
Evaluating Heuristic Optimization Phase Order Search Algorithms

Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson
Florida State University

Computer Science Department
Tallahassee, FL 32306-4530

{kulkarni,whalley,tyson}@cs.fsu.edu

Jack W. Davidson
University of Virginia

Department of Computer Science
Charlottesville, VA 22904-4740

jwd@virginia.edu

Abstract

Program-specific or function-specific optimization phase
sequences are universally accepted to achieve better over-
all performance than any fixed optimization phase order-
ing. A number of heuristic phase order space search algo-
rithms have been devised to find customized phase order-
ings achieving high performance for each function. How-
ever, to make this approach of iterative compilation more
widely accepted and deployed in mainstream compilers, it
is essential to modify existing algorithms, or develop new
ones that find near-optimal solutions quickly. As a step in
this direction, in this paper we attempt to identify and un-
derstand the important properties of some commonly em-
ployed heuristic search methods by using information col-
lected during an exhaustive exploration of the phase order
search space. We compare the performance obtained by
each algorithm with all others, as well as with the optimal
phase ordering performance. Finally, we show how we can
use the features of the phase order space to improve exist-
ing algorithms as well as devise new, and better performing
search algorithms.

1. Introduction

Current compilers contain numerous different optimiza-
tion phases. Each optimization phase analyzes the program
and attempts to change the code in some way to produce
a semantically equivalent program that performs better for
one or some combination of constraints, such as speed,
code size and power. Most optimization phases share re-
sources (such as registers), and require certain conditions in
the code to be applicable before applying a transformation.
Each optimization phase may consume or release resources,
as well as create or destroy specific conditions. As a result,
phases interact with each other, by generating or remov-
ing opportunities for application of other phases. In many
performance-oriented application domains it is important to

find the best order of applying optimization phases so that
very high-quality code can be produced. This problem of
finding the best sequence of optimization phases to apply is
known as the phase ordering problem in compilers.

The space of all possible orderings of optimization
phases is huge since most current compilers contain nu-
merous different optimization phases with few restrictions
imposed on the order of applying these phases. Prior re-
search has found that no single ordering of phases can
achieve optimal performance on all applications or func-
tions [1, 2, 3, 4, 5, 6]. The phase ordering problem is
difficult since even after decades of research the relation-
ships and interactions between optimization phases remain
ill-understood. The only consensus is that the phase re-
lationships change with the function being optimized, the
manner in which optimizations are implemented in the com-
piler, and the characteristics of the target architecture. Due
to such factors, iterative compilers that evaluate numerous
different orderings of optimization phases have found wide
appeal to search for the best phase order as well as phase
parameters on a per-function basis.

Exhaustive exploration of the optimization phase order
space, although possible in a reasonable amount of time for
a large majority of the functions [7, 8], takes prohibitively
long for most large functions to make it suitable for use in
typical iterative compilers. Instead, faster heuristic algo-
rithms that scan only a portion of the phase order space are
more commonly employed. However, such methods do not
evaluate the entire space to provide any guarantees about the
quality of the solutions obtained. Commonly used heuristic
algorithms to address the phase ordering problem include
genetic algorithms [3, 4], hill climbing algorithms [9, 10],
as well as random searches of the space [11].

In this paper we evaluate many different heuristic search
approaches to determine the important characteristics of
each algorithm as related to the phase order space. We also
evaluate their performance, comparing the performance
with other heuristic approaches as well as with optimal or-
derings. We are able to perform a very thorough study since



we have completely enumerated the phase order spaces
of our compiler for hundreds of functions and can sim-
ply lookup information instead of compiling and simulating
each ordering of phases. Thus, the main contributions of
this paper are:

1. This study is the most detailed evaluation of the perfor-
mance and cost of different heuristic search methods,
and the first to compare their performance with the op-
timal phase ordering.

2. We isolate and evaluate several properties of each stud-
ied heuristic algorithm, and demonstrate the signifi-
cance and difficulty in selecting the correct optimiza-
tion phase sequence length, which is often ignored or
kept constant in most previous studies on optimization
phase ordering.

3. This study identifies and illustrates the importance of
leaf function instances, and shows how we can exploit
the properties of leaf instances to enhance existing al-
gorithms as well as to construct new search algorithms.

The paper is organized as follows. In the next section
we will discuss research related to the current work. Our
experimental setup will be described in Section 3. In Sec-
tion 4 we will describe the results of our study to determine
the properties of the phase order search space and evaluate
various heuristic search algorithms. Finally, we will present
our conclusions in Section 5.

2. Related Work

Optimization phase ordering has been a long standing
and important issue in compiler optimizations, and as such
has received much recent attention from researchers. Sev-
eral researchers have attempted to formally specify com-
piler optimizations in order to systematically address the
phase ordering problem. Whitfield and Soffa developed a
framework based on axiomatic specifications of optimiza-
tions [2, 12]. This framework was employed to list the
potential enabling and disabling interactions between op-
timizations, which were then used to derive an application
order for the optimizations. The main drawback was that
in cases of cyclic interactions between two optimizations, it
was not possible to determine a good ordering automatically
without detailed information about the compiler. Follow-up
work on the same topic has seen the use of additional an-
alytical models, including code context and resource (such
as cache) models, to determine and predict other proper-
ties of optimization phases such as the impact of optimiza-
tions [13], and the profitability of optimizations [14]. Some
other work has proposed a Unified Transformation Frame-
work (UTF) to provide a uniform and systematic represen-
tation of iteration reordering transformations and their arbi-

trary combinations [15]. It is possible using UTF to trans-
form the optimization phase order space into a polyhedral
space, which is considered by some researchers to be more
convenient for a systematic exploration than the original
space [16]. However, this work is restricted to loop opti-
mizations, and needs to be extended to other optimizations
before it could be adopted in typical iterative compilers.

Earlier work in iterative compilation concentrated on
finding good parameter settings for a few optimizations,
such as loop unrolling and loop tiling [10, 17, 6]. In cases
where exhaustive exploration was expensive, researchers
used heuristic algorithms, such as grid-based searches, hill
climbers, and genetic algorithms, to scan only a portion of
the search space. A common deduction is that typical pro-
gram search spaces, on a variety of different architectures,
generally contain enough local minima that biased sampling
techniques should find good solutions. Iterative compila-
tion usually comes at the cost of a large number of program
executions. In order to reduce the cost, some studies have
looked at incorporating static architectural models, particu-
larly cache models, into their approach [18].

