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Abstract
The issues of compiler optimization phase ordering and selection
present important challenges to compiler developers in several do-
mains, and in particular to the speed, code size, power, and cost-
constrained domain of embedded systems. Different sequences of
optimization phases have been observed to provide the best perfor-
mance for different applications. Compiler writers and embedded
systems developers have recently addressed this problem by con-
ducting iterative empirical searches using machine-learning based
heuristic algorithms in an attempt to find the phase sequences that
are most effective for each application. Such searches are generally
performed at the program level, although a few studies have been
performed at the function level. The finer granularity of function-
level searches has the potential to provide greater overall perfor-
mance benefits, but only at the cost of slower searches caused
by a greater number of performance evaluations that often re-
quire expensive program simulations. In this paper, we evaluate
the performance benefits and search time increases of function-
level approaches as compared to their program-level counterparts.
We, then, present a novel search algorithm that conducts distinct
function-level searches simultaneously, but requires only a single
program simulation for evaluating the performance of potentially
unique sequences for each function. Thus, our newhybrid search
strategy provides the enhanced performance benefits of function-
level searches with a search-time cost that is comparable to or less
than program-level searches.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors- compilers, optimization

General Terms Performance, Measurements, Algorithms.

Keywords Phase Ordering, Genetic Algorithms.

1. Introduction
The optimization phase ordering and selection problems have been
a long-standing and persistent dilemma for compiler writers [12,
25, 29]. The two problems are related in that phase ordering tries
to find the best order in which optimization phases should be
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applied and phase selection focuses on determining whether or not
phases should be applied. Optimization phases depend on machine
resources (such as registers) and transformations performed by
other phases for their successful application. Consequently, phases
depend on and interact with each other, enabling and disabling
opportunities for other optimization phases. It is widely recognized,
and often reported, that a single sequence of optimization phases is
unlikely to achieve the best performance for every application on a
given machine [8, 17, 19, 28, 30]. Instead, the ideal phase sequence
depends on the characteristics of the application being compiled,
the compiler implementation, and the target architecture.

Since it is difficult to predict the optimal phase sequence for
each application, compiler writers have recently investigated phase
ordering/selection by employing genetic algorithms [8, 19] and
other evolutionary techniques [1, 2, 15, 16, 24] during iterative
compilation to search for the the most effective sequence. When
the fitness criteria for such searches involves dynamic measures
(e.g., cycle counts or power consumption), thousands of direct
executions of an application may be required. The search time in
such cases is significant, often needing hours or days for finding
effective sequences for a single application, making it less attractive
for developers.

However, there are application areas where long compilation
times are acceptable. For example, such iterative search techniques
are often suitable for compiling programs targeting embedded sys-
tems. Many embedded system developers attempt to construct sys-
tems with justenoughcompute power and memory as is necessary
for the particular task. Most embedded systems are also constrained
for power. Consequently, reducing the speed, memory (code size),
and/or power requirements is extremely crucial for such embedded
applications, as reducing the processor or memory cost can result
in huge savings for products with millions of units shipped.

The search time problem is unfortunately further exacerbated
for embedded systems because the software development envi-
ronment is often different from the target environment. Obtain-
ing performance measures on cross-platform development envi-
ronments typically requires simulation. The advantages of using
simulation include obtaining repeatable and more detailed infor-
mation about the program’s execution. For instance, simulation can
easily provide performance information about each function in a
program. Furthermore, simulators for embedded processors are in
general much more accurate than those for general-purpose proces-
sors since embedded processors are inherently simpler. However,
simulation can be orders of magnitude slower than native execu-
tion. Even when it is possible to use the target machine to gather
performance data directly, the embedded processor may be signif-
icantly slower (slower clock rate, less memory, etc.) than available
general-purpose processors. Searching for an effective optimiza-
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tion sequence in such environments can easily require significantly
longer periods than even the hours or days reported when using di-
rect execution on a general-purpose processor [2, 4]. Thus, reduc-
ing the search time while achieving the intended benefits is critical
to make evolutionary searches feasible for embedded systems.

Iterative searches to find the most effective phase sequence can
be performed at multiple levels of code granularity: (1) Typically,
such searches are performed at theprogram-level, with the same
set of optimization flags or phase sequence employed for the en-
tire program [1, 8, 14, 16]. (2)Function-levelsearches attempt
to find possibly distinct phase sequences that are most effective
over individual functions at a time [19, 28]. Function-level searches
are more expensive as they may require several times more pro-
gram simulations/executions, depending on the number of func-
tions in the program. For example, a simple genetic algorithm based
function-level search over a program consisting ofn functions,
will require n times more program simulations/executions. How-
ever, by potentially achieving enhanced customization, function-
level searches may result in more efficient executables.

In this paper, we study and quantify the potential benefits (in
terms of execution cycles and code size) and relative costs (in term
of search overhead) of function versus program-level evolution-
ary searches. We suggest a newhybrid search strategy that com-
bines the best features of function and program level search tech-
niques. Our approach works by performing multiple function-level
searches over all functions in the program simultaneously, but does
not simulate the program until each function in the program has a
new sequence to evaluate. We show that our hybrid search strat-
egy achieves the performance benefits of a function-level search,
but with less cost than is required for even a program-level search.
Thus, the main contributions of this paper are:

1. This is the first study of which we are aware to compare the
costs and benefits of performing searches for effective opti-
mization phase sequences for individual functions versus an en-
tire program as a single search unit.

