
Finding Effective Optimization Phase Sequences

Prasad Kulkar ni1, Wankang Zhao1, Hwashin Moon2, Kyunghwan Cho2, David Whalley1,
Jack Davidson3, Mar k Bailey4, Yunheung Paek5, Kyle Gallivan1

1Computer Science Department, Florida State University, Tallahassee, FL 32306-4530; e-mail: whalley@cs.fsu.edu
2Electr ical Engr Dept, Korea Advanced Institute of Science & Technology, Daejon 305-701, Korea

3Computer Science Department, University of Virginia, Charlottesville, VA 22904; e-mail: jwd@virginia.edu
4Computer Science Department, Hamilton College, Clinton, NY 13323; e-mail: mbailey@hamilton.edu

5School of Electrical Engineering, Seoul National University, Seoul 151-742, Korea; e-mail: ypaek@ee.snu.ac.kr

ABSTRACT
It has long been known that a single ordering of optimization
phases will not produce the best code for every application. This
phase ordering problem can be more severe when generating code
for embedded systems due to the need to meet conflicting con-
straints on time, code size, and power consumption.Given that
many embedded application developers are willing to spend time
tuning an application, we believe a viable approach is to allow the
developer to steer the process of optimizing a function.In this
paper, we describe support in VISTA, an interactive compilation
system, for finding effective sequences of optimization phases.
VISTA provides the user with dynamic and static performance
information that can be used during an interactive compilation
session to gauge the progress of improving the code. In addition,
VISTA provides support for automatically using performance
information to select the best optimization sequence among sev-
eral attempted.One such feature is the use of a genetic algorithm
to search for the most efficient sequence based on specified fitness
criteria. We hav eincluded a number of experimental results that
evaluate the effectiveness of using a genetic algorithm in VISTA
to find effective optimization phase sequences.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors− compilers, opti-
mization D.4.7 [Operating Systems]: Organization and Design−
real-time systems and embedded systems.

General Terms
Measurement, Performance, Experimentation, Algorithms.

Keywords
Phase ordering, interactive compilation, genetic algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
LCTES’03, June 11-13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006...$5.00.

1. INTRODUCTION
The phase ordering problem has long been known to be a difficult
dilemma for compiler writers [21, 23].A single sequence of opti-
mization phases is highly unlikely to produce optimal code for
ev ery application (or even each function within an application) on
a giv en machine. Whetheror not a particular optimization enables
or disables opportunities for subsequent optimizations is difficult
to predict since it depends on the application being compiled, the
previously applied optimizations, and the target architecture [23].

The problem of ordering optimization phases can be more
severe when generating code for embedded applications.Many
applications for embedded systems need to meet constraints on
time, code size, and power consumption. Often an optimization
that could improve one aspect (e.g., speed) can degrade another
(e.g., size) [20].In fact, it may be desirable on many systems to
enhance execution time for the frequently executed code portions
and reduce code size for the less frequently executed portions.

An embedded application may reside in a product for which
millions of units may be shipped (e.g. cellular phones, digital
cameras, printers, etc.).For this reason an embedded application
developer may be willing to expend considerable effort and time
to produce an application that is faster, smaller, or consumes less
power. Howev er, it is clear that attempting all optimization phase
orderings will be prohibitively expensive since many different
optimizations are available and can be repeatedly applied.For
this reason, we believe a viable approach is to let the embedded
application developer steer the optimization process.In this
paper, we describe support in the VISTA (VPO Interactive System
for Tuning Applications) compilation system for finding
sequences of optimization phases that meet the developer’s goals.

2. RELATED WORK
Other researchers have dev eloped systems that provide interactive
compilation support. These systems include thepat toolkit [1],
theparafrase-2environment [19], thee/spsystem [4], a visualiza-
tion system developed at the University of Pittsburgh [9], and
SUIF explorer [15].These systems provide support by illustrating
the possible dependencies that may prevent parallelizing transfor-
mations. Auser can assist the compilation system by indicating if
a dependency can be removed. In contrast, VISTA supports low-
level transformations and user-specified changes, which are
needed for tuning embedded applications.

-1-

A few low-level interactive compilation systems have also
been developed. Onesystem, which is coincidentally also called
VISTA (Visual Interface for Scheduling Transformations and
Analysis), allows a user to verify dependencies that may prevent
the exploitation of instruction level parallelism in a processor [18].
Selective ordering of different optimization phases does not
appear to be an option in their system. The system that most
resembles our work is called VSSC (Visual Simple-SUIF Com-
piler) [12]. It allows optimization phases to be selected at various
points during the compilation process.It also allows optimiza-
tions to be undone, but unlike our compiler only at the level of
complete optimization phases as opposed to individual transfor-
mations within each phase. Other features in our system, such as
supporting user-specified changes and performance feedback
information, do not appear to be available in these systems.

There has been prior work that used aggressive compilation
techniques to improve performance. Superoptimizershave been
developed that use an exhaustive search for instruction selection
[16] or to eliminate branches [10].Iterative techniques using per-
formance feedback information after each compilation have been
applied to determine good optimization parameters (e.g., blocking
sizes) for specific programs or library routines [14, 22].A system
using genetic algorithms to better parallelize loop nests has been
developed and evaluated [17]. These systems perform source-to-
source transformations and are limited in the set of optimizations
they apply. Selecting the best combination of optimizations by
turning on or off optimization flags, as opposed to varying the
order of optimizations, has been investigated [5]. A low-level
compilation system developed at Rice University uses a genetic
algorithm to reduce code size by finding efficient optimization
phase sequences [6].However, this system is batch oriented
instead of interactive and is designed to use the same optimization
phase order for all of the functions within a file.

3. THE VISTA FRAMEWORK
In this section, we review the VISTA framework. Figure1 illus-
trates the flow of information in VISTA, which consists of a com-
piler and a viewer. The programmer initially indicates a file to be
compiled and then specifies requests through the viewer, which
include sequences of optimization phases, user-defined transfor-
mations, and queries.The compiler performs the specified actions
and sends program representation information back to the viewer.
When the user chooses to terminate the session, VISTA writes the
sequence of transformations to a file so they can be reapplied at a
later time, enabling future updates to the program representation.

