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Abstract

Dynamic or Just-in-Time (JIT) compilation is crucial to

achieve acceptable performance for applications (written

in managed languages, such as Java and C#) distributed as

intermediate language binary codes for a virtual machine

(VM) architecture. Since it occurs at runtime, JIT compila-

tion needs to carefully tune its compilation policy to make

effective decisions regarding if and when to compile dif-

ferent program regions to achieve the best overall program

performance. Past research has extensively tuned JIT com-

pilation policies, but mainly for VMs with a single compiler

thread and for execution on single-processor machines.

This work is driven by the need to explore the most effec-

tive JIT compilation strategies in their modern operational

environment, where (a) processors have evolved from single

to multi/many cores, and (b) VMs provide support for mul-

tiple concurrent compiler threads. Our results confirm that

changing if and when methods are compiled have signifi-

cant performance impacts. We construct several novel con-

figurations in the HotSpot JVM to facilitate this study. The

new configurations are necessitated by modern Java bench-

marks that impede traditional static whole-program discov-

ery, analysis and annotation, and are required for simulating

future many-core hardware that is not yet widely available.

We study the effects on performance of increasing compiler

aggressiveness for VMs with multiple compiler threads run-

ning on existing single/multi-core and future many-core ma-

chines. Our results indicate that although more aggressive

JIT compilation policies show no benefits on single-core ma-

chines, these can often improve program performance for

multi/many-core machines. However, accurately prioritizing

JIT method compilations is crucial to realize such benefits.
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1. Introduction

Managed languages such as Java [12] and C# [28] support

the ‘compile-once, run-anywhere’ model for code genera-

tion and distribution. This model allows the generation of

programs that can be portably distributed and executed on

any device equipped with the corresponding virtual machine

(VM). The portability constraint limits the format of the dis-

tributed program to a form that is independent of any spe-

cific processor architecture. Since the program binary format

does not match the native architecture, VMs have to employ

either interpretation or dynamic compilation before execut-

ing the program. However, interpreted execution is inher-

ently slow, which makes dynamic or Just-in-Time (JIT) com-

pilation essential to achieve efficient runtime performance

for such applications.

By operating at runtime, JIT compilation contributes to

the overall execution time of the application and, if per-

formed injudiciously, may result in further worsening the

execution or response time of the program. Therefore, JIT

compilation policies need to carefully tune if and when dif-

ferent program regions are compiled to achieve the best pro-

gram performance. In addition to if and when, how to com-

pile program regions is also an important component of any

compilation policy. However, in contrast to the previous two

components, the issue of how to compile program regions

is not unique to dynamic compilation, as can be attested by

the presence of multiple optimization levels in GCC, and the

wide body of research in profile-driven compilation [9, 13]

and optimization phase ordering/selection [16, 35] for static

compilers. Also, the default OpenJDK HotSpot VM used in

our experiments only supports a single compilation level.

Consequently, we do not consider the issue of how to com-

pile any further in this work.

The technique of selective compilation was invented by

researchers to address the issues of if and when to com-



pile program methods during dynamic compilation [4, 19,

25, 30]. However, research on JIT compilation policies em-

ploying the above theories have primarily been conducted on

single-processor machines and for VMs with a single com-

piler thread. As a result, existing JIT compilation policies

that attempt to improve program efficiency while minimiz-

ing application pause times and interference are typically

quite conservative.

Recent years have witnessed a major paradigm shift in

microprocessor design from high-clock frequency single-

core machines to processors that now integrate multiple

cores on a single chip. Moreover, hardware researchers

and processor manufacturers expect to continuously scale

the number of cores available in future processor genera-

tions [1]. Thus, modern architectures allow the possibility of

running the compiler thread(s) on a separate core(s) to min-

imize interference with the application thread. Virtual ma-

chine developers are also responding to this change in their

hardware environment by making the compiler thread-safe,

and allowing the user to simultaneously initiate multiple

concurrent compiler threads. Such evolution in the hardware

and VM contexts may demand radically different JIT compi-

lation policies to achieve the most effective overall program

performance.

Consequently, the objective of this research is to investi-

gate and develop new JIT compilation strategies to realize

the best performance on existing single/multi-core proces-

sors and future many-core machines for VMs with multiple

compiler threads. Unfortunately, experimental constraints

make it difficult to readily achieve this objective. For exam-

ple, one constraint is imposed by modern Java benchmarks

that impede static whole program discovery and analysis.

Also, the commonly heralded many-core machines are not

widely available just yet. We overcome such constraints by

designing and constructing novel VM experimental config-

urations to conduct this work. We induce continuous pro-

gressive increases in the aggressiveness of JIT compilation

strategies, as well as in the number of concurrent compiler

threads and analyze their effect on average program perfor-

mance. Thus, the major contributions of this research work

are the following:

1. We present the novel VM configurations we develop to

overcome the constraints imposed by modern Java bench-

marks and unavailable many-core hardware during our

exploration of effective JIT compilation policies.

2. We quantify the impact of altering ‘if’ and ‘when’ meth-

ods are compiled on application performance.

3. We demonstrate the effect of multiple compiler threads

on average program performance for single-core ma-

chines.

4. We explain the impact of different JIT compilation strate-

gies on available multi-core and future many-core ma-

chines.

5. We identify and show the benefit of prioritizing method

compiles on program performance with different JIT

compilation policies for modern hardware.

The rest of the paper is organized as follows. In the

next section, we present background information and related

work regarding existing JIT compilation policies. We de-

scribe our benchmark suite and general experimental setup

in Section 3. In Section 4, we validate the impact of varying

‘if’ and ‘when’ methods are compiled on program perfor-

mance. Our experiments exploring different JIT compilation

strategies for VMs with multiple compiler threads on single-

core machines are described in Section 5. In Section 6, we

present results that explore the most effective JIT policies

for multi-core machines. We describe the results of our novel

experimental configuration to study compilation policies for

future many-core machines in Section 7. We explain the im-

pact of prioritizing method compiles in Section 8. Finally,

we describe avenues for future work and present our conclu-

sions from this study in Sections 9 and 10 respectively.

