
Understand and Categorize Dynamically Dead Instructions for Contemporary

Architectures

Marianne J. Jantz and Prasad A. Kulkarni

Department of Electrical Engineering and Computer Science

University of Kansas, Lawrence, KS

Email: {mjjantz,prasadk}@ku.edu

Abstract

Instructions executed by the processor are dynamically

dead if the values they produce are not used by the program.

Researchers have discovered that a surprisingly large frac-

tion of executed instructions are dynamically dead. Dynam-

ically dead instructions (DDI) can potentially slow-down

program execution and waste power. Unfortunately, al-

though the issue of DDI is well-known, there has not been

any comprehensive study to understand and explain the oc-

currence of DDI, evaluate its performance impact, and re-

solve the problem for contemporary architectures.

The goals of our research are to measure the ratio of

DDI and systematically characterize them for existing state-

of-the-art compilers and popular architectures, and then

develop compiler and/or architectural techniques to avoid

their execution at runtime. In this paper, we describe our

GCC-based framework to instrument binary programs to

generate control-flow and data-flow (registers and memory)

traces at runtime. We present the distribution and percent-

age of DDI in our benchmark programs. We find that for

the x86 platform, our embedded systems benchmarks com-

piled with GCC generally contain significantly fewer DDI

than those observed in earlier research for other architec-

tures. We also describe the outcome of our manual study to

analyze and categorize the instances of dead instructions in

our programs into seven distinct categories. We briefly de-

scribe our plan to develop compiler and architecture based

techniques to eliminate each category of DDI in future pro-

grams. We believe that a close synergy between static code

generation and program execution techniques may be the

most effective strategy to eliminate DDI.

1. Introduction

Researchers have observed that a surprisingly large frac-

tion of the instructions executed by a processor are often

dead, that is their calculated result is not used by the pro-

gram [1, 2, 3, 4]. It has been seen that, on average, close

to 14% and 20% of the instructions executed by programs

on the Alpha and Itanium respectively are dynamically dead

(even excluding NOP instructions) [4, 5]. It is obvious that

executing dynamically dead instructions (DDI) will waste

power and hardware resources, and likely slow-down the

program execution. Consequently, earlier research efforts

have explored both software and hardware approaches to

address this problem. Traditional compiler optimizations,

such as full and partial dead code elimination [6], were de-

veloped to statically eliminate all dead code [7]. Although

these optimizations are highly effective in removing many

dead instructions from generated codes, high rates of DDI

still persist even for programs generated by sophisticated

compilers that contain and apply these optimizations. At

the same time, attempts to address this issue with archi-

tectural and/or microarchitectural changes have not been

adopted, likely due to high associated design and imple-

mentation costs [3, 1]. We believe that although the issue of

DDI is well-known, old, and fundamental, it may have re-

ceived less attention during the earlier era of exponentially

growing uniprocessor clock speeds, when single-threaded

applications were enjoying free, regular, and rapid perfor-

mance gains, and microprocessor energy consumption was

not as important of an issue. Recently, the computing com-

munity is witnessing two major trends: the paradigm shift

in hardware systems design [8] and the emergence of power

as a first-class design constraint [9]. Today, physical barri-

ers and technology limitations have significantly slowed the

scaling of single-core program performance, which makes

techniques to achieve automatic efficiency improvements

for all existing and future microprocessors even more crit-

ical. Similarly, mechanisms to reduce power consumption

are also important to improve the operational characteristics

of embedded and battery-operated devices, as well as large

server farms. Eliminating DDI will automatically achieve

the efficiency and power benefits for all program threads,

and thus satisfy both these major computing trends.

Consequently, novel strategies to effectively address the

issue of DDI are essential for existing code generation and

execution systems. Unfortunately, a major impediment to

the development of new DDI elimination techniques is the

lack of comprehensive knowledge regarding the character-

istics of DDI in existing programs. Also problematic is the

fact that even this sparse existing knowledge has only been

gathered for (now) defunct (Alpha) or less mainstream (Ita-

nium) computer architectures. Therefore, our goal for this

project is to investigate the types and properties of DDI, and

systematically characterize them for programs compiled us-

ing modern state-of-the-art compilers for contemporary and

popular architectures. Additionally, we plan to use this

knowledge to develop novel compiler and architectural ap-

proaches to effectively resolve each dominant category of

dynamically dead instructions.