Research on the phase ordering problem over all or most
of the optimization phases in a compiler has typically con-
centrated on finding effective (rather than optimal) phase
sequences by evaluating only a portion of the phase order
search space. A method, called Optimization-Space Ex-
ploration [5], uses static performance estimators to reduce
the search time. In order to prune the search they limit the
number of configurations of optimization-parameter value
pairs to those that are likely to contribute to performance
improvements. This area has also seen the application of
other search techniques to intelligently search the optimiza-
tion space. Hill climbers [9] and genetic algorithms [3, 4]
have been employed during iterative algorithms to find opti-
mization phase sequences better than the default one used in
their compilers. Such techniques are often combined with
aggressive pruning of the search space [19, 20] to make
searches for effective optimization phase sequences faster
and more efficient. Successful attempts have also been
made to use predictive modeling and code context informa-
tion to focus search on the most fruitful areas of the phase
order space for the program being compiled [11]. Other ap-
proaches to reduce compilation time estimate the number of
instructions executed and use that as a means to prune the
number of versions of a program that need to be executed
or simulated for evaluation [21, 8].

Researchers have also attempted a near-optimal reso-
lution of the phase ordering problem considering all the
phases present in their compilers. Kulkarni et al. demon-
strated that for typical optimization phases applied in a
compiler backend it is possible to exhaustively evaluate the
phase order space for most of the functions in several em-
bedded benchmarks [7, 8]. This was made possible by using



techniques to drastically prune the space of distinct func-
tion instances, as well as reducing the number of program
executions to estimate the performances of all nodes in the
space. However, they were unable to exhaustively explore
the space for some of the largest functions, while some other
large functions each took several days to evaluate. This
shows that exhaustive space evaluation may still be infea-
sible for routine use in typical iterative compilers.

In spite of the wide-spread use of heuristic approaches,
there have been few attempts to evaluate and compare their
properties and performance in the context of the characteris-
tics of the phase order space. Kisuki et al. analyzed the per-
formance of five different search algorithms, and reported
the observation that heuristic algorithms do not differ much
in their efficiency [10]. However, this study was performed
on a space of only two optimizations (with different param-
eters), and did not take in to account properties of the phase
order space. A more detailed evaluation was performed by
Almagor et al. [9], which attempted to relate features of the
phase order space with the efficiency and performance of
different heuristic algorithms. This study was, however, in-
complete since they had restricted their sequence length to
be of a fixed size. This earlier work also did not have ac-
cess to the entire phase order space features, and lacked a
knowledge of the optimal phase order performance.

3. Experimental Framework

In this section we first describe the compiler framework,
and then explain our experimental setup.

3.1. Compiler Framework

The research in this paper uses the Very Portable Opti-
mizer (VPO) [22], which is a compiler back end that per-
forms all its optimizations on a single low-level interme-
diate representation called RTLs (Register Transfer Lists).
Since VPO uses a single representation, it can apply most
analysis and optimization phases repeatedly and in an arbi-
trary order. VPO compiles and optimizes one function at a
time. This is important since different functions may have
very different best orderings, so any strategy that requires
all functions in a file to have the same phase order will al-
most certainly not be optimal. At the same time, restrict-
ing the phase ordering problem to a single function helps to
make the phase order space more manageable. The com-
piler has been targeted to generate code for the StrongARM
SA-100 processor using Linux as its operating system. We
used the SimpleScalar set of functional simulators [23] for
the ARM to get dynamic performance measures.

Table 1 describes each of the 15 candidate code-
improving phases that were used during the exhaustive ex-
ploration of the optimization phase order search space. In

addition, register assignment, which is a compulsory phase
that assigns pseudo registers to hardware registers, must be
performed. VPO implicitly performs register assignment
before the first code-improving phase in a sequence that re-
quires it. After applying the last code-improving phase in
a sequence, VPO performs another compulsory phase that
inserts instructions at the entry and exit of the function to
manage the activation record on the run-time stack. Fi-
nally, the compiler also performs predication and instruc-
tion scheduling before the final assembly code is produced.
These last two optimizations should only be performed late
in the compilation process in the VPO compiler, and so are
not included in the set of re-orderable optimization phases.

For the experiments described in this paper we used a
subset of the benchmarks from the MiBench benchmark
suite, which are C applications targeting specific areas of
the embedded market [24]. We selected two benchmarks
from each of the six categories of applications present in
MiBench. Table 2 contains descriptions of these programs.
VPO compiles and optimizes individual functions at a time.
The 12 benchmarks selected contained a total of 244 func-
tions, out of which 88 were executed (at least once) with the
input data provided with each benchmark.

3.2. Experimental Setup

For this study we exhaustively enumerate the phase or-
der space for a large number of functions. This enumer-
ation enables us to accurately investigate the properties of
the search space, to study heuristic search algorithms, to
tune the algorithms, to suggest new algorithms, as well as
to compare the efficiency of different heuristic algorithms
in finding optimal phase ordering for each function. In this
section we will describe our setup for the current research.

We use the algorithm proposed by Kulkarni et al. [7, 8]
to exhaustively evaluate the phase order space for the func-
tions in our benchmark suite. The algorithm is illustrated in
Figure 1. The phase ordering problem is viewed as an eval-
uation of all possible distinct function instances that can be
generated by changing the order of optimization phases in
a compiler. This approach to the phase ordering problem
makes no assumptions about the phase sequence length for
each function, and allows phases to be repeated as many
times as they can possibly be active in the same sequence.
Thus, the phase ordering space is complete in each case.
However, it is important to note that a different compiler,
with a different or greater set of optimization phases can
possibly generate better code than the optimal instance pro-
duced by VPO. Thus, optimal in the context of this work
refers to the best code that can be produced by any opti-
mization phase ordering in VPO and is not meant to imply a
universally optimum solution. The algorithm can be briefly
summarized as follows:



Optimization Phase Gene Description
branch chaining b Replaces a branch or jump target with the target of the last jump in the jump chain.
common subexpression
elimination

c Performs global analysis to eliminate fully redundant calculations, which also includes global
constant and copy propagation.

