
AOT vs. JIT: Impact of Profile Data on Code Quality

April W. Wade
University of Kansas
t982w485@ku.edu

Prasad A. Kulkarni
University of Kansas
prasadk@ku.edu

Michael R. Jantz
University of Tennessee

mrjantz@utk.edu

Abstract
Just-in-time (JIT) compilation during program execution and
ahead-of-time (AOT) compilation during software installation are
alternate techniques used by managed language virtual machines
(VM) to generate optimized native code while simultaneously
achieving binary code portability and high execution performance.
Profile data collected by JIT compilers at run-time can enable
profile-guided optimizations (PGO) to customize the generated
native code to different program inputs. AOT compilation removes
the speed and energy overhead of online profile collection and dy-
namic compilation, but may not be able to achieve the quality and
performance of customized native code. The goal of this work is to
investigate and quantify the implications of the AOT compilation
model on the quality of the generated native code for current VMs.

First, we quantify the quality of native code generated by the
two compilation models for a state-of-the-art (HotSpot) Java VM.
Second, we determine how the amount of profile data collected af-
fects the quality of generated code. Third, we develop a mechanism
to determine the accuracy or similarity for different profile data for
a given program run, and investigate how the accuracy of profile
data affects its ability to effectively guide PGOs. Finally, we cate-
gorize the profile data types in our VM and explore the contribution
of each such category to performance.

Categories and Subject Descriptors D.3 [Software]: Program-
ming languages; D.3.4 [Programming Languages]: Processors—
Compilers, Run-time environments

General Terms Performance, Measurement, Languages

Keywords Program profiling, Profile-guided optimizations

1. Introduction
Managed language platforms, such as Java, provide an accessible,
secure, platform-independent and high-performance development
and run-time environment, and are popular in many embedded and
mobile domains. Programs written in these managed high-level
languages are distributed in a machine-independent binary format
that is designed to ease program execution in a virtual machine
(VM) running on many different processor architecture and op-
erating system configurations. Program emulation in VMs can be
performed by interpretation or binary/native code execution. Since
software interpretation is inherently slow, most performance con-
scious systems compile (portions of) the distributed code on the

target machine prior to execution. Thus, current models ensure pro-
gram portability while also providing secure sand-boxed and high-
performance code execution.

Code compilation in such environments can occur at load-time
or run-time. Load-time compilation happens when the program is
first installed on the device, and is an instance of the so-called
ahead-of-time (AOT) compilation model. Execution-time or dy-
namic or just-in-time (JIT) compilation typically occurs during (ev-
ery) program execution, and may compile all or only the frequently
executed (or hot) sections of the program.

AOT compilation based systems provide several benefits over
JIT compilation based VMs. Most prominently, the compilation in
such systems is conducted offline and happens only once, rather
than during each program execution. This property eliminates the
time and energy overhead of online compilation, and is particu-
larly beneficial to short-running programs that have a relatively flat
method hotness curve. Additionally, AOT based systems may also
reduce the VM complexity by not needing the selective compila-
tion, code cache, and related runtime infrastructure.

The JIT compilation model also has some unique advantages.
For instance, VMs can collect profiling data to understand and ex-
ploit dynamic program behavior during every program run. The JIT
compiler can utilize this profile data during profile-guided code op-
timizations (PGO) to customize the native code for each input and
improve overall program performance. Such infrastructure also en-
ables the VM to apply additional aggressive and potentially un-
safe optimizations speculatively. Speculatively compiled code can
be de-compiled if the speculative condition is invalidated later.

The distinction between AOT and JIT compilation models has
gained further prominence after Google Android, one of the most
popular mobile platforms, replaced its JIT based Java VM (Dalvik)
with an AOT-only runtime (ART), and then recently added JIT ca-
pability back into ART 1. Researchers have also explored the use
of AOT compilation systems [17, 21, 27, 35] to reduce startup time
for Java programs on embedded platforms. Despite these develop-
ments, the performance implications of AOT vs. JIT compilation
are still not clear. This work aims to address this issue by shed-
ding light on how design tradeoffs in managed language compila-
tion systems impact code quality and program performance.

The goals of this research are to: (a) investigate, quantify, and
highlight the role of profile data and dependent PGOs to improve
generated code quality in managed language runtimes, and (b) un-
derstand the challenges that AOT based systems face to gener-
ate high-quality code without access to customized and accurate
profile data. We develop a variety of innovative experiments and
VM frameworks to resolve the following issues. (a) How does the
amount of custom (from the same program run) profile data impact
the effectiveness of PGOs? (b) How do the inaccuracies in profile
data affect the quality of generated code? To quantify the impact
of inaccurate offline profile data, we develop techniques to sys-

1 See: https://source.android.com/devices/tech/dalvik/jit-compiler.html



tematically introduce noise into the profile data. We also develop
a mechanism to calculate the similarity of pairs of profile data sets.
(c) What kinds of profile information are most important to perfor-
mance? We study the different types of profile data collected by the
HotSpot VM and isolate their individual impact.

We make the following contributions in this work limited to the
VM (HotSpot) and benchmarks (DaCapo and SPEC-JVM) used.

1. We quantify the ability of custom profile data to generate
higher-quality code for the HotSpot VM.

2. We find that even a small amount of accurate profile data can
significantly benefit effectiveness of PGOs over no-profiling.

3. We show how the similarity (or representative-ness) between
the inputs used during the training and later measurement runs
(with offline profiling) directly and significantly impacts the
quality of code generated by PGOs.

4. We find that making only a small percentage of profiling de-
cisions incorrectly can induce PGOs to generate noticeably
poorer quality code.

5. We find that only a small subset of the profile data types col-
lected by the VM produces most performance gains in VMs.

We believe that our research provides greater insight in the work-
ings, characteristics, and benefits of existing profiling based VM
optimization systems, and demonstrates some of the challenges that
AOT compilation systems must overcome to achieve comparable
code quality to JIT based VMs.

