22.54 2,734.9 0.996 0.993 4,601.5 0.3231 2.225 16.0

leela 478,038 1952.2 866 1.89 133.8 0.683 0.997 242.2 0.2347 4.078 33.7

xz 84 533.1 5,834 7.50 3,206.6 0.995 0.991 5,167.6 0.4028 2.001 14.8

bwaves 4,979 12,892.2 14,241 7.40 59,346.9 0.998 0.931 102,929.6 0.2719 5.775 93.5

cactuBSSN 5,038 758.9 3,234 12.57 12,284.6 0.997 0.937 19,125.7 0.4292 2.460 40.0

namd 4,756 149.0 9,012 4.78 1,678.4 0.999 0.997 2,725.6 0.3744 2.348 20.7

parest 12,459,446 10,020.4 17,134 30.06 17,257.7 0.992 0.984 26,755.8 0.4349 11.385 93.2

wrf 830,597 18,932.2 15,389 4.72 22,813.0 0.944 0.975 31,121.4 0.6542 19.930 171.8

blender 97,873 455.6 2,916 110.01 2,203.2 0.980 0.988 3,019.2 0.6388 2.390 22.9

cam4 605,068 12,005.0 3,186 3.84 8,256.4 0.881 0.957 12,534.9 0.4577 17.861 144.9

imagick 179 428.5 11,093 19.95 287.5 0.992 1.000 488.4 0.2901 5.912 33.8

nab 263,603 561.5 3,958 5.26 966.0 0.994 0.996 1,721.7 0.2186 2.249 20.7

fotonik3d 1,213 845.0 16,554 5.74 59,427.4 1.000 0.941 109,729.7 0.1536 8.124 84.5

roms 1,557,582 26,984.1 13,225 4.15 38,656.1 0.976 0.954 58,741.6 0.4912 6.877 81.7

mean 3,476,922 5,859.2 7,613 13.99 14,380 0.949 0.971 23,422.5 0.4216 7.441 69.0

median 263,603 1,084.4 5,834 5.26 7,798.8 0.992 0.984 11,096.5 0.4252 5.912 71.5

Table 2: Benchmark statistics. From left to right, the columns show: benchmark name, # of objects accessed in memory, cache
lines accessed for all data objects (in MB), total # of memory accesses from the application in billions, read-write ratio of appli-
cationmemory accesses, memory bandwidth with processor cache alone (inMB), portion of (processor cache-only) bandwidth
to heap data, processor cache hit rate, memory bandwidth with processor and in-memory caches, in-memory cache hit rate, #
of dynamic instructions in trillions, and simulation time in hours.

of addresses recorded by the end of the life of an object identifies

its access signature.

Allocation Sites and Context: The allocation site feature distin-

guishes data that is allocated by the same instruction in the source

code. Similarly, the allocation context feature distinguishes data

allocated by the same instruction as well as the same function call

context up to some length n. Allocation sites are particularly useful

for memory FDOs because they are easy to detect during execution

and immediately prior to the use of each data object. Detecting

the allocation context of program data incurs additional overheads,

but some compiler [48, 58, 70] or architectural support [39] can

help reduce and mostly eliminate these overheads. For this study,

memtracer employs the backtrace routine from the C standard

library to detect program context at each allocation instruction.

Combined Features: In some cases, it may be useful to combine

the basic features in Table 1 to distinguish data that meet multiple

criteria. For example, while our mechanism for detecting data types

cannot distinguish pointer and array types, we can combine the

type and size features to distinguish arrays of the same size and base

data type. Alternatively, combining the allocation phase feature

with sites or sizes can help distinguish data with similar static

features based on when it is allocated. Such combinations could

potentially enable more effective data characterization, but may

require additional profiling or detection costs.

4 EXPERIMENTAL SETUP
Platform. All of our simulation experiments were run on a Mi-

croway NumberSmasher Xeon server machine with two Intel E5-

2620v3 (Haswell-EP) processors and 128GB of DDR4 SDRAM. We

installed 64-bit CentOS 6.9 and Linux kernel version 2.6.32-431 as

the operating system. We use Intel
®
Pin v. 3.5 as the base for the

memtracer tool.