Requests

Saved
Display

Selections

State
User Viewer

Transformation Info.Program Representation Info.

AssemblySource
FileFile

Compiler

Figure 1: Interactive Code Improvement Process

The compiler used in VISTA is based on VPO (Very Portable
Optimizer) [2, 3]. VPO is a compiler back end that performs all
of its optimizations on a single low-level representation called
RTLs (register transfer lists). Because VPO uses a single repre-
sentation, it can apply most analyses and optimization phases
repeatedly and in an arbitrary order. This feature facilitates find-
ing effective sequences of optimization phases.

The VISTA framework supports the following features.
First, it allows a user to view a low-level graphical representation
of the function being compiled, which is much more convenient
than extracting this information from a source-level debugger.
Second, a user can select the order and scope of optimization
phases. Selectingthe order of optimization phases may allow a
user to find a sequence of phases that are more effective for a spe-
cific function than the default optimization phase order. Limiting
the scope of the optimization phases allows a user to concentrate
resources, such as registers, on the critical regions of the code.
Third, a user can manually specify transformations. This feature
is useful when exploiting specialized architectural features that
cannot be exploited automatically by the compiler. Fourth, a user
can undo previously applied transformations or optimization
phases. Thisfeature eases experimentation with alternative phase
orderings or user-defined transformations.

We hav e made several enhancements to VISTA that facili-
tates the selection of effective sequences of optimization phases.
These enhancements include automatically obtaining performance
feedback information, using structured statements for applying
optimization phases, automatically using performance information
for selecting optimization phase sequences.We describe these
enhancements in the following three sections of the paper.

4. OBTAINING INTERACTIVE
PERFORMANCE INFORMATION

VISTA supports obtaining both static and dynamic measurements.
For our current experiments, we provide a rough approximation of
the number of CPU cycles by counting the number of instructions
executed. Thesame approach was used in a prior study that
searches for effective optimization phase sequences using a
genetic algorithm [6]. We measured the dynamic instruction
count by instrumenting the assembly code with instructions to
increment counters using the EASE (Environment for Architec-
ture Study and Experimentation) system [7, 8].For embedded
applications, obtaining actual execution times is problematic due
to cross compilation and this issue is described in more detail later
in the paper.

Figure 2 shows a window that appears the first time a user
obtains performance measurements for a program.Whenever
measurements are needed, an instrumented executable for the pro-
gram is produced and executed. Theuser is prompted for the
information that is needed to link, execute, and verify correct pro-
gram behavior. A user could accomplish this with a previous ver-
sion of VISTA in a series of manual steps [24]. This process is
automatically performed after applying each optimization phase in
the latest version of VISTA.

-2-

Figure 2: Test Configuration Window

After applying any remaining necessary optimization phases,
VISTA produces instrumented assembly code for the function.As
described in subsequent sections, we need to obtain performance
measurements many times during the compilation of a single
function. We compile functions within a file one at a time and
each file is compiled separately. In order to reduce compilation
overhead, we save the position in the assembly file at the begin-
ning of the function and regenerate the assembly at that point.
The assembly for the remaining functions in the file is generated
by reading in the transformation information.Thus, obtaining
new measurements requires producing instrumented assembly for
only the remaining functions within the file and assembling only
the current file.A l ink and execution step is also required each
time measurements are obtained.We also save the position in the
intermediate code file that is input to VPO and the position in the
transformation file to further reduce I/O. After executing the pro-
gram VISTA reads the initial program representation and the com-
piler reapplies the sequence of transformations to reproduce the
program representation at the point where measurements were
taken. In addition, VISTA reads the frequency counts for each
basic block produced by the instrumented executable.

Figure 3 shows a snapshot of the viewer with the history of a
sequence of optimization phases displayed. Note that not only is
the number of transformations associated with each optimization
phase displayed, but also the improvements in instructions
executed and code size are shown. Thisinformation allows a user

Figure 3: Main Window of VISTA Showing History of Optimization Phases

to quickly gauge the progress that has been made in improving the
function. Thefrequency of each basic block relative to the func-
tion is also shown in each block header line, which allows a user
to identify the critical regions of a function.

5. INTERACTIVEL Y SELECTING
OPTIMIZATION PHASE SEQUENCES

A programmer has little or no control over the order in which
code improvement phases are applied when using most compilers.
VISTA provides the programmer with the flexibility to specify the
exact sequence of optimization phases to be applied in a specified
region of code. In order to support this flexibility , we identified
the set of analyses required for each optimization phase and the
set of analyses invalidated by each optimization phase. In addi-
tion, we identified the constraints among existing optimization
phases. For instance, most optimization phases can only be
applied before filling branch delay slots.

We find it useful to conditionally invoke an optimization
phase based on whether a previous optimization phase caused any
changes to the program representation.The application of one
optimization phase often provides opportunities for another opti-
mization phase. Such a feature allows a sequence of optimization
phases to be applied until no further improvements are found.
Likewise, an optimization phase that is unlikely to result in code-
improving transformations unless a prior phase has changed the
program representation can be invoked only if changes occurred,
which may save compilation time.

Prior support in VISTA for conditionally applying optimiza-
tion phases was only a low lev el branch operation (i.e.,if
changes goto <label>) [24]. VISTA now supports testing if
changes to the program representation have occurred in the form
of four structured control statements (if-changes-then, if-changes-
then-else, do-while-changes, while-changes-do) a user can specify
interactively. These structured statements, which can be nested,
are provided to make selection of sequences of optimization
phases more convenient to the user. In effect, we are providing an
optimization phase programming language.

-3-

Consider the interaction between register allocation and
instruction selection optimization phases.Register allocation
replaces load and store instructions with register-to-register move
instructions, which provides opportunities for instruction selec-
tion. Instruction selection combines instructions together and
reduces register pressure, which may allow additional opportuni-
ties for register allocation. Figure 4 illustrates how to exploit the
interaction between these two phases with a simple example. The
user has selected two constructs, which are ado-while-changes
statement and aif-changes-thenstatement. For each iteration, the
compiler performs register allocation. Instruction selection is only
performed if register allocation allocates one or more live ranges
of a variable to a register. These phases will be iteratively applied
until no additional live ranges are allocated to registers.

