
Effectiveness of Binary-Level CFI Techniques

Ruturaj K. Vaidya and Prasad A. Kulkarni

Abstract. Memory corruption is an important class of vulnerability
that can be leveraged to craft control flow hijacking attacks. Control Flow
Integrity (CFI) provides protection against such attacks. Application of
type-based CFI policies requires information regarding the number and
type of function arguments. Binary-level type recovery is inherently spec-
ulative, which motivates the need for an evaluation framework to assess
the effectiveness of binary-level CFI techniques. In this work, we develop
a novel and extensible framework to assess how the program analysis in-
formation we get from advanced binary analysis tools affects the efficacy
of type-based CFI techniques. We introduce new and insightful metrics
to quantitatively compare source independent CFI policies with their
ground truth source aware counterparts. We leverage our framework to
evaluate binary-level CFI policies implemented using program analysis
information extracted from the IDA Pro binary analyzer and compared
with the ground truth information obtained from the LLVM compiler.

1 Introduction

Software written in memory unsafe languages like C and C++ is vulnerable to
Code-Reuse Attacks (CRA) such as return-into-libc (full function reuse attack) [4],
ROP (Return Oriented Programming) [18, 3] and COOP (Counterfeit Object-
oriented Programming) [17, 9, 10]. Control flow integrity (CFI) [1] is a popular
technique to prevent such control flow hijacking attacks. CFI aims to ensure that
the control flow of the program stays within the legitimate targets desired by the
programmer. Usually, this is achieved by computing the user intended control
flow targets using a static analysis phase to insert security checks into the gener-
ated binary code. The inserted security checks monitor and enforce the control
flow of the program to stay within the desired target locations at run-time.

Various CFI techniques have been proposed after the introduction of an ex-
emplary CFI model by Abadi et al. [1]. CFI techniques could be source-code
aware— implemented at source or compiler-level, or source-code independent—
implemented at the binary level. Binary-level CFI techniques are necessary to
secure unprotected and untrusted programs and third-party libraries that are
typically shipped without their corresponding high-level source codes.

CFI techniques typically require the accurate recovery of function call-site
and function signature information, including argument counts and all argument
types. Lack of accurate program analysis information at the binary-level makes it
extremely challenging to build a precise function call-graph for large binary soft-
ware. In turn, the effectiveness of binary-level CFI techniques depend and suffer



2 Vaidya et al.

from the inaccuracies of the program information extracted by the adopted bi-
nary analysis framework. Over- or under-approximation of reachable call-targets
by CFI techniques can result in false negatives (attacks go undetected) or false
positives (correct control flow tagged), which can dent the usability of CFI.

Our goal is to study and quantify the correctness of binary-level CFI tech-
niques and how they are impacted by the inaccuracies in program analysis infor-
mation recovered by binary analyzers. We focus on type-based CFI techniques
that use the number and type of arguments to match each call-site to the set
of potential call-targets. Source-level CFI techniques have access to precise pro-
gram and type information, and are therefore most likely to achieve their design
objective. We use the output of each source-level CFI technique as the ground
truth to assess the accuracy of the corresponding binary-level CFI technique.

In this work, we develop a novel framework, called β-CFI, to study and
quantify the effectiveness of different binary-level CFI techniques. Our framework
supports the integration of different source (compilers) based and binary-level
analysis modules to gather program information required to model different CFI
techniques, each at the source and binary levels. To validate our framework,
we develop a source-level analysis module using the LLVM compiler [13] and a
binary-level analysis module using the IDA Pro and Hex-Rays software reverse
engineering (SRE) tools [8]. The analysis modules statically recover program
information, including call-site and call-target argument counts, argument types,
and the function return type. We also model four different CFI techniques that
employ the analysis information gathered by the source/binary-level analysis
modules to impose the call-target constraints.

Next, we introduce new and insightful metrics to quantitatively compare
the effectiveness of CFI policies instituted at the binary level with the ground
truth provided by their source-aware counterparts. Unlike most existing CFI
metrics that only measure the number of call-targets reached without regards
to their correctness compared to the ground truth set of call-targets [25, 20, 7, 2,
15, 6], our approach provides a more correct metric for evaluating the accuracy
of binary-level CFI techniques.

We make the following contributions in this paper:

– We develop a modular and extensible framework1 along with a common
language to compare the accuracy and effectiveness of binary-level type-
based CFI techniques.

– We develop a mechanism to model multiple different type-based CFI tech-
niques using program information obtained from different sources.

– We develop metrics to quantitatively measure the accuracy of binary-level
CFI techniques compared to ground truth results obtained with access to the
source code.

– We employ our framework, models, metrics and mechanisms to recover pro-
gram information from IDA Pro binary analyzer, and LLVM compiler, and
employ that information to quantitatively assess the accuracy of four binary-
level CFI techniques compared to their source-level equivalents.

1 Our framework is available online - https://github.com/Ruturaj4/B-CFI.



Effectiveness of Binary-Level CFI Techniques 3

2 Background and Related Work

2.1 Control Flow Integrity (CFI)

Code-Reuse Attacks (CRA) [4, 18, 3, 17, 9, 10] allow attackers to exploit spacial
and temporal memory safety violations to alter the control flow of the program.
CFI provides protection against such arbitrary control flow subversion. CFI tech-
niques use static or dynamic analysis to compute the program control flow graph
(CFG) and then check at run-time if the program execution follows the CFG
computed in the previous analysis stage. Thus, CFI maintains program integrity
by only allowing legitimate control transfers during execution.