remove unreach. code d Removes basic blocks that cannot be reached from the function entry block.
loop unrolling g To potentially reduce the number of comparisons and branches at runtime and to aid scheduling

at the cost of code size increase.
dead assign. elim. h Uses global analysis to remove assignments when the assigned value is never used.
block reordering i Removes a jump by reordering blocks when the target of the jump has only a single predecessor.
minimize loop jumps j Removes a jump associated with a loop by duplicating a portion of the loop.
register allocation k Uses graph coloring to replace references to a variable within a live range with a register.
loop transformations l Performs loop-invariant code motion, recurrence elimination, loop strength reduction, and in-

duction variable elimination on each loop ordered by loop nesting level.
code abstraction n Performs cross-jumping and code-hoisting to move identical instructions from basic blocks to

their common predecessor or successor.
eval. order determ. o Reorders instructions within a single basic block in an attempt to use fewer registers.
strength reduction q Replaces an expensive instruction with one or more cheaper ones. For this version of the com-

piler, this means changing a multiply by a constant into a series of shift, adds, and subtracts.
reverse branches r Removes an unconditional jump by reversing a cond. branch when it branches over the jump.
instruction selection s Combines pairs or triples of instructions together where the instructions are linked by set/use

dependencies. Also performs constant folding and checks if the resulting effect is a legal in-
struction before committing to the transformation.

remove useless jumps u Removes jumps and branches whose target is the following positional block.

Table 1. Candidate Optimization Phases along with Their Designations

1. The algorithm starts with the un-optimized function
instance. A depth-first search algorithm is used to
produce the next sequence to evaluate. Each new se-
quence appends one phase to a previous sequence re-
sulting in a new function instance, in depth first order.

2. Phases not successful in changing the program repre-
sentation do not need further evaluation.

3. The next stage uses CRC hash values [25], calculated
on the entire function, to compare the current function
instance with all previous distinct function instances.
If the current function instance is identical to an in-
stance previously produced by some other phase se-
quence, then only one needs to be evaluated, and so
the current instance is discarded.

4. Even if two function instances are not identical, it is
possible that the only differences may lie in the reg-
ister numbers being used, or the labels assigned to the
various basic blocks. In such cases the two function in-
stances will still perform identically, and so the current
function instance no longer needs further evaluation.

5. The next step determines the performance of each dis-
tinct function instance. In order to reduce the num-
ber of program simulations, the algorithm only simu-
lates one function instance from the set of function in-
stances having the same basic block control flow. The
first function instance with a new block control flow
is instrumented and simulated to obtain the number of

times each block is executed. The dynamic frequency
measure for the each function instance is determined
by multiplying the block execution counts by the esti-
mated number of static cycles for each block. These
dynamic frequency measures have been shown to bear
a strong correlation with simulated cycles.

Category Program Description
auto bitcount test proc. bit manipulation abilities

qsort sort strings using the quicksort algo.
network dijkstra Dijkstra’s shortest path algorithm

patricia construct patricia trie for IP traffic
telecomm fft fast fourier transform

adpcm compress 16-bit linear PCM samples
to 4-bit samples

consumer jpeg image compression and decomp.
tiff2bw convert color tiff image to b&w image

security sha secure hash algorithm
blowfish symmetric block cipher with variable

length key
office search searches for given words in phrases

ispell fast spelling checker

Table 2. MiBench Benchmarks Used

The exhaustive enumeration of any function is stopped
if the time required exceeds an approximate limit of two



calculate
function

performance

generate
next

optimization
sequence

using
depth−first
approach

last phase
active?

Y Nidentical
function
instance?

equivalent N
instance?
function

control−flow
structure?

seenN

Y

N Y Y

simulate
application

Figure 1. Steps During an Exhaustive Evaluation of the Phase Order Space for Each Function

weeks. Using the above algorithm and cut-off criteria we
were able to enumerate completely the optimization phase
order space for 234 out the 244 functions that we studied.
Out of the 88 executed functions, we were able to com-
pletely enumerate 79. We represent the phase order space
for every function in the form of a DAG (Directed Acyclic
Graph), as shown in Figure 2. Nodes in the DAG represent
distinct function instances and edges represent transitions
from one node to the next on application of an optimization
phase. The DAG then enables much faster evaluation of any
search heuristic, since compilation as well as execution can
be replaced with a simple table lookup in the DAG to deter-
mine the performance of each phase ordering. As a result,
the study of the various algorithms is fast, and it is possible
to evaluate various parameters of the algorithms as well as
the search space.

b c

a d d
a

d

3 4

(b) Depth−first Traversal

6

7

8

1

52

a

c

Figure 2. Directed Acyclic Graph Represent-
ing the Phase Order Space of a Function

4 Study of Common Heuristic Search Tech-
niques

Over the past decades researchers have employed vari-
ous heuristic algorithms to cheaply find effective solutions
to the phase ordering problem. However, several issues re-
garding the relative performance and cost of each algorithm,
as well as the effect of changing different algorithm param-
eters on that algorithm’s performance are as yet uncertain
and not clearly understood. In this section we will perform
a thorough evaluation and comparison of commonly used

heuristic methods. Based on the phase order space charac-
teristics we will also develop new techniques and suggest
several improvements to existing algorithms.

4.1. Local Search Techniques

Local search techniques, such as hill climbing and sim-
ulated annealing, can only migrate to neighboring points
from one iteration to the next during their search for good
solutions. Central to these algorithms is the definition of
neighbors of any point in the space. For this study, we de-
fine the neighbors of a sequence to be all those sequences
that differ from the base sequence in only one position.
Thus, for a compiler with only three optimization phases a,
b and c, the sequence shown in the first column of Table 3
will have the sequences listed in the following columns as
its neighbors. The position that differs in each neighbor
is indicated in bold. For a compiler with m optimization
phases, a sequence of length n will have (m − 1)n neigh-
bors. Unless the search space is extremely smooth, these
local search algorithms have a tendency to get stuck in a
local minimum, which are points that are not globally mini-
mum, but have better fitness values than any of their neigh-
bors. For a comprehensive study of these algorithms it is
important to first understand relevant properties of the opti-
mization phase order space. The results from this study are
presented in the next section.

bseq neighbors
a b c a a a a a a
b b b a c b b b b
c c c c c a b c c
a a a a a a a b c