2. Background and Related Work

Several researchers have explored the effects of conducting

compilation at runtime on overall program performance and

application pause times. The ParcPlace Smalltalk VM [10]

followed by the Self-93 VM [19] pioneered many of the

adaptive optimization techniques employed in current vir-

tual machines, including selective compilation with multi-

ple compiler threads on single-core machines. For such ma-

chines, the total program run-time includes the application

run-time as well as the compilation time. Therefore, aggres-

sive compilations have the potential of degrading program

performance by increasing the compilation time. The tech-

nique of selective compilation was invented by researchers

to address this issue with dynamic compilation [4, 19, 25,

30]. This technique is based on the observation that most

applications spend a large majority of their execution time

in a small portion of the code [4, 8, 21]. Selective compila-

tion uses online profiling to detect this subset of hot meth-

ods to compile at program startup, and thus limits the over-

head of JIT compilation while still deriving the most perfor-

mance benefit at runtime. Most current VMs employ selec-

tive compilation with a staged emulation model [17]. With

this model, each method is initially interpreted or compiled

with a fast non-optimizing compiler at program start to im-

prove application response time. Later, the virtual machine

attempts to determine the subset of hot methods to selec-

tively compile, and then compiles them at higher levels of

optimization to achieve better program performance.

Unfortunately, selecting the hot methods to compile re-

quires future program execution information, which is hard

to accurately predict [29]. In the absence of any better strat-

egy, most existing JIT compilers employ a simple predic-

tion model that estimates that frequently executed current

hot methods will also remain hot in the future [2, 14, 22].



Online profiling is used to detect these current hot methods.

The most popular online profiling approaches are based on

instrumentation counters [17, 19, 22], interrupt-timer-based

sampling [2], or a combination of the two methods [14]. Pro-

filing using counters requires the virtual machine to count

the number of invocations and loop back-edges for each

method. Sampling is used to periodically interrupt the ap-

plication execution and update a counter for the method(s)

on top of the stack. The method/loop is sent for compilation

if the respective method counters exceed a fixed threshold.

Finding the correct threshold value for each compilation

stage is crucial to achieve good startup performance for ap-

plications running in a virtual machine. Setting a higher than

ideal compilation threshold may cause the virtual machine

to be too conservative in sending methods for compilation,

reducing program performance by denying hot methods a

chance for optimization. In contrast, a compiler with a very

low compilation threshold may compile too many methods,

increasing compilation overhead. High compilation over-

head may negatively impact overall program performance on

single-core machines. Therefore, most performance-aware

JIT compilers experiment with many different threshold

values for each compiler stage to determine the one that

achieves the best performance over a large benchmark suite.

The theoretical basis for tuning compiler thresholds is

provided by the ski-renting principle [11, 20], which states

that to minimize the worst-case damage of online compila-

tion, a method should only be compiled after it has been in-

terpreted a sufficient number of times so as to already offset

the compilation overhead [29]. By this principle, a (slower)

compiler with more/better optimization phases will require a

higher compilation threshold to achieve the best overall pro-

gram performance in a virtual machine.

Resource constraints force existing JIT compilation poli-

cies to make several tradeoffs regarding which methods are

compiled/optimized at what stage of program execution.

Thus, selective compilation is employed to limit the total

time spent by the compiler thread at the cost of potentially

lower application thread performance. Additionally, online

profiling (used to select hot methods to compile) causes de-

lays in making the compilation decisions at program startup.

The first component of this delay is caused by the VM wait-

ing for the method counters to reach the compilation thresh-

old before deeming the method as hot and queuing it for

compilation. The second factor contributing to the compila-

tion delay occurs as each compilation request waits in the

compiler queue to be serviced by a free compiler thread.

Restricting method compiles and the delay in optimizing

hot methods results in poor application startup performance

as the program spends more time executing in unoptimized

code [15, 23, 26].

Researchers have suggested strategies to address the first

delay component for online profiling. Krintz and Calder em-

ploy offline profiling and classfile annotation to send hot

methods to compile early [23, 24]. However, such mecha-

nisms require an additional profiling pass, and are therefore

not generally applicable. Namjoshi and Kulkarni propose

a technique that can dynamically determine loop iteration

bounds to predict future hot methods and send them to com-

pile earlier [29]. Their suggested implementation requires

additional computational resources to run their more expen-

sive profiling stage. Gu and Verbruggee use online phase de-

tection to more accurately estimate recompilation levels for

different hot methods to save redundant compilation over-

heads and produce better code faster [15].

Researchers have also explored techniques to address the

second component of the compilation delay that happens

due to the backup and wait time in the method compila-

tion queue. IBM’s J9 virtual machine uses thread priorities

to increase the priority of the compiler thread on operat-

ing systems, such as AIX and Windows, that provide sup-

port for user-level thread priorities [33]. Another technique

attempts to increase the CPU utilization for the compiler

thread to provide faster service to the queued compilation re-

quests [18, 26]. However, the proposed thread-priority based

implementations for these approaches can be difficult to pro-

vide in all existing operating systems. Jikes RVM provides

a priority-queue implementation to reduce the delay for the

hotter methods, but this study only evaluates their one strat-

egy on single-core machines [3].

Most of the studies described above have been targeted

for single-core machines. There exist few explorations of

JIT compilation issues for multi-core machines. Krintz et

al. investigated the impact of background compilation in a

separate thread to reduce the overhead of dynamic compi-

lation [25]. This technique uses a single compiler thread

and employs offline profiling to determine and prioritize hot

methods to compile. Kulkarni et al. briefly discuss perform-

ing parallel JIT compilation with multiple compiler threads

on multi-core machines, but do not provide any experimen-

tal results [26]. Existing JVMs, such as Sun’s HotSpot server

VM [30] and the Azul VM (derived from HotSpot), support

multiple compiler threads, but do not present any discussions

on ideal compilation strategies for multi-core machines. Si-

multaneous work by Böhm et al. explores the issue of par-

allel JIT compilation with a priority queue based dynamic

work scheduling strategy in the context of their dynamic

binary translator [7]. Our earlier workshop publication ex-

plores the impact of varying the aggressiveness of dynamic

compilation on modern machines for JVMs with multiple

compiler threads [27]. This paper extends our earlier work

by providing more comprehensive results, investigating the

impact of aggressive JIT compilation schemes for existing

multi-core machines, which also validates the accuracy of

the simulation environment we develop for future many-core

machines, and exploring the issues and impact of different

priority-based compiler queue strategies for aggressive JIT

compilation on modern many-core machines.