Fig. 1: High-level overview of CFI techniques

We use Figure 1 to describe, at a high-level, how CFI techniques work and also
to explain our goals in this work. When coding, the developers may intend the
control-flow at each indirect call-site to only reach a few potential function targets
during program execution. For instance, the programmer intent in our example
(as illustrated in Figure 1-(A)) is for the indirect call-site to only reach targets
‘D’ and ‘F’. Unfortunately, this programmer intent is not explicitly encoded in
the source-code, and is lost before it reaches the compiler. Without any CFI
check, an attacker may be able to subvert the call-site to reach any reachable
function target (‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, and ‘H’ in our example, Figure 1-(B)).

Different CFI techniques use various safe approaches that constrict the set
of spurious reachable targets, while ensuring that the technique does not inad-
vertently disallow any correct (but, unknown) programmer-intended targets. If
a correct target is not in the set of reachable targets, then the CFI check may
trigger a false positive alarm for correct program flow during execution. At the
same time, if the set of reachable targets is overly broad, then the CFI technique
may leave the program more vulnerable to attacks. In our example, the source-
level CFI technique partitions the targets into reachable and unreachable sets,
as illustrated in Figure 1-(C). For the CFI policies that employ types to deter-
mine the set of “valid” targets, these results obtained from employing a program
representation with perfect type information (like the source-code) presents the
best case result they can achieve.



4 Vaidya et al.

Unfortunately, program analysis information recovered by binary-level SRE
tools may be imprecise, which can cause the same CFI algorithm to produce
different and incorrect reachable and unreachable target function sets at the
binary-level for each call-site (as illustrated in Figure 1-(D)). Our goal in this
work is simply to measure and study this imprecision in the output of binary-
level CFI techniques as compared to their source-level counterparts.2

Abadi et al. introduced the idea of CFI by statically computing the CFG and
restricting control flow of the program to the valid targets during run-time [1].
Since then, researchers have developed many CFI policies and algorithms that
differ in their implementation, precision and cost. Several CFI approaches employ
pointer analysis to construct the CFG that is needed by the algorithm [25, 24,
20, 22]. However, static points-to-analysis is imprecise, especially for program bi-
naries [5]. Therefore, researchers have proposed CFI techniques that incorporate
program invariants such as argument count and types to construct the CFG.
These type of techniques are referred to as Run-time Type Checking (RTC)
based CFI techniques [20, 16, 19, 21, 14, 5, 12].

In this work, we do not propose or build new CFI techniques. Instead, we
develop a new framework and metrics to model and compare binary-level RTC
based CFI mechanisms against a known ground-truth. We also assess the ac-
curacy of the relevant program information recovered by state-of-the-art binary
analysis tools, and their impact on the precision of binary-level CFI policies.

2.2 CFI Security Policy Comparison Metrics

Researchers have developed several mechanisms and metrics to evaluate and
compare the protection provided by different CFI policies. Average Indirect
target Reduction (AIR) [25] measures the reduction of permitted call-targets.
AIA [7] computes the average number of call-targets per function call. Similarly,
fAIR [20] and fAIA [6] are forward-edge variations of the previous metrics. The
CTR (Call-Target Reduction) metric provides absolute values (rather than av-
eraged results) of reachable call-targets at every indirect call-site [15]. Most of
these metrics use a relative measure, such as reduction in the average number
of reachable targets from each call-site, or reduction in the number potential
gadgets, etc. to assess the accuracy and benefit of the CFI technique.

Burow et al. propose a metric called QuantitativeSecurity that computes the
number of equivalence classes and the inverse of the size of the largest class, to
quantify the security of CFI techniques [2]. Frassetto et al. develop the BLOCK-
Insulation and CFGInsulation metrics to calculate the distance between a vul-
nerable instruction to system call at basic-block granularity [6].

2 It is important to realize that even if the binary-level CFI technique produces a more
desirable outcome (for example, by allowing all programmer-intended targets and
a smaller spurious set in the reachable set), it is still considered erroneous in this
work, if it does not match the output of the corresponding source-level approach,
since the technique did not function as algorithmically designed (due to imprecise
analysis data), and any observed “improvement” is merely coincidental.



Effectiveness of Binary-Level CFI Techniques 5

None of these existing CFI metrics incorporate the notion of obtaining the
actual accuracy of any CFI technique as compared to some known ground truth,
and determining the false positive and false negative call-targets at each call-site.
In this work, we show why such earlier CFI metrics are ill-suited for comparing
the performance of binary-level CFI policies. We introduce new metrics that
can quantitatively compare the accurate call-targets in each equivalence class
identified by binary-level policy with that of call-targets recuperated in the cor-
responding equivalence class using a source aware ground truth policy.

2.3 CFI Frameworks

It is difficult to compare and assess the performance of different CFI policies as
they use different settings, including compilers, operating systems and machines.
Therefore, researchers have built detailed frameworks, mechanisms, and metrics
to compare and assess CFI techniques uniformly.

Farkhani et al. develop a framework to analyze the ability of RTC CFI mech-
anisms, and compare them with a points-to analysis based CFI mechanism [5].
Li et al. introduce CScan—a framework to compute actual feasible targets us-
ing run-time checks and CBench—an extensive set of vulnerable programs to
assess the effectiveness of CFI techniques [11]. ConFIRM [23] analytically com-
pares various CFI policies in terms of compatibility issues in contrast to focusing
on performance or security.