2. Background and Related Work
In this section we describe some applications of profiling to indi-
vidual optimization problems. We also present prior work investi-
gating properties of profiling and PGOs, and compare the goals of
our current research with related past studies.

Profiling data can be collected using offline and online schemes.
Offline profiling uses additional prior runs of the program to gen-
erate profile data. A later compilation can than use this profile
to guide code optimization decisions. Offline profiling is used by
static compilers like GNU gcc/g++ [10, 19, 24, 29]. Dynamic or
online profiling collects profile information during the same pro-
gram run, and is commonly employed by advanced managed lan-
guage run-times, like those for Java [6, 11, 28, 34]. Researchers
have also developed static analysis techniques to estimate some
run-time information for PGOs [36]. While JIT compilers typically
use online profiling, AOT compilers may employ offline profiling
data or static analysis to guide adaptive optimization decisions.
Some of our studies in this work assess the impact of imprecise
profile-based guidance on the quality of code generated by PGOs.

Profile data has traditionally been employed to find the hot or
frequently executed program blocks or functions. Knowledge of
hot program regions can then be used to focus compilation and op-
timization effort. For example, many Java VMs only compile and
apply PGOs to the hot program methods to minimize JIT compila-
tion overhead at run-time, in a technique called selective compila-
tion [5, 15, 22, 28]. Profile information is also used to direct many
other optimization tasks. For instance, profile data was used to ran-
domize/diversify cold code blocks to reduce overhead [16], during
profile-guided meta-programming [9], to improve code cache man-
agement in JVMs [30], to improve heap data locality in garbage
collected runtimes [18], to guide object placement in partitioned
hot/cold heaps to lower memory energy consumption [20], etc. Our
goal in this work is not to generate new or improve existing PGOs,
but to determine how inaccuracy in profile data or static analysis
based estimators can impact the effectiveness of PGOs.

Several prior studies compare the accuracy and impact of
sampling-based profilers on adaptive tasks. The accuracy of any
given profile data can be compared directly with the known cor-
rect profile, if it is available [4, 12, 25]. When the correct profile
itself either cannot be generated or is not known, researchers have
used causality analysis to assess if their profile is able to correctly
guide the dependent adaptive task [26, 31]. Rather than evaluate
the accuracy of the profiler, part of this work assesses how pro-
files derived from different plausible program inputs can represent
the program execution for the current run. To our knowledge, this
work is the first to conduct a thorough systematic quantification of
representative-ness of different profile data and the effect of such
dissimilarity on the effectiveness of PGOs in a standard Java VM.

Previous studies have explored static and AOT compilation of
Java to benefit short-running programs (startup performance) due
to reduced JIT compilation overhead [17, 32, 35]. Instead, in this
work we study the effect on generated code quality (i.e., steady-
state performance) that is important to longer-running programs.

3. Tools, Benchmarks, and Experimental Setup
In this section we provide a brief background on the properties of
the HotSpot VM and the benchmarks used that are relevant to this
work. We also explain some details of our experimental setup.

HotSpot Internals: All our work for this paper was conducted
using Oracle’s production-grade Java virtual machine (HotSpot)
in JDK-9 [28]. HotSpot’s emulation engine includes a high-
performance threaded bytecode interpreter and two distinct JIT
compilers. The client or c1 JIT compiler is designed for fast pro-
gram startup. The c1 compiler is very fast, but applies fewer and
simpler compiler optimizations. The server or c2 JIT compiler is
slower and applies a broad range of traditional and profile-guided
optimizations to generate higher-quality code for fast steady-state
program performance. In this research we focus on code quality
and therefore only use the c2 compiler for all our experiments.

Program execution in HotSpot begins in the interpreter. The
HotSpot interpreter profiles program execution to collect various
program behavior statistics, including the invocation and loop
back-edge counts for all program methods. If the sum of the in-
vocation and loop-backedge counts for a method exceeds a fixed
threshold, then HotSpot queues that method to be compiled.

Background Compilation: HotSpot employs a technique called
background compilation, where JIT compilation occurs in sepa-
rate OS threads in parallel with application execution [22]. Back-
ground compilation prevents application stalls due to JIT compila-
tion. However, it can also delay method compilation (relative to the
application threads) if the compilation queue is backed up; during
which time the method running in the interpreter can continue col-
lecting profile data. Therefore, we disable background compilation
for most of our experiments to allow more determinism and control
over when each method is compiled and the amount of profile data
collected prior to compilation.

Method Deoptimization: A JVM may need to occasionally inval-
idate and deoptimize a compiled method. Deoptimizations are typi-
cally caused if a condition assumed or present during JIT compila-
tion is invalidated by a later execution event. Deoptimized methods
are interpreted on future invocations, until they become hot again
and recompiled. Thus, frequent method deoptimizations can influ-
ence the program’s execution time. In this study we verify that our
experiments do not cause abnormal or performance-affecting deop-
timization activity. Likewise, to achieve a fair comparison, all the
AOT and JIT configurations in this work allow deoptimized meth-
ods to be recompiled later if they regain hotness.



Benchmark Suites: Our experiments use benchmarks from the
DaCapo [8] and SPECjvm2008 suites [33]. Four DaCapo bench-
marks, batik, eclipse, tradebeans and tradesoap are ex-
cluded because they fail to run with the unmodified HotSpot-9.2

We also leave out SPEC’s compiler benchmarks (compiler and sun-
flow) due to incompatibilities with HotSpot-9. Finally, other than
monte carlo, the remaining programs in SPEC’s numerical scimark
benchmark (lu, sor, and sparse) fail to derive any benefit from
PGOs in HotSpot. Therefore, we exclude these programs from our
later discussion to improve graph presentation for the more interest-
ing benchmarks. Unless specified otherwise, the DaCapo programs
are run with their default input, and the SPEC benchmarks use their
startup input configuration.

Our experiments attempt to evaluate the quality of code gener-
ated by PGOs during JIT compilation by measuring program exe-
cution time after all desired compilations are complete. We exploit
a mechanism provided by the DaCapo and SPEC harness that al-
lows a benchmark to be iterated multiple times. To achieve deter-
minism most of our experiments restrict the set of methods com-
piled to those that are detected to be hot and are compiled in the
first program iteration. Each run iterates the benchmark 12 times
and measures the program run-time during its final iteration.

