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Abstract

A global variable in C/C++ is one that is declared outside a function, and whose scope extends the lifetime of the entire

program. Global variables cause problems for program dependability, maintainability, extensibility, verification, and

thread-safety. However, global variables can also make coding more convenient and improve program performance. We

have found the use of global variables to remain unabated and extensive in real-world software. In this paper we present a

source-to-source refactoring tool to automatically detect and localize global variables in a program. We implement a compiler

based transformation to find the best location to redefine each global variable as a local. For each global, our algorithm

initializes the corresponding new local variable, passes it as an argument to necessary functions, and updates the source lines

that used the original global to now instead use the corresponding local or argument. In this work we also characterize the use

of global variables in common benchmark programs. We study the effect of our transformation on static program properties,

such as the change in the number of function arguments and program state visibility. Additionally, we quantify dynamic

program characteristics, including memory and runtime performance, before and after our localizing transformation.

Keywords: Global variable; Program refactoring; Compiler transformations

1 Introduction

A Global variable is an external variable in C and C++ that

is declared outside a function, and is in-scope and visible

throughout the program. Thus, global variables are acces-

sible and can be set and used in any program function [1].

The use of global variables has been observed to cause sev-

eral problems. First, researchers have argued that global (and

other non-local) variables increase the mental effort neces-

sary to form an abstraction from the specific actions of a pro-

gram to the effects of those actions, making it more difficult

to comprehend a program that uses global variables [2]. In

other words, source code is easiest to understand when we

limit the scope of variables. Second, developers have found it

more difficult to test and verify software that employs global

variables. Use of globals makes it difficult (for humans and

automatic tools) to determine the state being used and mod-

ified by a function, since globals do not need to be explic-

itly passed and returned from the function. Similarly, for-

mally verifying code that uses global variables typically re-

quires stating and proving invariant properties, which make

the verification task more arduous [3]. For such reasons, the

formally-defined SPARK programming language requires the

programmer to annotate all uses of global variables [4]. Third,

global variables have also been implicated in increasing pro-

gram dependence, which measures the influence of one pro-

gram component on another [5]. Additionally, global vari-

ables have been observed to cause dependence clusters, where

a set of program statements are all dependent on one another.

A low program dependence and a lack of dependence clusters

is found to benefit program comprehension [6, 7] as well as

program maintenance and re-engineering [8, 9]. Fourth, the

use of global variables causes the program to be non-thread-

safe [10, 11]. This is because global variables are allocated in

the data region of the process address space, providing only

one copy of these variables for all program threads. Fifth,

global variables typically violate the the principle of least

privileges. This philosophy says that if the accessibility of a

program resource, such as a function or variable, is restricted

to just those portions of the program where such accessibility

is absolutely required, then the programmer is less likely to

introduce errors into the code. Sixth, global variables can cre-

ate mutual dependencies and untracked interactions between

different program components causing an irregularity, called
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action at a distance in software engineering. This issue arises

when operations in one part of the program affect behavior in

some other program part. Thus, on account of these limita-

tions, the use of global variables in generally discouraged in

modern programming practice.

Regardless of the problems caused by global variables, they

are still extensively used in most current real-world software

systems. Their use can be attributed to two (real or perceived)

primary benefits of using global variables: (a) Efficiency –

Researchers have shown that employing global variables can

boost program efficiency and lower (stack) space usage by re-

ducing or eliminating the overhead of argument passing and

returning values during function calls/returns [12]. However,

the globalization transformations to achieve this effect can

generally be performed automatically by the compiler during

the source-to-binary generation without affecting the high-

level source code. (b) Convenience – It may also be more

convenient for developers to hold program state that is ma-

nipulated and consumed in multiple dislocated programs re-

gions in global variables. In such cases of dislocated use of

program variables, it may be difficult for the programmer to

determine the best place for declaring the local variable and

find the best path to make it available to all functions setting

or using it. Such use of globals is especially attractive for de-

velopers updating unfamiliar code regions in large programs.

However, given the harmful effects of global variables, it will

be more desirable if we could provide developers the conve-

nience of using global variables, but automatically localize

them to preserve the dependability, understandability, verifia-

bility, and maintainability of the source code program.

