Finding Effective Optimization Phase Sequences
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ABSTRACT 1. INTRODUCTION
It has long been known that a single ordering of optimization The phase ordering problem has long been known to béieuldif
phases will not produce the best code fearg application. This dilemma for compiler writers [21, 23]A single sequence of opti-

phase ordering problem can be moreese when generating code ~ Mization phases is highly unlikely to produce optimal code for
for embedded systems due to the need to meet conflicting conevey application (or een each function within an application) on

straints on time, code size, and power consumpti®iven that a gven machine. Whetheor not a particular optimization enables
mary embedded application delopers are willing to spend time ~ ©r disables opportunities for subsequent optimizations feif
tuning an application, we belie a \iable approach is to allothe to predict since it depends on the application being compiled, the
developer to steer the process of optimizing a functidm.this previously applied optimizations, and the target architecture [23].
paper we describe support in VISTA, an interaai compilation The problem of ordering optimization phases can be more

system, for finding ééctive ®quences of optimization phases. severe when generating code for embedded applicatidiany
VISTA provides the user with dynamic and static performance applications for embedded systems need to meet constraints on
information that can be used during an intex&ctiompilation time, code size, and power consumption. Often an optimization
session to gauge the progress of imprg the code. In addition,  that could impree me aspect (e.g., speed) can degrade another
VISTA provides support for automatically using performance (e.qg., size) [20].In fact, it may be desirable on myagystems to
information to select the best optimization sequence amonrg se enhance xecution time for the frequentlyxecuted code portions
eral attemptedOne such feature is the use of a genetic algorithm and reduce code size for the less frequentiggted portions.

to search for the most efficient sequence based on specified fitness A embedded application may reside in a product for which
criteria. V\e havei_ncluded a nqmber of ex_perimer_ltal rgsults that millions of units may be shipped (e.g. cellular phones, digital
evduate the dctiveness of using a genetic algorithm in VIST  cameras, printers, etc.JFor this reason an embedded application
to find effectve cptimization phase sequences. developer may be willing to expend considerable effort and time

Categories and Subject Descriptors to produce an application that sster smaller, or consumes less
D.3.4 Programming Language§ Processors- compilers, opti- power Howeva, it is dear that attempting all optimization phase

. A . . orderings will be prohibitiely expensve snce mawy different
m|zat.|on D.4.7 Pperating System§ Organization and Desigr optimizations are \ailable and can be repeatedly applieor
real-time systems and embedded systems.

this reason, we belie a vable approach is to let the embedded
General Terms application deeloper steer the optimization processn this
paper we describe support in the VIST(VPO Interactie S/stem
for Tuning Applications) compilation system for finding
Keywords sequences of optimization phases that meet theager's goals.
Phase ordering, interaed ompilation, genetic algorithms.

Measurement, Performance, Experimentation, Algorithms.

2. RELATED WORK

Other researchers ¥ cevdoped systems that provide interaeti
compilation support. These systems include phétoolkit [1],
the parafrase-2ervironment [19], thee/spsystem [4], a visualiza-
tion system desloped at the Umiersity of Pittslurgh [9], and
SUIF explorer [15]. These systems provide support by illustrating
the possible dependencies that may@reparallelizing transfor
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A few low-level interactve cmpilation systems ka dso The compiler used in VISYis based on VPO (Very Portable
been deeloped. Onesystem, which is coincidentally also called Optimizer) [2, 3]. VPO is a compiler back end that performs all
VISTA (Visual Interce for Scheduling Transformations and of its optimizations on a single Melevel representation called
Analysis), allows a user to verify dependencies that mayeptre RTLs (register transfer lists). Because VPO uses a single repre-
the exploitation of instruction &l parallelism in a processor [18].  sentation, it can apply most analyses and optimization phases
Selectve adering of different optimization phases does not repeatedly and in an arbitrary orderhis feature facilitates find-
appear to be an option in their system. The system that mosting effectve quences of optimization phases.

resembles our work is called VSSCigial Simple-SUIF Com- The VISTA framavork supports the following features.
piler) [12]. It allovs optimization phases to be selectedaious  First, it allows a user to wea low-level graphical representation
points during the compilation procest. also allows optimiza-  of the function being compiled, which is much morevenient
tions to be undone, but untikour compiler only at the iel of than extracting this information from a sourcededebugger.

complete optimization phases as opposed to individual transfor Second, a user can select the order and scope of optimization
mations within each phase. Other features in our system, such aBhases. Selectintpe order of optimization phases may walla
supporting usespecified changes and performance feedback yser to find a sequence of phases that are mieeties for a spe-

information, do not appear to beaitable in these systems. cific function than the defilt optimization phase ordet.imiting
There has been prior work that used aggvessimpilation the scope of the optimization phases allows a user to concentrate
techniques to impre performance. Superoptimizetsve keen resources, such asgisters, on the critical regions of the code.

developed that use anxkaustve sarch for instruction selection  Third, a user can manually specify transformations. This feature
[16] or to eliminate branches [10]terative tchniques using per is useful when exploiting specialized architectural features that
formance feedback information after each compilatioveHzen cannot be exploited automatically by the compileourth, a user
applied to determine good optimization parameters (e.g., blockingcan undo pnréously applied transformations or optimization
sizes) for specific programs or library routines [14, 2R]system phases. Thiseature easesxperimentation with alternate phase
using genetic algorithms to better parallelize loop nests has beerorderings or user-defined transformations.

developed and edluated [17]. These systems perform source-to- We have made seeral enhancements to VISTthat facili-
source transformations and are limited in the set of optimizationsiates the selection offettive quences of optimization phases.
they apply. Selecting the best combination of optimizations by These enhancements include automatically obtaining performance
turning on or of optimization flags, as opposed to varying the feegback information, using structured statements for applying
order of optimizations, has beenvéstigated [S]. A low-level optimization phases, automatically using performance information
compilation system deloped at Rice Uniersity uses a genetic  for selecting optimization phase sequenciée cescribe these

algorithm to reduce code size by finding efficient optimization ennancements in the following three sections of the paper.
phase sequences [6However, this system is batch oriented

instead of interaote and is designed to use the same optimization 4. OBTAINING INTERACTIVE
phase order for all of the functions within a file. ’ PERFORMANCE INFORMATION