Memory Simulation Details. To accelerate memory usage simula-

tions, memtracer implements the SMARTS strategy with sampling

interval k = 64 and a sampling unit size U = 2
13

instructions.

Hence, each experimental run simulates detailed memory usage

for
1/64 ≈ 1.6% of all program instructions. Additionally, memtracer

uses a detailed warming size ofW = 2
13

instructions to warm-up

the simulated processor and in-memory caches immediately prior

to each simulation interval. The simulation does not include any

hardware-based prefetcher components.

The processor cache component in memtracer simulates a two-

level write-back cache with a 32KB 8-way L1 and an 8MB 16-way L2.

The usage simulator estimates memory bandwidth both with and

without an in-memory caching component. This component models

the hardware-managed caching option found on some modern

heterogeneousmemory systems, such as the “memorymode” option

in recent Intel
®
platforms [34]. To generate and control contention

on the in-memory cache, we set its size as
1
⁄8 of the peak resident

set size (RSS) of the application at the start of each experimental

run. Both the processor and in-memory caches use 64-byte lines,

and the direct-mapped in-memory cache employs a simple modulo

function to hash each line to its corresponding block.

4.1 Benchmarks Description
Our evaluation uses the single-threaded rate (5xx) version of all

integer and floating point applications included in the SPEC CPU

2017 benchmark suite [57], with the following exceptions: 1) We

omit povray and exchange because most (> 50%) of the bandwidth

they generate is on the stack, and our analysis only considers fea-

tures associated with heap data objects. 2) We omit deepsjeng and
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benchmark sz sb ty aph phs acc st st + c1 st + c2 st + c4 st + c8 ty + sz aph + sz aph + st aph + sz + st
perlbench 12,591 57 273 52 107 77,912 36 160 459 1,324 2,550 18,142 30,524 398 33,796

gcc 47,856 65 2,258 486 531 675,850 8 599 2,143 8,910 28,024 91,693 100,356 1,270 134,771

mcf 42 10 13 37 39 58 19 19 19 19 19 47 84 86 112

omnetpp 292 42 263 4 5 94,426 360 524 611 873 1,141 593 439 470 1,070

xalancbmk 8,049 48 274 82 84 7,985 4 350 583 772 1,035 8,694 119,705 99 119,727

x264 44 27 4 2 3 437 8 73 74 91 91 45 46 10 49

leela 971 46 20 12 17 3,649 34 57 87 159 217 1,007 4,307 134 5,107

xz 25 18 14 8 14 60 18 21 21 24 28 26 57 52 57

bwaves 461 14 1 12 15 213 39 39 39 39 39 461 1,145 140 3,524

cactuBSSN 131 33 93 28 33 936 286 870 1,770 2,041 2,204 256 339 433 773

namd 252 22 18 3 6 2,510 49 69 69 69 69 257 261 53 434

parest 970 54 291 95 97 67,617 396 780 1,131 1,861 2,701 1,597 3,530 1,908 5,000

wrf 985 41 10 82 86 14,309 1,348 1,389 1,452 1,551 1,819 1,008 4,298 3,564 20,566

blender 1,771 56 16 62 69 10,324 29 323 959 2,241 2,425 1,791 2,830 196 2,981

cam4 1,742 46 19 146 152 16,625 688 1,770 2,099 2,486 2,780 1,779 5,828 2,803 9,200

imagick 44 31 21 16 18 109 25 49 77 124 135 51 92 67 98

nab 2,326 40 15 9 18 268 77 104 117 145 145 4,370 7,399 91 7,464

fotonik3d 91 21 2 6 6 152 117 117 117 117 117 92 92 117 124

roms 379 21 2 57 61 3,529 308 317 352 531 540 380 3,105 883 14,690

mean 4,159 36 190 63 72 51,419 203 402 641 1,230 2,425 6,963 14,970 672 18,923

median 461 40 18 28 33 3,529 39 160 352 531 540 593 2,830 140 3,524

Table 3: Number of unique sets of data objects corresponding to each data feature.

lbm because they each allocate only one or two large heap objects

throughout the entire run. Since our evaluation does not attempt

to distinguish data below the object level, applications with only a

few data objects will not exhibit much distinction between features.