Our framework to evaluate binary-level CFI policies is inspired by a compiler-
level CFI policy comparison framework, called LLVM-CFI [15]. This framework
provides a LLVM-Clang based unified framework for statically modelling and sys-
tematically assessing various CFI techniques. LLVM-CFI leverages a link time
optimization (LTO) pass in the LLVM compiler to impose constraints on invari-
ants collected during compilation to implement CFI policies. The CFI policies
in our current work also adhere to much of the formalization described by this
earlier work. However, our goals, implementation machinery and metrics used
differ considerably from LLVM-CFI.

The CFI policies in LLVM-CFI are modelled based on their idealized repre-
sentation, which means that they do not consider the effect of loss in high-level
information whilst modelling source insentient CFI techniques. In other words,
the binary-level CFI policies in LLVM-CFI are established on the premise that
the analysis primitives are all recovered correctly at the binary level. Instead, our
goal in this work, which is to compare the precision of binary-level CFI policies,
requires us to gather the necessary program information from both binary-level
and source-level analysis tools.

None of these earlier CFI policy comparison frameworks and metrics attempt
to study and assess how the loss of program information at the binary-level
affects the efficacy of different binary-level CFI policies compared to some ground
truth, which we do in this work. Furthermore, we also develop a new set of
metrics that can more accurately determine the accuracy of binary-level CFI
policies compared to a ground truth, which was not attempted by earlier CFI
policy comparison frameworks.



6 Vaidya et al.

3 Implementation

In this section we describe the design and implementation of the CFI policy
comparison framework and the CFI models that we build and use for this work.

3.1 Design Overview

Fig. 2: Block Diagram of β-CFI

Fig. 3: Indirect call-site target-
ing functions in binary hardened
with four different policies—①
TypeArmor, ② IFCC, ③ MCFI
and ④ τCFI

In this paper, we introduce β-CFI—a binary level CFI comparison frame-
work. To assess and analyze the precision of type-based binary-level CFI tech-
niques, we design and construct an evaluator framework that is capable of
comparing the results achieved by different CFI techniques at both the source-
sentient and insentient levels. Figure 2 shows the high-level block diagram of our
evaluation technique. The technique can be broadly classified into two stages.
Firstly, relevant program analysis information is collected from both source-level
(LLVM) and binary-level (IDA Pro) means and secondly, this information is fed
into the CFI models, and the results are computed, compared and analyzed.

In further detail, our technique performs the following steps: I First, the
source code to be analyzed is compiled (using the LLVM compiler, in this work).
II During compilation, we collect various program analysis information, includ-
ing function argument counts, and argument and function types at each call-site
and at every call-target using a dynamically loadable LLVM LTO (Link Time
Optimization) pass that we built for this work. This pass makes separate com-
pilation of source files possible providing flexibility. These source-level analy-
sis statistics are used to drive an idealized representation (or ground truth) of
our type-based CFI policies. III The output binary is then employed for β-CFI
statistics collection. In this work we leverage IDA Pro [8]—a popular reverse
engineering framework to statically analyze the binaries and recuperate static
analysis information, including indirect calls and program functions accompanied
by their type signatures i.e. function return type, function argument counts and
their types at each call-target and call-site. We also leverage Hex-Rays decom-
piler to refine the type information generated by IDA Pro. The advanced type
inference in the decompiler assists us to model robust run-time type checking
(RTC) policies at the binary level.



Effectiveness of Binary-Level CFI Techniques 7

We invoke our LLVM LTO pass after full link time optimizations to ensure the
accurate source to binary function matching. We do not consider any unmatched
functions if they aren’t identified correctly by IDA tool. Although we employ
LLVM and IDA Pro for this work, our framework is modular and evaluators can
use any other source- and binary-level static analysis tools to extract function
and call-site related program analysis information.

IV After the recovery of these analysis primitives at both the source level and
binary-level, type-based policy constraints are applied corresponding to each de-
ployed CFI policy. At this stage, evaluators can select and encode any CFI policy
of their choice by setting various type-based constraints. Thus, this extensible
and convenient framework will enable analysts to implement and verify new
type-based CFI policies at the binary level without doing repetitive compilation
and analysis. To validate our framework, we implement and deploy four type-
based policies (explained in details in 3.2) for evaluation. V Finally, the output
of the CFI models using source-level and binary-level program information is
compared and the final results are displayed to the evaluator.

3.2 Type-Based CFI Policies

In this section we describe the four type-based CFI policies we model by applying
different type-based constraints. Some of these were also used and compared in
the LLVM-CFI work [15]. Figure 3 displays an indirect call-site targeting four
different functions in a binary hardened by modeling four different type-based
CFI policies. The function shown on the far-left (CT1) is the only legal call-target
intended to be called from indirect call (IC) instruction call (*rax). Besides,
three other functions (CT2-CT4) are illegal call-targets and should ideally be
unreachable during correct program execution. We assume that the attacker
controls the value of register rax.

We now discuss constraints and type collisions imposed by the four CFI
policies we employ. However, our technique is adaptable and evaluators can in-
troduce and model other policies with various levels of type-based precision.

① TypeArmor [21] was originally implemented at the binary level by using
coarse-grained type invariants. The policy considers the number of arguments
without explicit types. At each call-site the call is allowed only if the number
of arguments at the call-target are equal or less than that at the call-site (max-
imum up to six). Additionally, void and non-void functions are differentiated
i.e. call-sites which expect a return value must only target functions with non-
void return type. Note that such assumptions can not be made on the contrary,
i.e. if a call-site doesn’t expect a return value, then it can call void as well as
non-void functions. This relaxed policy is practical at the binary level, as it is
often difficult to infer whether the function is going to return a value or not.
Thus, at the example call-site in Figure 3, the TypeArmor CFI policy allows the
call (*rax) instruction to reach CT1, CT2 and CT3 functions, which includes
two illegal targets.