In this work, we develop and implement a compiler-based

algorithm to automatically find and eliminate global variables

in a program by transforming them into local variables. Our

algorithm automatically finds the closest dominator function

to localize each global variable, and then passes the corre-

sponding local variable as a parameter to every function us-

ing the original global. Function prototypes are appropriately

modified throughout the program to reflect the new parame-

ters for each function. At the same time, each access of the

global variable is updated to instead modify or use the corre-

sponding local variable or function argument. In this paper,

we also design several experiments to measure the effect of

this transformation on the space and time requirements of the

modified programs. Thus, we make the following contribu-

tions in this work:

1. To our knowledge, we construct the first source-to-

source transformation tool to localize global variables in

C programs.

2. We present detailed statistics and observations on the use

of global variables in existing benchmarks.

3. We measure and quantify the effect of this transforma-

tion on the number of function arguments passed, along

with its space and performance (time) overheads.

2 Related Work

In this section we describe previous research efforts to local-

ize global variables and techniques to manage some of the

shortcomings of global variables. Many popular program-

ming language textbooks [13] and individual programming

practitioners [14] have derided and discouraged the use of

global variables. At the same time, acknowledging the neces-

sity and/or convenience of employing global variables/state,

language designers have developed alternative programming

constructs to provide some of the benefits while controlling

many limitations of global variables. Arguably, one of the

most well-known alternative to some uses of global variables

is the static specifier in C/C++ that limits the scope of global

variables to individual functions or files [13]. Another con-

struct that programmers often use in place of global variables

is the singleton design pattern that can encapsulate global

state by restricting the instantiation of a class to a single ob-

ject [15]. However, the use of the singleton pattern can result

in many of the same problems with testing and code mainte-

nance that are generally associated with global variables [16].

To our knowledge, there exist only a few related attempts

to automatically detect and eliminate global variables in high-

level programs. Sward and Chamillard developed a tool to

identify global variables and add them as locals to the pa-

rameter list of functions in Ada programs [17]. However,

apart from operating only on Ada programs, this work does

not describe their implementation and does not provide any

static or runtime results. Yang et al. proposed and imple-

mented a “lifting” transformation to move global variables

into main’s local scope [18]. However, lifting was designed

to only work with their other “flattening” transformation that

absorbs a function into its caller without making a new copy

of the function for each call-site. This earlier research aimed

to place the stack allocated variables in static memory to mini-

mize RAM usage for embedded systems applications, and did

not have to deal with most of the issues encountered in a more

general technique to eliminate global variables.

More related to our current research are works that attempt

to automatically eliminate global variables to generate thread-

safe programs. Zheng et al. outlined a compiler-based ap-

proach to eliminate global variables from multi-threaded For-

tran MPI (Message-Passing Interface) programs [11]. Their

transformation moves all globals into a single structure. Ev-

ery MPI process gets its own instance of this structure, which

is then passed as an argument to all functions. Thus, unlike

our implementation, their transformation does not target or

affect code maintainability. Additionally, this previous work

also did not collect statistics on the use of global variables

and the effect of the transformation on code maintainability

and performance metrics. Smith and Kulkarni implemented

a similar algorithm to transform global variables into locals

to make ‘C’ programs thread-safe [10]. However, this work
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was not targeted at code maintainability and did not imple-

ment a source to source transformation. Moreover, it did not

collect and analyze any statistics about global variables and

the transformation as done in this paper.

The ultimate goal of our research is to develop a new code

refactoring tool that can flexibly reassign storage between

local and global variables. Existing code refactoring tools

are typically only used to enhance non-functional aspects of

the source code, including program maintainability [19] and

extensibility [20]. Examples of important code refactorings

for C program maintainability include renaming variables

and functions, dividing code blocks into smaller chunks, and

adding comments to the source codes [21]. None of the ex-

isting refactoring tools provide an ability as yet to transform

global/local variables, as we perform in this work.