In this paper we describe the initial framework we built

to detect, study, and categorize the DDI in benchmark pro-

grams. Our detection framework uses GCC to instrument

the program with additional instructions to produce control-

flow and data-flow traces on program execution. We have

implemented algorithms to analyze the dynamic trace to de-

termine the number and ratio of DDI, and their correspond-

ing static instructions. We have manually studied the DDI in

a few benchmark programs to better understand the causes

for dead instructions. Based on this study, we propose static

approaches to eliminate DDI from binary programs, and

(micro) architectural techniques that can employ compiler-

driven feedback to avoid the execution of each category of

DDI at runtime. Thus, the major contributions of this work

are the following:

• This is the first work to study the properties of DDI for

contemporary architectures, like x86.

• We present the first categorization of DDI for opti-

mized and unoptimized versions of programs compiled

with modern compilers, such as GCC.

• This is the first measurement of the number and ratio

of DDI for x86 benchmark programs.

The rest of this paper is organized as follows. We present

background concepts and related work in the area of dy-

namically dead instruction detection and elimination in Sec-

tion 2. We describe our GCC-based framework to detect

and categorize DDI in Section 3. We present our experi-

mental results in Section 4. Finally, we describe our future

plans and the conclusions for this work in Sections 5 and 6

respectively.

2. Related Work

In this section we will describe background concepts and

related work in the areas of characterizing dead instruc-

tions and compiler and architectural techniques for elimi-

nating them. Unreachable and dead code can be introduced

by software developers into high-level language programs

or by the compiler while optimizing and generating binary

code. Traditional compiler optimizations, such as unreach-

able code elimination, dead code elimination, and partial

dead code elimination are tasked with detecting and remov-

ing such dead code from generated programs [7]. While,

unreachable and dead code elimination detect and remove

code that is dead along all program paths from the program

start, partial dead code elimination is a more complex al-

gorithm that attempts to find code that is useful on some

program paths, while being dead on the other paths [6, 10].

Figure 1 presents examples to illustrate fully dead and

partially dead code in programs. Figure 1(a) shows an in-

stance of full dead code elimination, where the assignment

to y in block #1 is never used before being reset in block #5

along all program paths. The compiler removes such dead

assignments from optimized codes. Figure 1(b) shows an

example of partial dead code elimination. In contrast to the

previous example where the dead statement was reset before

being used along all program paths, the assignment to y in

block #1 of Figure 1(b) is reset (in block #3) before being

used along the program path 1-2-3-5-6, but is used along the

other path 1-2-4-5-6. The compiler can handle such code by

aggressively moving the partially dead statements down in

the control-flow as far as possible, while maintaining the

program semantics [6]. The second graph in Figure 1(b)

illustrates the resulting code after applying this optimiza-

tion. Thus, although modern compilers include sophisti-

cated optimizations to eliminate all dead instructions, the

prevalence of such instructions in typical benchmark pro-

grams suggests that they are not always successful. Our

research attempts to investigate why these optimizations, as

implemented in existing compilers, are not always effec-

tive at eliminating dead instructions in the program, and its

repercussions on performance.

Butts and Sohi proposed a mechanism for the micropro-

cessor hardware to predict and eliminate dynamically dead

instructions at runtime [1]. This work only tracked instruc-

tions that produce dead register values (and ignored dead

memory stores, nops and prefetches) to simplify their de-

tection and remedial mechanisms. Even with this restric-

tion, they observed that between 3% to 16% of the instruc-

tions executed by the SPEC2000 integer benchmarks using

the Alpha instruction set were dead. They also noticed that

many dead instructions are introduced by the compiler dur-

ing code optimizations, like instruction scheduling. They

developed a hardware unit to predict dead instructions in the

dynamic instruction stream. Their predictor achieved good

accuracy and, along with some other cache-based hardware,

was able to avoid the execution of 79% of useless instruc-

tions in their benchmarks. This DDI elimination achieved

print(y)

y = c+d

1

2

3 4

5

6

y = a*b

y = c+d

print(y)

y = a*b

2

1

3 4

5

6

print(y)

y = c+d y = a*b

1

2

3 4

5

6

y = a*b

y = c+d

print(y)