All benchmarkswere compiledwith the LLVMcompiler toolchain

v. 4.0.1 with -O3 [40]. We ran each benchmark simulation using

both the train and ref input sets, and report memory usage results

for the ref input. In cases where the benchmark-input pair requires

multiple invocations, we conducted independent runs of each invo-

cation and aggregated the output in post-processing to produce a

single set of results for each application.

Table 2 presents our selected benchmarks along with relevant

simulation and usage statistics. Thus, the selected benchmarks

exhibit a wide range object allocation, capacity, bandwidth, and

caching behaviors. Note that, while memtracer captures all object

allocations, Table 2 and our later experiments only include objects

that that are accessed in memory at least once during a detailed

simulation interval. Additionally, the “Accessed Lines” column of

Table 2 shows the sum of all cache lines accessed in MB for all data

objects. The experiments in Section 5.2 use this metric to estimate

capacity requirements for each data object.

Let us make a few additional observations: 1) All applications

generate fewer writes than reads, but some applications are much

less write-intensive than others, 2) The in-memory cache configura-

tion typically generates much more bandwidth than the processor

cache alone due to the high miss rate of the direct-mapped caching

scheme, and 3) The execution time of each simulation varied from

less than 15 hours to over a week of compute time. We found that

increasing the simulation sampling interval significantly reduces

execution times, but could potentially be less accurate.

5 EVALUATION
This section presents multiple studies on the effectiveness of differ-

ent program data features for characterizing memory behavior and

guiding memory management. The first subsection evaluates the ac-

curacy of using different data features to aggregate and summarize

Algorithm 1 Calculating mean usage error for each data feature.

1: procedure feature_mean_usage_error(f t , stat ,objects)
2: f t_err ← 0

3: for each object obj ∈ objects do
4: obj_usaдe ← get_object_usage (obj, stat )
5: obj_f t_set ← get_feature_set (obj, f t )
6: f t_usaдe ← get_feature_mean (f t ,obj_f t_set , stat )
7: obj_err ←min ( obj_usaдe , |(f t_usaдe − obj_usaдe)| )
8: f t_err ← f t_err + obj_err

9: return f t_err

memory usage profiling. The following subsection describes a case

study that shows how the accuracy of different features impacts

the performance of software-guided data tiering for heterogeneous

memory systems.

5.1 Accuracy of Different Data Features for
Characterizing Memory Usage Behavior

Our first set of experiments examines the accuracy by which pro-

files of data with a particular feature may predict the usage of

unknown data with the same features. To conduct this study, we

used memtracer to collect memory usage statistics and detect the

features of each program data object as described in Section 3. We

then computed the error associated with predicting the memory us-

age of each program object using the memory behavior of the other

data objects with the same features. Specifically, we use the fea-

ture_mean_usage_error procedure in Algorithm 1 to calculate

this error for each application.

The feature_mean_usage_error characterizes how similar the

data objects categorized into the same set by some data feature (e.g.,

size, type, allocation site, etc.) are with respect to some memory

usage metric (e.g., cache lines accessed, bandwidth, etc.). Lower

error values indicate data in the same feature set exhibit more

similar behavior. Specifically, given a data feature type f t , and
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Figure 3: Average number of objects in each feature set.
Higher values indicate each set in the feature summarizes
the behavior of more application data, on average.

a memory usage statistic stat , the feature_mean_usage_error
procedure iterates over each program object and computes the

difference between the object’s usage and the mean usage of other

data in the same category for that feature. For example, consider that

a given object o was allocated with size 24, and generates 10 MB of

bandwidth over the course of the run. If the other application objects

of size 24 (not including o) generate a mean average bandwidth of

only 8MB over the entire run, then o contributes 2MB of bandwidth

error for the size feature.

5.1.1 Objects Per Feature Set. To provide additional context for

this experiment, let us first consider how each feature divides appli-

cation data objects into different sets. Table 3 displays the number

of unique sets of data objects corresponding to each feature for

each benchmark application. For example, the table shows that

mcf generates objects corresponding to 42 distinct sizes, but only

13 distinct types. Note the last four columns of Table 3 show the
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Figure 4: Normalized feature mean usage error for charac-
terizing processor and in-memory cache hit rate with each
program data feature (lower is better).

results for different combinations of the basic feature categories

described in Table 1. Figure 3 also helps summarize these results

by showing the average number of objects classified in each set for

each feature across all of the benchmarks. Additionally, the total

number of objects allocated by each application is in Table 2.