SPECjvm98 SPECjvm2008 DaCapo-9.12-bach

Name #Methods Name #Methods Name #Methods

201 compress 100 517 compiler.compiler 3195 avrora default 1849

201 compress 10 514 compiler.sunflow 3082 avrora small 1844

202 jess 100 778 compress 960 batik default 4366

202 jess 10 759 crypto.aes 1186 batik small 3747

205 raytrace 100 657 crypto.rsa 960 eclipse default 11145

205 raytrace 10 639 crypto.signverify 1042 eclipse small 5461

209 db 100 512 mpegaudio 959 fop default 4245

209 db 10 515 scimark.fft.small 859 fop small 4601

213 javac 100 1239 scimark.lu.small 735 h2 default 2154

213 javac 10 1211 scimark.monte carlo 707 h2 small 2142

222 mpegaudio 100 659 scimark.sor.small 715 jython default 3547

222 mpegaudio 10 674 scimark.sparse.small 717 jython small 2070

227 mtrt 100 658 serial 1121 luindex default 1689

227 mtrt 10 666 sunflow 2015 luindex small 1425

228 jack 100 736 xml.transform 2592 lusearch default 1192

228 jack 10 734 xml.validation 1794 lusearch small 1303

pmd default 3881

pmd small 3058

sunflow default 1874

sunflow small 1826

tomcat default 9286

tomcat small 9189

xalan default 2296

xalan small 2277

Table 1. Benchmarks used in our experiments

3. Experimental Framework

The research presented in this paper is performed using

the server version of the Sun/Oracle’s HotSpot java virtual

machines (build 1.7.0-ea-b24) [30]. The latest development

code for the HotSpot VM is available through Sun’s Open-

JDK initiative. The HotSpot VM uses interpretation at the

start of program execution. It then employs a counter-based

profiling mechanism, and uses the sum of a method’s invo-

cation and loop back-edge counters to detect and promote

hot methods for compilation. We call the sum of these coun-

ters as the execution count of the method. Methods/loops

are determined to be hot if the corresponding method execu-

tion count exceeds a fixed threshold. The tasks of detecting

hot methods and dispatching them for compilation are per-

formed at every method call (for whole-method compiles)

and loop iteration (for on-stack-replacement compiles). The

HotSpot server VM allows the creation of an arbitrary num-

ber of compiler threads, as specified on the command-line.

The experiments in this paper were conducted using

all the benchmarks from three different benchmark suites,

SPEC jvm98 [32], SPEC jvm2008 (startup) [31] and DaCapo-

9.12-bach [5]. We employ two inputs (10 and 100) for

benchmarks in the SPECjvm98 suite, two inputs (small

and default) for the DaCapo benchmarks, and a single input

(startup) for benchmarks in the SPECjvm2008 suite, result-

ing in 56 benchmark/input pairs. Two benchmarks from the

DaCapo benchmark suite, tradebeans and tradesoap, did not

always run correctly with the default version of the HotSpot

VM, so these benchmarks were excluded from our set. Ta-

ble 1 lists the name and the number of invoked methods for

each benchmark in our suite.

All our experiments were performed on a cluster of 8-core

Intel Xeon 2.833GHz processors. All machines use Fedora

Linux as the operating system. We disable seven of the

eight available cores (including hyperthreading) to run our

single-core experiments. Our multi-core experiments utilize

all available cores (without hyperthreading). More specific

variations made to the hardware configuration are explained

in the respective sections. Each benchmark is run in isolation

to prevent interference from other user programs. Finally, to

account for inherent timing variations during the benchmark

runs, all the performance results in this paper report the

average over 10 runs for each benchmark-configuration pair.

4. Tradeoffs of If and When to Compile

Existing JIT compilation policies tuned for single-core ma-

chines limit the number of methods compiled to reduce

the time spent doing compilations, while achieving the best

overall program performance. Additionally, the process of

finding the set of hot methods to compile and the time spent

by such methods in the compiler queue due to possible queue

back-ups further delays compilations. Thus, although com-
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Figure 1. Understanding the effect of (if to perform) JIT compilation on program performance.

piling/optimizing all program methods at their earliest op-

portunity can likely allow more efficient application thread

execution, existing JIT compilation policies bound by re-

source constraints cannot achieve this ideal. The recent and

future availability of more abundant computing resources

can enable more aggressive JIT compilation policies and im-

prove application performance. However, before exploring

new policies, in this section we first attempt to quantify the

potential benefit of compiling more program methods early.

We develop a unique VM framework to conduct our ex-

periments in this section. This framework provides two com-

plementary capabilities. From the VM’s point of view, our

framework enables the VM to efficiently detect important

program points as they are reached during execution. At the

same time, from the executing program’s point of view, it

allows the program running within the virtual machine to

call-on the enclosing VM to perform certain tasks at specific

points during execution. Our framework employs Soot [34]

to annotate specific user-defined program points statically.

Currently, we only allow annotations at the level of individ-

ual methods. Our updated VM is able to detect these an-

notations on every such method invocation and perform the

desired actions. Of course, we also need to implement the

support to perform these actions in our modified VM. We

found this capability to be extremely useful in several stud-

ies throughout this work.