3 Localizing Global Variables

Even moderate-sized programs in C/C++ often contain many

global variables. Additionally, these global variables may be

scattered throughout the code, which make it highly tedious

and error-prone to manually detect and refactor the code to

remove these variables. Therefore, our approach employs

an automatic compiler-driven algorithm to find and elimi-

nate global variables. Our algorithm works by converting

the global variables to locals, and then passing them as ar-

guments to all the functions where they are needed. This tool

provides command-line options that enables the user to se-

lectively eliminate all or some particular global variables and

instantly see the changes made to the source code files. In

this section we provide more details on our compiler-based

framework and transformation algorithm.

3.1 Transformation Algorithm for Localizing

Global Variables

Our compiler based transformation tool performs two passes

to localize global variables. In the first pass, we generate the

call-graph, detect global variables, and collect other informa-

tion regarding the use of global variables in the program. The

second pass uses this information to move global variables

into the local scope of the appropriate function, pass these

new local variables to other functions using the original glob-

als, update function headers and the variable names in the

source statements accessing each global variable to instead

use the new local/argument. We use the small example pro-

gram in Figure 1(a) to explain our transformation algorithm

in more detail. The syntax “= var” in Figure 1(a) indicates

a use of the variable var, while “var =” indicates a set of

the variable var. The algorithm proceeds as follows.

1. In the first step we invoke the compiler to compute the

static call-graph of the program. Figure 1(b) shows the

call-graph that will be generated for the example pro-

gram in Figure 1(a).

2. The compiler then detects all global variables in the pro-

gram, as well as the functions that set and/or use each

global variable. We also record the data type and initial-

ization value of each global variable.

3. Next, we automatically determine the best function to

localize each global variable. While the root program

function, main(), can act as the default localizing func-

tion for all global variables declared in application pro-

grams, we attempt to place each global as close as pos-

sible to the set of functions that access that variable in

order to minimize the argument passing overheads. We

employ our implementation of the Lengauer-Tarjan algo-

rithm [22] to find the immediate dominator of each node

(function) in the call-graph. A dominator for a control

flow graph node n is defined as a node d such that every

path from the entry node to n must go through d [23].

Since one global variable can be used in many functions,

we further extend the Lengauer-Tarjan algorithm to find

the closest dominator function for the set of functions

that use a particular global variable. This closest domi-

nator is determined by locating the first common domi-

nator of all the functions that use that global. Thus, as

an example, the global variable var that is used in two

functions, bar1() and bar2(), in Figure 1(a) has the

function func() as its common dominator.

4. Simply localizing each global variable in its closest com-

mon dominator function may compromise the seman-

tics of the original program, if this dominator function is

called multiple times. In such cases, the corresponding

localized variable will be re-declared and re-initialized

each time the dominator function is invoked, which is

different than the single initialization semantics of the

original global variable. For instance, in the example

program in Figure 1(a) the closest dominator function

func() is called multiple times from main(), and

therefore may not be a semantically legal choice to locate

the global variable var. Consequently, for each global

variable, we traverse the dominator tree upwards starting

from its closest common dominator to main() to find

the first legal dominator that is only invoked once by the

program.

5. Next, our transformation moves each global variable as a

local variable to its closest legal dominator function. The

transformation also adds new instructions to this func-

tion to correctly initialize the new local variable. In Fig-

ure 1(a), the global variable var is moved to the func-

tion main() and initialized as the new local variable

gbl var.

6. The next step involves finding all the functions in the

call-graph between the legal dominator and the functions
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(b) Function call−graph (c) Program after applying our
refactoring transformation to

localize global variables

   func();

}

void func(){

   foo1();

   foo2();

}

void foo1(){

   bar1();

}

void bar1(){

    = var;

}
   var = ;

void foo2(){

   bar2();

}

void bar2(){

    = var;

   var = ;

}

}

void foo1(int *gbl_var){

}

void bar1(int *gbl_var}{

    = *gbl_var;

   *gbl_var = ;

}

void foo2(int *gbl_var){

   bar2(gbl_var);

}

void bar2(int *gbl_var){

    = *gbl_var;

   *gbl_var = ;

}

   bar1(gbl_var);

int var;

int main(){

   func();

int main(){

}

void func(int *gbl_var){

   foo1(gbl_var);

   foo2(gbl_var);

   int gbl_var = 0;

   func(&gbl_var);

   func(&gbl_var);

Figure 1: Example to illustrate the program transformation to localize global variables

where the global is used. We call this set of functions as

the global variable’s frontier. The local copy for each

global variable needs to be passed by reference to each

of its frontier functions in order to reach their appro-

priate end locations where they are used. This requires

modifying the calling interface of each frontier function.