Figure 4: Interactively Selecting Optimization Phases

In order to communicate to VPO the sequence of optimiza-
tions phases to apply, the viewer translates the structured state-
ments into a low-level sequence of requests. This sequence is
interpreted by VPO and each resulting change to the program rep-
resentation is sent to the viewer. This process continues until a
stop operation has been encountered. Figure 5 reflects the opera-
tions to be performed by the selections shown in Figure 4.

1. Performinstruction selection
2. Performregister assignment
3. Enterloop
4. Performregister allocation
5. If no changes in last phase then goto 7
6. Performinstruction selection
7. If changes during loop iteration then goto 4
8. Exit loop
9. Performloop-invariant code motion

10. Stop

Figure 5: Operations Performed by Selections in Figure 4

6. PERFORMANCE DRIVEN SELECTION
OF OPTIMIZATION SEQUENCES

In addition to allowing a user to specify an optimization sequence,
it is desirable for the compiler to automatically compare two or
more sequences and determine which is most beneficial.VISTA
provides two structured constructs that support automatic selec-
tion of optimization sequences. The first construct is theselect-
best-fromstatement and is illustrated in Figure 6. This statement
evaluates two or more specified sequences of optimization phases
and selects the sequence that best improves performance accord-
ing to the selected criteria.For each sequence the compiler
applies the specified optimization phases, determines the program
performance (instruments the code for obtaining performance
measurements, produces the assembly, executes the program, and
obtains the measurements), and reapplies the transformations to
reestablish the program representation at the point where the
select-best-fromstatement was specified.After the best sequence
is found, the compiler reapplies that sequence.

Figure 6: Selecting the Best Sequence from a Specified Set

The other construct, theselect-best-combinationstatement, is
depicted in Figure 7. This statement accepts a set ofm distinct
optimization phases and attempts to discover the best sequence for
applying these phases. Figure 8 shows the different options that
we provide the user to control the search. The user specifies the
sequence length, n, which is the total number of phases applied in
each sequence.An exhaustive search attempts all possiblemn

sequences, which may be appropriate when the total number of
possible sequences can be evaluated in a reasonable period of
time. Thebiased sampling search applies a genetic algorithm in
an attempt to find the most effective sequence within a limited
amount of time since in many cases the search space is too large
to evaluate all possible sequences.

-4-

Figure 7: Selecting the Best Sequence
from a Set of Optimization Phases

For this search the number of different sequences in the pop-
ulation and the number of generations must be specified, which
limits the total number of sequences evaluated. Theseterms are
described in more detail later in the paper. The permutation
search attempts to evaluate all permutations of a specified length.
Unlike the other two searches, a permutation by definition cannot
have any of i ts optimization phases repeated. Thus, the sequence
length, n, must be less than or equal to the number of distinct
phases,m. The total number of sequences attempted will be
m!/(m-n)!. A permutation search may be an appropriate option
when the user is sure that each phase should be attempted at most
once. VISTA also allows the user to choose weight factors for
instructions executed and code size, where the relative
improvement of each is used to determine the overall
improvement. Whenusing the select-best-fromstatement, the
user is also prompted to select a weight factor.

Figure 8: Selecting Options to Search the Space of Possible Sequences

Performing these searches is often time-consuming.Thus,
VISTA provides a window showing the current status of the
search. Figure9 shows a snapshot of the status of the search that
was selected in Figures 7 and 8. The percentage of sequences
completed along with the best sequence and its effect on perfor-
mance is given. Theuser can terminate the search at any point
and accept the best sequence found so far.

7. EXPERIMENTS
This section describes the results of a set of experiments to illus-
trate the effectiveness of VISTA’ s biased sampling search, which
uses a genetic algorithm to find efficient sequences of optimiza-
tion phases.We used a subset of themibenchbenchmarks, which
are C applications targeting specific areas of the embedded market
[11]. We used one benchmark from each of the six categories of
applications. Table 1 contains descriptions of these programs.

Category Program Description

auto/industrial bitcount test bit manipulation abilities of a processor
network dijkstra calculates shortest path between nodes using

Dijkstra’s algorithm
telecomm fft performs fast fourier transform
consumer jpeg image compression and decompression
security sha secure hash algorithm
office stringsearch searches for given words in phrases

Table 1: MiBench Benchmarks Used in the Experiments

Our target architecture for these experiments is the SPARC,
as we do not currently have a robust version of VISTA targeted to
an embedded architecture. Using a genetic algorithm to find
effective optimization phase sequences can result in thousands of
sequences being applied.This provides a severe stress test for any
compiler. In the future we plan to test VISTA’ s ability to find
effective optimization phase sequences on embedded processors.

Our experiments have many similarities to the Rice study,
which used a genetic algorithm to reduce code size [6].We
believe the Rice study was the first to demonstrate that genetic
algorithms could be effective for finding efficient optimization
phase sequences.However, there are several significant differ-
ences between their study and ours and we will contrast the two
studies throughout this section.

-5-

Figure 9: Window Showing the Status of Searching for an Effective Sequence

The Rice study used a genetic algorithm to find effective
sequences consisting of twelve phases from ten candidate opti-
mizations. They compared these sequences to the performance
obtained from a fixed sequence of twelve optimization phases.In
contrast, VPO does not utilize a fixed sequence of phases.
Instead, VPO repeatedly applies phases until no more
improvements are obtained.Figure 10 shows the algorithm used
to determine the order in which optimization phases are applied in
VPO. Thisalgorithm has evolved over the years and the primary
goal is to reduce execution time.

Initially it was not obvious how to best assess VISTA’ s abil-
ity to find effective optimization sequences as compared to the
batch VPO compiler. One complication is that theregister assign-
ment (assigning pseudo registers to hardware registers) andfix
entry exit (fixing the entry and exit of the function to manage the
run-time stack) phases are required, which means that they hav eto
be applied once and only once.Many of the other phases shown
in Figure 10 must be applied afterregister assignmentand before
fix entry exit. Thus, we decided to use the genetic algorithm to
find the best sequence of code-improving phases that can be
applied between these two required phases.These candidate
sequences include fourteen unique phases that can be applied in
any order between the two required phases.Table 2 describes
each of these fourteen phases and gives a designation (gene) for
each phase that will be used later when representing each opti-
mization in a sequence.