3. THE VISTA FRAMEWORK VISTA supports obtaining both static and dynamic measurements.
) For our current experiments, we provide a rough approximation of

the number of CPUycles by counting the number of instructions
executed. Thesame approach was used in a prior study that
searches for &ctive @timization phase sequences using a
genetic algorithm [6]. We neasured the dynamic instruction
count by instrumenting the assembly code with instructions to
increment counters using the EASE (Environment for Architec-
ture Study and Experimentation) system [7, 8pbr embedded
applications, obtaining actuakeeution times is problematic due

to cross compilation and this issue is described in more detail later

In this section, we xéew the VISTA framevork. Figurel illus-
trates the flar of information in VISTA, which consists of a com-
piler and a vieer. The programmer initially indicates a file to be
compiled and then specifies requests through theevievhich
include sequences of optimization phases,-deéned transfer
mations, and queriesThe compiler performs the specified actions
and sends program representation information back to thewrie
When the user chooses to terminate the session Adi8ites the
sequence of transformations to a file so/tten be reapplied at a
later time, enabling future updates to the program representation.

in the paper.
Figure 2 shows a wingothat appears the first time a user
Source Compiler Assembly obtains performance measurements for a prograkheneer
File P File measurements are needed, an instrumentmliable for the pro-
Program Representation Inf, Transformation Info. gram is produced andxecuted. Theuser is prompted for the
Selections Request information that is needed to linkxeeute, and grify correct pro-
Saved gram behaior. A user could accomplish this with a previows-v
User Display Viewer State sion of VISTA in a ®ries of manual steps [24]. This process is

automatically performed after applying each optimization phase in
the latest version of VISTA.
Figure 1: Interactive Code Improvement Process



i to quickly gauge the progress that has been made invingrthe

Iank Command: |g[[ -o fft.exe ffll—l‘:";n‘.i-lsltI o fourierf.0 main.o math2 o ease.lib.a flmd‘ﬂﬂ funCtion' Thefrequeng Of eﬂCh baSiC blOCk rela@ © the fUnC'
tion is also shen in each block header line, which allows a user

to identify the critical regions of a function.

Dasired Cutput File; 7. out

Aetyal Qutput File: tmp.out
Execute Command: ffr.exe 4 4096 > 1mp.out

Max. Execution Time: |15 5. INTERACTIVEL Y SELECTING
OPTIMIZATION PHASE SEQUENCES
o] | Concel | A programmer has little or no controve the order in which
] _ ] ) ] code impreement phases are applied when using most compilers.
Figure 2: Test Configuration Window VISTA provides the programmer with the flexibility to specify the

exact sequence of optimization phases to be applied in a specified
region of code.In order to support this fidbility, we identified

the set of analyses required for each optimization phase and the
set of analyses walidated by each optimization phase. In addi-
tion, we identified the constraints amongjséing optimization

After applying ag remaining necessary optimization phases,
VISTA produces instrumented assembly code for the functimn.
described in subsequent sections, we need to obtain performanc
measurements mgntimes during the compilation of a single
function. W& compile functions within a file one at a time and k hadiat)
each file is compiled separateljn order to reduce compilation ~ Phases. &r instance, most optimization phases can only be
overhead, we s te position in the assembly file at thegime applied before filling branch delay slots.
ning of the function and regenerate the assembly at that point. =~ We find it useful to conditionally woke a optimization
The assembly for the remaining functions in the file is generatedphase based on whether a previous optimization phase caysed an
by reading in the transformation informatiohus, obtaining changes to the program representatidine application of one
new measurements requires producing instrumented assembly foroptimization phase often provides opportunities for another opti-
only the remaining functions within the file and assembling only mization phase. Such a feature allows a sequence of optimization
the current file. A link and eecution step is also required each phases to be applied until no further imgments are found.
time measurements are obtainatle dso sae the position in the Likewise, an optimization phase that is unlikely to result in code-
intermediate code file that is input to VPO and the position in the improving transformations unless a prior phase has changed the
transformation file to further reduce I/O. Aftexeeuting the pro- program representation can be&dked only if changes occurred,
gram VISTA reads the initial program representation and the com- which may see mmpilation time.
piler reapplies the sequence of transformations to reproduce the  prior support in VISA for conditionally applying optimiza-
program representation at the point where measurements wergon phases was only awoleve branch operation (i.e.j f
taken. Inaddition, VISR reads the frequegiccounts for each changes goto <label) [24]. VISTA now supports testing if
basic block produced by the instrumentgecatable. changes to the program representatiovehacurred in the form

Figure 3 shows a snapshot of the viewer with the history of a of four structured control statementsghanges-thenif-changes-
sequence of optimization phases displayed. Note that not only isthen-elsedo-while-changeswhile-changes-doa wser can specify
the number of transformations associated with each optimizationinteractively. These structured statements, which can be nested,
phase displayed, ub also the impreements in instructions  are provided to mak slection of sequences of optimization
executed and code size are sho Thisinformation allows a user ~ phases more cweanient to the userin efect, we are pnading an

optimization phase programming language.