Table 1 describes some characteristics of the benchmark used in
this work. The first column in Table 1 gives the benchmark name.
The next column reports the average steady-state program run-time
with the default HotSpot setup. The final three columns provide
the number of methods compiled by each benchmark during its
first iteration (startup), at the end of 12 iterations (steady-state),
and by a compiler that compiles all program methods on their first
invocation respectively. To account for inherent timing variations
during the benchmark runs, all the run-time results in this paper
report the (geometric) average and 95% confidence intervals over
10 runs for each benchmark-configuration pair [13].

Our experiments were conducted on a cluster of identically con-
figured Intel x86-64 2.4GHz machines running the Fedora Linux
OS. To further minimize the possibility of hardware effects influ-
encing our observations, for each configuration, we execute the
benchmark on the same set of ‘N’ machines (N equals 10, the num-
ber of runs), with ‘run i’ performed on machine ‘i’ (0<i<N).

4. Constructed Experimental Frameworks
We implement many new mechanisms in the HotSpot VM to cor-
rectly and fairly conduct our experiments for this study. In this sec-
tion we describe these engineered frameworks.

4.1 Detect User-Defined Program Execution Points
Ordinarily, the VM does not possess the ability to efficiently detect
user-defined program points as they are reached during execution.
We found that many of our experiments would benefit from such
a VM capability, especially to detect the start/end of individual
benchmark iterations. Inspired by prior work in the literature, we
make a small update to implement this functionality in the VM [23].

We add an empty VM-indicator method to the DaCapo and
SPEC harness that starts the next program iteration and statically
annotate the method with a special flag. We extend the VM to
mark such annotated methods when the classfile is loaded. The
HotSpot interpreter efficiently checks for this flag at every method
invocation and directs VM control-flow to custom user-defined
code if it is encountered during execution.

2 batik and eclipse fail due to incompatibilities that were introduced
in OpenJDK 8 and have been observed and reported by others [1, 2].
tradebeans and tradesoap witness frequent, but inconsistent failures
with the default configuration. We have not fully investigated the cause of
the failures, but we believe it is related to issues reported in [7].

Benchmark Steady-State Methods compiled
run-time (ms) Startup Steady All

DaCapo benchmark suite (default input)
avrora 5710.50 345 507 4152
fop 449.50 554 1301 7460
h2 6927.00 712 995 5151
jython 2917.00 1189 1489 7469
luindex 874.90 259 470 4004
lusearch 2124.90 304 443 3366
pmd 5026.70 901 1526 6121
sunflow 2277.40 279 338 4717
tomcat 6085.40 906 2134 25870
xalan 1532.50 746 1359 5073
SPEC JVM 2008 benchmark suite (startup configuration)
compress 1475.50 48 56 2462
crypto.aes 3658.00 64 79 3197
crypto.rsa 371.70 143 291 3202
crypto.signverify 746.50 115 163 3060
derby 915.60 798 1017 7859
mpegaudio 2631.80 93 107 2602
scimark.monte carlo 1444.60 29 30 2411
serial 2277.70 270 457 3311
sunflow 1342.80 239 307 3882
xml.transform 1008.20 868 1474 6654
xml.validation 667.90 419 838 4532

Table 1. Relevant benchmarks properties

4.2 Import/Export Profile Data
One important contribution of this work is a mechanism that we
built in the HotSpot JVM for exporting profiling data recorded
during one instance of the VM and importing it during a later in-
stance. Static compilers that support PGOs, like GCC (gprof [14])
and LLVM (llvm-profdata), possess the ability to collect and dump
profile data from one program execution, and use it during a later
compilation to guide PGOs. However, such frameworks are uncom-
mon for managed language run-times, such as Java VMs, since they
typically rely on online profiling.

For many data types, including counter and boolean values, the
serialization/deserialization process is relatively straightforward.
However, there are exceptions like the pointers to the VM struc-
tures that represent JVM classes. Since pointer values are specific
to each execution instance, we abstract such data types by recording
the corresponding class name (including package path), in the seri-
alized format. Later during deserialization, we perform a lookup to
find a loaded class structure with a matching name.

Looking up a class name requires that class to have previously
been loaded by the VM. The design of the class-loading infrastruc-
ture in HotSpot prevents us from loading classes during the dese-
rialization process. Therefore, we delay the deserialization process
until all referenced class names in the imported profile file have al-
ready been loaded. In order to achieve a reasonable lookup-hit rate,
our framework prevents methods from being compiled during the
first iteration of the benchmark and performs the deserialization of
the profiling data in between the first and second benchmark iter-
ations. Even with this mechanism, there are a few lookup misses.
We analyzed some of these misses and found that many of them
come from what appear to be dynamically generated classes with
semi-random names. Since there are only a few such cases, we did
not yet attempt to resolve or predict the class name in such cases.

Another challenge is serializing profile data structures that vary
in layout depending on the bytecodes that make up the method.
Specifically, for each method, HotSpot maintains an array of struc-
tures that hold the profiling information for particular bytecodes in
the method. For example, a virtual call bytecode corresponds to a
structure that records the receiver types seen at call site.



4.3 Control Method Compilation Order
The order in which methods are compiled in the HotSpot VM
is known to influence later optimization decisions, especially for
method inlining. Configurations that compile an identical set of
methods in different orders can generate different compiled na-
tive codes and result in different program run-times. Therefore, we
build a mechanism in the VM to sort and compile the set of hot
methods in an external user-defined order. However, a naı̈ve imple-
mentation of such a mechanism may delay the compilation of some
hot methods if any other methods that precede it in the sorted order
have not yet been compiled. This delay in compilation is problem-
atic for our study since the delayed methods will continue to collect
additional profile data, which can affect optimization decisions.