1

2

4

5

6

3

Before

Optimization

After

Optimization

(a) (Full) Dead Code Elimination

(b) Partial Dead Code Elimination

Figure 1. Varieties of dead code elimination

optimizations in a compiler

up to 9.6% speedup benefits. However, this study did not

perform a thorough investigation and categorization of dead

instructions across different compilers and architectures, es-

pecially for those that are more prevalent today. This was

also a pure hardware study and did not propose any com-

piler techniques to eliminate DDI, evaluate their costs, and

study interactions with other compiler optimizations.

Related also is the work of Sundaramoorthy et al. that

proposed a new processor microarchitecture that simulta-

neously runs two copies of every program to exploit the

properties of predictable dead, branch, and other ineffec-

tual instructions to speed up both the duplicated program

streams [3]. In their scheme, the first speculative thread

runs faster by skipping over instructions whose results in

their previous instances were predicted correctly, and uses

their predicted values instead. The other thread that val-

idates these predictions can also speed up since it has a

more accurate picture of the future. Thus, the two redundant

program threads combined run faster than either can alone.

This work also did not attempt to investigate the causes or

devise techniques to eliminate DDI in code generated by the

compiler, and is very resource intensive for routine deploy-

ment in all processors.

Researchers have also explored static instructions that

produce the same value on multiple consecutive dynamic

invocations [11], or those that update a register or memory

location with a value that it already contains [12]. We do

not consider such categories of instructions, since they are

not statically dead from the compiler’s point of view.

Some other works have observed and exploited the oc-

currence of dynamically dead instructions in executed pro-

grams. Lumetta and Patel found that, on average, 15% of

all dynamically executed instructions in SPEC2000 integer

benchmarks on the Alpha processor are dead [13]. They

also measured an additional 10% of the instructions to be

nops. Fahs et al. proposed the rePLay microarchitecture to

provide dynamic optimization support at the microarchitec-

ture level. Their dynamic optimization system built upon

the Alpha simulator discovered 24% of dynamic instruc-

tions to be dead, on average, and eliminated about 10%

of them. Again, none of these approaches investigate the

causes of DDI, study this phenomenon for contemporary

compilers and architectures, or suggest mechanisms to re-

duce or eliminate them from binary programs.

Detecting and understanding dynamically dead instruc-

tions will require us to generate and analyze the profile or

trace of the whole program execution. Compiler and com-

puter architecture researchers have often employed such ex-

ecution time program trace information to understand im-

portant program properties [14, 15, 16]. The first algo-

rithms for generating whole-program paths were presented

by Larus [17] and Melski and Reps [18]. These algorithms

instrument the program to generate a complete trace of

all basic blocks or paths executed by the program. Later,

researchers extended these algorithms so that the instru-

mented programs also generate the memory dependence

profile of the program, which is necessary to detect dead

memory load instructions [19, 20]. While the naive gener-

ation of whole program traces is relatively simple, the col-

lected traces are often extremely long. Consequently, most

research is focused on developing compression algorithms

to compact the larger generated traces [21, 22]. We will use

and extend these algorithms to generate the control-flow and

data-flow profiles for this research.

3. Framework for Exploring Dynamically

Dead Instructions

In this section we will describe our framework to gen-

erate program execution profiles to detect and investigate

dynamically dead instructions. Our benchmark set consists

of one program from each category of the MiBench bench-

mark suite [23]. The MiBench suite includes C benchmarks

generally used in embedded applications. We employ and

modify the GCC compiler (version 4.5.2) for this research.

The program is instrumented after all the optimizations are

applied and immediately before code generation. The bi-

naries are generated for 32-bit x86 platform. Each binary

is natively executed to generate trace files, which we then

analyze to discover important instances of DDI. In this sec-

tion we provide further details on our compiler based im-

plementations to generate and analyze execution traces to

detect DDI in our benchmark programs.