0 - =1 =]
Function [main Trans Number  [1155 % 25 | 153 Threm 75 =
State Total 1155 r[B]=HI[L47];
transformations Number Code Size Inst Bxec r[8]=r[8]+L0[L47];
Inst Selection 533 56.72 50,77 rl3l=r(171{2;
Register Assignment 28 57.79 50.77 FLo]=F[r[9]+r[26]];

d[0]=DC[F[0]];

Common Subexpr Elim 377 49,08 55.51
" D[r[14]+72]=d[0];

DEal.j Wariahle E'h.m 17 4908 .00 F[O]1=R[F[14]+72];
Register Allocation 23 49,08 55.51 r[10]=R[r[14]+76];
Inst Selection (1773 177 39.90 41.68 ST=HT [printfl+L0[print];
30 | L33 | freq: 0.42%
r[17]=r[17]+1;
Setup Trans Sequen_|5pe(ify Trans by Ha_| RTLs < 31 | L35 | freq: 0.84% =
- - IC=r[24]7r[17]; |
1= | == H = | Option ” Exit | Nrcicho.Lsz:
STart writing in seqlixt | execute from file I =1
Message:| Mo Message H Help |

Figure 3: Main Window of VISTA Showing History of Optimization Phases



Consider the interaction between register allocation and
instruction selection optimization phasefRegister allocation
replaces load and store instructions withiseer-to-rgister moe
instructions, which provides opportunities for instruction selec-
tion. Instruction selection combines instructions together and
reduces rgister pressure, which may alMlcadditional opportuni-
ties for register allocation. Figure 4 illustratesshtm exploit the
interaction between thesedwphases with a simplexample. The
user has selected éwoonstructs, which are do-while-changes
statement and &changes-therstatement. & each iteration, the
compiler performs register allocation. Instruction selection is only
performed if register allocation allocates one or more ianges
of a\ariable to a rgister These phases will be itenegly applied
until no additional ke ranges are allocated to registers.

0
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Optimization Phase Selection

Branch Chaining

Him Empty Blocks —

Useless Jump Him

Dead Code Him

Reverse Branches

Basic Blk Reordering

Merge Basic Blocks Inst Selection

Fix Control Flow

Minimize Loop Jumps Dead Yariable Him

Register Allocation Common Subexpr Him

Code Motion Loop Strength Reduct

Recurrences

[«

" [ . =
Read Transfor mations From File

Optimization Phase Sequence
Inst Selection -
Register Assignment
do
Register Allocation
if changes then
Inst Selection
end if then
while changes
Code Motion

-

Loops " Undo Last Change || Done H Cancel |

start writing in || seqlixt ” execute from file |

Message: ‘ Please select some optimization phases 1o be applie

Figure 4: Interactively Selecting Optimization Phases

In order to communicate to VPO the sequence of optimiza-
tions phases to applyhe viewer translates the structured state-
ments into a lwv-level sequence of requests. This sequence is

6. PERFORMANCE DRIVEN SELECTION
OF OPTIMIZATION SEQUENCES

In addition to allving a user to specify an optimization sequence,

it is desirable for the compiler to automatically compare tw

more sequences and determine which is most benefi¢iSITA
provides two gructured constructs that support automatic selec-
tion of optimization sequences. The first construct issilect-
best-fromstatement and is illustrated in Figure 6. This statement
evduates tvo or nore specified sequences of optimization phases
and selects the sequence that best ivggrgerformance accord-

ing to the selected criteriaFor each sequence the compiler
applies the specified optimization phases, determines the program
performance (instruments the code for obtaining performance
measurements, produces the assengabcutes the program, and
obtains the measurements), and reapplies the transformations to
reestablish the program representation at the point where the
select-best-fronstatement was specifiedifter the best sequence

is found, the compiler reapplies that sequence.

J .

Optimization Phase Selection

D

Reverse Branches
Merge Basic Blocks

Basic Bk Reordering

Inst Selection

Fix Control Flow

Minimize Loop Jumps Dead Variable Him

Register Allocation Common Subexpr Him

Code Motion Loop Strength Reduct

Recurrences

Strength Reduction Fix Entry Bxt

Read Transformations From File

Optimization Phase Sequence
select best from o
Inst Selection
Branch Chaining
Register Allocation
or
Register Allocation
Code Motion
Loop Strength Reduct
Induction Var Elim
end select

4]

Loops ” Undo Last Change || Done ” Cancel

start writing in seqlixt ” execute from file

Message: | Please select some optimization phases to be

interpreted by VPO and each resulting change to the program rep- Figure 6: Selecting the Best Sequence from a Specified Set

resentation is sent to the wier. This process continues until a

stop operation has been encountered. Figure 5 reflects the opera- . L . .
P op 9 P depicted in Figure 7. This statement accepts a set distinct

tions to be performed by the selections shown in Figure 4.

Performinstruction selection
Performregister assignment

Enterloop

Performregister allocation

If no changes in last phase then goto 7
Performinstruction selection

If changes during loop iteration then goto 4
Exitloop

Performloop-invariant code motion

Stop

cLoNOU~WNE

=

Figure 5: Operations Performed by Selections in Figuz 4

The other construct, theelect-best-combinaticstatement, is

optimization phases and attempts to digecehe best sequence for
applying these phases. Figure 8 shows the different options that
we provide the user to control the search. The user specifies the
sequence lengtim, which is the total number of phases applied in
each sequenceAn exhaustive seah attempts all possiblen”
sequences, which may be appropriate when the total number of
possible sequences can beleated in a reasonable period of
time. Thebiased sampling seel applies a genetic algorithm in

an attempt to find the mostfettive fquence within a limited
amount of time since in mgrcases the search space is togéar

to evauate all possible sequences.



Performing these searches is often time-consumifigus,

e Ploe Fetion VISTA prgwdes a windw showing the current status of the
Branch Chaining Him Empty Hocks =] search. Figur® shows a snhapshot of the status of the search that
Useless Jump Bim Dead Code Bim was <lected in Figures 7 and 8. The percentage of sequences
2““”:?";"“; “T"‘t";“l“:‘?'“e""“ completed along with the best sequence and its effect on perfor
erge 1C Bocl hst Selection . . - .
AT mance is gien. Theuser can terminate the search ay @oint

and accept the best sequence found so far.
Minimize Loop Jumps Dead Variable Him ez
Register Allocation Common Subexpr EBim
Code Motion Loop Strength Reduct 7 - EXP ER | M ENTS
Recurrentes - This section describes the results of a set of experiments to illus-
o [ Cin Eatus: Kt = . . . .
Read Transfor mations From File trate the dkctiveness of VISRs biased sampling search, which

[ORIEIEE T FRose SeaHEi uses a genetic algorithm to find efficient sequences of optimiza-

I [i] binati o . . .
f;:u ij;f.:"g.,;,"r;‘,‘n";" M tion phasesWe wsed a subset of thmibenchbenchmarks, which
(k) - Register Allocation are C applications targeting specific areas of the embeddeétmark
E‘;' 'g“dsi:lm_‘"“ [11]. We wsed one benchmark from each of the six gaties of

n) - Code Motion . . . . .