Our mechanism to resolve this issue conducts the experiment
in two runs for each benchmark configuration. The first training
run uses the framework just described to export the profile data
for each hot method at the proper point during execution. In the
second evaluation run, the first benchmark iteration is completely
interpreted and conducts no JIT compilations. The VM uses the
VM-indicator mechanism to detect the end of the first iteration. At
this point, the VM stalls the application threads, loads the profile
data exported by the training run, and then sorts and compiles the
set of hot methods in the given order. The application threads are
resumed after all compilation is done.

4.4 Similarity or Representativeness of Program Inputs
Some of our studies employ a new mechanism that we built to
quantify the similarity of any two program profiles with respect
to the profiling decisions they induce during PGOs. Intuitively, our
similarity metric determines the percentage overlap in the program
path induced during method compiles by the two profiles being
compared. Our metric is analogous in intent to the overlap metric
used in past works to evaluate profiling accuracy [3].

The representative-ness or similarity of two collected profile
data instances is a factor of the dependent PGO. We identified
60 profile-site locations in HotSpot’s c2 compiler where profiling
data is used to inform optimization decisions. We insert hooks at
all these locations. When a method is compiled, we record the
locations visited and their order. At each hook, we note the name of
the current method being compiled (which disambiguates whether
this is an inlined method), the current bytecode-index (BCI), and
the unique number of the hook location. The record of these profile-
site decisions creates a trace of the path the compiler takes as it
makes profiling-informed decisions.

Our technique for measuring the similarity of two traces for
a given method is inspired by the Unix diff utility. Our mecha-
nism calculates the longest-common-subsequence (LCS) of the two
traces and divides two times the length of the LCS by the sum of
the lengths of the two individual traces. The resulting ratio gives
us a percentage measure of similarity. When calculating the LCS,
we treat the tuple of the three recorded data values at each profile-
site as an atomic unit, analogous to how the diff utility treats
individual lines as atomic units when calculating a LCS. To cre-
ate a measure of similarity for the entire program, we compute an
(unweighted) average of the representative-ness measure of every
method that was compiled during both VM instances.

5. Experiments, Results and Analysis
In this section we describe the results of our experiments that inves-
tigate the characteristics of current profiling-based JIT optimization
systems in VMs. These results indicate the challenges that AOT
compilation systems, whether based on offline profiling or static
analysis, face to achieve the performance of JIT compilation sys-
tems that have access to profile information from the current run.

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

xalan
D

aCapo

GeoM
ean

aes
com

press

derby

m
onte

carlo

m
pegaudio

rsa
serial

signverify

sunflow

transform

validation

SPEC
GeoM

ean

Benchmarks

0

1

2

3

4

5

A
O

T
R

un
-t

im
e

/
JI

T
R

un
ti

m
e 6.50 5.78

All Steady State Startup

Figure 1. Profile data and PGOs have a significant impact on
program performance on the HotSpot JVM

5.1 Impact of Profiling on Generated Code Quality
Our first set of experiments are designed to quantify the impact of
profiling information on generated code quality. Program execution
time serves as our metric for measuring code quality. We prepare
five distinct HotSpot configurations to compare the behavior and
performance of AOT and JIT compilation systems.

AOT-all: This configuration compiles all program methods on
their first invocation. We disable profile data collection. Com-
pilation occurs at the end of the first benchmark iteration. A
method compilation order cannot be enforced as we do not
have any other baseline configuration. The last column in Ta-
ble 1 gives the number of methods compiled by each benchmark
in this configuration.

JIT-steady: HotSpot employs selective compilation to only com-
pile methods when they are detected to be hot (invocation+loop-
backedge counts exceed 10,000 in HotSpot). This configura-
tion represents the steady-state setting. Profiling is enabled. A
method compilation order is not enforced and the methods are
compiled as they achieve hotness in their first twelve iterations.
The number of methods compiled by this configuration for each
benchmark is given by the third column in Table 1.

AOT-steady: This configuration restricts the set of methods com-
piled to those that are compiled by the JIT-steady configuration
for each benchmark. We do not enable profiling for this AOT
compilation. All methods are compiled after the first program
iteration, and a method compilation ordering is not enforced.

JIT-startup: This configuration is similar to earlier JIT setup, but
restricts the number of methods compiled to those that get hot
during the first iteration with HotSpot’s default setting. The
number of methods compiled by each benchmark is given by
the second column in Table 1.

AOT-startup: The configuration is similar to AOT-steady, but re-
stricts the set of methods compiled to that compiled during JIT-
startup. Profiling is disabled, and methods are compiled in the
order they reach compilation in the JIT-startup configuration as
described in Section 4.3.

In all cases the run-time of the 12th benchmark iteration is reported
to ignore compilation overhead and allow the execution to stabilize.

Figure 1 compares program performance with the AOT and JIT
compilation models. The first bar for each benchmark in Figure 1
plots the ratio of the AOT-all and JIT-steady configurations, the sec-
ond bar compares the AOT-steady and JIT-steady configurations,
while the last bar compares the AOT-startup and JIT-startup con-
figurations. The first comparison gives an estimate of the profiling
benefit derived by HotSpot-like VMs that employ selective com-
pilation and may only compile a fraction of the program methods.



avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

xalan
DaCapo

GeoM
ean

aes
com

press

derby
m

onte
carlo

m
pegaudio

rsa serial

signverify

sunflow

transform

validation

SPEC
GeoM

ean

Benchmarks

0

1

2

3

4

5

R
un

-t
im

e
w

it
h

di
ff

.
pr

ofi
le

da
ta

am
ou

nt
s

/
R

un
-t

im
e

w
it

h
de

fa
ul

t
pr

ofi
le

(c
t1

00
00

)

5.24 12.78 14.98 22.11
10.01

9.97

ct0 ct10 ct100 ct500 ct1000 ct5000 ct25000

Figure 2. A small amount of profile data from the current program run is sufficient to effectively guide PGOs on the HotSpot JVM

The final two plots for each benchmark can be used to estimate the
performance gain due to profiling for VMs and benchmarks that
have sufficient time and resources to compile all program methods.
By enforcing a common method compilation order, the startup con-
figurations eliminate one additional source of performance unpre-
dictability, and therefore provide a better baseline for comparison.
We use these startup configurations in our later experiments.