Another issue is the number of optimization phases to apply
since it may be beneficial to perform a specific optimization phase
multiple times. When applying the genetic algorithm, one must
specify the number of optimization phases (genes) in each
sequence (chromosome). An appropriate uniform limit is not eas-
ily determined since the number of optimization phases attempted
by the batch compiler can vary with each function. Therefore, we
first determined both the number of successfully applied optimiza-
tion phases (those which affected one or more instructions in the
compiled function) and the total number of phases attempted in
the batch compilation before establishing the sequence length for
our searches.

...
global instruction selection
register assignment
instruction selection
minimize loop jumps
if (changes in last phase)

merge basic blocks
do

do
do

dead assignment elimination
while changes
register allocation
if (changes in last two phases)

instruction selection
while changes
do

common subexpression elimination
dead assignment elimination
loop transformations
remove useless jumps
branch chaining
remove unreachable code
remove useless basic blocks
reverse jumps
remove jumps by block reordering
remove useless jumps
if (changes in last 7 phases)

minimize loop jumps
if (changes in last phase)

merge basic blocks
dead assignment elimination
strength reduction
instruction selection

while changes
while changes
branch chaining
remove unreachable code
remove useless basic blocks
reverse jumps
remove jumps by block reordering
fix entry exit
instruction scheduling
...

Figure 10: VPO’s Order of Optimization Phases
Applied in Batch Mode

Table 3 shows batch compilation information for each func-
tion in each of the benchmark programs.The first column identi-
fies the program and the number of static instructions produced
for the application after batch optimization. In four of the bench-
marks, some functions were not executed even though we used the

-6-

Optimization Phase Gene Description

instruction selection s Combine instructions together when the combined effect is a legal instruction.

minimize loop jumps j Removes a jump associated with a loop by duplicating a portion of the loop.

merge basic blocks m Merges two consecutive basic blocksa andb whena is only followed byb andb is only preceded bya.

dead assignment elim h Removes assignments when the assigned value is never used.

register allocation k Replaces references to a variable within a specific live range with a register.

common subexpr elim c Eliminates fully redundant calculations.

loop transformations l Performs loop-invariant code motion, recurrence elimination, loop strength reduction, and induction variable elimination on
each loop ordered by loop nesting level. Eachof these transformations can also be individually selected by the user.

remove useless jumps u Removes jumps and branches whose target is the following block.

strength reduction q Replaces an expensive instruction with one or more cheaper ones.

branch chaining b Replaces a branch or jump target with the target of the last jump in a jump chain.

remove unreachable code d Removes basic blocks that cannot be reached from the entry block of the function.

remove useless blocks e Removes empty blocks from the control-flow graph.

reverse jumps r Reverses a conditional branch when it branches over an jump to eliminate the jump.

block reordering i Removes a jump by reordering basic blocks when the target of the jump has only a single predecessor.

Table 2: Candidate Optimization Phases in the Genetic Algorithm Experiments

input data that was supplied with the benchmark. In these cases
we aggregated such functions in the results asunexecuted func-
tions since we did not have the space to list results for all of the
functions. Thethird and fourth columns give each function’s con-
tribution, expressed as a percentage, to the dynamic and static
instruction count of the whole program after applying the opti-
mization sequence. The fifth column shows the sequence and
number of optimization phases successfully applied by the batch
compiler betweenregister assignmentand fix entry exit that
affected the instructions. The number applied varies depending
upon the size and loop structure of the function.Note these
sequences of phases are applied after attempting the optimization
phases that precederegister assignmentin Figure 10. One can see
that the sequences of successful optimization phases can vary
greatly between functions in the same application. The next col-
umn shows the total number of optimization phases attempted,
which is always significantly larger than the number of success-
fully applied phases.

The last two columns in Table 3 demonstrate that iteratively
applying optimization phases had a significant impact on dynamic
and static instruction count.We obtained this measurement by
comparing the results of the default batch compilation to results
obtained without iteration, which uses the algorithm in Figure 10
with all thedo-while’s iterated only once. The iteration impact
result shows the power of iteratively applying optimization phases
until no more improvements can be found.In particular the num-
ber of instructions executed is often reduced. The only cases
where the dynamic instruction count increased was whenloop
invariant code motionwas performed and the loop was either
never entered or only executed once. In fact, we were not sure if
any additional dynamic improvements could be obtained using a
genetic algorithm given that iteration may mitigate many phase
ordering problems.

The remainder of this section compares the results we
obtained using a genetic algorithm to search for effective opti-
mization sequences to the sequences found by the iterative batch
version of VPO. For our genetic algorithm experiments we set the
optimization phase sequence (chromosome) length to 1.25 times

the length of the number of successfully applied optimization
phases for each function.We felt this sequence length is a reason-
able limit for each function and still gives us an opportunity to
successfully apply more optimization phases than what the batch
compiler was able to accomplish. Note that the number of
attempted phases for each function by the batch compiler far
exceeded this length.

The following aspects of our experiments were identical to
those performed in the Rice study. We set the population size
(fixed number of sequences or chromosomes) to twenty and each
of these initial sequences is randomly initialized.We sort the
sequences in the population by fitness values (using the dynamic
and static instruction counts according to the weight factors). At
each generation (time step) we remove the worst sequence and
three others from the lower (poorer performing) half of the popu-
lation chosen at random. Each of the removed sequences are
replaced by randomly selecting a pair of the remaining sequences
from the upper half of the population and performing a crossover
(mating) operation to create a pair of new sequences. The
crossover operation combines the lower half of one sequence with
the upper half of the other sequence and vice versa to create the
two new sequences. Fifteensequences are then changed
(mutated) by considering each optimization phase (gene) in the
sequence. Mutationof each optimization phase in the sequences
occurs with a probability of 10% and 5% for the lower and upper
halves of the population, respectively. When an optimization
phase is mutated, it is randomly replaced with another phase.The
four sequences subjected to crossover and the best performing
sequence are not mutated.