Thus, in program 1(a), the local variable glob var is

passed by reference to all its frontier functions, namely

func(), foo1() and foo2().

7. Our transformation then modifies the calling interface of

the end functions for each global variable to get the ad-

ditional arguments corresponding to the local variants of

global variables. Thus, the calling interfaces of functions

bar1() and bar2() are updated to accept the address

of the local variable gbl var as an argument.

8. Finally, our tool automatically updates every use of each

global variable in the program statements to instead use

its corresponding local variants. Thus, we can see all

sets/uses of the global variable var replaced by the

function argument gbl var in the function bodies of

bar1() and bar2().

Thus, our algorithm to eliminate global variables automat-

ically transforms the program in Figure 1(a) to the program

in Figure 1(c). Our tool has the ability to either transform all

possible global variables in the program, or to selectively ap-

ply the transformation to individual globals that are specified

by the user.

4 Compiler and Benchmark Frame-

work

We have implemented our algorithm to localize global vari-

ables as a source-to-source transformation using the Clang

compiler framework. In this section we describe our com-

piler framework, existing framework limitations, and present

the set of benchmark programs.

4.1 Compiler Framework and Limitations

We use the modern and popular Clang/LLVM [24, 25] com-

piler for this work. Clang is a modern C/C++/Objective-C

frontend for LLVM that provides fast code transformation and

useful error detection and handling ability. Clang also ex-

poses an extensive library of functions that can be used to

build tools to parse and transform source code.

Clang/LLVM is a highly popular and heavily adopted com-

piler framework. However, the Clang frontend is still matur-

ing and some less common compiler features/algorithms are

not yet implemented in this framework. Such deficiencies im-

pose a few restrictions on our current implementation.

The first limitation is on account of Clang’s failure to gen-

erate precise call-graphs in the presence of function pointers.

In our current work we circumvent this problem by supple-

menting the compiler-generated static call-graph with runtime

profiling-based information to map indirect function call-sites

with their targets for each benchmark-input pair. Our frame-
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Figure 2: Framework for obtaining precise call-graph information for our analysis experiments

work for call-graph generation is illustrated in Figure 2. We

modified GCC (version 4.5.2) [26] to instrument each source

file with additional instructions that output the (caller →

callee) function relationships at every indirect call on program

execution. This supplemental indirect function call informa-

tion is used to complete the static call-graph, when necessary.

We note that the use of function pointers is not a limitation of

our general technique, since precise function pointer analysis

and call-graph construction has been shown to be feasible for

most programs in earlier studies [27].

Another related limitation is Clang’s failure to correctly

deal with variable aliasing in all cases. Aliasing occurs when

a data location in memory can be accessed through different

symbolic names. Our transformation tool is able to detect

simple aliasing cases when a global variable is passed as a pa-

rameter to another function. However, we do not yet handle

more complex aliasing cases in the source codes.

We emphasize that none of these shortcomings are funda-

mental restrictions on the algorithm, and will be resolved by

providing better compiler support. Extending Clang to pro-

vide such support is part of our future work.

4.2 Benchmark Suite

We have collected a rich and extensive set of benchmark pro-

grams to analyze the use of global variables in existing pro-

grams and validate the behavior of our transformation tool

to eliminate global variables. Our benchmark set includes

14 benchmarks from the MiBench suite [28] and five bench-

marks from SPEC CPU CINT2006 benchmark suite [29].

The MiBench benchmarks include popular C applications tar-

geting specific areas of the embedded market. The stan-

dard SPEC suite allows us to experiment with larger and

more complex general-purpose applications. The following

MiBench benchmarks were analyzed but not included in our

experimental set since they do not contain any read/write

global variables: basicmath, crc32, fft, patricia, qsort, rijn-

dael, sha, and susan. Additionally, rsynth from MiBench was

not included as it produces no traceable output to verify the

correctness of our transformation.