All comparisons uniformly show that the program profile be-
havior, which is extensively used by PGOs in current VMs for
languages like Java, significantly influences the quality of gener-
ated code. AOT compilers may have to rely on mechanisms like
offline profiling or static analysis to address this potential loss in
performance. However, these alternative mechanisms have other
limitations. In later sections we attempt to study the challenges that
AOT compilers may need to overcome when using these alternative
mechanisms to estimate profile information.

5.2 Impact of Profile Data Amount on Code Quality
Offline profiling that can be used to drive PGOs in an AOT com-
piler can collect profile data for the entire duration of the train-
ing program run, or even over multiple offline runs using different
training inputs. In contrast, JIT compilation systems need to bal-
ance the amount of profile data collection with the delay in making
optimized code available to the emulation engine. Spending too lit-
tle time profiling the program behavior may have performance im-
plications by incorrectly biasing adaptive optimization decisions.
Likewise, staying too long in the profile stage will delay JIT com-
pilation, causing the program execution to remain in the inefficient
interpreter for a longer duration. In this section we investigate the
issue of how much profile data is needed by current PGOs to make
correct profile-based decisions and generate the best quality code.

We design a simple experiment that precisely controls the
amount of profile data collected during the multiple different train-
ing runs. This experiment employs our frameworks described in
Sections 4.2 and 4.3. Thus, the training runs export the collected
profile data that is then loaded and used by the evaluation run. We
also control the number of methods compiled and their compila-
tion order so that these factors remain uniform across all exper-
imental configurations. We configure the training runs to collect
per-method profile information that corresponds to each method
executing for 0, 10, 25, 50, 75, 100, 250, 500, 1000, 2500, 5000,
10000, 25000, and 50000 execution (invocation + loop backedge)
counts. By default, HotSpot uses the compile threshold of 10000
for its c2 compiler.

0 5000 10000 15000 20000 25000

Method execution counts

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
vg

.
ru

n-
ti

m
e

w
it

h
di

ff
.

pr
ofi

le
da

ta
am

ou
nt

s/
R

un
-t

im
e

w
it

h
de

fa
ul

t
pr

ofi
le

(c
t1

00
00

)

DaCapo SPEC

Figure 3. Average program performance quickly improves and
reaches saturation with small increases to the amount of collected
program profile information.

Figures 2 and 3 show the results of this experiment. We observe
slightly different trends for DaCapo and SPECjvm benchmarks.
Overall, one surprisingly finding is that just a little profile knowl-
edge (like that provided by ct10) can substantially benefit perfor-
mance over no-profiling. Less surprising is the result that perfor-
mance obtained from increasing profile knowledge quickly reaches
saturation. We see only small performance gains with profile data
from execution counts beyond 1000 with DaCapo, and 5000 with
SPEC. These results suggest that offline profiling conducted over
long time intervals may not have much of an advantage over tradi-
tional online profiling based JIT compilation systems.

We also find that, unlike the DaCapo programs, performance for
many SPEC benchmarks does not always improve with increasing
profile data, especially at low compile thresholds (see ct10 vs. ct100
for signverify). Preliminary analysis shows that this issue is caused
because SPEC benchmarks generally compile fewer methods and
have fewer critical hotspots. Therefore, small variance in profile
data and resulting optimization decisions cause an outsized impact
on final program run-time.

5.3 Impact of Profile Data Accuracy on Code Quality
A fundamental limitation of AOT compilation systems is that they
cannot customize the single statically generated binary to all pro-
gram inputs possible at run-time. These systems can still employ
static analysis or offline profiling to guide PGOs. However, sev-
eral issues remain unresolved. In this section we report our obser-
vations from experiments conducted to understand two important
issues. First, how similar does the guidance provided to the PGOs



avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

xalan
GeoM

ean

Benchmarks

0.5

0.6

0.7

0.8

0.9

1.0

S
im

ila
ri

ty
of

pr
ofi

le
da

ta
us

in
g

’s
m

al
l’

in
pu

t
co

m
pa

re
d

to
’d

ef
au

lt
’

Figure 4. DaCapo’s small input can closely represent the pro-
gram behavior of a run with DaCapo’s default input for guiding
HotSpot’s PGOs.

by the training and evaluation inputs need to be to generate com-
parable quality code; and second, how much do non-representative
program inputs affect quality of guidance provided to PGOs and
what is the resulting performance impact.

5.3.1 Offline Profiling with DaCapo small Input
The DaCapo suite provides two distinct input settings that are
common for each benchmark program, called small and default. In
this section, we evaluate the effectiveness of recording the program
behavior with the small input, and using that data to guide PGOs
during an evaluation run with the default input set.

We use the setup described in Sections 4.2 and 4.3 for these
experiments. We compare the run-times from two configurations
for each benchmark. The first configuration instantiates the training
run for each benchmark with DaCapo’s default program input.
The profile data and method compilation order collected by the
training run are exported. The evaluation runs again use the same
default input size. At the end of the first iteration, the VM stalls all
application threads, imports the stored profile data and compiles all
the hot methods in the compilation order provided by the training
run. The application resumes after all the compilations finish. We
allow the program run to stabilize over the next few iterations
before recording the benchmark run-time.

The second offline-profiling configuration follows a setup very
similar to the first. In this case though the training run is instantiated
with DaCapo’s small program input, and it exports the profile data
collected. The evaluation run loads the profile data exported by this
training run, but uses the method compilation order from the first
configuration to compile the same set of hot methods. The program
run-time is again recorded at the end of 12 benchmark iterations.

In Section 4.4 we described our technique to compare and quan-
tify the similarity or overlap in the paths taken through the HotSpot
JIT optimizer for a given method/program by two different program
inputs. Figure 4 uses this mechanism to quantify the representative-
ness of DaCapo’s small input set compared to the default input for
each benchmark. We find that with an average similarity score of
almost 90%, program behavior with DaCapo’s small input is quite
representative of its behavior with the default input, with regards to
guiding the PGOs in the HotSpot JVM.