() - Common Subexpr Elim applications. &ble 1 contains descriptions of these programs.
end select2000)
o Cateyory Program Description
= auto/industrial | bitcount test bit manipulation abilities of a processor
LS " LI (¥ (R " Done " cance! network dijkstra calculates shortest path between nodes using
start writing in H seqlia H execute from file Dijkstra’s dgorithm
telecomm fit performs fast fourier transform
Message: | Please select sorme optirmization phases 1o consumer g image compression and decompression
security sha secure hash algorithm
Figure 7: Selecting the Best Sequence office stringsearch| searches for gen words in phrases

from a Set of Optimization Phases Table 1: MiBench Benchmarks Used in the Experiments

For this search the number of different sequences in the pop-
ulation and the number of generations must be specified, which
limits the total number of sequenceslaated. Thesd¢erms are
described in more detail later in the papéihe permutation

Our target architecture for thesgperiments is the 3fRC,
as we do not currently fia a pbust version of VISA targeted to
an embedded architecture. Using a genetic algorithm to find

h att s to ealuate all tati f ified lenath effective gptimization phase sequences can result in thousands of
seach attempts 10 eauate all permutations ot a specitied length. sequences being applie@his provides a sere stress test for gn

Unlike the qther t\p s_aear_ches, a permutation by definition cannot compilet In the future we plan to test VI&E ability to find
have any dits optimization phases repeated. Thus, the SequeNnCeyo e mtimization phase sequences on embedded processors.
length, n, must be less than or equal to the number of distinct . . .

phases,m. The total number of sequences attempted will be Our experiments hee mary similarities to the nge study
mi/(mn)!. A permutation search may be an appropriate option Which used a genetic algorithm to reduce code size YWog
when the user is sure that each phase should be attempted at mdi¢lieve he Rice study was the first to demonstrate that genetic
once. VISR also allows the user to choose weight factors for &lgorithms could be &ictive for finding efficient optimization
instructions mecuted and code size, where the refati Phase sequencesdowever, there are seeral significant difer-
improvement of each is used to determine theeral ences between their_study .and ours and we will contrast the tw
improvement. Whenusing the select-best-fromstatement, the  Studies throughout this section.

user is also prompted to select a weight factor.

o e B LETJES
MNo. of Phases: B Search Option:
Sequence Length: 7 _» Exhaustive Search
@ Biased Sampling Search
Weight Factors: ) Permutation Search
Insts Executed 50 Code Size 50 Population Size: 0
I {77 |
Mumber of Generations: 100
1] 20 40 60 80 100 Q

ok | | cancel | | help

Figure 8: Slecting Options to Search the Space of Possible Sequences
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Percent Complete:

[ 13%

Combinations Completed:

Yalid: 271 Imvalic: |
Best Sequence: skkbnsc
Current Sequence: skeshcc

Relative Improvements:

Code Size: 403 Insts Executed: 28.1

Total: 271/2000

Seq. Num.: 258

Improvement: 403

Overall: 28.2

‘ Stop

Figure 9: Window Showing the Status of Searching for an Effectie Ssquence

The Rice study used a genetic algorithm to finfatfe
sequences consisting of twelyghases from ten candidate opti-
mizations. Thg compared these sequences to the performance
obtained from a fixed sequence of tweetyptimization phasesin
contrast, VPO does not utilize a fixed sequence of phases.
Instead, VPO repeatedly applies phases untli no more
improvements are obtainedrigure 10 shows the algorithm used
to determine the order in which optimization phases are applied in
VPO. Thisalgorithm has elved over the years and the primary
goal is to reducexecution time.

Initially it was not obvious he to best assess VIS abil-
ity to find efective gtimization sequences as compared to the
batch VPO compilerOne complication is that thregister assign-
ment (assigning pseudo registers to haadev registers) andix
entry «it (fixing the entry and»et of the function to manage the
run-time stack) phases are required, which means thahéveto
be applied once and only onc®lany of the other phases shio
in Figure 10 must be applied aftegister assignmerand before
fix entry &it. Thus, we decided to use the genetic algorithm to
find the best sequence of code-improving phases that can be
applied between these dwrequired phases.These candidate
sequences include fourteen unique phases that can be applied in
ary order between the twrequired phasesTable 2 describes
each of these fourteen phases anggga signation (gene) for
each phase that will be used later when representing each opti-
mization in a sequence.

Another issue is the number of optimization phases to apply
since it may be beneficial to perform a specific optimization phase
multiple times. When applying the genetic algorithm, one must
specify the number of optimization phases (genes) in each
sequence (chromosome). An appropriate uniform limit is not eas-
ily determined since the number of optimization phases attempted
by the batch compiler carary with each function. Therefore, we
first determined both the number of successfully applied optimiza-
tion phases (those whichfafted one or more instructions in the
compiled function) and the total number of phases attempted in

global instruction selection
register assignment
instruction selection
minimize loop jumps
if (changes in last phase)
merge basic blocks
do
do
do
dead assignment elimination
while changes
register allocation
if (changes in last tavphases)
instruction selection
while changes
do
common subexpression elimination
dead assignment elimination
loop transformations
remove wseless jumps
branch chaining
remove wnreachable code
remove wseless basic blocks
reverse jumps
remove jumps by block reordering
remove wseless jumps
if (changes in last 7 phases)
minimize loop jumps
if (changes in last phase)
merge basic blocks
dead assignment elimination
strength reduction
instruction selection
while changes
while changes
branch chaining
remove unreachable code
remove wseless basic blocks
reverse jumps
remove jumps by block reordering
fix entry exit
instruction scheduling

Figure 10: VPO'’s Order of Optimization Phases
Applied in Batch Mode

Table 3 shows batch compilation information for each func-

the batch compilation before establishing the sequence length forjo, in each of the benchmark progranthe first column identi-

our searches.