4.1 Benefit of Dynamic Compilation (If to Compile?)

Executing native code (produced by compilation/optimization

in a JVM) has been observed in earlier works to be much

more efficient than interpreted execution. Therefore, increas-

ing the fraction of compiled code is likely to result in more

efficient program execution. However, not all methods con-

tribute equally to performance improvement. Selective com-

pilation in existing VMs exploits this observation to com-

pile the most frequently executed program sections that are

expected to produce the most performance benefit. Thus,

any additional compilation may only produce diminishing

returns. In this section we attempt to quantify the benefit of

more aggressive compilation that may be enabled by modern

machines. We accomplish this goal by studying the effect of

varying the selective compilation threshold on steady-state

program performance. The VM compiles all methods with

execution counts that exceed the selected threshold. The har-

ness of all our benchmark suites allows each benchmark to

be iterated multiple times in the same VM run. We dis-

able background compilation to force all hot methods to be

compiled in the first iteration itself. The execution time of

the fifth benchmark iteration is measured as its steady-state

time. Thus, the steady-state configuration ignores the compi-

lation overhead allowing us to explore the best-case scenario

where the presence of abundant hardware resources causes

compilations to be effectively free. We are not aware of any

previous study to investigate the goals as stated here.

Our experimental configuration conducts an initial offline

run to collect method execution counts for every benchmark

in our set. For each benchmark, the following measurement

run executes the program over several stages, with a few pro-

gram iterations per stage, in a single VM run. Each succes-

sive stage in our modified HotSpot VM lowers the compi-

lation threshold and compiles additional methods (over the

previous stage) with offline execution counts that exceed the

new lower threshold. We employ our new VM capability de-

scribed earlier to enable the VM to detect the start of ev-

ery benchmark iteration during the same VM run. The VM

uses this detection to determine the end of the current stage,

collect steady-state performance numbers for that stage, and

then release the additional program methods for compila-

tion to start the next stage. Thus, the first stage compiles no

methods, and all methods are compiled by the final stage in

a single VM run. Each intermediate stage compiles succes-

sively more program methods. Each stage consists of suffi-

cient number of program iterations to compile all released

methods. The final iteration in each stage performs no com-

pilations and provides a measure of the benchmark perfor-

mance at the end of that stage.

Figure 1(a) shows the average improvement in program

performance compared to interpreted execution averaged
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Figure 2. Performance benefit of compiling the same set of

hot methods early. The default threshold is 10,000.

over all our benchmarks. The X-axis indicates the compile

threshold used at each stage. At every stage, methods that

have an offline execution count greater than the stage com-

pile threshold are sent for compilation. Figure 1(b) shows

the percentage of methods compiled at each stage, averaged

over all 56 benchmark-input pairs in our set. Thus, we can

see that JIT compilation of all program methods achieves

a dramatic performance improvement over interpretation,

achieving program execution in about 9% of the interpreta-

tion time, on average. As expected, most of the performance

gain is obtained by compiling a very small fraction of the

total executed methods. Indeed, the default HotSpot VM se-

lective compilation threshold of 10,000 results in compiling

about 15% of the methods and reduces execution time to

around 13% of interpretation time. Moreover, it is important

to note that although the added performance improvement

of compiling all program methods does not seem signifi-

cant compared to interpretation time, it results in over 30%

more efficient program execution compared to the default

VM configuration (with threshold 10,000) as the baseline.

4.2 Benefit of Early Compilation (When to Compile?)

Several researchers have made the observation that compil-

ing methods early improves program efficiency since the

program execution spends less time in interpreted or unop-

timized code [15, 29]. In this section we report the bene-

fit in average application performance for our benchmark

programs by compiling the hot methods early. Our results

in this section confirm the observations made by other re-

searchers regarding the benefits of early compilation (with

different/fewer benchmarks), and are presented here for

completeness.

For these experiments we employ an offline profiling run

to first determine the set of hot methods that are compiled by

the default VM configuration (threshold 10,000). Our setup

compiles the samemethods early by initiating their compila-

tions at lower method execution counts. Past studies to mea-

sure early compilation benefit used static method-level an-

notations to indicate the hot methods to the VM for compi-

lation [23, 29]. However, the issues of reflection and runtime

generation of classes make it difficult to statically discover

and annotate all hot methods in newer Java benchmarks [6].

Therefore, we again employ our newVM capability for these

experiments. Each VM run invokes two benchmark itera-

tions. The first iteration does not perform any compilations,

but is only used to discover and load all program methods.

The VM detects the end of the first iteration and marks the

set of hot methods at this point before initiating the next iter-

ation. Measuring the application time of the second iteration

provides the actual program performance.

Figure 2 illustrates the benefits of early compilation on

program performance, averaged over all our 56 benchmark-

input combinations. We find that early compilation of hot

methods can improve performance by over 20% for our set

of benchmarks. Thus, our results in this section show that

the proper selection of ‘if’ and ‘when’ to compile program

methods can have a significant influence on performance.

5. JIT compilation on Single-Core Machines

In this section we first explore the selective compilation

threshold that achieves the best average performance with

our set of benchmarks for a VM with one compiler thread

executing on a single-core machine. This threshold serves

as the baseline for the remaining experiments in this paper.

Additionally, several modern VMs are now equipped with

the ability to spawn multiple simultaneous compiler threads.

Our second study in this section evaluates the impact of mul-

tiple compiler threads on program performance for machines

with a single processor.

5.1 Compilation Threshold with Single Compiler

Thread

By virtue of sharing the same computation resources, the ap-

plication and compiler threads share a complex relationship

for a VM running on a single-core machine. Thus, a high se-

lective compile threshold may achieve poor overall program

performance by spending too much time executing in non-

optimized code resulting in poor application thread time. By

contrast, a lower than ideal compile threshold may also pro-

duce poor performance by spending too long in the compiler

thread. Therefore, the compiler thresholds need to be care-

fully tuned to achieve the most efficient average program ex-

ecution on single-core machines over several benchmarks.

VM developers often experiment with several different

compile threshold values to find the one that achieves the

best overall program performance for their set of bench-

mark programs. We perform a similar experiment to deter-

mine the ideal compilation threshold with a single compiler

thread on our set of benchmarks. These results are presented

in Figure 3(a), which plots the ratio of the average overall

program performance at different compile thresholds com-

pared to the average program performance at the threshold

of 10,000, which is the default compilation threshold for the

HotSpot server VM. Not surprisingly, we can see this default



(a) (b)

Figure 3. Effect of different compilation thresholds on average benchmark performance on single-core processors

threshold performs very well on our set of benchmarks, but

a slightly higher compile threshold of 15,000 achieves the

best overall performance for our benchmark set.