Table 3. Neighbors in Heuristic Searches

4.1.1 Distribution of Local Minima in the Phase Order
Space

Earlier studies have attempted to probe the properties of
the phase order space [17, 9]. Such studies, however, only



looked at a small portion of the space, and ignored im-
portant factors affecting the nature and distribution of lo-
cal minima in phase order spaces. One such factor, com-
monly ignored, is the optimization sequence length. It is
almost impossible to estimate the best sequence length to
use due to the ability and tendency of optimization phases
to enable other phases. During our experiments, maximum
sequence lengths of active phases varied from 3 to 44 over
different functions, with considerable variation within the
same function itself for different phase orderings. The goal
of analyzing the search space, in the context of local search
techniques, is to find the properties and distribution of all
local minima in each phase order search space. However,
there are some difficult hurdles in achieving this goal:

Variable sequence length: Since the best sequence
length for each function is unknown, an ideal analysis
would require finding the properties of local minima for all
possible sequence lengths. This requirement is needed be-
cause any sequence of attempted phases of any length de-
fines a point in the search space DAG. Conversely, a sin-
gle point in the space can be defined by, potentially, infinite
number of attempted sequences of different lengths. This
is important, since different sequences defining the same
point will have different neighbors. This implies that some
of those sequences may be locally optimum, while others
may be not, even though they define the same point in the
phase order space. For example, the attempted sequences
{b → a}, {c → b → a}, and {d → b → c → a} all
define the same node 4 in the DAG in Figure 2 (Note that,
the phases a and b, indicated in bold, are active, while c and
d are dormant). Thus, we can see that it is possible to have
sequences of different lengths pointing to the same node.
Thus, this ideal goal of finding the local minima for all pos-
sible sequence lengths is clearly impossible to achieve.

Fixed sequence length: A conceptually simpler ap-
proach would be to use some oracle to give us the best
sequence length to use for each function, and then only an-
alyze the space for this single sequence length. The mini-
mum reasonable length to use, so that all nodes in the DAG
can be reached, would be the maximum active sequence
length for each function. For an average maximum active
sequence length of 16, over all 234 enumerated functions,
we would need to evaluate 1516 different phase orderings
for each function. Evaluation of any phase ordering to de-
termine if that ordering is a local optimum would in turn re-
quire us to lookup the performance of that ordering as well
as that of its 15 ∗ 16 neighbors. This, also, is clearly a huge
undertaking considering that the maximum active sequence
length we encountered during our exhaustive phase order
enumeration study was 44.

Due to such issues, in our present experiments, we de-
cided to use sampling to probe only a reasonable portion of
the phase order search space for some number of different

sequence lengths for each function. We use 16 different se-
quence lengths. The initial length is set to the length of the
sequence of active phases applied by the conventional VPO
compiler in batch mode. The remaining sequence lengths
are successive increments of one-fourth of the initial se-
quence length used for each function. The larger sequence
lengths may be needed to accommodate phases which may
be dormant at the point they are attempted. For each set of
experiments for each function, we first randomly generate
a sequence of the specified length. We then compare the
performance of the node that this sequence defines with the
performance of all of its neighbors to find if this sequence is
a local optimal. This base node is marked as done. All later
sequences are constrained to define different nodes in the
space. As this sampling process progresses it will require
an increasing number of attempts to find a sequence corre-
sponding to an unevaluated node in the search space. The
process terminates when the average number of attempts to
generate a sequence defining a new node exceeds 100.

Figures 3(a) and 3(b) illustrate the average phase order
space properties over all the executed functions that we
studied. The plot labeled % nodes touched in the DAG from
Figure 3(a) shows the percentage of nodes that were evalu-
ated for local minimum from amongst all nodes in the space
DAG. This number initially increases, reaches a peak, and
then drops off. This graph, in effect, shows the nature of
typical phase order spaces. Optimization phase order space
DAGs typically start out with a small width, reach a max-
imum around the center of the DAG, and again taper off
towards the leaf nodes as more and more function instances
generated are detected to be redundant. Smaller attempted
sequence lengths in Figure 3(a) define points higher up in
the DAG, with the nodes defined dropping down in the DAG
as the length is increased. The next plot labeled avg local
minima % distance from optimal in Figure 3(a) measures
the average difference in performance from optimal over
all the samples at each length. As the sequence lengths in-
creased the average performance of the samples gets closer
and closer to optimal, until after a certain point the perfor-
mance remains more or less constant. This is expected,
and can be explained from the last plot in Figure 3(a), la-
beled %(avg.active seq. length / batch seq. length), which
shows the percentage increase in the average length of ac-
tive phases as the attempted sequence length is increased.
The ability to apply more active phases implies that the
function is better optimized, and thus we see a correspond-
ing increase in performance and a smaller percentage of ac-
tive phases.

The first plot in Figure 3(b) shows the ratio of sequences
reaching local minima to the total sequences probed. This
ratio seems to remain more or less constant for different
lengths. The small percentage of local minima in the to-
tal samples indicates that there are not many local minima



(a) Local Minima Information (b) Global Minima Information

Figure 3. Search Space Properties

in the space. The next plot, %(num global minima / to-
tal minima), in this figure shows that the percentage of lo-
cally minimum nodes achieving global minima grows with
increase in sequence length. This increase is more pro-
nounced initially, but subsequently becomes steadier. In the
steady state around 45% of local minima display globally
optimum performance. This characteristic means that for
longer sequence lengths there is a good chance that the lo-
cal minimum found during local search algorithms will have
globally optimal performance. The final plot in Figure 3(b),
%(functions for which at least one sample reached optimal),
presents the percentage of functions for which the probe is
able to find optimal in at least one of its samples. This num-
ber shows a similar characteristic of continuously increas-
ing with sequence lengths, until it reaches a steady state at
close to 100% for larger sequence lengths. Hence, for small
multiples of the batch sequence length the local search al-
gorithms should be able to find global minima with a high
probability for most of the functions.

Thus, this study illustrates that it is important to find the
correct balance between increase in sequence length, per-
formance obtained, and the time required for the search. Al-
though larger sequence lengths tend to perform better they
are also more expensive to evaluate, since they have more
neighbors, and evaluation of each neighbor takes longer. It
is worthwhile to note that we do not need to increase the se-
quence lengths indefinitely. After a modest increase in the
sequence lengths, as compared to the fixed batch sequence
length, we are able to obtain most of the potential benefits
of any further increases in sequence lengths.