fies the program and the number of static instructions produced

for the application after batch optimization. In four of the bench-
marks, some functions were noieeuted @en though we used the



Optimization Phase Gene | Description

instruction selection s Combine instructions together when the combined effeagasi ad&uction.

minimize loop jumps j Remes a ump associated with a loop by duplicating a portion of the loop.

merge basic blocks m Mergesdwonsecutre basic blocksa andb whena is only followed byb andb is only preceded bg.

dead assignment elim h Rewes sssignments when the assigned value i@mnased.

register allocation k Replaces references to a variable within a speafiarige with a register.

common subexpr elim c Eliminates fully redundant calculations.

loop transformations | | Performs loop-imariant code motion, recurrence elimination, loop strength reduction, and indueti@ile elimination or

each loop ordered by loop nestingde Eachof these transformations can also be individually selected by the user.

remove wseless jumps u Renaes jumps and branches whose target is the following block.

strength reduction q Replaces an expensgistruction with one or more cheaper ones.

branch chaining b Replaces a branch or jump target with the target of the last jump in a jump chain.

remove nreachable code d Renss basic blocks that cannot be reached from the entry block of the function.

remove wseless blocks e Remes empty blocks from the control-fle graph.

reverse jumps r Reerses a conditional branch when it branches an jump to eliminate the jump.

block reordering i Remwes a ump by reordering basic blocks when the target of the jump has only a single predecessor.

Table 2: Candidate Optimization Phases in the Genetic Algorithm Experiments

input data that as supplied with the benchmark. In these cases the length of the number of successfully applied optimization

we aggregaed such functions in the results asexecuted func- phases for each functioWe felt this sequence length is a reason-
tions since we did not ha the space to list results for all of the able limit for each function and still\gs us an pportunity to
functions. Thehird and fourth columns gé each functions mn- successfully apply more optimization phases than what the batch

tribution, expressed as a percentage, to the dynamic and staticompiler was able to accomplish. Note that the number of
instruction count of the whole program after applying the opti- attempted phases for each function by the batch comgiler f
mization sequence. The fifth column slothe sequence and exceeded this length.
number of optimization phases successfully applied by the batch The following aspects of our experiments were identical to
compiler betweenregister assignmengnd fix entry &it that those performed in the Rice stude st the population size
affected the instructions. The number applieaties depending  (fixed number of sequences or chromosomes) to twenty and each
upon the size and loop structure of the functidtote these  of these initial sequences is randomly initializedle rt the
sequences of phases are applied after attempting the optimizatiogequences in the population by fitness values (using the dynamic
phases that precedegister assignmerih Figure 10. One can see  an( static instruction counts according to the weightdirs). At
that the sequences of successful optimization phasesa&§n v g5ch generation (time step) we remdhe worst sequence and
greatly between functions in the same application. The next col-ihree others from the lower (poorer performing) half of the popu-
umn shows the total number of optimization phases attempted,ation chosen at random. Each of the restb sequences are
which is alays significantly larger than the number of success- replaced by randomly selecting a pair of the remaining sequences
fully applied phases. from the upper half of the population and performing a crasso
The last tvo columns in Table 3 demonstrate that itergi (mating) operation to create a pair ofwnesequences. The
applying optimization phases had a significant impact on dynamic cross@er operation combines the lower half of one sequence with
and static instruction countWe dtained this measurement by the upper half of the other sequence and vice versa to create the
comparing the results of the default batch compilation to resultstwo new <squences. Fifteensequences are then changed
obtained without iteration, which uses the algorithm in Figure 10 (mutated) by considering each optimization phase (gene) in the
with all thedo- whi | e’s iterated only once. The iteration impact sequence. Mutatioof each optimization phase in the sequences
result shavs the power of iterately applying optimization phases  occurs with a probability of 10% and 5% for the lower and upper
until no more imprgements can be foundn particular the num- halves of the population, respaaiy. When an optimization
ber of instructions xecuted is often reduced. The only cases phase is mutated, it is randomly replaced with another phidse.
where the dynamic instruction count increased was wbep four sequences subjected to crasscand the best performing
invariant code motionwas performed and the loop was either sequence are not mutated.
never entered or only xecuted once. In fact, we were not sure if There were additional differences between axpegiments
ary additional dynamic impreements could be obtained using a gng the Rice study besides using a different comsérof opti-
genetic algorithm gen that iteration may mitigate murphase  mization phases, target architecture, benchmarks, and optimiza-

ordering problems. tion phase sequence lengths. Rather than performing a search for
The remainder of this section compares the results we each program or module, we used the genetic algorithm to per

obtained using a genetic algorithm to search fdectife oti- form a diferent search for each function. In the Rice study the fit-

mization sequences to the sequences found by thevieetatch ness criteria was based on code size with dynamic instruction