3.1. Generating Dynamic Program Profile

Dynamic program profiles can be straightforwardly pro-

duced in one of two ways: (a) by modifying the compiler to

instrument the generated binary with additional instructions

to output some representation of the trace when the program

is run, or (b) by updating a processor simulator/emulator

to output the instructions that it executes for an unmodi-

fied binary. We plan to use option (a) for our trace gener-

ation. We believe that the mechanism of generating traces

via compiler-inserted instrumentations has advantages over

the simulator-based approach:

1. A compiler-based mechanism will be more flexible,

for example, by easily allowing the selective instru-

mentation of only application functions, or all applica-

tion and library functions,

2. The compiler-based approach can allow the instru-

mented binaries to run natively on available architec-

tures, including x86 and ARM, which is much faster

than using a simulator, and

3. The backward-scan algorithm to analyze the dynamic

trace and detect DDI needs to parse each instruction

to determine the registers or memory locations that are

set or used. Thus, to study the issue of DDI across mul-

tiple architectures, a simulator-based approach may re-

quire us to implement this algorithm over architecture-

specific assembly instructions, which will necessitate

understanding the instruction format and updating the

implementation for each architecture. However, many

compilers use a common low-level intermediate lan-

guage (IR), like the RTLs used by GCC, that has

a one-to-one correspondence with assembly instruc-

tions. Such correspondence will allow us to implement

our parsing algorithm only once for the compiler IR,

and not update it for each architecture.

The compiler-based method does have one drawback.

While the compiler can easily instrument application and

library functions, this approach may find it more difficult to

instrument system calls and trap routines. However, even

most simulators only emulate system calls, which implies

that the compiler-based approach will not result in reduced

trace accuracy in such cases. In future work, we will eval-

uate the potential benefit to accuracy of instrumenting sys-

tem calls as compared to the alternative of conservatively

assuming that all/most program register and memory state

is used on entering system functions.

For this work, we modify the GCC compiler to insert in-

strumentation code into only the application binaries during

its final code generation pass, after the optimization phases

have been applied. We do not yet instrument library func-

tions. Our tracing algorithm automatically marks all vari-

ables passed to a library function as being used, and we

manually set the ‘use’ status of all array memory locations

for the appropriate library calls. The compiler also pro-

duces a new file containing a numbered list of all the basic

blocks (along with their constituent instructions) in the pro-

gram. The inserted instrumentations produce two trace files

on program execution. One trace file contains an uncom-

pressed sequential list of the basic block numbers as they

are reached during execution. The other file contains a list

of memory addresses as they are accessed during execution.

3.2. Finding Dynamically Dead Instruc-
tions

The dynamic program execution trace in its most basic

form consists of a linear sequence of instructions (or ba-

sic blocks) in the order they are executed by the processor.

Therefore, algorithms for finding dynamically dead instruc-

tions in program execution traces only need to perform a

single sequential scan of the trace. Most algorithms scan

the trace in reverse order to reduce the complexity of clas-

sifying dead instructions. In particular, when processing a

particular instruction in the trace, reverse scanning allows

the liveness value of all consumers of the instruction’s re-

sult to be already known [5, 1].

We use a simple example program in Figure 2 to illus-

trate the typical process of generating the dynamic pro-

gram trace and analyzing it for dynamically dead instruc-

tions. Figure 2(a) shows the example ‘C’ program that ini-

tializes local variables i and j with input arguments en-

tered on the command-line. While the initialized value of

j is used along both paths of the if -branch, i is only used

along one path. Thus, the initialization of i in the state-

ment i=atoi(argv[1]) is partially dead. Figure 2(b)

shows the static control-flow graph of the code generated

by GCC for the example C program for x86 32-bit archi-

tecture. To keep this example simple, we have left out the

code generated by the compiler for managing the run-time

stack, and abstracted the calls to atoi() with the two movl

atoi, %eax instructions to consecutively initialize i and

j respectively. Thus, we can see that the compiler did not

eliminate the partially dead assignment to i (movl %eax,

%esi) from the generated optimized binary code.