Table 1 shows the static characteristics of global variables

in our selected benchmark programs. For each benchmark

listed in the first column, the remaining columns successively

Benchmark Total RO/WO Unused RW Moved

MiBench benchmarks

adpcm 5 4 0 1 1

bitcount 1 0 0 1 1

blowfish 2 0 1 1 1

dijkstra 10 0 0 10 10

gsm 22 1 3 18 6

ispell 97 5 14 78 69

jpeg 15 5 7 3 3

mad 38 5 24 9 2

pgp 276 63 11 202 147

stringsearch 8 0 5 3 3

tiff2bw 44 10 24 10 9

tiff2rgba 36 8 23 5 3

tiffdither 39 12 14 13 7

tiffmedian 51 7 25 19 17

SPEC CINT benchmarks

401.bzip2 30 9 13 8 8

429.mcf 8 1 0 7 7

456.hmmer 48 26 7 15 7

458.sjeng 244 45 23 176 166

462.libquantum 10 0 0 10 8

Table 1: Static number and type of global variables

show the total number of global variables declared in the pro-

gram (total), the number of read-only or write-only global

variables (RO/WO), the number of unused global variables

(Unused), and the number of globals that are both read as

well as written by the program (RW). Our transformation al-

gorithm only considers the variables in the RW category as

potential candidates from moving as local variables.

The final column in Table 1 shows the number of RW global

variables that were successfully localized by our transforma-

tion algorithm for each benchmark. Thus, we can see that

while our tool is able to localize most global variables, it fails

in a small number of cases. We have categorized these failed

cases into three primary sets: (a) Global variables used in calls

to the sizeof function: After our transformation these calls

fail to provide the correct size when using the correspond-

ing function parameter pointers that are passed via reference.

(b) Global variables used in functions called indirectly: We

do not yet update function pointer declarations. (c) Miscella-
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tool fails to localize for our benchmark programs

neous: Global variables that cause the compiler to generate in-

correct code, if transformed. We found that most of the failed

cases in the “miscellaneous” category occur due to the impre-

cise alias analysis performed by the Clang compiler. Please

note that global variables belonging to the first two sets are

automatically detected and bypassed by our tool, with a mes-

sage sent to the user. We expect that the future implementa-

tion of a more precise alias analysis algorithm in the underly-

ing compiler will enable our tool to automatically detect and

correctly handle global variables in the third category. Fig-

ure 3 plots the number of failed RW global variables in each

of these three categories for benchmarks that contain at least

one failed RW global variable.

4.3 Properties of Global Variables

One typical use of global variables is as a convenience fea-

ture when particular program state is set or accessed in multi-

ple program locations, and it is difficult to determine the best

place to declare the variable and pass it as an argument so that

it is visible in all program regions that need it. Global vari-

ables are also sometimes used to improve program efficiency

by reducing the overhead of passing the variable to several

different program functions. Figure 4 plots the number of

functions that use/set each global variable. For example, the

first set of bars in Figure 4 shows that 30 global variables in

the MiBench benchmarks, and 25 global variables in our set

of SPEC benchmarks are only accessed by one function in the

program. We uniformly accumulate all global variables from

each of our benchmark suites for this plot. Thus, we can see

from this figure that most global variables are only used in a

small number of program functions. While this usage pattern

is quite counter-intuitive, we reason that such usage trends in-

dicate either poor programming practices or scenarios where

the developer may not be comfortable with a large program

code base. We believe that our automatic source-to-source

transformation tool to localize globals will be very useful to

resolve such improper uses of global variables.
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Figure 4: Number of functions accessing global variables

5 Experimental Results

In this section we describe and quantify the static and dy-

namic properties of our transformation to eliminate global

variables. Our experiments employ the set of standard bench-

mark programs described in Section 4 to determine properties

regarding the use of global variables in typical C programs,

and static (source code visible) and dynamic (performance)

effects of our localizing transformation.