Figure 5 displays the run-time reported by the offline-profiling
configuration as compared to the run-time from the first config-
uration for each benchmark. We find that, with the exceptions
of jython and luindex, the high similarity of the small and de-
fault DaCapo inputs does indeed translate to good performance for
the offline-profiling configuration. On average, performance with
offline-profiling only shows a degradation of 10% compared to the
first configuration that has access to profile data from the same run.

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

xalan
GeoM

ean

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
un

-t
im

e
sm

al
l-

pr
ofi

le
de

fa
ul

t-
in

pu
t

/
R

un
-t

im
e

de
fa

ul
t-

pr
ofi

le
D

ef
au

lt
-i

np
ut

Figure 5. In most cases, offline profiling using DaCapo’s small
input produces a binary that achieves good performance with a later
evaluation run with the default input

0 20 40 60 80 100

% Randomization of ’default’ input

0.5

0.6

0.7

0.8

0.9

1.0

A
vg

.
si

m
ila

ri
ty

of
pr

ofi
le

da
ta

w
it

h
X

%
ra

nd
om

iz
at

io
n

to
’d

ef
au

lt
’

DaCapo SPEC

Figure 6. Average representative-ness of the profile trace for vari-
ous randomization configurations as compared to HotSpot’s default
reactive configuration

5.3.2 Offline Profiling with Randomized Program Input
Although DaCapo’s small input set generates a representative pro-
file for the default input set for most benchmarks, it is unclear (a) if
other program inputs may provide varying representative-ness, and
(b) what is the effect of such plausible variance on the effective-
ness of PGOs and delivered code quality. Unfortunately, we do not
know of any Java benchmark suite that includes a deliberately and
systematically designed diverse set of program inputs. It was also
not obvious to us how to generate such diverse input sets for our set
of benchmarks. Instead we develop a novel approach to systemati-
cally vary the representative-ness of the known program profile for
any program-input pair, and study its effect on performance.

Our approach first conducts a training run to collect and ex-
port the complete per-method profile data for each benchmark with
its standard default input set. This profile contains multiple fields,
such as branch-taken counts, trap information, etc. Then, we me-
thodically introduce random noise into this profile data with con-
trolled probabilities as each profile data field is loaded during later
evaluation runs. We call this process randomization of the profile
data. Thus, a profile data randomization with a probability of X%
will alter a profile data field with a probability of X% and leave it
unchanged with a probability of (100-X)%.

Randomization of the profile data field depends on the type
of the field. For boolean fields, randomization flips the boolean
value. For integer counter fields, randomization will set the field
to a low or high value with the same probability. A low counter
value is guaranteed to be less than the fixed VM threshold for that
counter, and a high counter value exceeds the threshold. For class
pointer fields, a non-null field will be set to null with the same
probability. If the randomization does not nullify the entire field,
then each referenced class in that field may again be set to null



avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

xalan
DaCapo

GeoM
ean

aes
com

press

derby
m

onte
carlo

m
pegaudio

rsa serial

signverify

sunflow

transform

validation

SPEC
GeoM

ean

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
un

-t
im

e
%

in
pu

t
ra

nd
om

iz
at

io
n

/
R

un
-t

im
e

w
it

h
de

fa
ul

t
co

nfi
g

r0 r20 r50 r80 r100

Figure 7. Impact of varying profile data inaccuracy on individual program performance on the HotSpot JVM

0 20 40 60 80 100

% Randomization

1.0

1.1

1.2

1.3

1.4

1.5

1.6

A
vg

.
ru

n-
ti

m
e

w
it

h
ra

nd
om

iz
at

io
n

/
A

vg
.

ru
n-

ti
m

e
w

it
h

de
fa

ul
t

co
nfi

g

DaCapo SPEC

Figure 8. Impact of varying profile data inaccuracy on average
program performance on the HotSpot JVM

with the same probability. We do not yet attempt to alter a class
pointer to instead reference another random class. Likewise, we
also do not attempt to update a null class pointer to reference some
other random program class. This randomized profile data will be
used later during the run by the VM to guide PGOs during JIT
compilation of the hot program methods.

Our experiment employs randomization values in increments of
10, from 0% to 100%. We employ our mechanism described in
Section 4.4 to calculate the similarity metric of each randomized
profile data. Figure 6 shows the average representative-ness metric
over all benchmarks for all the randomization ratios attempted. We
see that profile data similarity decreases with increasing random-
ization, and validates that our randomization technique is working
as intended to alter the representative-ness of profile data.

This curve shows that even small profile data imperfections no-
ticeably affect the similarity metric. Yet, even a completely random
(100% randomization) program input still achieves a reasonably
high similarity metric (76% for DaCapo and 84% for SPEC), in-
dicating that even vastly different profiles result in the compiler
making similar decisions in a majority of the cases.

Figures 7 and 8 show the performance implications of using
varying levels of imperfect profile data to guide PGOs in HotSpot’s
c2 compiler. For each benchmark, each bar in Figure 7 plots the
ratio of program run-time when the VM is using the indicated
randomization of profile data to program run-time in the default
scenario when using online profile data from the same run with no
randomization. Again, we employ the frameworks described earlier
in Sections 4.2 and 4.3 to produce a fair comparison.

All benchmarks show an identical trend with performance de-
grading with increasing profile data imperfection in most cases.

The scale of performance change varies significantly between the
programs, and is likely a factor of several concerns, including
the benefit derived from profiling and the significance of the sites
randomized. We observe that while performance for the DaCapo
benchmarks uniformly degrades with increasing randomization, the
SPEC programs notice some jitter. We believe this effect is again
a result of the nature of the SPEC benchmarks that have fewer and
more prominent hotspots. One important finding is that even small
imperfections in profile data can significantly lower the effective-
ness of PGOs, which bears serious implications for offline profil-
ing based optimization strategies. Note that this is a limit study;
whether actual program inputs can generate such a diverse range of
profiles is an open issue, which we will study in future work.