4.1.2 Hill Climbing

In this section we evaluate the performance of the steepest
descent hill climbing heuristic algorithm for different se-
quence lengths [9]. The algorithm is initiated by randomly
populating a phase sequence of the specified length. The
performance of this sequence is evaluated, along with that

of all its neighbors. If the best performing neighbor has
equal or better performance than the base sequence, then
that neighbor is selected as the new base sequence. This
process is repeated until a local optimum is reached, i.e.,
the base sequence performs better than all of its neighbors.
For each sequence length, 100 iterations of this algorithm
are performed by selecting random starting points in the
search space. The sequence lengths were incremented 40
times starting from the length of the active batch sequence,
with each increment equal to one-fourth the batch length.

Figures 4(a) and 4(b) illustrate the results of the hill
climbing experiments. The plot marked % best perf. dis-
tance from optimal in Figure 4(a) compares the best solution
found by the hill climbing algorithm with optimal, averaged
over the 79 executed functions, and over all 100 iterations
for each sequence length. We can see that even for small
sequence lengths the algorithm is able to obtain a phase or-
dering whose best performance is very close to optimal. For
lengths greater than 1.5 times the batch sequence length,
the algorithm is able to reach optimal in most cases. The
plot avg. steps to local minimum in Figure 4(a) shows that
the simple hill climbing algorithm requires very few steps
to reach local optimal, and that the average distance to the
local optimal decreases with increase in sequence lengths.
This decrease in the number of steps is caused by better
performance delivered by each typical sequence when the
initial sequence length is increased, so that in effect the al-
gorithm starts out with a better initial sequence, and takes
fewer steps to the local minimum.

As mentioned earlier, the hill climbing algorithm is iter-
ated 100 times for each sequence length and each function
to eliminate the noise caused by the random component of
the algorithm. The first plot in Figure 4(b), avg. % iter-
ations reaching optimal, illustrates that the average num-
ber of iterations reaching optimal increases with increase in
the sequence length up to a certain limit, after which it re-
mains more or less constant. A related measure % avg. perf.



(a) Local Minima Information (b) Global Minima Information

Figure 4. Properties of the Hill Climbing Algorithm

distance from optimal, shown in the second plot in Figure
4(b), is the average function performance over all the itera-
tions for each sequence length. This measure also shows a
marked improvement as the sequence length increases un-
til the average performance peaks at around 4% worse than
optimal. These results indicate the significance of select-
ing a correct sequence length during the algorithm. Larger
sequence lengths lead to larger active sequences that result
in the initial performance improvement, but increasing the
length incessantly gives diminishing returns while making
the algorithm more expensive.

4.1.3 Simulated Annealing

Simulated annealing can be defined as a technique to find a
good solution to an optimization problem by trying random
variations of the current solution. A worse variation is ac-
cepted as the new solution with a probability that decreases
as the computation proceeds. The slower the cooling sched-
ule, or rate of decrease, the more likely the algorithm is to
find an optimal or near-optimal solution [26]. In our im-
plementation, the algorithm proceeds similarly to the hill
climbing algorithm by starting from a random initialization
point in the phase order space. The sequence length is fixed
for each run of the algorithm. During each iteration the per-
formance of the base sequence is evaluated along with that
of all its neighbors. Similar to the hill climbing method, if
the performance of the best performing neighbor is better
than the performance of the base sequence, then that neigh-
bor is selected as the base sequence for the next iteration.
However, if the current iteration is not able to find a neigh-
bor performing better than the base sequence, the algorithm
can still migrate to the best neighbor based on its current
temperature. The worse solution is generally accepted with
a probability based on the Boltzmann probability distribu-
tion:

prob = exp(−
δf

T
) (1)

where, δf is the difference in performance between the cur-
rent base sequence and the best neighbor, and T is the cur-
rent temperature. Thus, smaller the degradation and higher
the temperature the greater the probability of a worse solu-
tion being accepted.

An important component of the simulated annealing al-
gorithm is the annealing schedule, which determines the
initial temperature and how it is lowered from high to low
values. The assignment of a good schedule generally re-
quires physical insight and/or trial and error experiments. In
this paper, we attempt to study the effect of different anneal-
ing schedules on the performance of a simulated annealing
algorithm. For this study, the sequence length is fixed at
1.5 times the batch compiler length of active phases. As
seen in the hill climbing experiments, this is the smallest
sequence length at which the average performance reaches
a steady state that is very close to optimal. We conducted
a total of 400 experimental runs by varying the initial tem-
perature and the annealing schedule. The temperature was
varied from 0 to 0.95 in steps of 0.5. For each temperature
we defined 20 different annealing schedules, which control
the temperature in steps from 0.5 to 0.95 per iteration. The
results for each configuration are averaged over 100 runs to
account for noise caused by random initializations.

Our results, shown in Figure 5, indicate that for the phase
ordering problem, as seen by our compiler, the initial tem-
perature as well as the annealing schedule do not have a
significant impact on the performance delivered by the sim-
ulated annealing algorithm. The best performance obtained
over all the 400 experimental runs is, on average, 0.15% off
from optimal, with a standard deviation of 0.13%. Like-
wise, other measures obtained during our experiments are
also consistent across all 400 runs. The average number of
iterations achieving optimal performance during each run
is 41.06%, with a standard deviation of 0.81%. The av-
erage performance for each run is 15.95% worse than op-
timal, with a deviation of 0.55%. However, as expected,



the number of steps to a local minimum during each itera-
tion for each run increases with increase in the initial tem-
perature and the annealing schedule step. As the starting
temperature and annealing schedule step are increased, the
algorithm accepts more poorly performing solutions before
halting. However, this increase in the number of steps to
local optimal does not translate into any significant perfor-
mance improvement for our experiments,

Figure 5. Increase in the Number of Steps to
Local Minimum with Increases in Initial Tem-
perature and Annealing Schedule Step

4.2. Greedy Algorithm

Greedy algorithms follow the policy of making the lo-
cally optimum choice at every step in the hope of finally
reaching the global optimum. Such algorithms are com-
monly used for addressing several optimization problems
with huge search spaces. For the phase ordering problem,
we start off with the empty sequence as the base sequence.
During each iteration the algorithm creates new sequences
by adding each available phase first to the prefix and then as
the postfix of the base sequence. Each of these sequences
is evaluated to find the best performing sequence in the cur-
rent iteration, which is consequently selected as the base se-
quence for the next iteration. If there are multiple sequences
obtaining the same best performance, then one of these is
selected at random. The algorithm is repeated 100 times in
order to reduce the noise that can potentially be caused by
this random component in the greedy method. Thus, in our
case the algorithm has a bounded cost, as it performs a fixed
number of (15+15=30) evaluations in each step, where 15
is the number of available optimizations in our compiler.