2. We also introduce and evaluate a newfile-level search strategy,
which is the finest search granularity that can be achieved by
algorithms implemented outside most compilers.

3. We describe and show the results for a hybrid search strategy
that produces code with the effectiveness of individual function-
level searches and has search costs that match or are more
efficient than program-level search costs.

The rest of the paper is organized as follows. In the next sec-
tion, we discuss previous research related to automatically finding
effective phase sequences in optimizing compilers. In Section 3,
we describe the three search strategies being compared in this pa-
per, individual function, file, and entire program searches. We then
outline our compiler framework and experimental setup in Sec-
tion 4. In Section 5, we present the configuration of the genetic al-
gorithm based evolutionary search technique used for the searches
compared in this paper. We give the results of the comparisons of
function, file, and program level searches in Section 6. We present
and evaluate our new hybrid search technique in Section 7. Finally,
we detail our thoughts regarding future work and conclusions in
Sections 8 and 9, respectively.

2. Related Work
Prior work in optimization phase ordering and selection has investi-
gated both analytical and empirical approaches to address the prob-
lem. Specifications of code-improving transformations have been
automatically analyzed to determine their enabling and disabling
interactions [30], as well as other phase properties such as the im-
pact [31] and profitability [32] of optimizations. Such analytical

information can provide insight into constructing a singlecompro-
misephase ordering for a conventional optimizing compiler.

The empirical search community acknowledges that it is un-
likely that a single sequence of phases will achieve the best per-
formance for all programs, and instead employs empirical tech-
niques to iteratively search for the most effective phase sequence
over programs or individual functions [1, 4, 5, 7, 8, 16, 18–20, 28].
Exhaustive enumeration of the phase application search space, al-
though feasible in some cases [21, 22], has been reported to take
many days to several months, depending on the compiler, applica-
tion programs, and search strategy [2]. Consequently, researchers
have primarily focused on heuristic search approaches and aggres-
sive pruning of the search space [1, 20, 28] to address the phase
ordering and selection issues.

A number of systems have been developed that use iterative or
evolutionary algorithms to find the most effective phase combina-
tion. Such searches generally operate on an entire program or a
per-function basis. A technique calledOptimization Space Explo-
ration uses a function-based strategy to search a statically pruned
space of 229 optimization parameters forhot functions, and uses
static performance estimators (instead of program execution) to
limit the search time. Kulkarni et al. employed evolutionary al-
gorithms on individual functions to search for effective phase or-
derings in a search space of up to 1544 phase sequences [19, 24].
Cooper et al. were the first to employ genetic algorithms during it-
erative searches over entire programs to find the best phase ordering
to reduce program code size in a solution space size of 1012 pos-
sible sequences [8]. In addition to finding custom phase orderings
for individual programs, they were also able to construct a fixed
sequence that generated up to 40% smaller codes than the default
sequence used in their compiler. Other approaches used aggressive
pruning of the search space to avoid evaluating sequences that are
not likely to lead to improved benefits.

Researchers have also investigated the problem of finding the
best set of compiler optimization flags (phase selection) for each
program. Chow and Wu applied a technique calledfractional fac-
torial design[5], Haneda et al. used theMann-Whitneytest [15],
Pan and Eigenmann employed three different feedback-driven or-
chestration algorithms [27], and Hoste and Eeckhout proposed a
multi-objective evolutionary technique calledCompiler Optimiza-
tion Level Exploration[16] to effectively select a single setting
of compiler optimization flags for the entire application. All such
studies attempted to find a single distinct set of optimization flag
setting for entire programs, and demonstrated that different pro-
grams do achieve their best performance with distinct flag settings.

Researchers have explored various schemes to limit the time of
iterative searches. For example, researchers have used static estima-
tion techniques to avoid expensive program simulations for perfor-
mance evaluation [9, 22, 28]. Agakov et al. characterized programs
using staticfeaturesand developed adaptive mechanisms using sta-
tistical correlation models to focus their iterative search to those ar-
eas of the phase ordering space most likely to provide the greatest
performance benefit [1]. A separate study by Kulkarni et al. em-
ployed several innovative search space pruning techniques to avoid
over 84% of program executions, thereby considerably reducing
the search overhead [20, 23]. Fursin et al. devised a novel strat-
egy to evaluate the relative benefit of multiple per-function phase
sequences during a single program execution by maintaining differ-
ent versions of the same function in one executable and switching
between them during execution [10]. Thus, this approach can sub-
stantially reduce the search overhead when the paths taken within
the function are guaranteed to be the same each time. However, to
our knowledge, there is no previous work that compares the perfor-
mance benefit and search time overhead of function-based iterative
search approaches over a program-based approach.
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3. Entire Program, File, and Individual Function
Searches

Empirical searches for finding the most effective optimization
phase sequence can be conducted at different levels of code granu-
larity. It is possible to perform these searches at either the function,
file, or entire program level. Finer levels of search granularities
enable greater flexibility in selecting distinct best sequences for
different code segments in a program. This flexibility can poten-
tially produce better-performing code than that achievable by a
single phase sequence for the entire program.

At the same time, the search implementation strategy can also
affect the levels of code granularities available for conducting the
search. Search algorithms can either be implemented inside the
compiler, or as a separate external program that invokes the com-
piler for each new phase sequence. Mechanisms implemented in-
side the compiler offer the most flexibility in terms of choosing the
code granularity for the search. Moreover, such searches can pro-
ceed more quickly since the compiler need only be invoked once,
and the search technique can have access to many internal compiler
data structures for performance evaluation and function instance
equivalence matching. However, this approach requires familiarity
with the compiler, is more difficult to implement since it involves
modifications to the compiler, and may need to be ported to each
investigated compiler, which is a substantial development task.