5.1 Static Characteristics of Our Transforma-

tion Algorithm

Our transformation to eliminate global variables can affect

many static aspects of the high-level program. In this section

we quantify and analyze some effects of our transformation

on static program properties. Our experiments in this section

use the algorithm described in Section 3 to localize all the

global variables in the Moved column of Table 1.

5.1.1 Effect on Average and Maximum Function Argu-

ments

After localizing the global variables, our algorithm needs to

make their state available to all functions that set/used the

original global variable. We make the new local variable ac-

cessible by explicitly passing it as an argument to all func-

tions that need it. This scheme adds additional parameters

to several function declarations in the transformed program.

Figures 5 and 6 respectively plot the average and maximum

number of function parameters over all the functions in each

of our benchmark programs.

Thus, we can see that the average and maximum num-

ber of function arguments is not significantly affected for

most of the benchmark programs, although this number in-

creases substantially for a few programs. On average, we

find that the average number of function arguments increases

from 1.95 to 3.33 for MiBench benchmarks and from 2.59

to 7.45 for SPEC programs. Similarly, the maximum num-

ber of function arguments increase, on average, from 6.78 to
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and after applying our localizing transformation to eliminate

global variables

16.50 for MiBench programs and from 10.4 to 40.4 for SPEC

benchmarks. An important and desirable side-effect of our

transformation is that it makes the declarations of all vari-

ables used/set in any function explicit in each function header.

This property is particularly important both from the aspects

of program maintainability and verifiability. Unfortunately,

passing additional function arguments can have an adverse

effect on program efficiency. We explore the dynamic per-

formance properties of our transformation in Section 5.2.

5.1.2 Number of Frontier Functions

In order to make each new local variable available in all the

functions that used/set the corresponding global variable in

the original program, we may need to pass the local as an

argument to intermediate (or frontier) functions that do not

themselves use the local variable apart from sending them to

other functions (functions foo1() and foo2() in Figure 1).

Figure 7 presents the number of frontier functions for every

transformed variable. The first set of bars in Figure 7 reveal

that 12 of the new local variables in the MiBench benchmarks

and no new local variable in the SPEC benchmarks have zero
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Figure 7: Number of frontier functions needed for the trans-

formed local variables

frontier functions. Thus, we can see that most local variables

have only a small number of frontier functions. This observa-

tions shows that many global variables are used in functions

that are located close to each other in the static program call-

graph. However, some globals are used in functions that are

considerably dislocated in the program call-graph. Thus, at

the other extreme, we find that there is one function in the

MiBench benchmarks that has 58 frontier functions and an-

other in SPEC with 45 frontier functions respectively. Global

variables employed in such dislocated call-graph functions

will likely require more user effort to manually eliminate, and

also seem to be more sensible scenarios for the developer to

use global variables. By automatically handling such scenar-

ios, our tool allows the programmer the convenience of us-

ing global variables in difficult situations, but eliminates them

later to satisfy software engineering goals.

5.1.3 Effect on Program State Visibility

Global variables are visible and accessible to all functions

in the program. It is often argued that such global visibil-

ity makes it more difficult for automatic program verifica-

tion and maintainability. One goal of our localizing trans-

formation is to reduce the visibility of all variables to only

the program regions where they are needed to assist verifica-

tion and maintainability tasks. Figure 8 plots the percentage

visibility of each transformed local variable as a ratio of the

number of functions where the corresponding program state

is visible to the total number of functions in the program.

There is a point-plot for each transformed variable in Figure 8,

sorted by its percentage visibility over all MiBench and SPEC

benchmarks. Note that global variables are visible throughout

(100%) the program. Thus, this figure shows that, after trans-

formation, visibility is drastically reduced for most program

state that was originally held in global variables. For example

over 81% of the (original) global variables in MiBench pro-

grams and 68% of variables in SPEC benchmarks are visible

in less than 10% of their respective program after the trans-

formation.
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Figure 8: Percentage reduction in visibility of transformed

variables compared to globals visible throughout the program

5.2 Dynamic Characteristics of Our Transfor-

mation Algorithm

The transformation algorithm to eliminate global variables

can have the following effects on memory consumption and

program performance.