8 Vaidya et al.

② IFCC [20] is implemented similar to the encoding explained in [15]. IFCC
takes into account the argument and parameter counts, along with their basic
types to match call-sites to call-targets. However, base pointers types are not
considered, i.e. void* and int* are considered equivalent. Therefore, functions
CT3 and CT4 in Figure 3 are allowed (in addition to CT1). Return type is not
taken into consideration. Note that the types are not over-approximated i.e. they
are not considered as upper bound, but are matched according to the exact type.

③ MCFI [16] is a CFI policy that is stricter than IFCC in terms of how pointer
types are recuperated. Pointer types such as void* and int* are considered dis-
tinct. Similar to IFCC, the number of parameters and their types are matched
with call-site argument count and types. However, stricter types are taken into
consideration. Thus, as seen in Figure 3 only one target i.e. CT4 is reachable
with the stricter MCFI policy (in addition to CT1). Function return types are
not considered, similar to IFCC.

④ τCFI [14] considers argument and parameter types along with their counts.
The types are contemplated based on the size of the registers {0,8,16,32,64}
prepared during the indirect call. According to x86-64 calling convention (Sys-
tem V ABI) the first 6 arguments are passed through registers during a function
call. τCFI policy allows the call if 1) the number of arguments prepared at
the call-site are more or equal to the number of parameters consumed at the
call-target, 2) the return type recuperated at the call-site and the call-target is
non-void and its size at the call-site is larger than that of the call-target return
type; else, if return type recuperated at the call-site is void and then it can also
call non-void functions, 3) the size of the argument types at call-site are greater
than or equal to their matching arguments at call-targets. Thus, in our example
displayed in Figure 3, CT3 is the only illegal target that is allowed to be reached
from the indirect call-site.

4 Evaluation

4.1 Benchmarks

We evaluate our framework using sixteen C and C++ benchmarks from the SPEC
2006 3 integer and floating point suite. We leave out the remaining benchmarks
either because we didn’t find any indirect call-sites in the optimized benchmark
version (mcf, libquantum and lbm) or when the benchmarks use Fortran code.

Additionally, we include five popular and large real world applications for
this study. Specifically, we performed our evaluation with (a) Nginx (v1.22.1
C), an open-source web server software 4, (b) Node JS 5 (v10.24.0 C/C++), an
open-source, cross-platform JavaScript run-time environment, (c) Apache Traffic

3 https://www.spec.org/cpu2006/
4 https://nginx.org/en/download.html
5 https://nodejs.org/en/download/current



Effectiveness of Binary-Level CFI Techniques 9

server 6 (v6.2.3 C/C++), an open-source forward and reverse proxy web server,
(d) postgresql 7 (v12.0 C), an open-source relational database management frame-
work, and the (e) Tor Browser 8 (v0.4.8.0-alpha-dev C), an open-source web
browser focused on privacy and security. We obtained the most primary appli-
cation binary from these benchmarks for our analysis.

Our benchmarks along with the total number of indirect call-sites and call-
targets in each program are listed in Table 1. All the SPECint and SPECfloat
benchmarks are presented together in their respective groups in this table (and
in all later results).

4.2 Experimental Configuration

We design two benchmark configurations for this study.

I. Ideal or Baseline Scenario: For our first configuration, we keep the
debugging symbols and compile the binary with optimizations (‘-O3’). We
refer to this configuration as the baseline. This baseline configuration can
be considered as an idealized representation at the binary level where some
source semantics in the form of debug symbols are available to guide the
binary analysis frameworks.

II. Practical Scenario. For our second configuration, we strip the debugging
symbols using ‘strip --strip-debug’. This is a practical scenario for most
COTS (Commercial off-the-shelf) binaries and presents a more challenging
case for the binary analysis algorithms. All benchmarks are still optimized
by ‘-O3’.

All experiments are performed on Fedora 34 operating system with x86-64
Intel Xeon processor. The LLVM/Clang version used is (v.12.0.0) to compile
binaries and get the ground truth program information, and 64-bit version of
IDA Pro (v7.5.2) is used to conduct binary analysis and extract the program
information used by the binary-level CFI models.

Table 1: Inverse of Benchmark Properties
Benchmark SPECint SPECfp nginx postgresql trafficserver tor node

call-targets 15594 2341 1237 11089 6886 5761 133496
call-sites 20304 1179 448 9367 8311 273 8239

4.3 Evaluation Metric

To compare and evaluate the precision of binary-level CFI policies with their
source aware counterparts in terms of the correct reachable call-targets at each

6 https://archive.apache.org/dist/trafficserver/
7 https://www.postgresql.org/download/
8 https://www.torproject.org/download/



10 Vaidya et al.

call-site, we introduce new metrics that calculate not only the number of targets
reached (fewer the better), but also employ the known ground-truth targets
information to check if there are any false positives or false negatives generated
by the CFI policy under evaluation. Such a detailed evaluation of CFI policies
is crucial, as mere call-target reduction results, as measured by most earlier CFI
metrics, can not characterize the number of:

– true positives – illegal (unreachable) targets that are correctly marked by
the CFI policy under evaluation,

– false positives – legal (reachable) targets in the ground truth, but are marked
as illegal by the CFI policy under evaluation,

– true negatives – legal targets in the ground truth that are correctly marked
by the CFI policy under evaluation, and

– false negatives – targets illegal in the ground truth that are incorrectly
marked as legal by the CFI policy.