In contrast, a search program to find the best phase sequence
may be easier to implement outside the compiler, by invoking the
compiler with different phase sequences (as determined by the
search technique), and evaluating the performance of the resulting
program each time. Moreover, such a search framework will be
portable by allowing different compilers to be plugged into the
same search program. However, most compilers provide no way to
apply different phase sequences to individual functions in a single
source file, thus eliminating the option of function-based search
approaches.1 Also, conventional compilers only permit turning
optimizations on or off using the provided command-line flags, and
do not support reordering optimizations phases, thus preventing
investigations into the phase ordering problem.

To allow maximum flexibility in exploring phase order search
strategies at different code granularities, we have implemented our
search strategy inside the compiler for the techniques evaluated
in this paper. This allows us to perform searches for the most
effective optimization phase orderings at the function, file, and
program levels. These three search algorithms are illustrated using
the pseudo code in Figure 1. These algorithms avoid simulating the
program when functions are redundant, which will be described
later in the paper.

As previously mentioned, empirical search at lower levels of
code granularity are desirable since they can potentially produce
better performing code for the entire application. However, current
implementations of function-based search techniques,2 conduct
their searches for the most effective optimization sequence for each
function individually, and in isolation of the searches performed
on the remaining functions in the program. For search strategies
that employwall-timeor execution cyclesfor evaluating the merit
of each phase sequence, program execution/simulation time (as
compared to compilation time) is typically the dominant factor
in the overall search time. For example, Cooper et al. reported
execution time comprised 76% of their total search time, in spite
of conducting their performance evaluations via native program
executions [9]. For evaluation environments that require simulation

1 Compilation frameworks, such as GCC 4.5 and MILEPOST GCC are
notable exceptions [11].
2 We are unaware of any work in file-based search strategies.

entire program approach:
DO

determine next compilation settings;

compile entire program with these settings;

IF any function is not redundant THEN

get entire program performance results

by simulating the program;

UNTIL number of iterations completed;

individual file approach:
FOR each file in program DO

DO

determine next compilation settings;

compile all functions in file with

these settings;

IF any function is not redundant THEN

get performance of functions in file

by simulating the program;

UNTIL number of iterations completed;

END FOR

individual function approach:
FOR each function in program DO

DO

determine next compilation settings;

compile function with these settings;

IF function is not redundant THEN

get function performance

by simulating the program;

UNTIL number of iterations completed;

END FOR

Figure 1. Pseudo-code for the search algorithms at three different
program granularity levels,entire programlevel, individual file
level, andindividual functionlevel

(a common scenario for embedded systems), the search overhead
will be further dominated by the simulation time. In such cases,
naive function-based search techniques that require up ton times
more program executions/simulations can be up ton times more
expensive than the program-based search approach, wheren is the
number of functions in the program.

Empirical searches at the file-level will typically require more
program evaluations than a program-based approach at the cost of
potentially losing some performance benefits as compared to the
function-based approach. These searches are nonetheless important
since they provide the lowest granularity for search algorithms that
are implemented outside the compiler. Surprisingly, although sev-
eral earlier investigations into the phase selection problem designed
iterative search algorithms outside the compiler [1, 8, 14, 16], we
are not aware of any prior work that suggested or studied the poten-
tial of file-based search approaches. Finally, we integrate the best
features of function-based (higher performance potential for gen-
erated code) and program-based (typically lower search overhead)
search approaches into a newhybrid search strategy. We provide a
detailed description of this new search strategy along with its eval-
uation in Section 7.

4. Compiler Framework
The research in this paper uses the Very Portable Optimizer
(VPO) [3], which is a compiler back end that performs all its opti-
mizations on a single low-level intermediate representation called
RTLs (Register Transfer Lists). This strategy allows VPO to apply
most analyses and optimization phases repeatedly and in an arbi-
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trary order. VPO compiles and optimizes one function at a time,
allowing us to perform function-level phase order searches. Differ-
ent functions may require very different phase orderings to achieve
the best results, so a strategy that allows functions in a file to be
compiled differently may achieve significant benefits [19].

The usual interface to the VPO compiler allows the user to
input a single source file at a time to the compiler. Since the
phase order search algorithm is implemented within the compiler,
the above interface suffices for searching for the most effective
optimization phase sequence at the individual function and file
levels. However, to implement the search algorithm at the program
level, we modified the VPO interface to accept multiple source files
at the same time. While the VPO compilation process keeps track
of the individual file boundaries, this distinction is transparent to
the search algorithm. At the end of the search, VPO produces a
separate assembly file corresponding to each source file to avoid
static name conflicts.

For our experiments in this paper, the VPO compiler has been
targeted to generate code for the StrongARM SA-100 processor
using Linux as its operating system. The ARM is a simple 32-bit
RISC instruction set. The relative simplicity of the ARM ISA com-
bined with the low-power consumption of ARM-based processors
have made this ISA dominant in the embedded systems domain.
We used the SimpleScalar set of functional simulators [6] for the
ARM to get dynamic performance measures. However, invoking
thecycle-accuratesimulator for evaluating the performance of ev-
ery distinct phase sequence produced by the search algorithm is
prohibitively expensive during our experimentation process. There-
fore, we used a measure of estimated performance based partly on
static function properties.3 Our performance estimate accounts for
stalls resulting from pipeline data hazards, but does not consider
other penalties encountered during execution, such as branch mis-
prediction and cache miss penalties. This approach has the addi-
tional advantage of evaluation of each function or file independent
wrt to performance evaluation. Interestingly, we have shown that
this measure of dynamic performance has a strong correlation with
simulator cycles for an embedded processor [22]. For every unique
function instance generated by the search process, our compiler in-
struments the assembly code and links it to produce an executable.
We then use the fast SimpleScalarfunctionalsimulator on our in-
strumented executable to produce a count of the number of times
each basic block is reached. This information is used by our perfor-
mance estimator to provide our dynamic performance measures.