It is also interesting to note that performance worsens at

both high and low compile thresholds. In order to better in-

terpret these results, we plot the graph in Figure 3(b) that

shows the break-down of the overall program execution time

in terms of the ratios of the application and compiler thread

times at different thresholds to their respective times at the

compile threshold of 10,000, averaged over all benchmark

programs. Thus, we can see that high thresholds (> 15,000)

compile less and degrade performance by not providing an

opportunity to the VM to compile several important program

methods. In contrast, the compiler thread times increase with

lower compilation thresholds (< 15,000) as more methods

are sent for compilation. We expected this increased com-

pilation to improve application thread performance. How-

ever, the behavior of the application thread times at low com-

pile thresholds is less intuitive. On further analysis we found

that although JIT compilation policies with lower thresholds

send more methods to compile, this increase also grows the

length of the compiler queue. The flood of less important

program methods delays the compilation of the most critical

methods, resulting in the non-intuitive degradation in appli-

cation thread performance observed in Figure 3(b) for the

lower thresholds. Due to its superior performance, we select

the compile threshold of 15,000 as the baseline for our re-

maining experiments in this paper.

5.2 Effect of Multiple Compiler Threads on

Single-Core Machines

To the best of our knowledge, the effect of multiple compiler

threads on overall program performance on a single-core

machine has never been previously discussed. In this section

we conduct such a study and present our observations.

For each compiler threshold, a separate plot in Figure 4(a)

compares the average overall program performance with

multiple compiler threads to the average performance with

a single compiler thread at that same threshold. Intuitively,

a greater number of compiler threads should be able to re-

duce the method compilation queue delay, which is the time

spent between sending a method to compile and generat-

ing optimized code. Indeed, we notice program performance

improvements for small number of compiler threads (2–4),

but the benefits do not seem to hold with increasing number

of such threads (>4). We further analyzed the performance

degradations with more compiler threads and noticed an in-

crease in the overall compiler thread times in these cases.

This increase suggests that several methods that were queued

for compilation, but never got compiled before program ter-

mination with a single compiler thread are now compiled

as we provide more resources to the VM compiler compo-

nent. Unfortunately, many of these methods contribute little

to improving program performance. At the same time, the

increased compiler activity increases compilation overhead.

Consequently, the potential improvement in application per-

formance achieved by more compilations seems unable to

recover the additional time spent by the compiler thread, re-

sulting in a net loss in overall program performance.

Figure 4(b) compares the average overall program perfor-

mance in each case to the average performance of a baseline

configuration with a single compiler thread at a threshold

of 15,000. Remember, that the baseline configuration used

is the one that achieves the best average performance with

a single compiler thread. These results reveal the best com-

piler policy on single-core machines with multiple compiler

threads. Thus, we can see that the more aggressive thresh-

olds perform quite poorly in relation to our selected base-

line (with any number of compiler threads). Our analysis

finds higher compiler aggressiveness to send more program

methods for compilation, which includes methods that may

not make substantial contributions to performance improve-

ment (cold methods). Additionally, the default HotSpot VM

uses a simple FIFO (first-in first-out) compilation queue, and

compiles methods in the same order in which they are sent.

Consequently, the cold methods delay the compilation of

the really important hot methods relative to the application

thread, producing the resultant loss in performance. Thus,
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Figure 4. Effect of multiple compiler threads on single-core program performance. The discrete measured thread points are

plotted equi-distantly on the x-axis.

this observation suggests that implementing a priority-queue

to order compilations may enable more aggressive compila-

tion thresholds to achieve better performances. We explore

the effect of prioritized method compiles on program per-

formance in further detail in Section 8. In the absence of

a strategy to appropriately prioritize method compiles, our

results indicate that there may be no need to change com-

piler thresholds with more compiler threads on single-core

machines. However, a small increase in the number of com-

piler threads generally improves performance by reducing

the compilation queue delay.

6. JIT Compilation on Multi-Core Machines

Dynamic JIT compilation on single-processor machines has

to be conservative to manage the compilation overhead at

runtime. Modern multi-core machines provide the opportu-

nity to spawn multiple compiler threads and run them con-

currently on separate (free) processor cores, while not in-

terrupting the application thread(s). As such, it is a com-

mon perception that a more aggressive compilation policy is

likely to achieve better application thread and overall pro-

gram performance on multi-core machines for VMs with

multiple compiler threads. Aggressiveness, in this context,

can imply compiling early or compiling more methods by

lowering the compile threshold. In this section, we report the

impact of varying JIT compilation aggressiveness on pro-

gram performance for multi-core machines.

Our experimental setup controls the aggressiveness of

distinct JIT compilation policies by varying the selective

compilation threshold. Lowering the compilation threshold

can benefit program performance in two ways: (a) by com-

piling a greater percentage of the program code, and (b) by

sending methods to compile early. Thus controlling the com-

pile threshold enables us to simultaneously control both our

variables (‘if’ and ‘when’) for exploring the impact of com-

pilation policy aggressiveness on program performance. We

explore the effect of several compilation thresholds, from the

selected baseline threshold of 15,000 to a very aggressive

threshold of 50. At the same time, we also alter the num-

ber of spawned concurrent compiler threads. More compiler

threads will typically have the effect of compiling methods

early relative to the application thread. We vary the number

of simultaneously active compiler threads in our experiment

from 1 to 100. The experiments are conducted on a cluster

of identical 8-core machines with hyperthreading disabled.

Figure 5 illustrates the results of our experiments. For

each indicated compile threshold, a corresponding line-plot

in Figure 5(a) shows the ratio of the program performance

with different number of compiler threads to the program

performance with a single compiler thread at that same

threshold, averaged over our 56 benchmark-input pairs.