main(int argc, char *argv[])
{
 int i, j;

 i = atoi(argv[1]);
 j = atoi(argv[2]);

 if(j > 10)
 i = j;
 else
 i = i * j;

 printf("%d %d\n", i, j);
}

mov1 atoi, %eax
movl %eax, %esi
mov1 atoi, %eax
cmp $10, %eax
jg .L1

movl %eax, 8(%esp)
movl %esi, 4(%esp)
movl .LC0, (%esp)
call printf

call printf
movl .LC0, (%esp)

movl %esi, 4(%esp)
movl %eax, 8(%esp)
movl %eax, %esi
jg .L1
cmp $10, %eax

mov1 atoi, %eax
movl %eax, %esi
mov1 atoi, %eax ; j = atoi(argv[2])

; printf uses i and j

; push printf string on the stack

; push i on the stack for printf

; push j on the stack for printf

; i = j

; if(j>10) jump to block L1

; compare j with 10

; i = t1 , dead assignment to i

Set:

Set:

Set: %esi

Set:

Set:

Set:

Set:

(a) Sample Input program (b) Static program flow graph

imul %eax, %esi
jmp .L2

movl %eax, %esi

.L2

.L1

(c) Dynamic program trace (./a.out 4 20) and analysis to detect dynamically dead instructions

Set: %eax Used: %eax

Used: %eax

Used: %eax

Used: %eax, %esi

Used: %eax, %esi

Used: %esi

Used:

Used:

Used: Set:

Set: Used: ; t1 = atoi(argv[1]), transitively dead

Figure 2. Sample example to illustrate the backward traversal algorithm to dead dynamically dead

instructions

Figure 2(c) represents the dynamic trace that is gener-

ated on executing the binary program in Figure 2(b) with

the input arguments 4 and 20 respectively (i=4 and j=20).

It is important to note that the dynamic program trace is a

linear sequence of instructions with no control-flow trans-

fers, which makes it easier to build algorithms to analyze

the trace. The algorithm to detect dynamically dead instruc-

tions scans the trace in reverse order, starting at the last in-

struction. Figure 2(c) also shows the lists of Set and Used

registers that can be maintained during this scan. (Again,

to keep this example simple, we only track and show the

register sets/uses, and ignore memory loads/stores.) Thus,

during this backward scan, if we reach an instruction that

sets a register or memory location when that register or

address is not on the Used list, then we tag that instruc-

tion as dead. Therefore, the second instruction in the dy-

namic trace, movl %eax, %esi, will be tagged as a di-

rect dead instruction. The registers/addresses used in such

dead instructions will not be put on the Used list, since they

do not produce useful values. Thus, the register %eax is

not inserted in the Used list for this second instruction in

the trace. Consequently, the first trace instruction that sets

%eax is also marked as a transitively dead instruction. We

use this simple linear-time algorithm to detect the dynam-

ically dead instructions in a single pass over the program

execution trace.

4. Experimental Results and Analysis

We use our modified version of GCC to instrument the

benchmark programs to produce instruction and data traces

at runtime, which we then analyze. For each benchmark,

we generate two binaries, one that is unoptimized, and the

other optimized with the GCC optimization flag set to -O2,

0

0.5

1

1.5

2

adpcm bitcount ispell jpeg patricia sha

D
e

a
d

 I
n

s
t
r
u

c
t
io

n
 %

Benchmarks

Un-Optimized Optimzed

9.9 11.4

Figure 3. Percentage of dynamically dead in-
structions in benchmark programs

applying all available optimizations that do not involve a

space-speed tradeoff. Thus, we produce two sets of results

for each benchmark. In this section we present the results of

our analysis regarding the ratio and characteristics of DDI

for x86 binary programs generated by GCC.

4.1. Ratio of Dynamically Dead Instruction

We use the algorithm described in Section 3.2 to traverse

the execution traces for each benchmark and collect the

number of dynamically dead instructions. Figure 3 shows

the ratio of the number of total executed instructions for

each benchmark that are dynamically dead. We can see that

most of our benchmarks only contain a small percentage

of dead instructions. On average, our unoptimized bench-

marks contain 1.9% of DDI, while the optimized bench-

marks have a slightly higher fraction (2.67%). This obser-

vation of optimized programs containing more dead instruc-

tions is consistent with earlier research for different archi-

tectures [1]. However, our observations regarding the ra-

tio of DDI are in stark contrast with earlier measurements

on other architectures, such as the DEC Alpha [1, 5] and

the Intel Itanium [4], that reveal a much higher ratio. This

difference might be due to distinctions in the benchmarks,

compiler, or the architecture selected for these works. In

future work, we will investigate this issue by exploring the

number of DDI with different and more benchmark, com-

piler, optimization, and architecture configurations.