There were additional differences between our experiments
and the Rice study besides using a different compiler, set of opti-
mization phases, target architecture, benchmarks, and optimiza-
tion phase sequence lengths. Rather than performing a search for
each program or module, we used the genetic algorithm to per-
form a different search for each function. In the Rice study the fit-
ness criteria was based on code size with dynamic instruction
count used as a secondary fitness value to break ties. As shown in
Figure 8, we can vary both the instructions executed and code size

-7-

iteration impactprogram %of % of appliedsequence attempted
and size dynamic static and length phases dynamic% static %

function

bitcount AR_btbl_bitcount 3.22 3.86 kschsc (6) 53 -9.52 -9.52
(496) BW_btbl_bitcount 3.05 3.66 emsaks (6) 24 0.00 0.00

bit_count 13.29 3.25 sksc(4) 42 -18.64 -14.29
bit_shifter 37.41 3.86 sks(3) 26 -9.09 -5.26
bitcount 8.47 10.16 ksc(3) 40 0.00 0.00
main 13.05 19.51 sjmhkscllqsclllsllhsc(21) 125 -27.27 -8.16
ntbl_bitcnt 14.40 3.66 sksc(4) 40 -11.10 -11.76
ntbl_bitcount 7.12 8.54 ks(2) 24 0.00 0.00
unexecuted functions 0.00 43.49 5.00 40.57 N/A -9.57
av erage 5.13 43.87 -11.10 -7.19

dijkstra dequeue 0.85 10.40 sksc (4) 40 0.00 0.00
(327) dijkstra 83.15 44.04 sjmhksclllcllsc (15) 71 -14.54 -4.44

enqueue 15.81 12.84 shksc(5) 42 0.00 0.00
main 0.06 22.94 sjmhksllsllsc(13) 71 -12.13 +3.23
print_path 0.01 8.26 shksc(5) 41 0.00 0.00
qcount 0.12 1.53 (0) 21 0.00 0.00
av erage 7.17 47.67 -12.54 -1.36

ff t CheckPointer 0.00 2.34 shksc(5) 41 0.00 0.00
(728) IsPowerOfTwo 0.00 2.61 sksc (4) 40 0.00 0.00

NumberOfBits... 0.00 3.98 sjmhksc(7) 43 0.00 0.00
ReverseBits 14.13 2.61 sjmksc(6) 42 0.00 +5.56
ff t_float 55.88 38.87 sjmhkscllllhsch(15) 57 -8.84 -7.64
main 29.98 39.56 sjmhkscllllehscll(17) 58 -1.90 -1.23
unexecuted functions 0.00 10.03 3.00 65.00 N/A -2.99
av erage 8.29 49.43 -5.77 -3.95

jpeg finish_input_ppm 0.01 0.04 (0) 21 0.00 0.00
(5171) get_raw_row 48.35 0.48 sksc (4) 40 0.00 0.00

jinit_read_ppm 0.10 0.35 ksc(3) 39 0.00 0.00
main 43.41 3.96 sjmhksclschc(12) 70 -0.03 -1.14
parse_switches 0.51 11.26 sjmhksc(7) 43 0.00 0.00
pbm_getc 5.12 0.81 sksch(5) 41 0.00 0.00
read_pbm_integer 1.41 1.26 sksc(4) 41 0.00 0.00
select_file_type 0.27 2.07 sksec(5) 40 0.00 0.00
start_input_ppm 0.79 5.96 sjmkschc(8) 55 0.00 0.00
write_stdout 0.03 0.12 kss(3) 40 0.00 0.00
unexecuted functions 0.00 73.69 6.27 44.35 N/A -0.19
av erage 6.08 44.13 -0.01 -0.19

sha main 0.00 13.71 sksclsl (7) 55 +6.67 +5.26
(372) sha_final 0.00 10.75 shksc (5) 41 0.00 0.00

sha_init 0.00 5.11 sks(3) 25 0.00 0.00
sha_print 0.00 3.76 sksc(4) 40 0.00 0.00
sha_stream 0.00 11.02 sjmkscl(7) 42 0.00 0.00
sha_transform 99.51 44.62 skscllllllllhscllllllhs(21) 56 -11.46 -12.50
sha_update 0.49 11.02 sjmhkscc(8) 56 -0.08 -2.78
av erage 7.86 45.00 -11.44 -6.20

string- init_search 92.32 6.18 sjmkscllscllhs (14) 70 -15.99 0.00
search main 3.02 14.08 sjmksclhsclhl (13) 69 +0.01 +2.08
(760) strsearch 4.66 7.37 skscllslscl (11) 69 -3.10 0.00

unexecuted functions 0.00 71.44 14.00 66.57 N/A +1.37
av erage 13.50 67.40 -15.01 +1.28

av erage 8.01 49.58 -9.31 -2.94

Table 3: Batch Optimization Measurements

weight factors. For each function, we performed three different
searches, which are based on static instruction count only,
dynamic instruction count only, and 50% for each factor. Finally,
to obtain the results in a timely fashion we only performed 100
generations instead of 1000 generations for each search.

Table 4 shows the results obtained for each function by
applying the genetic algorithm. As in Table 3,unexecuted func-
tions indicate those functions that were not executed using the
benchmark’s input data. The last six columns show the effect on
dynamic and static instruction counts for each of the three sets of
fitness criteria. The results that were supposed to improve

according to the fitness criteria used are shown in boldface. The
genetic algorithm was able to find a sequence for each function
that either achieves the same result or obtains an improved result
as compared to the batch compilation. In two cases the dynamic
instruction count increased when optimizing for both speed and
space. Butin each case the overall benefit was improved since the
percentage decrease in static instruction count was larger than the
percentage increase in dynamic instruction count.