5.3.3 Randomizing Profile-Site Decisions at Compilation
Profile data is used at various profile-sites during compilation to
affect optimization decisions. As mentioned earlier, we identify
60 static profile-sites in the source code of HotSpot’s c2 compiler
where some profile data determines the path taken by the compiler.
In this section we study and quantify the sensitivity of the compiler
to incorrect decisions taken at profile-sites. Again, we define accu-
rate profile decisions as those induced by online profiling, where
the profile data for the current run is dynamically collected by the
VM during the same measured program run. This result is impor-
tant to static analysis based prediction techniques that may be em-
ployed by AOT compilers to guide PGOs.

Our experiment to quantify the performance impact of compiler
sensitivity systematically varies the probability of the compiler tak-
ing a wrong decision (relative to that taken by the online profiling
based reactive HotSpot configuration) at a profile-site. Our experi-
ment reverses the path taken at each profile-site with a given user-
specified probability (referred to later as the mispredict probabil-
ity). Thus, a mispredict probability of 0% forces the c2 compiler to
take the same path as that taken by the reactive HotSpot configura-
tion every time and at every profile-site reached during compilation.
In contrast, a mispredict probability of 100% forces the c2 compiler
to take the wrong path at every profile-site, whenever feasible.3 We
found that mispredicting the All traps profile-sites (see Table 2)
produces high instability in HotSpot and causes a very high num-

3 It is not always feasible to take the wrong path. For instance, if the profile-
site references a profile data type that is a class pointer, and the profile data
recorded by the reactive configuration is null, then taking the reverse path
may require us to now provide an actual plausible class pointer value. Our
setup does not yet have the capability to construct such values.



avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

xalan
DaCapo

GeoM
ean

aes
com

press

m
onte

carlo

m
pegaudio

rsa serial

signverify

sunflow

transform

validation

SPEC
GeoM

ean

Benchmarks

0

1

2

3

4

5

6

R
un

-t
im

e
%

pr
ofi

le
-s

it
e

m
is

pr
ed

ic
t

/
R

un
-t

im
e

w
it

h
de

fa
ul

t
co

nfi
g

M0 M20 M50 M80 M100

Figure 9. Increasing the probability of mispredicting at a profile-site branch increases the negative impact on the quality of generated code
on the HotSpot JVM (individual benchmark view)

0 20 40 60 80 100

% Mispredict

1.0

1.5

2.0

2.5

3.0

A
vg

.
ru

n-
ti

m
e

w
it

h
%

m
is

pr
ed

ic
t

/
A

vg
.

ru
n-

ti
m

e
w

it
h

de
fa

ul
t

co
nfi

g

DaCapo SPEC

Figure 10. Impact of varying the probability of mispredicting at a
profile-site branch on average program performance

ber of deoptimizations. Therefore, we currently always predict cor-
rectly for this set of profile-sites.

Figures 9 and 10 show the impact of different mispredict prob-
abilities on program performance as compared to the program run-
time achieved by the default reactive HotSpot configuration with
0% mispredict probability. We find that even a small mispredict
probability causes a noticeable degradation in generated code qual-
ity. A 4% mispredict probability increases program run-time by
15.1% for DaCapo (28.7% for SPEC), while 100% misprediction
causes a 2X slowdown for DaCapo (over 3X for SPEC). Thus, our
experiments show that the HotSpot c2 compiler relies on correct
prediction at most profile-sites to maximize effectiveness. This re-
sult sets a high bar for any technique that attempts to correctly pre-
dict the direction of individual profile-sites to improve code quality.

5.4 Contribution of Profile Data Types to Performance
In this section, we investigate the relative importance of different
profile data types to performance. If certain profile types are more
important to PGO effectiveness, then researchers may be able to
focus their efforts to more precisely predict those values using static
analysis or other techniques.

We manually studied the profiling data types used by HotSpot
and categorized them into eight sets. Our eight profile data-type cat-
egories are described in Table 2. The first column gives a name to
each category, and the second column provides a short description
of data values in each category. The third column in Table 2 gives
the number of profile sites that use a data-type from a particular
category to make optimization decisions in the compiler.

To quantify the performance impact of each category of profile
data-types, we designed experiments that execute benchmarks with
certain sets of profile sites disabled. We disable a particular profile
site by forcing the compiler to take the path that would be taken if
no profile data were available at that point. Otherwise, if the site
is enabled, the VM simply uses the online profiling information
collected earlier in the same program run.

Our first experiment runs the benchmarks with all of the profile
sites disabled (enable none). Ideally, the enable none config-
uration should produce performance similar to that achieved by
simply disabling all profiling in HotSpot (disable HS prof).4

The first bar in Figure 11 plots the performance achieved by
the enable none configuration as compared to that obtained by
disable HS prof. For many benchmarks, execution time with
enable none is very close to that obtained by disable HS prof.
However, the performance varies for some benchmarks, which may
be due to uses of profile data that we do not catch or other interac-
tions within HotSpot that we will investigate in future work.

Our next set of experiments evaluates the impact of each indi-
vidual profile data-type category by disabling all profile sites except
for the sites belonging to a single category. We find that except for
call site count, none of the other categories significantly affect
program performance, when enabled in isolation. The second bar
in Figure 11 shows the performance benefit of enabling only the
profile-sites in the call site count category.

Next, we conduct experiments that simultaneously enable
profile-sites from call site count and one other profile-data
category at a time. These experiments reveal that the null at BCI
and receiver class count show a positive performance effect
when enabled in combination with call site count.

Our final experiment enables all 16 profile-sites belonging to
these three important profile-site categories. The third bar in Fig-
ure 11 plots the result of this experiment (enable imp flags)
compared to disable HS prof. Additionally, the final bar in Fig-
ure 11 compares program run-time of HotSpot’s default reactive
configuration to disable HS prof. The enable imp flags con-
figuration obtains performance that is only 7.9% and 14.1% worse
than reactive for DaCapo and SPEC benchmarks respectively, on
average. Thus, only enabling these three important profile-site cat-
egories (16 out of 60 profile-sites) achieves 95.3% of the potential
performance benefit provided by PGOs in HotSpot for both Da-
Capo and SPEC benchmarks, on average.