Thus, it is very important to know the exact targets reached, i.e. we not only need
to check how many functions are reached using Binary-CFI, but also how many
of these functions match the functions detected using our ground truth. We in-
troduce new metrics named RelativeCTR (RelativeCTRT and RelativeCTRF )
to check whether the actual targets reached when Binary-CFI policies are ap-
plied are in fact equivalent to the actual targets reached when Source-level CFI
policies are applied. RelativeCTRT (higher the better) represents the number of
call-targets that are accurately reached at a particular call-site using binary-CFI
policy, compared to source-level CFI policy, and RelativeCTRF (lower the bet-
ter) presents the call-targets that are incorrectly reached at a particular call-site
using binary-level policy, compared to its source aware CFI policy counterpart.

Suppose that P is a program with total indirect call-sites IC and total reach-
able call-targets CT . Let ICi be an indirect call-site in program P with num-
ber of reachable call-targets CTi after applying the CFI constraints for source
aware policy Pc and CT

′

i be number of reachable call-targets after applying

source independent policy P
′

c at the same call-site. Then, RelativeCTRT and
RelativeCTRF are defined as follows.

Definition 1. RelativeCTRT is the ratio of the intersection of targets in Source-
CFI (CTi) and in Binary-CFI (CT

′

i ) to the total number of actual targets in
Source-CFI (CTi) at an indirect call-site ICi.

RelativeCTRT (RT ) =

n∑
i=1

(CTi ∩ CT
′

i )/CTi

Definition 2. RelativeCTRF is the ratio of the total number of call-targets in
(CT

′

i ) reachable with Binary-CFI but not reachable with Source-CFI (CTi) to

the total number of targets in Binary-CFI (CT
′

i ) at an indirect call-site ICi.

RelativeCTRF (RF ) =

n∑
i=1

(CT
′

i \ CTi)/CT
′

i



Effectiveness of Binary-Level CFI Techniques 11

We illustrate our new metrics using the hypothetical example from Figure 1.
This program has eight different functions ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, and ‘H’.
For some indirect call-site IC1 in the program, the set of reachable targets as
identified by the source-level CFI policy (our ground truth) are ‘A’, ‘C’, ‘D’, ‘F’
and ‘H’ (CT1, CT3, CT4, CT6 and CT8). However, the binary-level CFI policy
under evaluation determines the reachable set of targets from the same call-site
to be ‘A’, ‘B’ and ‘D’ (CT

′

1, CT
′

2 and CT
′

4). Thus, with reference to the ground
truth, ‘B’ is an unintended target, and ‘C’, ‘F’ and ‘H’ are correct targets that
are missed. Therefore, the RelativeCTRT for this call-site is 2/5, which indicates
the correctly detected, or true negative targets (and, correspondingly, also the
false positive targets). RelativeCTRF is 1/3, which indicates the incorrectly
detected or the false negative call-targets. Thus, a high RelativeCTRT indicates
a high true negative (and low false positive) rate for the CFI technique, i.e., a
low likelihood of throwing a fault when there is none. A high RelativeCTRF

indicates a more relaxed CFI policy and a higher likelihood for the CFI technique
to allow unsupported control flow paths that can lead to attacks.

In addition, since we target the same weakness in all previous CFI metrics,
we use only one, the popular CTR metric [15], as representative of the category
of metrics that only use the measure of reduction in the number of call-targets
from each call-site to rate different CFI policies. The CTR metric depicts the
absolute values of the number of call-targets accessible from a call-site after
hardening with a particular CFI policy. The CTR metric is defined as follows.

CTR =

n∑
i=1

cti

Where cti is number of call-targets reachable from an indirect call-site ici. A
lower value of CTR implies a better CFI policy, as it ostensibly reduces the
number of extraneous targets allowed from a call-site. In this paper, we highlight
some important shortcomings of the CTR (and similar) metrics for our work.
Specifically, such metrics do not fairly and accurately assess the precision of CFI
policies compared to some known ground truth.

4.4 CFI Policy Comparison

We present and discuss our results in this section. We use our framework and
models to collect theRelativeCTR and CTR numbers for all our benchmark pro-
grams. We use Dwarf symbols at every call-site to match the call-sites detected
during the source-level LLVM pass with the call-sites in the binary executable.
We leverage the llvm-symbolizer tool to match Dwarf symbols with the address
of the respective call-site in the binary. Note that the binary address to Dwarf
mapping is one-to-many and thus we consider all the call-sites that appear in
the binary for each source-level call-site.

We leverage our new RelativeCTR metrics to show correctly and incorrectly
reachable call-targets at each call-site. Table 2 shows the RelativeCTR metrics
with “Mean” values for our benchmarks in both our binary configurations I and



12 Vaidya et al.

Table 2: Mean RelativeCTR comparison results of our 4 CFI policies (TypeAr-
mor, IFCC, MCFI and τcfi)

TypeArmor IFCC MCFI τCFI

Benchmark RT (I) RF (I) RT (II) RF (II) RT (I) RF (I) RT (II) RF (II) RT (I) RF (I) RT (II) RF (II) RT (I) RF (I) RT (II) RF (II)