version of VPO. For our genetic algorithm experiments we set the count used as a secondary fitnesisie to break ties. As shown in
optimization phase sequence (chromosome) length to 1.25 timed-igure 8, we canary both the instructionscecuted and code size
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program function %of % of appliedsequence attemptel  iteration impact
and size dynamic | static and length phases dynamit | datic %
bitcount | AR_btbl_bitcount 3.22 3.86| kschsc (6) 53 -9.52 -9.52
(496) BW_Dbtbl_bitcount 3.05 3.66| emsaks (6) 24 0.00 0.00
bit_count 13.29 3.25 | sksd4) 42 -18.64 | -14.29
bit_shifter 37.41 | 3.86| skg3d) 26 -9.09 -5.26
bitcount 8.47 | 10.16 | ksq3) 40 0.00 0.00
main 13.05 | 19.51 | sjmhkscligsclilsllhs(21) 125 -27.27 -8.16
ntbl_bitcnt 14.40 | 3.66 | sksd4) 40 -11.10| -11.76
ntbl_bitcount 7.12 8.54 | ks(2) 24 0.00 0.00
unexecuted functions  0.00 43.49| 5.00 40.57 N/A -9.57
avaage 5.13 43.87 -11.10, -7.19
dijkstra | dequeue 0.85 10.40| sksc (4) 40 0.00 0.00
(327) dijkstra 83.15 44.04| sjmhksclliclisc (15) 71 -14.54 -4.44
engqueue 15.81 | 12.84 | shks¢5) 42 0.00 0.00
main 0.06 | 22.94 | sjmhksllislis¢13) 71 -12.13 +3.23
print_path 0.01 8.26 | shksgb) 41 0.00 0.00
gcount 0.12 153 | (0) 21 0.00 0.00
aveage 7.17 47.67 -12.54 -1.36
fft CheckPointer 0.00 2.34 | shksgb) 41 0.00 0.00
(728) IsPaverOfTwo 0.00 2.61| sksc (4) 40 0.00 0.00
NumberOfBits... 0.00 3.98 | sjmhksq7) 43 0.00 0.00
ReverseBits 14.13 2.61 | sjmksd6) 42 0.00 +5.56
fft_float 55.88 | 38.87 | sjmhksclllihscii15) 57 -8.84 -7.64
main 29.98 | 39.56 | sjmhkscllilehscl17) 58 -1.90 -1.23
unexecuted functions  0.00 10.03| 3.00 65.00 N/A -2.99
aveage 8.29 49.43 -5.77 -3.95
jpeg finish_input_ppm 0.01 0.04 | (0) 21 0.00 0.00
(5171) get_rev_row 48.35 0.48| sksc (4) 40 0.00 0.00
jinit_read_ppm 0.10 0.35 | ksq(3) 39 0.00 0.00
main 43.41 3.96 | sjmhksclsch¢l2) 70 -0.03 -1.14
parse_switches 0.51| 11.26 | sjmhks¢7) 43 0.00 0.00
pbm_getc 5.12 0.81 | skscK5) 41 0.00 0.00
read_pbm_intger 1.41 1.26 | sksd4) 41 0.00 0.00
select_file_type 0.27 | 2.07 | skseg5) 40 0.00 0.00
start_input_ppm 0.79 5.96 | sjmksch¢8) 55 0.00 0.00
write_stdout 0.03 0.12 | ksq3) 40 0.00 0.00
unexecuted functions  0.00 73.69| 6.27 44.35 N/A -0.19
avaage 6.08 44.13 -0.01 -0.19
sha main 0.00 13.71| sksclsl (7) 55 +6.67 | +5.26
(372) sha_final 0.00 10.75| shksc (5) 41 0.00 0.00
sha_init 0.00 | 5.11| skg3) 25 0.00 0.00
sha_print 0.00 3.76 | sksd4) 40 0.00 0.00
sha_stream 0.00| 11.02 | sjmksc(7) 42 0.00 0.00
sha_transform 99.51 | 44.62 | skscllllllhscllllihs(21) 56 -11.46 -12.50
sha_update 0.49| 11.02 | sjmhkscé¢8) 56 -0.08 -2.78
aveage 7.86 45.00 -11.44 -6.20
string- init_search 92.32 6.18| sjmksclisclihs (14) 70 -15.99 0.00
search main 3.02 14.08| sjmksclhsclhl (13) 69 +0.01| +2.08
(760) strsearch 4.66 7.37| skscllslscl (11) 69 -3.10 0.00
unexecuted functions  0.00 71.44| 14.00 66.57 N/A +1.37
aveage 13.50 67.40 -15.01| +1.28
aveage 8.01 49.58 -9.31 -2.94
Table 3: Batch Optimization Measurements
weight factors. Br each function, we performed threefeliént according to the fithess criteria used are shown in aoddf The
searches, which are based on static instruction count, only genetic algorithm as able to find a sequence for each function
dynamic instruction count onhand 50% for eachafctor Finally, that either achiees the same result or obtains an imed result
to obtain the results in a timelaghion we only performed 100 as compared to the batch compilation. I teases the dynamic
generations instead of 1000 generations for each search. instruction count increased when optimizing for both speed and
Table 4 shows the results obtained for each function by SPace. Buin each case theverall benefit vas imprared since the
applying the genetic algorithm. As in TableBexecuted func- percentage decrease in static instruction count was larger than the
tions indicate those functions that were noeeited using the  Percentage increase in dynamic instruction count.
benchmarls input data. The last six columns shthe effect on Figures 11 and 12 siwthe overall effect of using the genetic

dynamic and static instruction counts for each of the three sets ofalgorithm for each test program on the dynamic and static results,
fitness criteria. The results that were supposed to inwero  respectiely. The second measure for each function is obtained



optimizing for speed optimizing for space] optimizing for both
program functions % effect %effect %effect %effect %effect Y%effect
ondynamic| onstatic ondynamic onstatic ondynamic on static

bitcount AR_btbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00
BW_btbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00

bit_count -25.29 | -12.50 -25.29| -12.50 -25.29| -12.50

bit_shifter 0.00 0.00 0.00 0.00 0.00 0.00

bitcount -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

main -10.00 -4.90 +20.00| -11.76 -0.00 -7.84

ntbl_bitcnt -10.46 | -11.11 -5.82 -5.56 -10.46| -11.11

ntbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00

unexecuted functions N/A -2.55 N/A -3.73 N/A -3.73

total -6.30 -3.82 -2.02 -5.42 -5.10 -4.82

dijkstra dequeue 0.00 0.00 0.00 0.00 0.00 0.00
dijkstra -6.05 -3.47 -3.02 -4.86 -6.05 -6.25

enqueue 0.00 0.00 0.00 0.00 0.00 0.00

main 0.00 0.00 +23.12 -6.67 0.00 -2.67

print_path 0.00 0.00 0.00 0.00 0.00 0.00

gcount 0.00 0.00 0.00 0.00 0.00 0.00

total -5.03 -1.53 -2.50 -3.67 -5.03 -3.36

fft CheckPointer 0.00 0.00 0.00 0.00 0.00 0.00
IsPowerOfivo 0.00 0.00 0.00 0.00 0.00 0.00
NumberOfBitsNeeded 0.00 0.00 +16.47 -6.90 0.00 0.00