Overall, we find that size buckets, allocation phases, and phase

signatures have the fewest number of unique sets of objects, and

therefore assign the most objects per set, on average. While there is

some variation within each benchmark, types and allocation sites

(without context) assign the next most objects to each feature set.

Not surprisingly, adding context to the allocation site feature, or

combining feature criteria, such as types and sizes or allocation sites

and phases, further decreases the number of objects corresponding

to each unique feature set. Interestingly, access signatures tend to be

more unique than the other features, which limits their effectiveness

as a tool for summarizing memory usage behavior.
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Figure 5: Portion of bandwidth and capacity assigned to high-performance memory using profiling of different data features
to partition application data. For these results, the profiled and guided execution use the same program input.

5.1.2 Feature Mean Usage Errors. Figure 2 presents the feature

mean usage error for each data feature, averaged over all bench-

marks, for the following simple usage statistics: accessed cache

lines, object lifetime, pre-cache (software) data accesses, post-cache

RD/WR bandwidth (no in-memory cache), and post-cache WR-only

bandwidth. The results are normalized by the maximum possible

usage error for each usage statistic (i.e., the sum of all object values

for a given statistic). Additionally, Figure 4 shows the feature mean

usage errors for the processor and in-memory cache hit rates, again

averaged over all benchmarks. For this figure, the usage error is

calculated as the total number of cache hits and misses misclassified

by the feature mean cache hit rate for all program objects, and is

normalized by the total number of data accesses.

The results reveal several interesting findings: 1) Even relatively

simple features, such as size and size bucket, characterize usage

more effectively than a single profile of the entire application. 2)

Features with fewer objects per feature set, such as access signa-

tures and combined features, tend to have smaller classification

errors. However, allocation sites significantly outperform other

features with similar or fewer objects per set, especially when char-

acterizing memory accesses or bandwidth. 3) It is more challenging

to characterize in-memory cache utilization than processor cache

utilization due to the relatively high miss rate of the in-memory

cache. 4) Adding context to each allocation site does improve classi-

fication accuracy for each type of memory usage behavior for some

object oriented applications, such as gcc, omnetpp, and leela, which
rely heavily on custom allocation pools or external libraries for

data allocation. However, additional allocation context has only a

minor impact on average because most of the applications in CPU
®

2017 are procedural codes with relatively simple allocation patterns.

5) In general, the relative accuracy of each feature is similar for

all of the memory usage behaviors, but certain features are more

effective for characterizing certain types of usage. For instance,

object size exhibits relatively small errors for accessed cache lines,

while allocation phases and phase signatures are relatively more

effective for characterizing object lifetimes.

5.2 Using Data Features to Guide
Heterogeneous Memory Management

Our next study aims to evaluate the impact that aggregating mem-

ory usage profiles with different data features has on a realistic

feedback-directed optimization for heterogeneous memory systems.
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Figure 6: Portion of bandwidth and capacity assigned to high-performance memory using profiling of each data feature to
partition application data. For these results, the profiled and guided execution use different program inputs.

Many current and emerging memory systems employ a multi-tier

architecture where the upper tier exhibits better performance, but

has lower capacity than the other tiers. For such architectures, a

common memory management task is to steer as much bandwidth

to the upper tier as possible within its capacity constraint.

We designed a set of experiments to study the effectiveness of

using profiling of different data features to guide this task. The

experiments employ the simulation data to estimate the bandwidth

and capacity of each individual data object. Specifically, we use the

post-cache bandwidth of the processor cache alone (i.e., without

the in-memory cache) for object bandwidth, and the number of

cache lines accessed multiplied by the cache line size of 64 bytes

for object capacity. In contrast to counting the entire allocation

size of the object, this approach avoids over-estimating capacity for

unused data objects.