SPECint 0.93 0.24 0.92 0.25 0.26 0.45 0.22 0.48 0.14 0.65 0.13 0.66 0.74 0.27 0.75 0.27
SPECfp 0.91 0.13 0.87 0.28 0.49 0.44 0.29 0.53 0.40 0.51 0.19 0.67 0.89 0.16 0.71 0.28
nginx 0.92 0.03 0.91 0.19 0.68 0.30 0.35 0.37 0.47 0.43 0.24 0.72 0.89 0.03 0.67 0.12

postgresql 0.80 0.02 0.75 0.12 0.45 0.53 0.25 0.52 0.28 0.66 0.23 0.76 0.74 0.11 0.42 0.32
trafficserver 0.93 0.22 0.93 0.22 0.31 0.39 0.29 0.40 0.10 0.51 0.11 0.52 0.48 0.22 0.48 0.22

tor 0.96 0.12 0.64 0.29 0.70 0.26 0.18 0.51 0.49 0.32 0.14 0.76 0.75 0.10 0.31 0.22
node 0.99 0.05 0.95 0.24 0.74 0.17 0.31 0.38 0.64 0.22 0.28 0.51 0.92 0.16 0.69 0.38

Table 3: Mean CTR comparison results of our 4 CFI policies (TypeArmor, IFCC,
MCFI and τcfi)

TypeArmor IFCC MCFI τCFI

Benchmark Source Bin-I Bin-II Source Bin-I Bin-II Source Bin-I Bin-II Source Bin-I Bin-II

SPECint 3327.33 3966.70 3967.50 1608.22 606.83 591.66 1296.44 356.30 370.67 2105.19 2092.90 2088.97
SPECfp 308.05 307.51 333.59 101.71 78.05 52.72 86.55 48.11 28.00 167.72 155.00 120.70
nginx 506.06 487.85 570.47 277.97 201.50 153.71 130.45 69.33 142.92 366.34 357.17 366.55

postgresql 6637.11 5337.80 5515.54 1825.17 1233.95 1009.84 997.45 720.76 932.53 2415.92 2372.24 1585.11
trafficserver 3049.97 3882.86 3905.23 1866.46 809.56 754.68 1699.28 229.41 250.19 1622.12 990.37 991.23

tor 2896.82 3123.42 2578.18 923.81 730.51 365.42 470.58 385.08 330.14 1610.27 1231.44 786.90
node 70251.10 73847.82 89280.00 25418.30 23934.50 10240.00 17394.30 16165.50 8000.88 37759.30 37679.10 40666.90

II. The results in Table 2 allow us to make some important observations that
would be missed by earlier CFI comparison metrics that use a reduction in the
number of reachable targets from each call-site as the only measure to evaluate
the effectiveness of CFI techniques [25, 20, 7, 2, 15, 6].

Table 3 presents the results using the CTR metric for 4 CFI policies - ①
TypeArmor, ② IFCC, ③ MCFI and ④ τCFI, and for our benchmark set when
using the analysis information from LLVM (Source-CFI ), and our two binary
configurations, Binary-CFI (I) and Binary-CFI (II), respectively. The CTR
metrics in Table 3 present the absolute values of reachable targets.

We employ the RelativeCTR and CTR results, presented in Tables 2 and 3,
respectively to make several observations. Of the four CFI policies modelled in
this work, TypeArmor is the most permissive, since it only considers argument
counts and discards argument type information. By contrast, MCFI is most strict
as it considers both basic types and mature pointer types. Accordingly, we can
see higher CTR numbers across the board for TypeArmor and relatively lower
CTR numbers for MCFI, which confirms this property about the CFI policies.

For this work though, it is more pertinent to compare the binary-level CFI
CTR numbers with the corresponding Source-CFI numbers to assess the accu-
racy of CFI methods at the binary-level (with Source-CFI acting as ground truth
for each policy). When using the CTR metric, the difference between the binary
and source-level numbers indicates the potential error in the binary-level CFI
models. We find that, the binary-level CTR numbers differ significantly
from the source-level CTR metrics for all our CFI models. Besides,
this difference is greater for the more restrictive CFI policies. Thus,
CFI policies, such as MCFI and IFCC, that rely on more precise program data
type information appear to be more erroneous as compared to the simpler CFI



Effectiveness of Binary-Level CFI Techniques 13

models, like TypeArmor and τCFI. This is an intuitive result as it indicates that
errors in correctly reconstructing the type information at the binary level nega-
tively impacts the algorithms employing such data during their computations.

While this observation derived with the CTR metric appears to be correct, a
deeper analysis reveals critical issues and misleading outcomes. For instance, the
results in Table 3 also show that the Binary-CFI CTR ratios are often tighter
(which is better, according to the CTR metric) than the Source-CFI numbers.
We find that in 3 of the 7 benchmark categories with TypeArmor, and in all of
the 7 benchmark categories with IFCC, MCFI, and τCFI, the number of mean
reachable targets from each call-site is smaller with Binary-CFI (I) compared
with the Source-CFI numbers. This result with the CTR metric is confusing
since it suggests that the binary-level techniques achieve better effectiveness with
fewer extraneous call-targets compared to the source-level techniques. Likewise,
in many cases, especially for the stricter CFI policies, we can observe that the
CTR numbers are tighter with the stripped benchmarks in the Binary-CFI (II)
configuration, compared with the Binary-CFI (I) configuration, which is again
a confusing and likely misleading outcome.

Results with our new RelativeCTR metric in Table 2 can help resolve this
confusion caused when looking solely at the CTR numbers in Tables 3. Thus, we
find that the tighter CTR numbers with the binary-level CFI models are not a re-
sult of only eliminating the extraneous or false negative call-target edges for each
call-site. Rather, the lack of precise program analysis information at the binary-
level causes the CFI models to produce significant numbers of false positive
(indicated by RelativeCTRT ) and false negative (indicated by RelativeCTRF )
edges. Thus, we conclude that all CFI models for the binary configurations
display high error rates that is not captured by the existing metrics
used to measure the performance of CFI policies, like CTR.