ReverseBits -0.93 -5.26 0.00| -15.79 0.00| -15.79

fft_float -6.14 -4.59 +0.71 -8.83 -6.14 -8.13

main -0.00 -1.74 +0.44 -5.21 +0.44 -5.21

unexecuted functions N/A -4.11 N/A -6.85 N/A -6.85

total -3.57 -3.02 +0.53 -6.87 -3.30 -6.32

jpeg finish_input_ppm 0.00 0.00 0.00 0.00 0.00 0.00
get_raw_row 0.00 0.00 0.00 0.00 0.00 0.00
jinit_read_ppm 0.00 0.00 0.00 0.00 0.00 0.00

main -0.04 -1.95 -0.03 -3.90 -0.03 -3.90
parse_switches 0.00 -1.72 +2.17 -2.06 0.00 -1.72

pbm_getc 0.00 0.00 0.00 0.00 0.00 0.00
read_pbm_integer -3.54 -1.54 -3.54 -1.54 -3.54 -1.54
select_file_type -2.08 0.00 -2.08 0.00 -2.08 0.00
start_input_ppm 0.00 -0.65 0.00 -0.65 0.00 -0.65

write_stdout -16.67 | -16.67 -16.67| -16.67 -16.67| -16.67

unexecuted functions N/A -3.15 N/A -3.94 N/A -3.94

total -0.08 -2.67 -0.06 -3.36 -0.07 -3.33

sha main -17.07 -9.80 -17.07 -9.80 -17.07 -9.80
sha_final 0.00 0.00 0.00 0.00 0.00 0.00

sha_init 0.00 0.00 0.00 0.00 0.00 0.00

sha_print -7.14 -7.14 -7.14 -7.14 -7.14 -7.14

sha_stream -6.65 | -29.27 +6.59| -31.71 -6.65| -29.27
sha_transform -0.04 -0.60 +6.07 -3.01 0.00 0.00

sha_update -0.06 -2.44 0.00 -7.32 0.00 -7.32

total -0.04 -5.38 +6.04 -7.26 -0.00 -5.65

stringsearch| init_search -0.37 -6.38 -0.31| -19.15 -0.37| -21.28
main -1.90 -5.61 -1.90| -10.28 +5.67 -7.48

strsearch -4.40 -7.14 +0.61 -7.14 -2.24 -3.57

unexecuted functions N/A -9.64 N/A -9.64 N/A -9.64

total -0.61 -8.68 -0.32| -10.13 -0.28 -9.61

aveage -2.61 -4.18 +0.28 -6.12 -2.30 -5.52

Table 4: Effect on Speed and Space Using the Three Fitness Criteria

from the sequence found by the batch compilation when itera-improvements could be made. Note that méatch compilers do
tively applying optimization phases and is normalized toThe not iteratvely apply phases and the use of a genetic algorithm to
results she that iteratvely applying phases has a significant select optimization sequences willveageater benefits as com-
impact on dynamic instruction count and less of an impact on thepared to such noniteraé batch compilations.The results when
code size. The genetic algorithm was moffeaie & reducing optimizing for both speed and space showed that we were able to
the static instruction count than dynamic instruction count, which achieze dose to the same dynamic benefits when optimizing for
is not surprising since the batch compiler wagetbgped with the speed and close to the same static benefits when optimizing for
primary goal of improving the speed of the generated code and nospace. Auser can set the fithess criteria for a function to best
reducing code sizeHowever, respectable dynamic imprements improve te overall result. For instance, small functions with high
were still obtained despite having a batch compilation baseline dynamic instruction counts can be optimized primarily for speed,
that iteratvely applies optimization phases untii no more functions with lev dynamic instruction counts can be optimized
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primarily for space, and large functions with high dynamic counts
can be optimized for both speed and space.
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Figure 11: Overall Effect on Dynamic Instruction Count
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Figure 12: Overall Effect on Static Instruction Count
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We wse a hash table containing fitness values anckéddsy
the chromosomes to reduce the seandshead. Ifthe sequence
has already been attempted, then we do not recompui#/eit.
found that on eerage 54% of the sequences were found in the
hash table. The functions with shorter sequence lengths had a
much higher percentage of redundant sequencesshorter
sequence length results in fewer possible sequences and dess lik
lihood that mutation will change a sequence in the population.

The wverhead of finding the best sequence using the genetic
algorithm for 100 generations with a population size of twenty
required about 30-45 minutes for each function on ARSP
Ultra-80 processorThe compilation time was less when optimiz-
ing for size only since we would only get dynamic instruction
counts when the static instruction count was less than or equal to
the count found soaf for the best sequence. In this case we
would use the dynamic instruction count as a secondary fitness
value to break ties. In general, we found that the search tiase w
dominated not by the compildaut instead by assembling, linking,
and eecuting the program. If we use size without obtaining a
dynamic instruction count, then we typically obtain results for
each function in less than one minute.

8. FUTURE WORK

There is much future work to consider on the topic of selecting
effectve @timization sequences. It auld be informatie ©
obtain measurements on a real embedded systems architecture.
However, most of these systems only provideeution time mea-
surements via simulation on a host proces3de actual embed-

ded processor may often not beailable or downloading the

The optimization phase sequences selected by the genetiexecutable onto the embedded machine and obtaining measure-

algorithm for each function are shown in TableThe sequences

ments may not be easily automated. Therteead of simulating

shawn are the ones that produced the best results for the specifiegrograms to obtain speed performance information may be prob-

fitness criteria. Sequences for a function shown in boldfaded
between the different fitness criteria. Similar to the results in

lematic when performing large searches using a genetic algorithm,
which would likely require thousands of simulations. One option

Table 3, these sequences represent the optimization phases sugs to translate the assembly produced for the embedded machine to
cessfully applied as opposed to all optimization phases attemptedan equialent assembly program on a host proces3tis assem-
Some optimization phases listed in Table 2 are rarely appliedbly can be instrumented in order to produce a dynamic instruction

since thg havealready been applied once befoegister assign-
ment These are the control-flotransformations that include the
third phase and the last diyphases listed in dble 2. Strength
reductionwas ot applied due to using dynamic instruction counts
instead of taking the latencies of mosg@ensve instructions, lile
integer multiplies, into account.

count of each basic block whereeuted. Anestimation of the
number of CPU yxles for each basic block can be multiplied by
the count to gie a esponsie ad reasonably accurate measure of
dynamic performance on an embedded processor that does not
have a nemory hierarci.