Table 1 describes each of the 15 candidate code-improving
phases that were used during search algorithms. Unlike the other
candidate phases, loop unrolling is applied at most once. Our search
algorithm randomly selects one from among three different unroll
factors (2, 4, and 8) whenever loop unrolling is present in the
search sequence. The default VPO compiler is tuned for generating
high-performance code while managing code-size for embedded
systems, and hence uses a constant loop unroll factor of 2. In
addition, register assignment, which is a compulsory phase that
assigns pseudo registers to hardware registers, must be performed.
VPO implicitly performs register assignment before the first code-
improving phase in a sequence that requires it. After applying the
last code-improving phase in a sequence, VPO performs another
compulsory phase that inserts instructions at the entry and exit of
the function to manage the activation record on the run-time stack.
Finally, the compiler also performspredication and instruction
schedulingbefore the final assembly code is produced. These last
two optimizations should only be performed late in the compilation

3 Note that reducing this expensive simulation cost without affecting the
performance benefits of the generated code is the goal we are attempting to
achieve in this research.

process in the VPO compiler, and so are not included in the set of
re-orderable optimization phases.

For the experiments described in this paper we used a subset of
the benchmarks from theMiBenchbenchmark suite, which are C
applications targeting specific areas of the embedded market [13].
We selected two benchmarks from each of the six categories of
applications present in MiBench. Table 2 contains descriptions of
these programs. VPO compiles and optimizes individual functions
at a time. The 12 benchmarks selected contained a total of 251
functions, out of which 90 were executed (at least once) with the
standard input data provided with each benchmark.

Category Program
Files/

Description
Funcs.

auto bitcount 10 18 test proc. bit manipulation abilities
qsort 1 2 sort strings using the quicksort algo.

network dijkstra 1 6 Dijkstra’s shortest path algorithm
patricia 2 9 construct patricia trie for IP traffic

telecomm fft 3 7 fast fourier transform
adpcm 2 3 compress 16-bit linear PCM sam-

ples to 4-bit samples
consumer jpeg 7 62 image compression and decomp.

tiff2bw 1 9 convert colortiff image to b&w
security sha 2 8 secure hash algorithm

blowfish 6 7 symmetric block cipher with vari-
able length key

office search 4 10 searches for given words in phrases
ispell 12 110 fast spelling checker

Table 2. MiBench Benchmarks Used

5. Search Algorithm Configuration
We adopt a variant of a popular genetic algorithm (GA) based
search technique for the experiments in this paper [8, 19]. We also
employ the latest techniques available in the literature to avoid
redundant program compilations and executions during the genetic
algorithm search process in order to make the experiments feasible
within a reasonable amount of time [20]. At the same time, we
also believe that the conclusions of this work are, most likely,
independent of the heuristic algorithm that is employed during the
empirical search process. In this section, we present the details
of our search algorithm, and the techniques employed to avoid
redundant program compilations and executions.

5.1 Base Genetic Algorithm

Genetic algorithms are adaptive algorithms based on Darwin’s
theory of evolution [26]. There are several parameters of a ge-
netic algorithm that can be varied for different search configura-
tions. Genesin the genetic algorithm correspond to optimization
phases, andchromosomescorrespond to optimization phase se-
quences. The set of chromosomes currently under consideration
constitutes apopulation. The number ofgenerationsis how many
sets of populations are to be evaluated. Previous studies have in-
dicated that genetic algorithm based searches generally produce
better phase sequences faster than a pure random sampling of the
search space [8]. Additionally, it has also been revealed that ge-
netic algorithms are competitive with most otherintelligent phase
sequence search techniques, and minor modifications in the con-
figuration of the GA search parameters do not significantly affect
their performance [24].

For our current study we have fixed the number of chromo-
somes in each population at 20. Chromosomes in the first gener-
ation are randomly initialized. After evaluating the performance
of each chromosome in the population, they are sorted in decreas-
ing order of performance. During crossover, 20% of chromosomes
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Optimization Phase Description

branch chaining Replaces a branch or jump target with the target of the last jumpin the jump chain.
common subexpression
elimination

Performs global analysis to eliminate fully redundant calculations, which also includes global constant and
copy propagation.

remove unreach. code Removes basic blocks that cannot be reached from the functionentry block.
loop unrolling (unroll fac-
tors 2, 4, and 8)

To potentially reduce the number of comparisons and branches at runtime and to aid scheduling at the cost of
code size increase.

dead assign. elim. Uses global analysis to remove assignments when the assigned value is never used.
block reordering Removes a jump by reordering blocks when the target of the jump has only a single predecessor.
minimize loop jumps Removes a jump associated with a loop by duplicating a portion of the loop.
register allocation Uses graph coloring to replace references to a variable within a live range with a register.
loop transformations Performs loop-invariant code motion, recurrence elimination, loop strength reduction, and induction variable

elimination on each loop ordered by loop nesting level.
code abstraction Performs cross-jumping and code-hoisting to move identical instructions from basic blocks to their common

predecessor or successor.
eval. order determ. Reorders instructions within a single basic block in an attempt to use fewer registers.
strength reduction Replaces an expensive instruction with one or more cheaper ones. For this version of the compiler, this means

changing a multiply by a constant into a series of shift, adds,and subtracts.
reverse branches Removes an unconditional jump by reversing a cond. branch whenit branches over the jump.
instruction selection Combines pairs or triples of instructions together where theinstructions are linked by set/use dependencies.