We also observe that the Mean RelativeCTRT values are significantly lower
for all benchmark categories with the stricter MCFI and IFCC CFI policies com-
pared to TypeArmor and τCFI. Likewise, the Mean RelativeCTRF values are
much higher for MCFI and IFCC compared to TypeArmor and τCFI. While this
is not a particularly surprising result in hindsight, the extent of the observed er-
ror is quite staggering. Thus, we find that the mean number of correct or true
negative (RelativeCTRT ) edges recovered by the MCFI policy even in the Bi-
nary config. I (with debug symbols available) drops to as low as 0.10 and 0.14
for the trafficserver and SPECint benchmark categories, respectively, and
with less than 50% of the true negative edges recovered for all but one bench-
mark suite. Likewise, the number of incorrect or false negative (RelativeCTRF )
edges recovered is as high as 0.66 and and 0.65 with the MCFI policy in the
Binary config. I for benchmark suites postgresql and SPECint, respectively. It
is also interesting to note that binary-level SRE tools struggle to recover precise
program analysis information even for binaries with debug symbol information
available, resulting in poor performance by CFI models employing such informa-
tion. This level of imprecision by binary-level CFI techniques is not something
that has been observed or reported by earlier works that used simple metrics like



14 Vaidya et al.

the CTR. Thus, we conclude that, binary-level CFI models, like MCFI and
IFCC, that rely on more precise program analysis information are sig-
nificantly more erroneous, compared to the simpler CFI models, like
TypeArmor and τCFI.

From Figure 2 we can also observe that in almost every case, theRelativeCTRT

values are lower, while the RelativeCTRF values are higher for benchmarks that
have been stripped of debug symbols (binary config. II) compared to programs
with debug information intact (config. I). Thus, it is clear that the greater impre-
cision in static analysis information that is recovered by SRE tools for stripped
binaries results in degrading the performance for security and optimization al-
gorithms that rely on such data. While this is also an expected and intuitive
result, there has never previously been an attempt or a mechanism to observe,
measure, and report the amount of error in CFI policies. If anything, it is inter-
esting to note that the magnitude of error displayed by binary-level CFI policies
in config. II programs, with symbols stripped, is not very large in several cases,
compared to the inherent error already present in CFI models in config. I. We
even find that in a few cases, like the mean RelativeCTRT for trafficserver
with the MCFI policy, and the mean RelativeCTRF for postgresql with the
IFCC policy, stripped benchmarks produce marginally better performance com-
pared with unstripped benchmarks. Overall, we can conclude that binary-level
CFI policies produce significantly more erroneous results for bench-
marks that are stripped of debugging symbols, compared to binaries
that retain their debug symbols information.

4.5 On The Accuracy of Program Analysis Information

Our results demonstrate that all the binary-level CFI policies modelled in this
work show high levels of inaccuracy. This inaccuracy may be manifested by
the CFI policies allowing incorrect control flow transfers while tagging correct
control flow transfers as erroneous at run-time. The limitations in binary-level
CFI models are caused by the imprecision in the extracted program analysis
information from binaries by the SRE tools. Therefore, we further investigated
the causes of inaccuracies of the relevant program analysis information collected
by advanced SRE tools (IDA Pro, in this case). We present some interesting
observations from this analysis in this section.

We observe that state-of-the-art SRE tools can accurately detect the number
of call-site (89% in I and 88% in II) and function argument counts (95% in I and
85% in II) in most cases. Interesting is the observation that the lack of symbol
information (in II) does not significantly affect the accuracy of argument count
detection. This high accuracy is reflected in the relatively high RelativeCTRT

and low RelativeCTRF numbers for most benchmark suites in Table 2.
We discover that the accuracy of preliminary type detection at call-sites and

functions is 62% and 89% respectively in setting I. But the accuracy decreases
significantly (44% and 45% respectively) in II. Likewise, the detection accuracy
of base pointer types is around 35% and 84% at call-site and call-targets respec-
tively in setting I, but the decreases to about 9% and 5% in setting II. With



Effectiveness of Binary-Level CFI Techniques 15

some manual analysis with the Nginx benchmark, we found that the mischar-
acterization of the struct* type as int64 by the binary analysis tool is one
important reason for the high error rate. The poor preliminary and pointer type
detection by the SRE tools, especially with config. II, likely results in the high
error rates witnessed in the MCFI and IFCC CFI policies at the binary level.

5 Future Work and Conclusion

Our goal in this work was to explore and quantify the precision of binary-level
CFI techniques, and study how that precision is impacted by the inaccuracies
in the program analysis information recovered by modern SRE tools. We devel-
oped a comprehensive infrastructure, a thorough mechanism, and new metrics
to achieve this goal. Our modular framework can model and evaluate differ-
ent binary-level type-based CFI policies by comparing their outcomes with their
source-based counterparts. We demonstrated our framework and reported results
for four binary-level CFI policies. The results with our novel mechanism and
metrics highlight the unresolved challenges for modern SRE tools in correctly
extracting the relevant program information, and their potentially staggering
impact on the precision of binary-level CFI techniques that use such data.