Thus, we can see that increasing the number of compiler

threads improves application performance at all compile

thresholds. Additionally, configurations with more aggres-

sive compilation thresholds derive a greater benefit in pro-

gram performance from more compiler threads. At the same

time, the relative gain in program performance does seem

to taper off with each additional compiler thread. Moreover,

higher compilation thresholds need fewer compiler threads

to reach their maximum achievable program performance.

These results are expected since a greater number of com-

piler threads only benefit performance as long as there is

work to do for those additional threads. More aggressive

thresholds send a greater number of methods to compile and

therefore continue deriving performance benefits with more

compiler threads. It is also interesting to note that there is

almost no further performance improvement for any level of

compiler aggressiveness after about seven compiler threads.

We believe that this result is a consequence of our hard-

ware setup that uses processors with eight distinct cores. We

explore this result further in Section 7.

Figure 5(b) compares all the program performances

(with different thresholds and different number of compiler

threads) to a single baseline program performance. The se-

lected baseline is the program performance with a single
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Figure 5. Effect of multiple compiler threads on multi-core application performance

compiler thread at the threshold of 15,000. We can see that

in the best case (configuration with threshold 5,000 and 7

compiler threads) the combination of increased compiler

aggressiveness with more compiler threads improves perfor-

mance by about 17%, on average, over our baseline. How-

ever, about 10% of that improvement is obtained by simply

reducing the compilation queue delay that is realized by

increasing the number of compiler threads at the baseline

(15,000) threshold. Thus, the higher compiler aggressive-

ness achieved by lowering the selective compilation thresh-

old seems to offer relatively modest benefits over the base-

line compilation threshold employed by the default compiler

policy on single-core machines.

Another interesting observation that can be made from

the plots in Figure 5(b) is that aggressive compilation poli-

cies require more compiler threads (implying greater com-

putational resources) to achieve good program performance.

Indeed, our most aggressive compiler threshold of 50 per-

forms extremely poorly in relation to the baseline threshold,

and never improves upon the conservative baseline thresh-

old even with a large number of compiler threads. This result

seems to correspond with our observations from the last sec-

tion regarding the effect of cold program methods flooding

the queue at aggressive compile thresholds and delaying the

compilation of hotter methods. We study different priority

queue implementations to alleviate this issue in Section 8.

7. JIT Compilation on Many-Core Machines

Our observations regarding aggressive JIT compilation poli-

cies on modern multi-core machines in the last section were

limited by our existing 8-core processor based hardware.

In future years, architects and chip developers are expect-

ing and planning a continuously increasing number of cores

in modern microprocessors. It is possible that our conclu-

sions regarding JIT compilation policies may change with

the availability of more abundant hardware resources. How-

ever, processors with a large number of cores (or many-

cores) are not easily available just yet. Therefore, in this

section, we construct a unique experimental configuration to

conduct experiments that investigate JIT compilation strate-

gies for such future many-core machines.

Our novel experimental setup simulates many-core VM

behavior using a single processor/core. To construct this

setup, we first update our HotSpot VM to report the category

of each operating system thread that it creates (such as,

application, compiler, garbage-collector, etc.), and to also

report the creation or deletion of any VM/program thread at

runtime. Next, we modify the harness of all our benchmark

suites to not only report the overall program execution time,

but to also provide a break-down of the time consumed by

each individual VM thread. We use the /proc file-system

interface provided by the Linux operating system to obtain

individual thread times, and employ the JNI interface to

access this platform-specific OS feature from within a Java

program. Finally, we also use the thread-processor-affinity

interface methods provided by the Linux OS to enable our

VM to choose the set of processor cores that are eligible to

run each VM thread. Thus, on each new thread creation, the

VM is now able to assign the processor affinity of the new

VM thread (based on its category) to the set of processors

specified by the user on the command-line. We use this

facility to constrain all application and compiler threads in

a VM to run on a single processor core.

Our experimental setup to evaluate the behavior of many-

core (with unlimited cores) application execution on a

single-core machine is illustrated in Figure 6. Figure 6(a)

shows a snapshot of one possible VM execution order with

multiple compiler threads, with each thread running on a dis-

tinct core of a many-core machine. Our experimental setup

employs the OS thread affinity interface to force all applica-

tion and compiler threads to run on a single core, and relies

on the OS round-robin thread scheduling to achieve a corre-

sponding thread execution order that is shown in Figure 6(b).

It is important to note that JIT compilations in our simulation

of many-core VM execution (on single-core machine) occur

at about the same time relative to the application thread as

on a physical many-core machine. We also constrain most

of our benchmark programs to spawn a single application
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Figure 6. Simulation of multi-core VM execution on single-core processor

thread. Now, on a many-core machine, where each compiler

thread runs on its own distinct core concurrently with the

application thread, the total program run-time is equal to

the application thread run-time alone, as understood from

Figure 6(a). Therefore, our ability to precisely measure indi-

vidual application thread times in our single-core simulation

enables us to realistically emulate an environment where

each thread has access to its own core. This framework al-

lows us to study the behavior of different JIT compilation

strategies with any number of compiler threads running on

separate cores on future many-core hardware.

We now employ our new experimental setup to perform

the same experiments as done in the last section. Figures 7(a)

and (b) show the results of these experiments and plot the

application thread times with varying number of compiler

threads and compiler aggressiveness. These plots corre-

spond with the graphs illustrated in Figures 5(a) and (b)

respectively. We can see that the trends in these results are

mostly consistent with our observations from the last sec-

tion. This similarity confirms the accuracy of our simple

simulation model to study JIT compilation policies on many-

core machines, in spite of the potential differences between

inter-core communication, cache models and other low-level

microarchitectural effects. The primary distinction between

the two sets of results occurs for larger number of com-

piler threads. More precisely, unlike the plots in Figure 5(a),

Figure 7(a) shows that application thread performance for

aggressive compiler thresholds continues gaining improve-

ments beyond a small number of compiler threads. Thus

the lack of performance benefits beyond about 7-10 com-

piler threads in the last section is, in fact, caused due to

the limitations of the underlying 8-core hardware. This re-

sult shows the utility of our novel setup to investigate VM

properties for future many-core machines. These results also

show that even 100 active compiler threads are unable to

substantially improve program performance for aggressive

compiler thresholds beyond the performance obtained by the

conservative single-core JIT compilation threshold.