4.2. Understanding and Characterizing Dy-
namically Dead Instructions

An important component of this project is to determine

and understand the causes of DDI, so that effective tech-

niques can be developed to eliminate them, when beneficial.

For this work, we manually analyzed the dead instructions

for all our benchmark programs, and partitioned them into

seven distinct categories. These categories were selected

such that dead instructions in each category could be ad-

dressed with one compiler or architecture based solution.

We use the example code snippets in Figure 4 to explain

some of the common instances of DDI that we encountered

for these benchmarks. Our seven categories of DDI are de-

scribed below:

1. NOP instructions: This instruction does not change the

state of the system. It is used for several purposes, such as

to force memory alignment, to prevent hazards, etc.

2. Introduced by compiler optimizations (not to reduce

latency): Figure 4(a) shows an example, where the register

%edi is used to hold the current address of ‘q’. The in-

struction ‘leal (%ecx,%eax), %edi’ updates %edi

in each loop iteration, but %edi is only used after the loop

ends. Thus, all %edi updates, except the last, are dead.

3. Introduced by compiler optimizations (possibly to re-

duce latency): In Figure 4(b), the compiler moves the com-

putation performed in the ‘else’ portion of the if-branch

before the branch, and then eliminates the ‘else’ path to

reduce the branch overhead. This extracted code will be

dead at runtime if the if-path is taken. Analyzing compiler

optimization heuristics will be necessary to understand and

eliminate these last two categories of dead instructions.

4. Parameters not used in called function: A common

case of DDI are function parameters and return values that

are never used. It may be possible in some cases for the

compiler to determine this case, and use optimizations like

function cloning to remove the dead instruction instances.

5. Partial static dead instructions, not removed by the

compiler: Figure 4(c) shows an example from the jpeg

benchmark that illustrates the category of partially dead

instructions. In this example, the initialization of variable

temp outside the for-loop is dead. Furthermore, the set

of temp in each loop iteration is also dead along path 1.

We will analyze and update the dead code elimination opti-

mization in GCC to resolve these cases of DDI.

6. Dead assignments in first/last loop iteration: The

example code from the adpcm benchmark in Figure 4(d)

shows a common case of DDI, where a register or memory

location is first used and then reset in each iteration of the

loop (outp). The last set of such variables will be a dead

instruction if it is not used after the loop ends. Loop peeling

may be used to remove this DDI.

7.Deads that are difficult for the compiler to address: Fi-

nally, Figure 4(e) shows code from the bitcount benchmark,

where variables (cminix and cmaxix) are reset multi-

ple times in a loop, but are only used after the loop ends.

Thus, all except the last set of such variables are dynami-

cally dead. Although easy to detect, it may be difficult for

the compiler to automatically remove such DDI. We will

explore microarchitectural techniques, guided by compiler

driven feedback, to remove such DDI [1].

 *q++ = mytoupper(*p++)
for(p=w ; q=nword ; *p;)

*q = 0;
==> converted by compiler to

leal −144(%ebp), %esi
leal −143(%ebp), %ecx
for(p=w ; *p){
 movzbl %dl, %edx

 movb %dl, (%esi,%eax)
 movzbl 1(%ebx,%eax), %edx
 add $1, %eax
}
movb $0, (%edi)

 movzbl hash+754(%edx), %edx
 leal (%ecx,%eax), %edi

 (Category 2)

if(qval > temp){

 movl %edx, %eax
 sarl $31, %edx
 idivl −292(%ebp)

 movl %eax, %esi
}

 /* Compute temp /= qval into %eax */

 /* Copy %eax to %esi */

movw %si, (%edi,%ecx,2)

if(temp >= qval) temp/=qval;
else temp = 0;

==> converted by compiler to
xorl %esi, %esi // initialize temp to 0

(b) Initialization of %esi wasted
if the ‘if−path’ is taken (jpeg)

 (Category 3)

int temp =
for(k=1 ; k<DCTSIZE ; k++){
 if((temp = block[k]) == 0)
 ...
 else
 = temp;
}