Figures 11 and 12 show the overall effect of using the genetic
algorithm for each test program on the dynamic and static results,
respectively. The second measure for each function is obtained

-8-

optimizing for speed optimizing for space optimizing for both
% effect %effect %effect %effect %effect %effect

on dynamic on static on dynamic on static on dynamic on static
program functions

bitcount AR_btbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00
BW_btbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00
bit_count -25.29 -12.50 -25.29 -12.50 -25.29 -12.50
bit_shifter 0.00 0.00 0.00 0.00 0.00 0.00
bitcount -2.00 -2.00 -2.00 -2.00 -2.00 -2.00
main -10.00 -4.90 +20.00 -11.76 -0.00 -7.84
ntbl_bitcnt -10.46 -11.11 -5.82 -5.56 -10.46 -11.11
ntbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00
unexecuted functions N/A -2.55 N/A -3.73 N/A -3.73
total -6.30 -3.82 -2.02 -5.42 -5.10 -4.82

dijkstra dequeue 0.00 0.00 0.00 0.00 0.00 0.00
dijkstra -6.05 -3.47 -3.02 -4.86 -6.05 -6.25
enqueue 0.00 0.00 0.00 0.00 0.00 0.00
main 0.00 0.00 +23.12 -6.67 0.00 -2.67
print_path 0.00 0.00 0.00 0.00 0.00 0.00
qcount 0.00 0.00 0.00 0.00 0.00 0.00
total -5.03 -1.53 -2.50 -3.67 -5.03 -3.36

ff t CheckPointer 0.00 0.00 0.00 0.00 0.00 0.00
IsPowerOfTwo 0.00 0.00 0.00 0.00 0.00 0.00
NumberOfBitsNeeded 0.00 0.00 +16.47 -6.90 0.00 0.00
ReverseBits -0.93 -5.26 0.00 -15.79 0.00 -15.79
ff t_float -6.14 -4.59 +0.71 -8.83 -6.14 -8.13
main -0.00 -1.74 +0.44 -5.21 +0.44 -5.21
unexecuted functions N/A -4.11 N/A -6.85 N/A -6.85
total -3.57 -3.02 +0.53 -6.87 -3.30 -6.32

jpeg finish_input_ppm 0.00 0.00 0.00 0.00 0.00 0.00
get_raw_row 0.00 0.00 0.00 0.00 0.00 0.00
jinit_read_ppm 0.00 0.00 0.00 0.00 0.00 0.00
main -0.04 -1.95 -0.03 -3.90 -0.03 -3.90
parse_switches 0.00 -1.72 +2.17 -2.06 0.00 -1.72
pbm_getc 0.00 0.00 0.00 0.00 0.00 0.00
read_pbm_integer -3.54 -1.54 -3.54 -1.54 -3.54 -1.54
select_file_type -2.08 0.00 -2.08 0.00 -2.08 0.00
start_input_ppm 0.00 -0.65 0.00 -0.65 0.00 -0.65
write_stdout -16.67 -16.67 -16.67 -16.67 -16.67 -16.67
unexecuted functions N/A -3.15 N/A -3.94 N/A -3.94
total -0.08 -2.67 -0.06 -3.36 -0.07 -3.33

sha main -17.07 -9.80 -17.07 -9.80 -17.07 -9.80
sha_final 0.00 0.00 0.00 0.00 0.00 0.00
sha_init 0.00 0.00 0.00 0.00 0.00 0.00
sha_print -7.14 -7.14 -7.14 -7.14 -7.14 -7.14
sha_stream -6.65 -29.27 +6.59 -31.71 -6.65 -29.27
sha_transform -0.04 -0.60 +6.07 -3.01 0.00 0.00
sha_update -0.06 -2.44 0.00 -7.32 0.00 -7.32
total -0.04 -5.38 +6.04 -7.26 -0.00 -5.65

stringsearch init_search -0.37 -6.38 -0.31 -19.15 -0.37 -21.28
main -1.90 -5.61 -1.90 -10.28 +5.67 -7.48
strsearch -4.40 -7.14 +0.61 -7.14 -2.24 -3.57
unexecuted functions N/A -9.64 N/A -9.64 N/A -9.64
total -0.61 -8.68 -0.32 -10.13 -0.28 -9.61

av erage -2.61 -4.18 +0.28 -6.12 -2.30 -5.52

Table 4: Effect on Speed and Space Using the Three Fitness Criteria

from the sequence found by the batch compilation when itera-
tively applying optimization phases and is normalized to 1.The
results show that iteratively applying phases has a significant
impact on dynamic instruction count and less of an impact on the
code size. The genetic algorithm was more effective at reducing
the static instruction count than dynamic instruction count, which
is not surprising since the batch compiler was developed with the
primary goal of improving the speed of the generated code and not
reducing code size.However, respectable dynamic improvements
were still obtained despite having a batch compilation baseline
that iteratively applies optimization phases until no more

improvements could be made. Note that many batch compilers do
not iteratively apply phases and the use of a genetic algorithm to
select optimization sequences will have greater benefits as com-
pared to such noniterative batch compilations.The results when
optimizing for both speed and space showed that we were able to
achieve close to the same dynamic benefits when optimizing for
speed and close to the same static benefits when optimizing for
space. Auser can set the fitness criteria for a function to best
improve the overall result. For instance, small functions with high
dynamic instruction counts can be optimized primarily for speed,
functions with low dynamic instruction counts can be optimized

-9-

primarily for space, and large functions with high dynamic counts
can be optimized for both speed and space.

Figure 11: Overall Effect on Dynamic Instruction Count

Figure 12: Overall Effect on Static Instruction Count

The optimization phase sequences selected by the genetic
algorithm for each function are shown in Table 5.The sequences
shown are the ones that produced the best results for the specified
fitness criteria. Sequences for a function shown in boldface varied
between the different fitness criteria. Similar to the results in
Table 3, these sequences represent the optimization phases suc-
cessfully applied as opposed to all optimization phases attempted.

Some optimization phases listed in Table 2 are rarely applied
since they hav ealready been applied once beforeregister assign-
ment. These are the control-flow transformations that include the
third phase and the last five phases listed in Table 2. Strength
reductionwas not applied due to using dynamic instruction counts
instead of taking the latencies of more expensive instructions, like
integer multiplies, into account.

It appears that certain optimization phases enable other spe-
cific phases.For instance,instruction selection(s) often follows
register allocation(k) since instructions can often be combined
after memory references are replaced by registers. Likewise,dead
assignment elimination(h) often follows common subexpression
elimination(c) since a sequence of assignments often become use-
less when the use of its result is replaced with a different register.

The results in Table 5 also show that functions within the
same program produce the best results with different optimization
sequences. Thefunctions with fewer instructions typically had
not only fewer successfully applied optimization phases but also
less variance in the sequences selected between the different fit-
ness criteria. Note that many sequences may produce the same
result for a given function and the one shown is just the first
sequence found that produces the best result.