8. Effect of Priority-Based Compiler Queue

The existing HotSpot VM employs a FIFO compiler queue

as the communication interface between the application and

compiler threads. Thus, methods sent for compilation by the

application thread are placed in the compiler queue (and

serviced by the compiler thread) in their order of arrival. Our

results in the earlier sections suggest that the relatively poor

performance achieved by the aggressive JIT compilation

policies may be an artifact of the FIFO compiler queue

that cannot adequately prioritize the compilations by actual

hotness levels of application methods. Therefore, in this

section, we explore and measure the potential of different

priority queue implementations to improve the performance

obtained by different JIT compilation strategies.

8.1 Ideal Priority-Based Compiler Queue

First, we attempt to understand the performance impact of

an ideal strategy for ordering method compilations. An ideal

compilation strategy should be able to precisely determine

the actual hotness level of all methods send to compile, and

always compile them in that order. Unfortunately, such an

ideal strategy requires knowledge of future program behav-

ior, which is very difficult to determine or obtain. In lieu

of such information, we devise a compilation strategy that

prioritizes method compiles based on their total execution

counts over an earlier profile run.With this strategy, the com-

piler thread always selects and compiles the method with the

highest profiled execution counts from the available candi-

dates in the compiler queue. We call this our ideal compila-

tion strategy. We do note that even our ideal profile-driven

strategy may not achieve the actual best results because the
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Figure 7. Effect of multiple compiler threads on many-core application performance

candidate method with the highest hotness level may still not

be the best method to compile at that point during program

execution. To the best of our knowledge, this is the first at-

tempt at studying a potentially ideal priority queue scheme

in the context of JIT compilation.

Thus, our ideal priority-queue strategy requires a profile-

run of every benchmark to determine its method hotness

counts. For maximum efficiency, offline profiling necessi-

tates using method-level annotations to indicate the mea-

sured hotness levels to the VM. However, as mentioned

earlier, issues with reflection and runtime method creation

makes accurate and complete method annotations very dif-

ficult, especially for newer Java benchmarks. Therefore, we

again employ the novel VM capability we developed to al-

low the virtual machine to detect specific points of interest

during a program run. Our experimental setup runs two iter-

ations for every benchmark program. The first iteration per-

forms no compilations, but records the execution counts of

each method. As a side-effect this initial iteration also dis-

covers and loads all necessary program methods. The VM

detects the end of the first iteration and uses this indicator to

mark all hot methods with a rank based on their execution

counts collected by the VM during the first iteration. The

VM then re-enables compilations for the next iteration. The

second (and final) iteration employs a priority queue to sort

methods sent for compilation by the application thread in

descending order of their attached ranks. For maximum ef-

ficiency, we implement our sorted priority queue as a binary

tree.

8.1.1 Single-Core Machine Configuration

Figure 8 compares the performance results of our ideal com-

piler priority queue and the default FIFO priority queue im-

plementations for single-core machines. Figure 8(a) plots the

average performance ratio with the FIFO priority queue for

different VM compile thresholds and different number of

compiler threads with the baseline single compiler thread,

15,000 threshold VM performance, averaged over our 56

benchmark-input pairs. These measurements vary slightly

from earlier results shown for the similar configuration in

Figure 4(b). This variation is due to the different experimen-

tal configuration adopted in this section that causes some

methods (mainly from the benchmark harness and the Java

library) that are hot only in the first benchmark iteration of

every run to not be compiled. It is more relevant to note that

the results with our new configuration still show the same

performance trends as discussed in Section 5.2.

Figure 8(b) presents the results of VM runs with our ideal

priority queue implementation compared to the same default

FIFO priority queue implementation with a single compiler

thread and a threshold of 15,000. The graph illustrates that

accurate assignment of method priorities allows the higher

compile thresholds to also achieve good average program

performance for small number of compiler threads. As de-

scribed in Section 5.2, initiating a greater number of com-

piler threads on single-core machines results in compiling

methods that are otherwise left uncompiled (in the com-

piler queue) upon program termination with fewer compiler

threads. The resulting increase in the compilation overhead

is not sufficiently compensated by the improved application

efficiency, resulting in a net loss in overall performance. This

effect persists regardless of the method priority algorithm

employed. We do see that accurately ordering the method

compiles enables the VM with our ideal priority queue im-

plementation to obtain slightly better performance than the

best achieved with the FIFO queue.

8.1.2 Many-Core Machine Configuration

Figure 9 compares the performance results of using our

ideal compiler priority queue with the baseline VM that uses

the default FIFO-based compiler queue implementation for

many-core machines. Figure 9(a) plots the average perfor-

mance ratio with the default FIFO priority queue. Again,

these measurements vary slightly from earlier results for the

similar configuration in Figure 7(b) due to the different ex-

perimental configuration adopted in this section. We also

note that results with this configuration still show the same

performance trends as discussed in Section 6.
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Figure 8. Comparison of ideal compiler priority queue implementation with baseline FIFO compiler queue for single-core

machine configuration
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Figure 9. Comparison of ideal compiler priority queue implementation with baseline FIFO compiler queue for many-core

machine configuration

Figure 9(b) displays the performance ratio of the VM runs

with our ideal priority-based compiler queue implementa-

tion with the baseline VM performance (15,000 threshold,

single compiler thread, FIFO compiler queue) that was also

used in Figure 9(a). These results show several interesting

trends. First, appropriately sorting method compiles signif-

icantly benefits program performance at all threshold lev-

els. At the same time, the performance benefits are more

prominent for aggressive compile thresholds. This behav-

ior is logical since more aggressive thresholds are more

likely to flood the queue with low-priority compiles that de-

lay the compilation of the hotter methods with the FIFO

queue. Second, the best average benchmark performance

with our ideal priority queue for every threshold plot is

achieved with a smaller number of compiler threads, espe-

cially for the more aggressive compiler thresholds. This re-

sult shows that our ideal priority queue does realize its goal

of compiling the hotter methods before the cold methods.