// path1: temp not used

path2: temp is used

along path 1 (jpeg)

 (Category 5)

(c) ‘temp’ is partially dead

...
for(; len>0 ; len−−){
 ...
 *outp++ = (delta &0x0F);
}
...

outp = (char *) outdata;

// outpt not used later

loop iteration is not used (adpcm)

fir(i=0 ; i<FUNCS ; i++){
 ...
 if(ct < cmin)
 cminix = i;
 if(ct > ctmax)
 cmaxix = i;
}
 = cminix;
 = cmaxix;

cmaxix in the loop not uses,
except the last sets (bitcount)

(d) increment of ‘outp’ in the last (e) Multiple sets of cminix and

 (Category 6) (Category 7)

// %esi=q[0] (nword[0])
// %ecx=q[1] (nword[1])

// %edx = (zero−extend) p
// %edx=mytoupper(*p)
// %edi = q++ (DDI)
// store %edx into mem. ’q’

// access next array locs.

// use of %edi

//%edx=p; %ebx=w; %edi=q; %eax=0

(a) %edi set but not used in every loop iteration (ispell)

Figure 4. Preliminary analysis of the occurrence of dynamic dead instructions

Instances of DDI that do not fall into any of these cat-

egories are grouped into the Miscellaneous set. Figure 5

shows the contribution of each category of DDI for each

benchmark. We can make several observations from this

figure. First, all of our identified categories of DDI occur in

multiple benchmarks. Second, compiler optimizations are

able to completely remove NOP instructions from the gen-

erated codes. Third, the dead instructions for each bench-

mark fall in only a small number of categories, which may

differ between its optimized and unoptimized versions. We

may need to further refine these categories and/or add new

ones as we explore more and larger benchmarks in the fu-

ture. Additionally, in future work, we will explore compiler

and hardware techniques to study and resolve DDI for gen-

erated binaries and executed codes.

5. Future Work

The larger goal of our project is to investigate the ratio of

DDI, systematically categorize them, develop compiler and

hardware techniques to resolve DDI, and evaluate their ef-

fect on program efficiency and power consumption for mul-

tiple contemporary compilers and architectures. Thus, there

are several avenues for future work. First, we will evaluate

if our observations regarding the ratio and categories of DDI

extend to more varied and larger benchmarks. Second, we

plan to study the effect of multiple compilers, optimization

configurations, and architectures on DDI. Third, we will ex-

tend our tracing framework with compression algorithms

to allow smaller profiles, especially as we include larger

benchmarks in our set. Finally, we also need to develop

software and hardware algorithms to remove DDI statically

or at runtime, and evaluate their effect on program perfor-

mance.

6. Conclusions

In this work, we presented our GCC-based framework

to determine the ratio of dynamically dead instructions in

small embedded benchmark programs for the 32-bit x86-

based systems. In contrast to previous results in the liter-

ature that find a large percentage of dynamically dead in-

adpcm bitcount ispell jpeg patricia sha

0

20

40

60

80

100

D
e

a
d

 I
n

s
t
r
u

c
ti

o
n

 %

Benchmarks

C1 C2 C3 C4 C5 C6 C7 Miscellaneous

Figure 5. Relative categories of dead instruc-
tions in each benchmark. The left and right
bars for each benchmark show DDI in unop-

timized and optimized codes respectively.

structions for larger programs on Alpha (RISC) and Itanium

(EPIC) processors, we discovered that for our set of bench-

marks, DDI comprise only a small fraction of total executed

instructions on x86 (CISC) systems. We note that this con-

trast may be the result of different architecture, compiler,

and/or benchmark configurations, and we will further ex-

plore this distinction in our future work. Additionally, we

also conducted one of the most detailed analysis of the de-

tected dead instructions and showed that these can most of-

ten be categorized into a small number of independent sets.

We believe that our results presented in this paper set the

stage for much finer and deeper analysis, and eventual res-

olution of the problem of dynamically dead instructions for

programs executing on modern machines.

References

[1] J. A. Butts and G. Sohi, “Dynamic dead-instruction detection and
elimination,” in Proceedings of the 10th international conference
on Architectural support for programming languages and operating
systems, ser. ASPLOS-X, 2002, pp. 199–210.