• Localizing global variables will move them out of the

data region to the respective function activation records

(or the stack region) of the process address space. This

movement may reduce the size of the data region, but

will supplement this reduction with a corresponding in-

crease in the size of the stack.

• Each localized variable may need to be passed as an ar-

gument to other functions that access it. This operation

may increase the function call overhead, as well as in-

crease the size of the function activation records (stack).

• Global variables are initialized statically or implicitly by

the operating system. After localization, the correspond-

ing local variables will need to be explicitly initialized in

the program by the compiler. This initialization may be

a source of additional overhead at runtime.

In this section we present results that quantify the memory

space and runtime performance of the program before and af-

ter our transformation. For these experiments all our bench-

mark programs were compiled with GCC (version 4.5.2) [26]

using the ‘-O2’ optimization flag for the x86 32-bit platform

running the Linux operating system. 1 We also built a simple

GCC-based instrumentation framework to enable us to mea-

sure the maximum stack space requirement and program dy-

namic instruction counts for each benchmark. This frame-

work is described in the next section. The MiBench and SPEC

benchmarks were run with their small and test inputs respec-

tively. The outputs produced by each program with and with-

out our transformation were compared to validate the correct-

ness of our tool.

1The original (before transformation) tiff2rgba benchmark program failed

to run correctly with GCC’s -O2 optimizations. Therefore, this program was

run unoptimized with -O0 flag.

5.2.1 GCC-Based Instrumentation Framework

We updated the GCC compiler to instrument the program dur-

ing code generation. Our instrumentations can generate two

types of execution profiles at program runtime. (a) One set

of instrumentations output the stack pointer register on ev-

ery function entry, after it sets up its activation record. The

difference between the minimum and maximum stack pointer

values gives us the maximum extent of the stack for that par-

ticular program run. (b) Our other set of instrumentations are

added to the start of every basic block to produce a linear trace

of the basic blocks reached during execution. We also mod-

ified GCC to generate a file during compilation that contains

a list of all program basic blocks along with their set of in-

structions. The knowledge of the blocks that are reached at

runtime and the number of instructions in each block allow

us to compute the dynamic instruction counts for a particu-

lar program run. Since our instrumentations only modify the

compiled benchmark code, we can only count the dynamic in-

structions executed in the application program and not in the

library functions. We believe that dynamic instruction counts

are a good supplement to actual program run-times since they

are deterministic and cannot be affected by any hardware and

operating system effects.

5.2.2 Effect on Maximum Stack and Data Size

For most existing systems, global variables reside in the data

region of the process address space, while local variables and

function arguments reside in the function activation record on

the process stack. Therefore, our transformation to convert

global variables into locals (that are passed around as addi-

tional function arguments) have the potential to reduce the

data space and expanding the process stack. We use our GCC

based stack-pointer instrumentation to gather the maximum

required stack space (in bytes) for each benchmark run with

its standard input. We also employ the Linux size tool to deter-

mine the space occupied by the data region of each program.

Figure 9 plots the ratio of the total data and maximum stack

requirement for each of our benchmark programs before and

after the transformation to eliminate global variables.

Thus, we can see that our transformation increases the stack

requirement while reducing the data space size for most pro-

grams. While some benchmarks, including dijkstra, pgp and

429.mcf, may experience a large increase in maximum stack

usage, many of these also notice a correlating reduction in

the data region size. At the same time, note that while a pro-

gram only maintains one copy of any global variable, multi-

ple copies of the corresponding local variable/argument may

reside simultaneously on the stack for the transformed pro-

gram. Therefore, there also exist programs, such as adpcm,

bitcount, and blowfish, that show no discernible reduction in

data size, but still encounter significant increases in maximum

stack space use.
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Figure 9: Ratio of the total data and maximum stack area

consumed by each process at runtime before and after the lo-

calizing transformation

5.2.3 Effect on Dynamic Performance

Is this section we present experimental results that quantify

the effect of eliminating global variables on program perfor-

mance. We employ two metrics for performance estimation.