Also performs constant folding and checks if the resulting effect is a legal instruction before committing to the
transformation.

remove useless jumps Removes jumps and branches whose target is the following positional block.

Table 1. Candidate Optimization Phases

from the poorly performing half of the population are replaced
by repeatedly selecting two chromosomes from the better half of
the population and replacing the lower half of the first chromo-
some with the upper half of the second and vice-versa to produce
two new chromosomes each time. During mutation we replace a
phase with another random phase with a small probability of 5% for
chromosomes in the upper half of the population and 10% for the
chromosomes in the lower half. The chromosomes replaced during
crossover are not mutated. During all our experiments, we iterate
the genetic algorithm for 200 generations.

The sequence length of each chromosome should be sufficiently
long to provide the genetic algorithm maximum opportunity to find
the most effective phase sequence. However, too long a sequence
can potentially increase the compilation overhead with no benefit to
the best generated performance. Anactivephase is one that is able
to successfully apply one or more transformations to the program
representation. To find the right balance between compilation cost
and performance opportunity, we first find the sequence length
of active phases applied by our default (batch) compiler. Since
all phases in a chromosome are not guaranteed to be active, the
sequence length is selected to be twice the batch sequence length.
For function and file-level searches, all functions in a single file
use a sequence length that is twice the maximum batch length over
all functions in that file. Similarly, program-level searches choose
twice the maximum batch length over all functions in the entire
program.

All heuristic-based search algorithms attempt to either maxi-
mize or minimize a cost function orfitness criteria. In the domains
of desktop or high-performance computing, the fitness criteria is
typically just the runtime speed of the resulting program. How-
ever, in the embedded system domain, memory consumption (mea-
sured by the size of the generated code) is often as important as the
speed of execution in several cases. Therefore, the fitness criteria
employed by our search algorithm attempts to maximize a perfor-
mance measure that is an equally weighted function of dynamic
performance and code size. These weights can be easily modified
to meet the constraints of a specific embedded system. Moreover,
the fitness criteria of the function and hybrid approaches for each
function are relative to the unoptimized performance numbers over

the entire program. Consequently, for a frequently executed func-
tion, an intelligent search process would progressively select phase
sequences that emphasize reducing execution time at the expense
of increasing code size (for example, by selecting more aggressive
unroll factors for loop unrolling). In contrast, the search would pri-
marily select optimization phases that reduce code size for an in-
frequently executed function.

5.2 Techniques to Remove Redundancy During the GA
Search

Researchers have observed that several sequences found during a
heuristic algorithm search aresimilar to sequences seen earlier in
the search. In such cases, if we store the performance results of pre-
vious phase sequences, then we can use various redundancy detec-
tion schemes to avoid the compilation of several phase sequences
and the execution/simulation for similar sequences found later. We
have used several techniques derived from our previous studies to
detect and eliminate redundancy during our search process [20].
We briefly describe these techniques in this section, and quantify
the redundancy found during our experiments.

We employ the following redundancy detection techniques dur-
ing our experiments:

Identical attempted sequence:If the current phase sequence to
be attempted is identical to some chromosome seen earlier, then
the algorithm can avoid having the compiler even apply the
optimization phases. Performance measures of all distinct at-
tempted phase sequences are maintained in fast access hashta-
bles.

Identical active sequence:After applying the phases in the cur-
rent chromosome, if the sequence of active phases is identical to
some earlier active sequence, then we can avoid program sim-
ulation for performance evaluation. All active phase sequences
are stored in hashtables.

Identical function instance: Different sequences of active phases
can sometimes produce identical code. Our algorithm detects
such cases using multi-variable function hash-values, and pre-
vents program simulation in such cases.
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Figure 2. Number of phase sequences that are found to be redun-
dant by various techniques during the GA-based search algorithm.
Each benchmark has three bars, one for each of the following con-
figurations: (a) function, (b) entire file, (c) entire program.

Equivalent function instance: Earlier studies reveal that it is also
possible for function instances produced by different active
phase sequences to not be completely identical, but only differ
cosmetically in the register number used or in the labels of basic
blocks. Our algorithm avoids program simulation in such cases
as well.

The redundancy detection schemes are performed in the order
specified above. Figure 2 presents the number of redundant in-
stances detected by each detection technique, and for each of our
three search strategies. We can see that close to 90% of the se-
quences generated by the genetic algorithm are detected to be re-
dundant. Additionally, the redundancy ratio remains about the same
for each search strategy. One reason for the large amount of re-
dundancy is the large number of generations (iterations) computed
during the genetic algorithm. As the various redundancy detection
tables are populated, later generations tend to produce significantly
more redundant sequences than earlier generations. However, note
that even the evaluation of 10% of the 4000 phase sequences results
in 400 program simulations on average for each function, which
depending on the search strategy can result in a prohibitively long
search time. For example, for our set of benchmarks, the current
function-based search strategy requires about (400∗ 90 = 36,000)
different program simulations, where 90 is the total number of ex-
ecuted functions across all benchmarks.