[2] M. M. Martin, A. Roth, and C. N. Fischer, “Exploiting dead value
information,” in Proceedings of the ACM/IEEE international sym-
posium on Microarchitecture, 1997, pp. 125–135.

[3] K. Sundaramoorthy, Z. Purser, and E. Rotenburg, “Slipstream pro-
cessors: improving both performance and fault tolerance,” in the
international conference on Architectural support for programming
languages and operating systems, 2000, pp. 257–268.

[4] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnera-
bility factors for a high-performance microprocessor,” in Proceed-
ings of the 36th annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2003, pp. 29–40.

[5] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J. Pa-
tel, and S. S. Lumetta, “Performance characterization of a hardware
mechanism for dynamic optimization,” in Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture,
2001, pp. 16–27.

[6] J. Knoop, O. Rüthing, and B. Steffen, “Partial dead code elimina-
tion,” in Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation, ser. PLDI ’94,
1994, pp. 147–158.

[7] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools. Boston, MA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[8] “International technology roadmap for semiconductors,” accessed
from http://www.itrs.net/Links/2008ITRS/Home2008.htm, 2008.

[9] T. Mudge, “Power: A first-class architectural design constraint,”
Computer, vol. 34, pp. 52–58, April 2001.

[10] R. Bodı́k and R. Gupta, “Partial dead code elimination using slicing
transformations,” in Proceedings of the ACM SIGPLAN 1997 con-
ference on Programming language design and implementation, ser.
PLDI ’97, 1997, pp. 159–170.

[11] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and
load value prediction,” in Proceedings of the seventh international
conference on Architectural support for programming languages
and operating systems, ser. ASPLOS-VII, 1996, pp. 138–147.

[12] K. M. Lepak and M. H. Lipasti, “On the value locality of store
instructions,” in Proceedings of the 27th annual international
symposium on Computer architecture, ser. ISCA ’00. New
York, NY, USA: ACM, 2000, pp. 182–191. [Online]. Available:
http://doi.acm.org/10.1145/339647.339678

[13] S. S. Lumetta and S. J. Patel, “Characterization of essential dynamic
instructions,” in Proceedings of the 2003 ACM SIGMETRICS in-
ternational conference on Measurement and modeling of computer
systems, 2003, pp. 308–309.

[14] D. Mosberger and L. L. Peterson, “Making paths explicit in the
scout operating system,” in Proceedings of the second USENIX sym-
posium on Operating systems design and implementation, 1996, pp.
153–167.

[15] G. Ammons and J. R. Larus, “Improving data-flow analysis with
path profiles,” in Proceedings of the conference on Programming
language design and implementation, 1998, pp. 72–84.

[16] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace pro-
cessors,” in Proceedings of the 30th annual ACM/IEEE interna-
tional symposium on Microarchitecture, 1997, pp. 138–148.

[17] J. R. Larus, “Whole program paths,” in Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design and
implementation, 1999, pp. 259–269.

[18] D. Melski and T. W. Reps, “Interprocedural path profiling,” in Pro-
ceedings of the 8th International Conference on Compiler Construc-
tion, 1999, pp. 47–62.

[19] S. Tallam, R. Gupta, and X. Zhang, “Extended whole program
paths,” in the 14th International Conference on Parallel Architec-
tures and Compilation Techniques, 2005, pp. 17–26.

[20] Q. Zhao, J. E. Sim, W.-F. Wong, and L. Rudolph, “DEP: detailed
execution profile,” in 15th international conference on Parallel ar-
chitectures and compilation techniques, 2006, pp. 154–163.

[21] C. G. Nevill-Manning and I. H. Witten, “Linear-time incremental
hierarchy inference for compression,” in Proceedings of the Confer-
ence on Data Compression, 1997, pp. 3–11.

[22] Y. Zhang and R. Gupta, “Timestamped whole program path rep-
resentation and its applications,” in Proceedings of the ACM SIG-
PLAN 2001 conference on Programming language design and im-
plementation, 2001, pp. 180–190.

[23] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown, “MiBench: A free, commercially representative

embedded benchmark suite,” IEEE 4th Annual Workshop on Work-

load Characterization, December 2001.