Our current implementation of the greedy algorithm is
inspired by the approach used by Almagor et al. [9]. Simi-
lar to the hill climbing algorithm, the sequence lengths dur-
ing the greedy algorithm are varied from the active batch
sequence length for each function as the initial length to
11 times the batch length, in increments of one-fourth the

batch length. To minimize the effect of the random com-
ponent, the algorithm is repeated 100 times for each se-
quence length. The best and average performances dur-
ing these 100 iterations for each sequence length, averaged
over all executed functions, are illustrated in Figure 6. The
plots show a similar pattern to the hill climbing perfor-
mance graphs. However, it is interesting to note that the
best achievable performance during the greedy algorithm is
around 1.1% worse than optimal, whereas it is very close
to optimal (0.02%) for the hill climbing algorithm. Also,
the average performance during the greedy algorithm im-
proves more gradually and continues to improve for larger
sequence lengths as compared to hill climbing.

Figure 6. Greedy Algorithm Performance

4.3. Focusing on Leaf Sequences of Active
Phases

Leaf function instances are those that cannot be further
modified by the application of any additional optimizations
phases. These function instances represent leaves in the
DAG of the phase order space (e.g. nodes 3, 4, 6, and 8
in Figure 2). Sequences of active phases leading to leaf
function instances are called leaf sequences. Working with
only the leaf sequences has the advantage that the heuris-
tic algorithm no longer needs to guess the most appropriate
sequence length to minimize the algorithm running time,
while at the same time obtaining the best, or at least close
to the best possible performance. Since leaf function in-
stances are generated by different lengths of active phase
sequences, the length of the leaf sequences is variable. In
this section we describe our modifications to existing algo-
rithms, as well as introduce new algorithms that deal with
only leaf sequences.

We first motivate the reason for restricting the heuristic
searches to only leaf function instances. Figure 7 shows
the distribution of the dynamic frequency counts as com-
pared to the optimal for all distinct function instances ob-
tained during our exhaustive phase order space evaluation,
averaged over all 79 executed functions. From this figure



we can see that the performance of the leaf function in-
stances is typically very close to the optimal performance,
and that leaf instances comprise a significant portion of op-
timal function instances with respect to the dynamic fre-
quency counts. This fact is quite intuitive since active op-
timizations generally improve performance, and very rarely
cause a performance degradation. The main drawback of
this approach is that the algorithm will not find the optimal
phase ordering for any function that does not have an opti-
mal performing leaf instance. However, we have observed
that most functions do contain optimal performing leaf in-
stances. For more than 86% of the functions in our bench-
mark suite there is at least one leaf function instance that
achieved optimal dynamic frequency counts. The average
best performance for leaf function instances over all exe-
cuted functions is only 0.42% worse than optimal. More-
over, leaf function instances comprise only 4.38% of the to-
tal space of distinct function instances, which is in turn a mi-
nuscule portion of the total phase order search space. Thus,
restricting the heuristic search to only the leaf function in-
stances constrains the search to only look at a very small
portion of the search space that typically consists of good
function instances, and increases the probability of finding
a near-optimal solution quickly. In the next few sections
we will describe some modifications to existing algorithms,
as well as describe new algorithms that take advantage of
the opportunity provided by leaf function instances to find
better performance faster.

Figure 7. Average Distribution of Dynamic
Frequency Counts

4.3.1 Genetic Algorithm

Genetic algorithms are adaptive algorithms based on Dar-
win’s theory of evolution [27]. These algorithms have been
successfully employed by several researchers to address the
phase ordering problem and other related issues in compil-
ers [4, 3, 28, 29]. Genes correspond to optimization phases

and chromosomes correspond to optimization sequences in
the genetic algorithm. The set of chromosomes currently
under consideration constitutes a population. The number
of generations is how many sets of populations are to be
evaluated. Our experiments with genetic algorithms sug-
gests that minor modifications in the configuration of these
parameters do not significantly affect the performance de-
livered by the genetic algorithms. For the current study we
have fixed the number of chromosomes in each population
at 20. Chromosomes in the first generation are randomly
initialized. After evaluating the performance of each chro-
mosome in the population, they are sorted in decreasing
order of performance. During crossover, 20% of chromo-
somes from the poorly performing half of the population
are replaced by repeatedly selecting two chromosomes from
the better half of the population and replacing the lower half
of the first chromosome with the upper half of the second
and vice-versa to produce two new chromosomes each time.
During mutation we replace a phase with another random
phase with a small probability of 5% for chromosomes in
the upper half of the population and 10% for the chromo-
somes in the lower half. The chromosomes replaced during
crossover are not mutated.

The only parameter that seems to significantly affect the
performance of the genetic algorithm is the length of each
chromosome. We conducted two different studies with ge-
netic algorithms. In the first study we vary the length of the
chromosomes (attempted sequence) starting from the batch
sequence length to 11 times the batch sequence length, in
steps of one-fourth of the batch length. For the second
study we modified the genetic algorithm to only work with
leaf sequences of active phases. This approach requires
maintaining active leaf sequences of different lengths in the
same population. After crossover and mutation it is pos-
sible that the new sequences no longer correspond to leaf
function instances, and may also contain dormant phases.
The modified genetic algorithm handles such sequences by
first squeezing out the dormant phases and then extending
the sequence, if needed, by additional randomly generated
phases to get a leaf sequence. Figures 8(a) and 8(b) shows
the performance results, as well as a comparison of the two
approaches. Since the modified genetic algorithm for leaf
instances does not depend on sequence lengths, the aver-
age performance and cost delivered by this new algorithm
are illustrated by single horizontal lines in Figures 8(a) and
(b).The number of generations is a measure of the cost of
the algorithm. Thus, by concentrating on only the leaf func-
tion instances, the genetic algorithm is able to obtain close
to the best performance at close to the least cost possible
for any sequence length. Interestingly, performance of the
genetic algorithm for leaf sequences (0.43%) is very close
to the best achievable average leaf performance (0.42%).