6. Evaluation of Function, File, and Program
Level Search Algorithms

As mentioned earlier, we have implemented our genetic algorithm
based search strategy at three different program granularities: func-
tion, file, and program. A function-based search approach has the
potential of the greatest performance benefit by finding a cus-
tomized phase sequence for each individual function, but at the
cost of more program evaluations via expensive simulations. In
contrast, program-based searches lose flexibility by attempting to
determine the most effective phase sequence for the entire pro-
gram, thus overlooking the finer grained program characteristics.
However, by conducting a single search (instead ofn searches con-
ducted by function-based approaches), program-based searches re-
quire less time. A file-based search strategy can provide a compro-
mise between the two alternatives. In this section, we compare the
search cost and the performance of the best code generated by each
of our three search strategies: (a) function, (b) file, and (c) program
level searches. To save space, the graphs in this section also show

Figure 3. Entire program performance benefit achieved by all four
indicated search strategies

results for our hybrid search strategy. The hybrid search strategy
and results are described in Section 7.

6.1 Comparing Performance of Generated Code

Figure 3 plots the improvement in performance (50% speed and
50% code size) for each of our three search strategies, as com-
pared to the batch compiler results. The default VPO batch com-
piler applies the 15 optimization phases in a fixed order, but at-
tempts them repeatedly until the last iteration is unable to make
any further changes to the program representation. Thus, the batch
compiler provides a very aggressive baseline for the search algo-
rithms. In spite of this aggressive baseline, the function search strat-
egy achieves an average performance improvement of 8%, and up
to 12% in the best case. There was also about an 8% improvement
in both execution cycles and code size on average for the function-
level search strategy.

As expected, the additional flexibility inherent in function-level
search strategies enables them to produce code that is optimized
by different customized phase sequences for each function. Thus,
function-level searches can select a distinct best phase sequence
over smaller program units than a file or entire program-level ap-
proach. This advantage allows function-based searches to produce
the best overall code, surpassing that obtained by the file and pro-
gram level searches. Correspondingly, file-level searches are also
able to leverage the same advantage of optimizing over smaller
program units to produce code that performs slightly better than
the program-level approach for several benchmarks.

The results in Figure 3 allow us to make several other interest-
ing observations as well. The effectiveness of file-based search in
producing efficient code depends on the distribution of functions
across the different files in a program. Thus, for benchmarks like
blowfishthat contain only a single function in most files, the per-
formance of the code generated by file-based searches is close to
that delivered by function-based searches. In contrast, for single
file programs, likedijkstra, qsort, andtiff, a file-based search gen-
erates code that is equivalent in performance to that produced by a
program-based approach.

6.2 Comparing Search Progress

Another important measure of the effectiveness of a particular
iterative search algorithm is the number of iterations required to
reach the best or thesteady-stateperformance for each benchmark.
More adept search algorithms typically reach their steady-state
performance during earlier iterations of the search process. For
a genetic algorithm based search process, eachgenerationof the
search is considered to be one iteration.
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Figure 4. Progress of the GA search duringfunction, program,
file andhybrid mode, averaged over all 12 MiBench benchmarks.
Function and hybrid level searches are using variable sequence
lengths per function.

Figure 4 plots the average performance of the code produced by
the best sequence during each generation of the genetic algorithm.
The performance number is averaged across all the 12 selected
MiBench benchmarks. Since all three search strategies (function,
file, program) employ the same genetic algorithm, they all achieve
their respective best, or close to best, performances at about the
same time, and relatively early, during the search process. How-
ever, more importantly, the finer granularity search algorithms start
generating better code than their higher granularity counterparts
almost immediately after the search starts. Therefore, a function-
based search strategy will likely outperform the entire file and pro-
gram level strategies even if the search is performed for fewer num-
ber of generations.

6.3 Comparison of Search Costs

Although finer-granularity search strategies achieve better perform-
ing code, current implementations do so at the cost of increased
search time. Our experiments were performed on a number of pro-
cessors and required a period of over a month to complete. We
found that the search times varied significantly depending on the
processor that was used and the load of the machine when the
search was performed. In general, the search times did improve as
we expected, but there were a few abberations in specific bench-
marks. The search time of an iterative search algorithm is com-
prised of the following two main components.

Compilation Time: This is the time spent by the compiler as it
applies optimization phases to the current function, file, or pro-
gram to generate the output code. Although often a minor com-
ponent of the total search time in the general case, compilation
time becomes significant for very large functions due to both the
time required to apply each phase and typically longer phase se-
quences. In particular, compilation time is the only component
of the search time for unexecuted functions, which the search
algorithm optimizes purely for reduced code size.

Execution/Simulation Time: This is the component of the search
time that is spent executing or simulating the program to mea-
sure the dynamic performance of the code produced by the cur-
rent phase sequence. As mentioned earlier, in typical cases, this
is the major portion of the search time.

We decided to instead report repeatable counts for these two com-
ponents since we believe these counts provide more meaningful
information than the actual wall clock times.

Current implementations of function-level searches explore the
space of each function individually and independently of the re-

Figure 5. Number of program simulations during genetic algo-
rithm searches at all four indicated search strategies

maining functions in the program. Therefore, each program exe-
cution/simulation is only able to reveal performance information
regarding the current function. Thus, for a program withn distinct
functions, a function-based search strategy may result in up ton
times more program executions than a program-based approach.