For each application and each feature type, we divided the ob-

jects into sets corresponding to their individual features. We then

computed a ratio of the sum of the bandwidths and capacities of the

objects in each set to create a single “bandwidth-per-byte” score for

each feature set. Next, we sorted the feature sets by their bandwidth-

per-byte scores, and used a threshold value to divide the feature

sets into hot (i.e., high-bandwidth, low capacity) and cold groups.

The resulting partitions then represent guidance that can be used

to divide the application’s data into separate memory tiers with

different performance and capacity.

5.2.1 Effectiveness of Guided Memory Management using the Same
Program Input for Both the Profiling and Evaluation Runs. For the
first version of this experiment, we use simulations of the ref pro-

gram input to both generate the feature-based guidance and eval-

uate the effects of that guidance. Additionally, rather than use a

single threshold to partition each feature set, we apply a large set of

thresholds to produce a range of aggregate bandwidth and capacity

effects. This approach allows us to quickly compare the effective-

ness of feature-based guidance across system configurations with a

range of different capacities available in the upper tier.

The scatter plots in Figure 5 show the aggregate capacity (on the

x-axis) and bandwidth (on the y-axis) of the objects assigned to the

high performance tier by the guidance at each threshold for each

feature type. All results are normalized by the total bandwidth and

capacity in the application, and averaged across all 19 benchmarks.

For presentation purposes, we plot different lines for each feature

across four separate graphs with a small number of lines per graph.
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Figure 7: Portion of capacity and bandwidth assigned to the same set as the ideal configuration with profiles of different
features that use (a) the same and (b) different inputs for the profile and evaluation runs.
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Figure 8: Portion of data and bandwidth in the ref input run
corresponding to profile guidance in the train input for each
data feature.

To anchor the results and enable comparison of features across

figures, each graph includes results for an “ideal” configuration

that uses accurate profiles of individual data objects to partition

the applications’ data. For example, the ideal results show that

program data objects corresponding to only 10% of the applications’

capacity generate about 45% of their bandwidth. However, guidance

associated with the size bucket feature can only distinguish data

with about 25% of the bandwidth given a capacity limit of 10%.

Thus, even if the profile run closely matches the evaluation run,

using certain data features to aggregate memory usage profiling

can still limit the effectiveness of this approach.In particular, pro-

files associated with size buckets, type signatures, and phase-based
features are often too coarse-grained to achieve the full benefits of

profile-guided data placement. In contrast, several of the combined

features as well as allocation sites, especially with some amount of

context, are much more effective at summarizing memory usage

for this task. Access signatures achieve performance closest to the

ideal scenario, but are often not feasible to deploy in a real FDO.

5.2.2 Effectiveness of Guided Memory Management using Different
Inputs for the Profiling and Evaluation Runs. For many applications,

it is not always practical to collect profiles of execution that use

the same program input as is used during guided execution. To

evaluate the effectiveness of each data feature for summarizing

and applying profiles of different program inputs, we conducted a

second experiment that uses profiles of each application with the

train program input to guide a run with the ref program input.

To implement this experiment, we must relate the object usage

information from the ref input run to profiles of each feature from

the train input run. For this purpose, we developed an automated

script to find the feature profiles from the train run that match the

data objects in the ref run. For example, for the size feature, objects

of size 10 in the ref run correspond to the profile of objects of size

10 in the train run, if it exists. Since the phase-based features track

program phases online, we extended memtracer to output each

basic block vector, and use the original BBVs to match each phase

in the ref run to its closest phase in the train run.

In some cases, there is data in the ref run that cannot be mapped

to a profile in the train run. For instance, if the ref run uses data

objects of size 256, but the train run does not allocate any objects

of size 256. Figure 8 shows the portion of capacity and bandwidth

corresponding to data in the ref run that corresponds to some

feature-based guidance in the train run. While some features, such

as types and allocation sites, generate profiles that are able to guide

most of the data in the ref run, several other features, including sizes
and access signatures, cannot provide guidance for a significant

portion of program data. For these cases, our experiment simply

assigns data in the ref run without corresponding guidance from

the train run to the cold set (i.e., to the slower memory devices).