(a) Performance (b) Cost

Figure 8. Performance and Cost of Genetic Algorithms

(a) Performance (b) Cost

Figure 9. Performance and Cost of Random Search Algorithms

4.3.2 Random Search

Random sampling of the search space to find good solutions
is an effective technique for search spaces that are typically
discrete and sparse, and when the relationships between the
various space parameters are not clearly understood. Exam-
ples are the search spaces that we are dealing with to address
the phase ordering problem. In this study we have attempted
to evaluate random sampling, again by performing two dif-
ferent sets of experiments similar to the genetic algorithm
experiments in the previous section. For the first set, ran-
domly constructed phase sequences of different lengths are
evaluated until 100 consecutive sequences fail to show an
improvement over the current best. The second set of ex-
periments is similar, but only considers leaf sequences or
leaf function instances.

Figures 9(a) and 9(b) show the performance benefits as
well as the cost for all our random search experiments. It
is interesting to note that random searches are also able to
achieve performance close to the optimal for each function
in a few number of attempts. Since our algorithm config-
uration mandates the best performance to be held steady
for 100 consecutive sequences, we see that the cost of our
algorithm is always above 100 attempts. We again notice

that leaf sequences consistently obtain good performance
for the random search algorithm as well. In fact, for our
current configuration, random search algorithm concentrat-
ing on only the leaf sequences is able to cheaply outperform
the best achievable by any other random search algorithm
for any sequence length.

4.3.3 N-Lookahead Algorithm

This algorithm scans N levels down the search space DAG
from the current location to select the phase that leads to
the best subsequence of phases to apply. The critical pa-
rameter is the number of levels to scan. For a N lookahead
algorithm we have to evaluate 15N different optimization
phases to select each phase in the base sequence. This pro-
cess can be very expensive, especially for larger values of
the lookahead N . Thus, in order for this approach to be
feasible we need to study if small values of the lookahead
N can achieve near optimal performance for most of the
functions.

For the current set of experiments we have constrained
the values of N to be either 1, 2, or 3 levels of lookahead.
Due to the exponential nature of the phase order search
space, we believe that any further increase in the lookahead



value will make this method too expensive in comparison
with other heuristic approaches. Table 4 shows the average
performance difference from optimal for the three levels of
lookahead over all the executed functions in our set. As
expected, the performance improves as the levels of looka-
head are increased. However, even after using three lev-
els of lookahead the performance is far from optimal. This
illustrates the ragged nature of typical phase order search
spaces, where it is difficult to predict the final performance
of a phase sequence by only looking at a few number of
phases further down from the current location.

Lookahead
1 2 3

% Performance 22.90 14.64 5.35

Table 4. Perf. of N-Lookahead Algorithm

5. Conclusions

In this paper we studied various properties of the opti-
mization phase order space, and evaluated various heuristic
search algorithms. Based on our observations regarding the
search space properties, we further suggested and evaluated
extensions to existing heuristic algorithms, and developed
new heuristic methods. This study is also the first compar-
ison of the performance delivered by the different heuris-
tic algorithms with the optimal phase ordering. A study of
this magnitude would have normally required several man-
months to accomplish. However, the presence of the ex-
haustive phase order exploration data over a large number
of functions meant that this study required no further com-
pilation or simulation runs to determine the performance of
each unique phase sequence during the heuristic algorithms.

We have a number of interesting conclusions from our
detailed study: (1) Analysis of the phase order search space
indicates that the space is highly discrete and very sparse.
(2) The phase order space typically has a few local and
global minima. More importantly, the sequence length of
attempted phases defines the percentage of local and global
minima in the search space. Larger sequence lengths in-
crease the probability of finding a global minima, but can
also increase the search time to find a good solution. Thus, it
is important to find the correct sequence lengths to balance
algorithm cost, and its ability to reach better performing so-
lutions faster. (3) Due to the inherent difficulty in determin-
ing the ideal sequence length to use during any heuristic
method, and the high probability of obtaining near-optimal
performance from leaf function instances, we modified ex-
isting algorithms to concentrate on only leaf sequences and
demonstrated that for many algorithms leaf sequences can

deliver performance close to the best, and often times even
better than that obtained by excessive increases in sequence
lengths for the same algorithms. Moreover, this can be
achieved at a fraction of the running cost of the original
algorithm since the space of leaf function instances is only
4.38% of the total space of all function instances. (4) On
comparing the performance and cost of different heuristic
algorithms we find that simple techniques, such as local hill
climbing allowed to run over multiple iterations, can often
outperform more complex techniques such as genetic algo-
rithms and lookahead schemes. The added complexity of
simulated annealing, as compared to hill climbing, is found
to not significantly affect the performance of the algorithm.
Random searches and greedy search algorithms achieve de-
cent performance, but not as good as the other heuristic ap-
proaches for the amount of effort expended. The unpre-
dictable nature of phase interactions is responsible for the
mediocre performance of the N-lookahead heuristic algo-
rithm. (5) Interestingly, most of the heuristic algorithms we
evaluated are able to achieve performance close to the best
phase ordering performance in acceptable running times for
all functions. Thus, in conclusion we find that differences
in performance delivered by different heuristic approaches
are not that significant when compared to the optimal phase
ordering performance. Selection of the correct sequence
length is important for algorithms that depend on it, but can
be safely bypassed without any significant performance loss
wherever possible by concentrating on leaf sequences.

6. Acknowledgments

We thank the anonymous reviewers for their constructive
comments and suggestions. This research was supported
in part by NSF grants EIA-0072043, CCR-0208892, CCR-
0312493, CCF-0444207, CNS-0072043, CNS-0305144,
and CNS-0615085.

References

[1] Steven R. Vegdahl. Phase coupling and constant generation
in an optimizing microcode compiler. In Proceedings of the
15th annual workshop on Microprogramming, pages 125–
133. IEEE Press, 1982.