First, we use the GCC instrumentation framework to measure

each program’s dynamic instruction count before and after ap-

plying our transformation. Dynamic instruction counts can

provide a good and deterministic estimation of actual pro-

gram performance, but cannot account for differing instruc-

tion latencies, and variations due to memory, cache, and other

micro-architectural effects. Second, we execute each bench-

mark natively on a dedicated x86-Linux machine to gather

actual program run-time. Each benchmark is run in isolation

to prevent interference from other user programs. To account

for inherent timing variations during the benchmark runs, all

the performance results in this paper report the average over

15 runs for each benchmark.

Figure 10 shows the results of these performance experi-

ments. For the actual program run-times, we employ a sta-

tistically rigorous evaluation methodology, and only present

results that show a statistically significant performance dif-

ference (with a 95% confidence interval) [30] with and with-

out our transformation. Thus, we can see that the localizing

transformation does not produce a large performance over-

head for most benchmarks. The dynamic instruction counts

for most benchmarks with a small number of Moved global

variables typically do not undergo a substantial change. How-

ever, the dynamic instruction counts do show large degra-

dations in cases where the transformation localizes a large

number of global variables and/or significantly increases the

number of function arguments (as seen in Figure 5). Several

benchmark programs including dijkstra, ispell, stringsearch,

and 458.sjeng fall into this category. Interestingly, we ob-

serve that, in most cases, the increases in dynamic instruction

count do not produce a corresponding increase in the actual

benchmark runtime. The most notable exception to this ob-

servation is tiff2rgba that degrades substantially over the orig-
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Figure 10: Ratio of dynamic instruction counts and program

run-time before and after the localizing transformation

inal program run-time after our localizing transformation. Re-

member that tiff2rgba is the only program not compiled with

GCC’s -O2 optimizations. Thus, it seems that optimizations

performed by GCC and the x86 micro-architecture do a good

job of reducing the overhead caused by our transformation to

localize and eliminate global variables.

6 Future Work

There are a number of improvements that we plan to pursue in

the future. First, we plan to implement more precise pointer

analysis and improve alias analysis in the Clang/LLVM com-

piler, to appropriately resolve indirect function calls and build

a precise call-graph for each benchmark. Second, this work

only evaluates the case of localizing all global variables in a

program, which can result in a large number of frontier func-

tions and additional arguments. We are currently developing

an Eclipse-based interactive framework to enable the user to

selectively localize the most important global variables. It

may also be possible to develop machine-learning algorithms

to automatically find the most promising globals to localize

based on certain user policies. Third, we will further inves-

tigate the causes of performance overhead and develop opti-

mizations to reduce the overhead of the localizing transfor-

mation. Optimizations may include techniques to combine

the initialization of different localized variables, and to reduce

the overhead of argument passing during code generation in

the compiler backend. Finally, we require good metrics to

evaluate the benefit of our tool during program development,

dependence, maintenance, verification, and thread-safety. We

plan to develop such metrics in the future.

7 Conclusions

In this paper we present our compiler-based source-to-source

transformation packaged into a refactoring tool to automat-

ically transform global variables into locals. Our transfor-
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mation algorithm automatically detects global variables and

where they are used. For each global variable, the tool has

the ability to find the best place to redefine it as a local,

appropriately initialize it, pass it as an argument to all the

functions that set/use it, and then modify all program state-

ments that used the original global variable to now instead

use the corresponding local or function argument. Our com-

piler based transformation tool is implemented using the pop-

ular Clang/LLVM compiler framework. We also analyze the

static and runtime effects of our localizing transformation to

allow the developer to make an informed decision regard-

ing whether to localize any/all global variables. We found

that many of our benchmark functions make generous use of

global variables. However, most of these globals are only

used in a very small number of program functions that are

located close to each other in the function call-graph. There-

fore, localizing such global variables greatly minimizes the

percentage visibility of global program state, which can as-

sist code verification efforts. At the same time our transfor-

mation can significantly affect the amount and distribution of

memory space consumed by the data and stack regions of the

process address space. Additionally, we also found that local-

izing most global variables only has a minor degrading effect

on runtime performance.
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