We use a hash table containing fitness values and indexed by
the chromosomes to reduce the search overhead. Ifthe sequence
has already been attempted, then we do not recompute it.We
found that on average 54% of the sequences were found in the
hash table. The functions with shorter sequence lengths had a
much higher percentage of redundant sequences.A shorter
sequence length results in fewer possible sequences and less like-
lihood that mutation will change a sequence in the population.

The overhead of finding the best sequence using the genetic
algorithm for 100 generations with a population size of twenty
required about 30-45 minutes for each function on a SPARC
Ultra-80 processor. The compilation time was less when optimiz-
ing for size only since we would only get dynamic instruction
counts when the static instruction count was less than or equal to
the count found so far for the best sequence. In this case we
would use the dynamic instruction count as a secondary fitness
value to break ties. In general, we found that the search time was
dominated not by the compiler, but instead by assembling, linking,
and executing the program. If we use size without obtaining a
dynamic instruction count, then we typically obtain results for
each function in less than one minute.

8. FUTURE WORK
There is much future work to consider on the topic of selecting
effective optimization sequences. It would be informative to
obtain measurements on a real embedded systems architecture.
However, most of these systems only provide execution time mea-
surements via simulation on a host processor. The actual embed-
ded processor may often not be available or downloading the
executable onto the embedded machine and obtaining measure-
ments may not be easily automated. The overhead of simulating
programs to obtain speed performance information may be prob-
lematic when performing large searches using a genetic algorithm,
which would likely require thousands of simulations. One option
is to translate the assembly produced for the embedded machine to
an equivalent assembly program on a host processor. This assem-
bly can be instrumented in order to produce a dynamic instruction
count of each basic block when executed. Anestimation of the
number of CPU cycles for each basic block can be multiplied by
the count to give a responsive and reasonably accurate measure of
dynamic performance on an embedded processor that does not
have a memory hierarchy.

Another area of future work is to vary the characteristics of
the experiments. We only obtained measurements for 100 genera-
tions and a optimization sequence that is 1.25 times the length of
the successfully applied batch optimization sequence. It would be
interesting to see how performance improves as the number of
generations and the sequence length increases. The actual
crossover and mutation operations could also be varied. Inaddi-
tion, the set of candidate optimization phases could be extended.
Finally, the set of benchmarks evaluated could be increased.

All of the experiments in our study involved selecting opti-
mization phase sequences for entire functions.We hav ethe abil-
ity in VISTA to limit the scope of an optimization phase to a set of
basic blocks. It would be interesting to perform genetic algorithm
searches for different regions of code within a function.For fre-
quently executed regions we could attempt to improve speed and
for infrequently executed regions we could attempt to improve

-10-

program functions optimizing for speed optimizing for space optimizing for both

bitcount AR_btbl_bitcount chks chks chks
BW_btbl_bitcount ks ks ks
bit_count kchs kchs kchs
bit_shifter ks ks ks
bitcount ks ks ks
main slljckllhschlllmc chllkc chllskllcllslch
ntbl_bitcnt ckshc ksc ckhsc
ntbl_bitcount ks ks ks

dijkstra dequeue ksc ksc ksc
dijkstra chlllchklljsc chklllcllc ckclllscllhsc
enqueue kshc khsc khsc
main shkllclljc skhc chkllcllc
print_path kch kch kch
qcount

ff t CheckPointer hkc kch hksc
IsPowerOfTwo kcs kcs kcs
NumberOfBitsNeeded hkjcs khs hkjmsc
ReverseBits kcjhsc kcs ksc
ff t_float jkcsllllchclh kslllhschc kcllllcllhscllh
main skllllsjmch shllllksc skshc

jpeg finish_input_ppm
get_raw_row kc kc kc
jinit_read_ppm kc kc kc
main kchcj kchc kchc
parse_switches jsksch kshc jkshcm
pbm_getc ksch ksch ksch
read_pbm_integer kcs kchs kchs
select_file_type rkch rkch rkch
start_input_ppm kschc kschc kschc
write_stdout ks ks ks

sha main kcsh kcsh kcsh
sha_final ksch ksch ksch
sha_init kc kc kc
sha_print chkc chkc chkc
sha_stream kcj chkc chkcl
sha_transform cksllllllscllllllhllllllch llllllsllllkssc skcllllllhcllllllsh
sha_update kshcjc kschc kschc

stringsearch init_search llkcjllhclc ckhscllch ksllsllhs
main kslhlcjhc skslhlc kslhls
strsearch clskclhs cksch sllksls

Table 5: Optimization Phase Sequences Selected Using the Three Fitness Criteria

space. Selectingsequences for regions of code may result in the
best measures when both speed and size are considered.

9. CONCLUSIONS
There are several contributions that we have presented in this
paper. First, we have dev eloped an interactive compilation system
that automatically provides performance feedback information to
a user after each successfully applied optimization phase.This
feedback allows a user to gauge the progress when tuning an
application. Second,we allow a user to interactively select struc-
tured constructs for applying optimization phase sequences.
These constructs allow the conditional or iterative application of
optimization phases. In effect, we have provided an optimization
phase programming language. Third, we have provided constructs
that automatically select optimization phase sequences based on
specified fitness criteria.A user can enter specific sequences and
the compiler chooses the sequence that produces the best result.
A user can also specify a set of phases along with options for
exploring the search space of possible sequences.The user is pro-
vided with feedback describing the progress of the search and may
abort the search and accept the best sequence found at that point.

We hav ealso performed a number of experiments to illustrate
the effectiveness of using a genetic algorithm to search for effi-
cient sequences of optimization phases.We found that signifi-
cantly different sequences are often best for each function even
within the same program or module.However, we also found that
certain optimization phases appear to enable other specific phases.
We showed that the benefits can differ depending on the fitness
criteria and that it is possible to use fitness criteria that takes both
speed and size into account. While we demonstrated that itera-
tively applying optimization phases until no additional
improvements are found in a batch compilation can mitigate many
phase ordering problems with regard to dynamic instruction count,
we found that dynamic improvements could still be obtained from
this aggressive baseline using a genetic algorithm to search for
effective optimization phase sequences.