[2] D. Whitfield and M. L. Soffa. An approach to ordering opti-
mizing transformations. In Proceedings of the second ACM
SIGPLAN symposium on Principles & Practice of Parallel
Programming, pages 137–146. ACM Press, 1990.

[3] Keith D. Cooper, Philip J. Schielke, and Devika Subrama-
nian. Optimizing for reduced code space using genetic al-
gorithms. In Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 1–9, May 1999.

[4] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyungh-
wan Cho, David Whalley, Jack Davidson, Mark Bailey, Yun-



heung Paek, and Kyle Gallivan. Finding effective optimiza-
tion phase sequences. In Proceedings of the 2003 ACM SIG-
PLAN conference on Language, Compiler, and Tool for Em-
bedded Systems, pages 12–23. ACM Press, 2003.

[5] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachhara-
jani, and David I. August. Compiler optimization-space ex-
ploration. In Proceedings of the international symposium on
Code Generation and Optimization, pages 204–215. IEEE
Computer Society, 2003.

[6] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, F. Bodin,
and H.A.G. Wijshoff. A feasibility study in iterative compi-
lation. In Proc. ISHPC’99, volume 1615 of Lecture Notes in
Computer Science, pages 121–132, 1999.

[7] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson. Exhaus-
tive optimization phase order space exploration. In Proceed-
ings of the Fourth Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, March 26-29
2006.

[8] Prasad Kulkarni, David Whalley, Gary Tyson, and Jack
Davidson. In search of near-optimal optimization phase or-
derings. In LCTES ’06: Proceedings of the 2006 ACM SIG-
PLAN/SIGBED conference on Language, compilers and tool
support for embedded systems, pages 83–92, New York, NY,
USA, 2006. ACM Press.

[9] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J.
Harvey, Steven W. Reeves, Devika Subramanian, Linda Tor-
czon, and Todd Waterman. Finding effective compilation se-
quences. In LCTES ’04: Proceedings of the 2004 ACM SIG-
PLAN/SIGBED conference on Languages, Compilers, and
Tools for Embedded Systems, pages 231–239, New York,
NY, USA, 2004. ACM Press.

[10] T. Kisuki, P. Knijnenburg, , and M.F.P. O’Boyle. Combined
selection of tile sizes and unroll factors using iterative com-
pilation. In Proc. PACT, pages 237–246, 2000.

[11] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I.
Williams. Using machine learning to focus iterative opti-
mization. In Proceedings of the International Symposium on
Code Generation and Optimization, pages 295–305, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[12] Deborah L. Whitfield and Mary Lou Soffa. An approach
for exploring code improving transformations. ACM Trans.
Program. Lang. Syst., 19(6):1053–1084, 1997.

[13] Min Zhao, Bruce Childers, and Mary Lou Soffa. Predict-
ing the impact of optimizations for embedded systems. In
LCTES ’03: Proceedings of the 2003 ACM SIGPLAN confer-
ence on Language, compiler, and tool for embedded systems,
pages 1–11, New York, NY, USA, 2003. ACM Press.

[14] Min Zhao, Bruce R. Childers, and Mary Lou Soffa. A model-
based framework: An approach for profit-driven optimiza-
tion. In Proceedings of the international symposium on Code
generation and optimization, pages 317–327, Washington,
DC, USA, 2005.

[15] W. Kelly and W. Pugh. A framework for unifying reordering
transformations. Technical Report CS-TR-3193, 1993.

[16] Shun Long and Grigori Fursin. A heuristic search algorithm
based on unified transformation framework. In 7th workshop
on High Performance Scientific and Engineering Computing,
Norway, 2005. IEEE Computer Society.

[17] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle,
and E. Rohou. Iterative compilation in a non-linear opti-
misation space. Proc. Workshop on Profile and Feedback
Directed Compilation, 1998.

[18] P.M.W. Knijnenburg, T. Kisuki, K. Gallivan, and M.F.P.
O’Boyle. The effect of cache models on iterative compi-
lation for combined tiling and unrolling. In Proc. FDDO-3,
pages 31–40, 2000.

[19] Prasad Kulkarni, Steve Hines, Jason Hiser, David Whalley,
Jack Davidson, and Douglas Jones. Fast searches for effec-
tive optimization phase sequences. In Proceedings of the
ACM SIGPLAN ’04 Conference on Programming Language
Design and Implementation, June 2004.

[20] Prasad Kulkarni, Steve Hines, David Whalley, Jason Hiser,
Jack Davidson, and Douglas Jones. Fast and efficient
searches for effective optimization-phase sequences. ACM
Trans. Archit. Code Optim., 2(2):165–198, 2005.

[21] K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subrama-
nian, L. Torczon, and T. Waterman. Acme: Adaptive com-
pilation made efficient. In Proceedings of the ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems, pages 69–78, June 15-17 2005.

[22] M. E. Benitez and J. W. Davidson. A portable global opti-
mizer and linker. In Proceedings of the SIGPLAN’88 con-
ference on Programming Language Design and Implemen-
tation, pages 329–338. ACM Press, 1988.

[23] D. Burger and T. Austin. The SimpleScalar tool set, version
2.0. SIGARCH Comput. Archit. News, 25(3):13–25, 1997.

[24] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,
Todd M. Austin, Trevor Mudge, and Richard B. Brown.
MiBench: A free, commercially representative embedded
benchmark suite. IEEE 4th Annual Workshop on Workload
Characterization, December 2001.

[25] W. Peterson and D. Brown. Cyclic codes for error detec-
tion. In Proceedings of the IRE, volume 49, pages 228–235,
January 1961.

[26] Paul E. Black. Simulated annealing. Dictionary of Algo-
rithms and Data Structures adopted by the U.S. National
Institute of Standards and Technology, December 2004.
http://www.nist.gov/dads/HTML/simulatedAnnealing.html.

[27] Melanie Mitchell. An Introduction to Genetic Algorithms.
Cambridge, Mass. MIT Press, 1996.

[28] A. Nisbet. Genetic algorithm optimized parallelization.
Workshop on Profile and Feedback Directed Compilation,
1998.

[29] Mark Stephenson, Saman Amarasinghe, Martin Martin, and
Una-May O’Reilly. Meta optimization: improving compiler
heuristics with machine learning. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming Language De-
sign and Implementation, pages 77–90. ACM Press, 2003.