Another area of future work is to vary the characteristics of

It appears that certain optimization phases enable other spethe &periments. W only obtained measurements for 100 genera-

cific phases.For instancejnstruction selectior(s) often follavs
register allocation(k) since instructions can often be combined
after memory references are replaced lyjsters. Lilewise,dead
assignment eliminatioith) often follovs common suberession

tions and a optimization sequence that is 1.25 times the length of
the successfully applied batch optimization sequence. It would be
interesting to see ko performance imprees as he number of
generations and the sequence length increases. The actual

elimination(c) since a sequence of assignments often become usecrosseer and mutation operations could also tberied. Inaddi-

less when the use of its result is replaced with a different register.
The results in a@ble 5 also she that functions within the

same program produce the best results with different optimization

sequences. Théunctions with fewer instructions typically had
not only fewer successfully applied optimization phasgsalso

tion, the set of candidate optimization phases couldxtended.
Finally, the set of benchmarksauated could be increased.

All of the experiments in our studyviaolved selecting opti-
mization phase sequences for entire functiohe havethe abil-
ity in VISTA to limit the scope of an optimization phase to a set of

less variance in the sequences selected between the different filasic blocks. It would be interesting to perform genetic algorithm

ness criteria. Note that marsequences may produce the same
result for a gren function and the one sha is just the first
sequence found that produces the best result.
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searches for different regions of code within a functiéor fre-
quently executed regions we could attempt to impeopeed and
for infrequently eecuted regions we could attempt to imypgo



program functions optimizing for speed | optimizing for spade  optimizing for bpth

bitcount AR_btbl_bitcount chks chks chks
BW_btbl_bitcount ks ks ks
bit_count kchs kchs kchs
bit_shifter ks ks ks
bitcount ks ks ks
main slljckllhschllimc chllkc chliskliclisich
ntbl_bitcnt ckshc ksc ckhsc
ntbl_bitcount ks ks ks

dijkstra dequeue ksc ksc ksc
dijkstra chllichklljsc chklliclic ckclllscllihsc
enqueue kshc khsc khsc
main shkliclljc skhc chkliclic
print_path kch kch kch
gcount

fft CheckPointer hke kch hksc
IsPowerOftvo kes kes kcs
NumberOfBitsNeeded hkjcs khs hkjmsc
ReverseBits kcjhsc kes ksc
fft_float jkeslllichelh kslllhschc kellliclihscllh
main skllllsjmch shllllksc skshc

jpeg finish_input_ppm
get_raw_rav ke ke ke
jinit_read_ppm ke ke ke
main kchcj kchc kche
parse_switches jsksch kshc jkshem
pbm_getc ksch ksch ksch
read_pbm_integer kes kchs kchs
select_file_type rkch rkch rkch
start_input_ppm kschc kschc kschc
write_stdout ks ks ks

sha main kesh kesh kesh
sha_final ksch ksch ksch
sha_init ke ke ke
sha_print chkc chkc chkc
sha_stream kej chke chkel
sha_transform cksllilllisclillithiiilich — {llsllikssc skelllllihellllish
sha_update kshcjc kschc kschc

stringsearch| init_search likcjlihclc ckhsclich ksllslihs
main kslhicjhc skslhlc kslhls
strsearch clskclhs cksch sliksls

Table 5: Optimization Phase Sequences Selected Using the Three Fitness Criteria

space. Selectingequences for regions of code may result in the
best measures when both speed and size are considered.

We havealso performed a number of experiments to illustrate
the efectiveness of using a genetic algorithm to search féir ef
cient sequences of optimization phas&¥e found that signifi-
cantly different sequences are often best for each functiem e
within the same program or modulklowever, we dso found that
paper s, e e eudope an eracte amplaon ysem, S Opimzalonphases ageat o eneble o specilc prases
that automatically pnades performance feedback information to N o . ) o

y P b criteria and that it is possible to use fithess criteria thastaloth

a wer after each successfully applied optimization phages - ) .
. speed and size into account. While we demonstrated that itera-
feedback allows a user to gauge the progress when tuning arn. . I
phases until no additional

application. Secondye allaw a ser to interactiely select struc- itxe?/wa?pepr?tgngre ?opL}Ir:EITr? tzlalotr)]atch compilation can mitigateyman
tured constructs for applying optimization phase sequences. P P gateym

These constructs aillothe conditional or iterate gplication of phase ordering problt_em_s withgaed to dynami_c instructipn count,
optimization phases. Infett, we hae movided an optimization we found that dynamic impvements could still be obtained from

phase programming language. Third, weengrovided constructs this a_ggres_g'e_ ba_seline using a genetic algorithm to search for
that automatically select optimization phase sequences based oﬁffectrve ctimization phase sequences.

specified fitness criteriaA user can enter specific sequences and An environment that allows a user to easily tune the sequence
the compiler chooses the sequence that produces the best resuff optimization phases for each function in an embedded applica-
A user can also specify a set of phases along with options fortion can be very beneficial. The VI&Bystem supports tuning of
exploring the search space of possible sequerites.user is pro-  applications by prading the ability to supply performance feed-
vided with feedback describing the progress of the search and mayack information, select optimization phases, and automatically
abort the search and accept the best sequence found at that point.search for dicient sequences of optimization phas&snbedded

9. CONCLUSIONS

There are seral contributions that we ka pesented in this
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programmers often resort to coding in assembly to meet stringen{12]

constraints on time, size, andvper consumption. Besides using
VISTA to obtain a more efficientecutable, such an eimonment
may encourage more users tovdep applications in a high Vel

language, which can result in software that is more portable, more[13]

robust, and less costly tovd#op and maintain.
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