The later lower priority method compilations seem to not

make a major impact on program performance. Finally, we

can also conclude that using a good priority compiler queue

allows more aggressive compilation policies (that compile

a greater fraction of the program early) to improve perfor-

mance over a less aggressive strategy on multi/many-core

machines. Moreover, a small number of compiler threads is

generally sufficient to achieve the best average application

thread performance. Overall, the best aggressive compilation

policy improves performance by about 30% over the base-

line, and by about 11% over the best performance achieved

by the default single-core compilation threshold of 15,000.

8.2 Heuristic Priority-Based Compiler Queue

Our ideal priority queue strategy requires offline profile in-

formation to correctly order method compilations and im-

prove VM performance. However, collecting offline pro-

gram profiles is often cumbersome and may be infeasible

to obtain in many cases. Additionally, method compile pri-

orities provided by offline profiling may be invalidated if

the input/environment during the actual program run varies

from that used during the profiling run. Therefore, it may be



Figure 10. Comparison of our best heuristic dynamic com-

piler priority queue implementation with baseline FIFO

compiler queue for single-core machine configuration

important to find techniques that can assess method priori-

ties dynamically during every program run. However it may

be difficult to obtain comparable performance results using

a completely online strategy. An online strategy can only

see past program behavior. Additionally, the more aggres-

sive JIT compilation policies make their hotness decisions

earlier, giving any online strategy an even reduced opportu-

nity to accurately access method priorities. The default FIFO

queue mechanism uses a heuristic that assigns method prior-

ities based on their order of arrival. As part of this work, we

experimented with a few other (and arguably more complex)

schemes to assign dynamic method priorities.

In this section we describe the priority scheme that

achieved our best results. This scheme uses a new global

counter in addition to the counter used to hold the execution

counts for each method. This global counter accumulates

the execution counts of all methods from the start of each

run. The value of this global counter is recorded in a new

field (say, X) in every method header on the first invocation

of that method. A method is still sent to compile when its

normal execution counter exceeds the specified compilation

threshold. However, now before insertion into the compile

queue, the method priority is calculated as:

Priority =

method execution count

current global count−X
(1)

Thus, by the scheme, methods that attain their hotness

promptly after their first invocation and have become hot

in the more recent past are likely to be assigned a higher

priority for compilation. We use the same binary-tree based

implementation as employed earlier.

Figures 10 and 11 display the application thread perfor-

mance of our best dynamic priority queue implementation

compared to the corresponding baseline performance (with

FIFO-based compiler queue at the threshold of 15,000 with

one compiler thread) for single-core and many-core ma-

chines respectively. Thus, for both these graphs, we can see

that the performance achieved by our new dynamic priority

Figure 11. Comparison of our best heuristic dynamic com-

piler priority queue implementation with baseline FIFO

compiler queue for many-core machine configuration

scheme is better than that achieved by the FIFO compiler

queue at most measured points, but does not match the ben-

efit of the ideal priority scheme. We are actively exploring

other heuristic techniques to more accurately assign method

priorities dynamically at runtime.

9. Future Work

This work presents several interesting avenues for future re-

search. First, this work shows that the availability of abun-

dant computation resources in future machines enables the

possibility of program performance improvement by early

compilation of a greater fraction of the program. With the

development of profile-driven optimization phases, future

work will have to consider the effect of early compilation

on the amount of collected profile information and result-

ing impact on generated code. Additionally, researchers may

also need to explore the interaction of increased compiler

activity with garbage collection. Increased native code pro-

duced by aggressive JIT compilation can raise memory pres-

sure and garbage collection overheads, which may then af-

fect program non-determinism due to the increased pause

times associated with garbage collections. Second, in this

paper we explored some priority queue implementations that

may be more suitable with aggressive compilation policies.

We plan to continue our search for better method prioritiza-

tion schemes, as well as possibly allowing the method prior-

ities to be re-evaluated even after enqueuing, which was not

considered in this work. Third, this work restricts the JIT

compilation policy exploration to if and when methods are

compiled at the same optimization level, but did not allow

controlling how to perform compilation in different cases. In

the future, we plan to also study increasing compiler aggres-

siveness by optimizing at higher compilation levels in a VM

that provides robust support for tiered compilation. Finally,

we are currently conducting similar experiments in other vir-

tual machines (JikesRVM) to see if our conclusions from this

work hold across different VMs.



10. Conclusions

Modern processors are expected to continue integrating in-

creasing number of cores in future chips. The goal of this

work was to explore the potential performance benefit of

more aggressive JIT compilation policies for current and fu-

ture multi/many-core machines and with newer virtual ma-

chines that support multiple simultaneous compiler threads.

We first discover that compiling more and/or compiling

early can significantly improve performance compared to

that achieved by the default HotSpot VM. However, these

improvements fade in comparison to that already obtained

by the default JIT based VM over pure interpretation. We be-

lieve that these results will allow VM developers and users to

assess if the maximum additional benefit of compiling more

program methods early is worth the increased computation

and memory resources necessary to generate and maintain

the corresponding native code.

An important contribution of this work is the develop-

ment of several novel VM configurations to facilitate our ex-

periments. On single-core machines, we find that the same

compilation threshold achieves the best overall program per-

formance with a single and multiple compiler threads, and

regardless of the priority queue algorithm that is used for the

compiler queue. Our results on multi-core and many-core

machines find that although modern multi-core and many-

core hardware can enable more aggressive JIT compilation

policies, and more aggressive policies can produce benefits

to performance, achieving such benefits requires accurate as-

signment of method priorities. Finding dynamic online al-

gorithms to assign such accurate method priorities is still an

open research question. Thus, as we enter the new era of

multi/many-core machines with increasing number of cores

with every processor generation, we expect this research to

assist VM developers to make more informed decisions re-

garding how to design and implement the best possible JIT

compilation policies to achieve the best application perfor-

mance.
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