Figure 5 shows the number of program executions/simulations
required during individual function, file, and program level search
algorithms. To maintain a uniform compilation time for the current
experiments, we use a constant sequence length during our genetic
algorithms for all functions in a single application. This length is
selected to be twice the maximum length ofactivephases applied
by the batch compiler over all functions in the program. Note that
the selected sequence length for any benchmark is still about 5-10
times smaller than the number of phasesattemptedby the batch
compiler for most functions. The phase sequence evaluated during
our genetic algorithm may contain unsuccessful (dormant) phases
interspersed with active phases, and the selected sequence length
allows maximum opportunity to the genetic algorithm to construct
more effective sequences.

The number of program executions shown in Figure 5 was di-
rectly affected by the number of executed functions in each appli-
cation. It is easy to see that the number of program-based execu-
tions was less than the number of file-based executions. Likewise,
the number of file-based executions was exceeded by the number
of function-based executions. However, one can see that the aver-
age was skewed by the results forispell, which had a significantly
greater number of executed functions and hence a greater number
of program executions.

A more meaningful measure is to compare against the number
of executions for the function-level approach without avoiding ex-
ecutions for redundant phase sequences. The baseline number of
executions in this case would be 4000*n, wheren is the number of
functions invoked one or more times during the program’s execu-
tion and 4000 represents the maximum number of unique instances
of functions, which is 20 chromosomes (sequences) for 200 gener-
ations. This measure allows each benchmark result to be weighted
the same, regardless of the number of functions executed in the pro-
gram. Thus, we can see from Figure 6 that a program-based search
strategy requires only about 59% of the number of executions, on
average, compared to those required for function-based searches.
Again, file-based approaches achieve a middle ground and perform
close to 84% as many program executions, on average, as those
performed by an individual function approach. The results for the
benchmarktiff are an exception, where the function-based search
actually requires fewer executions than a corresponding program-
based approach. Further analysis reveals thattiff has very few ex-
ecuted functions (four) with the largest among them dominating
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Figure 6. Ratio of program simulations during genetic algorithm
searches to number of simulations using the function approach with
no redundant sequences

the number of executions count. In such cases, the inherent ran-
domness in the GA search can produce such anomalies. For similar
reasons, theadpcmrequires the most executions with its file-based
search approach.adpcmhas only one executed function in each of
its two files, and this slight increase in the number of executions
during the file-based search can also be attributed to the genetic al-
gorithm taking a different path through the search space. We can
also see that a file-based strategy degenerates to a program-level
approach (and performs the same number of executions) for single
file benchmarks, namely,dijkstra, qsort, andtiff.

The other, and typically smaller, component of the search time
during an iterative algorithm is the compilation time required to
apply the optimization phases. In our earlier results comparing the
number of program executions presented in Figures 5 and 6, all al-
gorithms use a uniform sequence length for each benchmark, which
is twice the maximum batch sequence length. However, the addi-
tional flexibility available in function (and file) based approaches
can allow the genetic algorithm to use a distinct sequence length
for each function (or file) in the program. Thus, searches for smaller
functions can now work with smaller sequence lengths, thereby re-
ducing the compilation overhead is such cases.

To quantify the reduction in the number of applied phases,
we conducted a set of experiments that employ custom sequence
lengths for each function during a function-based search, and each
file during file-based search. The sequence length selected is twice
the batch active sequence length of each function for function-level
searches, twice the length of the longest active sequence among the
functions in each file during file-level searches, and twice the length
of the longest active sequence for all functions during program-
level searches. The results of this study, illustrated in Figure 7,
show that function-based searches only need to apply about 60%
of the number of phases, on average, compared to the number
applied during a program-based search. A similar comparison for
file-based searches reveals a drop in the number of phases applied
to 87%, on average, as compared to the program-based searches.
The performance numbers of the best code generated by function
and file level searches with variable sequence lengths remained the
same.

Thus, the results described in this section enable us to make the
following conclusions that were never reported earlier (to the best
of our knowledge):

1. Function-level searches for the most effective optimization
phase sequence produce better performing code than a program-
level search. Additionally, based on the program layout, file-

Figure 7. Ratio of (number of phases applied duringfunctionand
file level search)/(number of phases applied duringprogram-level
search)

based searches are also more effective at producing better code
than a program-based approach.

2. The finer granularity of function (and file) based search strategy,
allows this approach to typically reach better performance even
during the earlier iterations of the search process.

3. The major drawback of finer granularity searches is the large
number of additional program executions/simulations required
over a program-based strategy, which often dominate the search
time. However, function-based approaches can save some com-
pilation time by using variable sequence lengths per function,
and thus applying fewer number of phases than a program-
based approach that needs to employ a single sequence length
corresponding to the largest function in each program.

7. Hybrid Search Strategy
In the previous section we showed that both function and program
based searches have their respective advantages and drawbacks.A
file-based strategy can provide a middle ground, and, most impor-
tantly, may be the finest granularity available for search strategies
implemented outside the compiler. In this section we propose and
evaluate a new search strategy that encompasses and leverages the
best features of both function and program based iterative search
approaches.

Current implementations of function-based search approaches
isolate the evaluation of each function from the remaining func-
tions in the program. As a consequence of this isolated evaluation,
a function-based search can require up ton times more program
executions than a corresponding search over the entire program,
wheren is the number of functions in the program. Instead, our new
hybrid search strategy is a function-based approach that performs
the searches for alln functions simultaneously. Our hybrid search
strategy delays program simulations for the performance estima-
tion of individual functions, until all (executable) functions in the
entire program also require a performance evaluation or have com-
pleted their search. The individual function performance achieved
by distinct phase sequences for each function can now be evaluated
in a single program simulation. Although obvious in hindsight, it
should be noted that this search strategy, to the best of our knowl-
edge, has never been attempted in the past.