Figure 6 shows the aggregate capacity and bandwidth of program

data in the ref run that is assigned to the high performance tier

by guidance from the train run for each feature category. Similar

to the previous experiments, all of the results are normalized and

averaged across all of the benchmarks. We find that some of the

features that work very well when the profile run matches guided

execution, such as sizes and access signatures, are not nearly as
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effective when profiling is conducted using a different program

input. In several cases, capacity in the high performance tier is left

under-utilized due to the inability to map data in the ref run to

guidance from the train run. Interestingly, Figure 6(c) shows that

allocation sites, including with context, are still quite effective at

assigning hot data into the high performance tier. Thus, while the

performance of some data features is highly dependent on profile

input, memory FDOs that use allocation sites and context can still

be effective even if the profile run does not match guided execution.

5.2.3 Accuracy of Feature-Based Guidance. Lastly, we used the re-

sults of the ideal configuration to compute the accuracy by which

each feature is able to assign data to the correct memory tier. For

this calculation, we selected a bandwidth-per-byte threshold that

assigns about 18% of the applications’ capacity (and about 60% of

the bandwidth) to the high performance memory tier with the ideal

configuration. This amount of capacity is similar to the actual por-

tion of high performance memory in many modern heterogeneous

memory platforms [34, 56]. We then computed the accuracy by

which each feature is able to assign data objects into the same set

as the ideal configuration at this threshold.

Figure 7 shows the portion of capacity and bandwidth classi-

fied into the same set as the ideal configuration using guidance

associated with each data feature, averaged (geometric mean) over

all benchmark programs. Figure 7(a) shows the results when the

feature profiles are collected from and used to guide the same (ref )
program input, while 7(b) presents the accuracy when using pro-

filing from the train runs to guide execution of a run with the ref
input. For each feature, we show only the results for the bandwidth-

per-byte threshold that generated the most accurate hot and cold

sets compared to the ideal approach at the fixed threshold.

Thus, the results mostly confirm our earlier observations regard-

ing the accuracy of associating program profiling with each data

feature. In Figure 7(b), we see that the train profile-guided approach
is relatively accurate at assigning capacity to the correct memory

tier, regardless of the feature that is used. Since the ideal approach

assigns most (82%) of program capacity to the slower memory tier,

features that under-utilize the high performance tier will still clas-

sify most application capacity correctly. Indeed, only the allocation

site features, including with context, are able to assign the vast

majority of both capacity and bandwidth to the correct memory

tier with the train-based profiles. Overall, allocation sites with 8

layers of additional context are the most effective feature for train-
guided execution, and are able to assign 93% of capacity and 87% of

bandwidth to the correct memory tier.

6 FUTUREWORK
There are several avenues for future work. First, we plan to ex-

tend this study to evaluate the performance of using different data

features to guide other memory management tasks, including: min-

imizing writes to memory devices with low endurance, identifying

datawith poor locality to increase cache efficiency, and pre-tenuring

objects with long expected lifespans to reduce GC effort. This work

also found that access signatures are very effective features for

characterizing memory behavior, but are difficult to apply in real

FDOs. Our future work will explore and develop static analyses

and other mechanisms to associate program data with source code

constructs and instructions that use it, but that are easier to detect

during execution and more stable across program inputs. Addition-

ally, our simulation tools allow us to correlate detailed memory

usage statistics with a wide range of data features. In the future, we

will employ machine learning techniques to determine if certain

features or combinations of features can predict various usage be-

haviors regardless of the application itself or its input. Finally, we

plan to adapt the knowledge and tools we have developed in this

study for use with native applications and system software on real

and complex memory hardware.

7 CONCLUSIONS
This work employs detailed simulations of full scale applications to

evaluate the effectiveness of using different program data features

to aggregate and characterize memory usage for guiding memory

management. It finds that simple data features, such as allocation

sizes, are useful for characterizing the behavior of some program

data, but more fine-grained features, such as the set of instructions

that access an object, and combinations of features, significantly

increase the accuracy of this approach. Additionally, it quantifies

the impact of using different data features to guide separation of

hot and cold data for a realistic memory management FDO on a

heterogeneous memory platform with a limited amount of high

performance memory. Overall, it finds that combining allocation

sites with call stack context is the most effective means to summa-

rize and incorporate guidance for this task, especially when the

profiled and guided execution use different program inputs.
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