There are several avenues for future work. We only study type-based CFI
policies in this work. In the future we will augment our current target set analy-
sis by using advanced type propagation and pointer analysis to extend this work
to other CFI mechanisms. Likewise, the false positive and false negative num-
bers for the evaluated binary-level CFI policies in this work report the incorrect
call-target edges according to the CFI algorithm. In the future we will develop
experiments and metrics to understand how these false edges actually cause a
legal program execution to fail or increase program vulnerability at run-time.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security.
CCS ’05, Association for Computing Machinery, New York, NY, USA (2005)

2. Burow, N., Carr, S.A., Nash, J., Larsen, P., Franz, M., Brunthaler, S., Payer, M.:
Control-flow integrity: Precision, security, and performance. ACM Comput. Surv.
50(1) (apr 2017)

3. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security. p. 559–572. CCS
’10, Association for Computing Machinery, New York, NY, USA (2010)

4. Designer, S.: Getting around non-executable stack (and fix).
”http://ouah.bsdjeunz.org/solarretlibc.html” (1997)

5. Farkhani, R.M., Jafari, S., Arshad, S., Robertson, W., Kirda, E., Okhravi, H.:
On the effectiveness of type-based control flow integrity. In: Proceedings of the
34th Annual Computer Security Applications Conference. p. 28–39. ACSAC ’18,
Association for Computing Machinery, New York, NY, USA (2018)



16 Vaidya et al.

6. Frassetto, T., Jauernig, P., Koisser, D., Sadeghi, A.R.: Cfinsight: A comprehensive
metric for cfi policies. In: 29th Annual Network and Distributed System Security
Symposium. NDSS (2022)

7. Ge, X., Talele, N., Payer, M., Jaeger, T.: Fine-grained control-flow integrity for
kernel software. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 179–194 (2016)

8. hexrays: https://hex-rays.com/ida-pro/. In: Interactive Disassembler (IDA) (2022)

9. Lan, B., Li, Y., Sun, H., Su, C., Liu, Y., Zeng, Q.: Loop-oriented program-
ming: A new code reuse attack to bypass modern defenses. In: 2015 IEEE Trust-
com/BigDataSE/ISPA. vol. 1, pp. 190–197 (2015)

10. Lettner, J., Kollenda, B., Homescu, A., Larsen, P., Schuster, F., Davi, L., Sadeghi,
A.R., Holz, T., Franz, M.: Subversive-C: Abusing and protecting dynamic message
dispatch. In: 2016 USENIX Annual Technical Conference (USENIX ATC 16). pp.
209–221. USENIX Association, Denver, CO (Jun 2016)

11. Li, Y., Wang, M., Zhang, C., Chen, X., Yang, S., Liu, Y.: Finding cracks in shields:
On the security of control flow integrity mechanisms. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. CCS ’20,
Association for Computing Machinery, New York, NY, USA (2020)

12. LLVM: https://clang.llvm.org/docs/controlflowintegrity.html. In: Clang (2022)

13. LLVM: https://llvm.org. In: The LLVM Compiler Infrastructure (2023)

14. Muntean, P., Fischer, M., Tan, G., Lin, Z., Grossklags, J., Eckert, C.: τcfi: Type-
assisted control flow integrity for x86-64 binaries. In: Research in Attacks, Intru-
sions, and Defenses. pp. 423–444. Springer International Publishing, Cham (2018)

15. Muntean, P., Neumayer, M., Lin, Z., Tan, G., Grossklags, J., Eckert, C.: Analyzing
control flow integrity with llvm-cfi. In: Proceedings of the 35th Annual Computer
Security Applications Conference. p. 584–597. ACSAC ’19, Association for Com-
puting Machinery, New York, NY, USA (2019)

16. Niu, B., Tan, G.: Modular control-flow integrity. PLDI ’14, Association for Com-
puting Machinery, New York, NY, USA (2014)

17. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.R., Holz, T.: Coun-
terfeit object-oriented programming: On the difficulty of preventing code reuse
attacks in c++ applications. In: 2015 IEEE Symposium on Security and Privacy.
pp. 745–762 (2015)

18. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security. p. 552–561. CCS ’07 (2007)

19. Team, P.: Rap: Rip rop. In: Hackers 2 Hackers Conference (H2HC) (2015)

20. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, U., Lozano, L.,
Pike, G.: Enforcing forward-edge control-flow integrity in gcc & llvm. In: Proceed-
ings of the 23rd USENIX Conference on Security Symposium. p. 941–955. SEC’14,
USENIX Association, USA (2014)

21. van der Veen, V., Göktas, E., Contag, M., Pawoloski, A., Chen, X., Rawat, S., Bos,
H., Holz, T., Athanasopoulos, E., Giuffrida, C.: A tough call: Mitigating advanced
code-reuse attacks at the binary level. In: 2016 IEEE Symposium on Security and
Privacy (SP). pp. 934–953 (2016)

22. Wang, M., Yin, H., Bhaskar, A.V., Su, P., Feng, D.: Binary code continent: Finer-
grained control flow integrity for stripped binaries. In: Proceedings of the 31st
Annual Computer Security Applications Conference. p. 331–340. ACSAC ’15, As-
sociation for Computing Machinery, New York, NY, USA (2015)



Effectiveness of Binary-Level CFI Techniques 17

23. Xu, X., Ghaffarinia, M., Wang, W., Hamlen, K.W., Lin, Z.: Confirm: Evaluating
compatibility and relevance of control-flow integrity protections for modern soft-
ware. In: Proceedings of the 28th USENIX Conference on Security Symposium. p.
1805–1821. SEC’19, USENIX Association, USA (2019)

24. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
2013 IEEE Symposium on Security and Privacy. pp. 559–573 (2013)

25. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Proceedings of the
22nd USENIX Conference on Security. SEC’13, USENIX Association, USA (2013)