An environment that allows a user to easily tune the sequence
of optimization phases for each function in an embedded applica-
tion can be very beneficial. The VISTA system supports tuning of
applications by providing the ability to supply performance feed-
back information, select optimization phases, and automatically
search for efficient sequences of optimization phases.Embedded

-11-

programmers often resort to coding in assembly to meet stringent
constraints on time, size, and power consumption. Besides using
VISTA to obtain a more efficient executable, such an environment
may encourage more users to develop applications in a high level
language, which can result in software that is more portable, more
robust, and less costly to develop and maintain.

ACKNOWLEDGEMENTS
Clint Whaley, Bill Kreahling, and the anonymous reviewers pro-
vided helpful suggestions that improved the quality of the paper.
This research was supported in part by NSF grants CCR-9904943,
EIA-0072043, CCR-0208892, and ACI-0203956.

10. REFERENCES
[1] B. Appelbe, K. Smith, and C. McDowell, “Start/Pat: A Par-

allel-Programming Toolkit,” IEEE Software 6(4) pp. 29-40
(July 1988).

[2] M. E. Benitez and J. W. Davidson, “A Portable Global Opti-
mizer and Linker,” Proceedings of the SIGPLAN ’88 Sym-
posium on Programming Language Design and Implemen-
tation, pp. 329-338 (June 1988).

[3] M. E. Benitez and J. W. Davidson, “The Advantages of
Machine-Dependent Global Optimization,” Proceedings of
the Conference on Programming Languages and Systems
Architectures, pp. 105-124 (March 1994).

[4] J. Browne, K. Sridharan, J. Kiall, C. Denton, and W.
Eventoff, “Parallel Structuring of Real-Time Simulation
Programs,” COMPCON Spring ’90: Thirty-Fifth IEEE
Computer Society International Conference. Intellectual
Leverage. Digest of Papers., pp. 580-584 (February 1990).

[5] K. Chow and Y. Wu, “Feedback-Directed Selection and
Characterization of Compiler Optimizations,” Workshop on
Feedback-Directed Optimization, (November 1999).

[6] K. Cooper, P. Schielke, and D. Subramanian, “Optimizing
for Reduced Code Space Using Genetic Algorithms,” ACM
SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems, pp. 1-9 (May 1999).

[7] J. W. Davidson and D. B. Whalley, “Ease: An Environment
for Architecture Study and Experimentation,” Proceedings
SIGMETRICS ’90 Conference on Measurement and Model-
ing of Computer Systems, pp. 259-260 (May 1990).

[8] J. W. Davidson and D. B. Whalley, “A Design Environment
for Addressing Architecture and Compiler Interactions,”
Microprocessors and Microsystems 15(9) pp. 459-472
(November 1991).

[9] Chyi-Ren Dow, Shi-Kuo Chang, and Mary Lou Soffa, “A
Visualization System for Parallelizing Programs,” Proceed-
ings of Supercomputing ’92, pp. 194-203 IEEE Computer
Society Press, (November 1992).

[10] T. Granlund and R. Kenner, “Eliminating Branches using a
Superoptimizer and the GNU C Compiler,” Proceedings of
the SIGPLAN ’92 Conference on Programming Language
Design and Implementation, pp. 341-352 (June 1992).

[11] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “MiBench: A Free, Commercially Represen-
tative Embedded Benchmark Suite,” IEEE Workshop on
Workload Characterization, (December 2001).

[12] B. Harvey and G. Tyson, “Graphical User Interface for
Compiler Optimizations with Simple-SUIF,” Technical
Report UCR-CS-96-5, Department of Computer Science,
University of California Riverside, Riverside, CA (1996).

[13] J. Holland, Adaptation in Natural and Artificial Sys-
tems1989.

[14] T. Kisuki, P. Knijnenburg, and M. O’Boyle, “Combined
Selection of Tile Sizes and Unroll Factors Using Iterative
Compilation,” Proceedings of the 2000 International Con-
ference on Parallel Architectures and Compilation Tech-
niques, pp. 237-248 (October 2000).

[15] S. Liao, A. Diwan, R. Bosch, A. Ghuloum, and M. Lam,
“Suif Explorer: an Interactive and Interprocedural Paral-
lelizer,” Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp.
37-48 (1999).

[16] H. Massalin, “Superoptimizer - A Look at the Smallest Pro-
gram,” Proceedings of the 2nd International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 122-126 (October, 1987).

[17] A. Nisbet, “Genetic Algorithm Optimized Parallelization,”
Workshop on Profile and Feedback Directed Compilation,
(1998).

[18] S. Novack and A. Nicolau, “VISTA: The Visual Interface
for Scheduling Transformations and Analysis,” Languages
and Compilers for Parallel Computing, pp. 449-460
(1993).

[19] D. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B.
Leung, and D. Schouten, “Parafrase-2: An Environment for
Parallelizing, Partitioning, Synchronizing, and Scheduling
Programs on Multiprocessors,” Proceedings of 1989 Inter-
national Conference on Parallel Processing, pp. 39-48
Pennsylvania State University Press, (August 1989).

[20] S. Segars, K. Clarke, and L. Goudge, “Embedded Control
Problems, Thumb, and the ARM7TDMI,” IEEE Micro
15(5) pp. 22-30 (October 1995).

[21] S.Ve gdahl, “Phase Coupling and Constant Generation in an
Optimizing Microcode Compiler,” International Symposium
on Microarchitecture, pp. 125-133 (1982).

[22] R. Whaley, A. Petitet, and J. Dongarra, “Automated Empiri-
cal Optimization of Software and the ATLAS Project,” Par-
allel Computing27(1) pp. 3-35 (2001).

[23] D. Whitfield and M. L. Soffa, “An Approach for Exploring
Code-Improving Transformations,”ACM Transactions on
Programming Languages and Systems19(6) pp. 1053-1084
(November 1997).

[24] W. Zhao, B. Cai, D. Whalley, M. Bailey, R. van Engelen, X.
Yuan, J. Hiser, J. Davidson, K. Gallivan, and D. Jones,
“VISTA: A System for Interactive Code Improvement,”
ACM SIGPLAN Conference on Languages, Compilers, and
Tools for Embedded Systems, pp. 155-164 (June 2002).

-12-