This hybrid search strategy can be best described using the
pseudo code in Figure 8. The outlined hybrid search strategy
achieves all the advantages of both function and program-based
search techniques. In fact, the hybrid strategy, in most cases, re-
quires even fewer program simulations than the program-based
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approach. Both the hybrid and program-based strategies conserve
search time by overlapping the evaluations of multiple individual
functions in one program execution. However, a program-based
approach applies the same phase sequence to all functions in asyn-
chronizedmanner. Therefore, it requires program execution when-
everany function updated by the current phase sequence needs to
be evaluated for performance. As the algorithm in Figure 8 shows,
the searches for individual functions in a hybrid search strategy
proceed unsynchronized, and a function is passed only when it re-
quires evaluation. Thus, in contrast to a program-based approach, a
hybrid search strategy performs its executions only whenall func-
tions whose searches have not yet been completed in the program
need performance evaluation.

DO

FOR each function in program DO

IF function search still incomplete THEN

DO

determine next compilation settings

for this function;

compile function with these settings;

UNTIL function is not redundant OR

function search is complete

ENDIF

END FOR

get results of each function by

simulating program once;

UNTIL number of search generations completed

for all functions in program;

Figure 8. Algorithm for hybrid search approach

This further saving in the number of executions/simulations can
be observed from Figure 6, which shows the number of program
simulations relative to the number required for the function-level
approach when not avoiding redundant sequences during each of
four different search strategies,function, file, program, andhybrid.
Thus, a function-level hybrid strategy requires about 48% fewer
program simulations, on average than the program-level approach
and only about 4% of the total simulations as compared to a naive
function-level approach.

Most importantly, the hybrid approach is able to leverage all
the advantages that are inherent in the flexibility allowed by a finer
granularity search approach. Thus, our hybrid strategy uses cus-
tomized sequence lengths for individual functions, producing the
savings in compilation times illustrated earlier in Figure 7. Figure 3
compares the performance of the hybrid search approaches using
variable sequence lengths with the performance of the earlier three
search strategies. As we had observed earlier, the reduced sequence
lengths for smaller functions do not produce any degradation in the
performance of the code generated by the best sequence.4 Finally,
Figure 4 compares the average performance over all benchmarks
during each iteration of a hybrid search, function-level search, file-
level search, and program-level search. This figure again confirms
that a hybrid-based search shows performance characteristics sim-
ilar to a function-level approach.

8. Future Work
In the future, we plan to further investigate three issues related to
the study presented in this paper. First, our current results demon-
strate that customizing the phase sequence over finer program lev-

4 The slight average performance improvement of hybrid search over
function-based search is, most likely, due to a different random path se-
lected by the genetic algorithm during the hybrid approach.

els can lead to greater performance benefits. In this study we se-
lected an individual function as the finest granularity for conducting
the phase sequence search. Instead, in the future, we would like to
lower the granularity further, and explore the most effective phase
sequence for individualloopswithin a single function, and quantify
the resulting performance benefit over the entire program. Similar
to our current work, we will also devise additional search strate-
gies to limit the number of program executions during loop-level
searches for effective phase sequences.

In addition to genetic algorithms, researchers investigating the
phase ordering and phase selection problems have incorporated var-
ious other heuristic, evolutionary, and statistical mechanisms dur-
ing their phase sequence searches, including simulated annealing,
hill-climbing, orthogonal arrays, fractional factorial design, logis-
tic regression, as well as other custom approaches. Likewise, we
plan to conduct our experiments using other search mechanisms to
assess if our current results regarding the performance benefits and
search time improvements transcend other heuristic and statistical
mechanisms.

Finally, we also plan to evaluate the use of a cluster of proces-
sors to reduce the search time. It will also be interesting to study
how the various search mechanisms lend themselves to parallelism
on multi-core or multi-processor machines. The most effective and
fastest search strategy will likely be one where individual phase
sequences or individual functions are able to be evaluated indepen-
dently on separate processors. We believe that the techniques pre-
sented in this paper can be extended to further enhance the search
time on multi-processor machines.

9. Conclusions
Phase ordering and phase selection are important problems in com-
piler optimization research, and are especially relevant to the area
of performance and cost-constrained embedded systems. Iterative
searches for the most effective phase sequences are typically con-
ducted at thefunctionor entire programlevel. This paper describes
the first study to compare the performance benefits and costs of
searches conducted at these two levels. We conclude that the finer
granularity of function-level searches allows the search algorithm
to find better customized phase sequences over smaller code units,
resulting in enhancing the overall program performance in most
cases, but at a significant cost in search overhead. We further in-
troduced and evaluated afile-level search strategy that can provide
the finest granularity searches for mechanisms implemented out-
side the compiler.

Previously, a major concern with function-level searches was
the additional search overhead due to the number of program
executions/simulations increasing linearly with the number of
functions in the program. To alleviate this concern, we intro-
duced a newhybrid search strategy that conducts all function-level
searches simultaneously, and reduces the number of program exe-
cutions/simulations to the number required for the function having
the most nonredundant sequences in the program. We demonstrated
that a hybrid search strategy can reduce the number of program
executions to be even less than the number required by a program-
based approach, while retaining the performance benefits and com-
pilation time savings of the function-based approach. Thus, our
hybrid search strategy using a variable sequence length achieves
the best advantages of function and program level searches.
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