4 ProfileInterpreter and ProfileTraps command-line flags can dis-
able all interpreter profiling in HotSpot.



Name Description # sites
All traps Determines whether a trap event, such as an array-out-of-bounds exception, occurs at a particular

BCI or in a given method.
30

Null at BCI Whether or not a null was observed at a particular BCI. Affects implicit null-check optimizations. 7
Unique receiver class Which subclass is the dynamic type of this for a virtual call. Affects type speculation and inlining

of virtual calls.
2

Receiver class count The count of receivers for a virtual call, if multiple were observed. Affects type speculation. 1
Klass for call The dynamic types of the arguments and/or return values for a call. Affects type speculation. 3
Inv loop counters Influences “warm-call”, or relatively but not absolutely hot call, inlining. 5
Branch data Whether or not a particular branch was taken. For switch structures, which case was taken. 4
Call site count The number of times a particular call was executed. Affects inlining. 8

Table 2. Categories of Profile Data Types in the HotSpot VM

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

xalan
DaCapo

GeoM
ean

aes
com

press

derby
m

onte
carlo

m
pegaudio

rsa serial

signverify

sunflow

transform

validation

SPEC
GeoM

ean

Benchmarks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
un

-t
im

e
w

it
h

so
m

e/
al

l
pr

ofi
le

si
te

s
ac

ti
ve

/
R

un
-t

im
e

w
it

h
in

te
rp

re
te

r
pr

ofi
lin

g
di

sa
bl

ed

Enable none Enable call site count Enable imp flags Default reactive

Figure 11. A small subset of the different types of profile data produce the major impact on the quality of generated code. Enable none si-
multaneously disables all 60 profile sites. Enable call site count only enables the 8 flags belonging to that category. Enable imp flags
enables the 16 flags belonging to the null at BCI, receiver class count and call site count categories. Enabling the 16 important flags
achieves performance very close to that produced by the default reactive HotSpot configuration.

6. Future Work
There are multiple avenues for future work. First, one limitation
of this work is that it is only conducted for one VM and compiler,
the HotSpot VM’s c2 compiler. It is important to investigate if the
observations we make in this study can be generalized to other dy-
namic compilers for Java or other languages. Second, this work
demonstrated the benefit that program performance can derive from
profile information. At the same time, we also find that the col-
lected profile knowledge needs to be sufficiently accurate for the
current program input for PGOs to realize their maximum poten-
tial. Our next research focus will be on how to extract such profile
data in systems where online profiling is not feasible, like AOT
systems, and how to customize the generated binaries for different
input behaviors. This is a broad research issue, with many ques-
tions to explore. For instance, similar to categorizing profile data
types, can program behaviors also be categorized into a small finite
number of behavioral types? Can improvements be made to profile
data collection during offline profiling over multiple program in-
puts so that the dependent optimizations can be specialized to gen-
erate variations of binary programs for different behavioral types?
Can we build advanced static analysis techniques to improve cov-
erage of offline profiling inputs to encompass all possible program
behaviors? Eventually, in the future, we plan to build runtime sys-
tems that can combine the advantages of AOT and JIT compilation
systems with none, or at least fewer, of the associated drawbacks.

7. Conclusions
The standard reactive JIT compilation model used in desktop and
server VMs can acquire and exploit program profile information
from the current run to guide advanced PGOs to generate high-
quality native code. AOT compilation systems popular in embed-
ded systems typically lack access to such reliable profile data,
which can restrict their effectiveness. In this work we quantify the
impact of profile knowledge on the quality of code produced by JIT
optimization systems for dynamic languages like Java. Addition-
ally, we make a number of interesting, and hitherto unknown, dis-
coveries about the properties of profile data that are critical to max-
imize its ability to correctly guide dependent PGOs. In particular,
we find that (a) even a very little amount of profile data can signif-
icantly benefit generated code quality as compared to no-profiling.
(b) small imperfections in profile data can have noticeable per-
formance implications, (c) a small fraction of profile-site mispre-
dictions can significantly affect the performance of PGOs to gen-
erate high-quality code, and (d) although sophisticated VMs, like
HotSpot, collect several varieties of profile data, only a few profile
data types induce most of the benefits from dependent PGOs. We
design and construct several innovative VM frameworks and exper-
iments to accomplish this work. We believe that our frameworks,
experiments, and observations can prove useful to VM developers
and researchers to build compilation systems that can combine the
benefits of both AOT and JIT based models.



Acknowledgments
We thank the anonymous reviewers for their detailed feedback.
This work is supported by the National Science Foundation, under
CAREER award CNS-0953268, and grants CCF-1619140, CCF-
1617954, and CNS-1464288.

References
[1] Dacapo batik benchmark fails. https://github.com/RedlineResearch/OLD-

OpenJDK8/issues/1.

[2] Dacapo eclipse benchmark fails.
https://github.com/RedlineResearch/OLD-OpenJDK8/issues/2.

[3] M. Arnold and D. Grove. Collecting and exploiting high-accuracy call
graph profiles in virtual machines. In Proceedings of the Symposium
on Code Generation and Optimization, CGO ’05, pages 51–62, 2005.

[4] M. Arnold and D. Grove. Collecting and exploiting high-accuracy call
graph profiles in virtual machines. In Proceedings of the Symposium
on Code Generation and Optimization, pages 51–62, 2005.

[5] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey
of adaptive optimization in virtual machines. Proceedings of the IEEE,
92(2):449–466, February 2005.

[6] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive
optimization in the Jalapeno JVM. SIGPLAN Notices, 46(4):65–83,
May 2011. ISSN 0362-1340.

[7] S. Blackburn, D. Frampton, R. Garner, and J. Zigman. dacapo-9.12-
bach. http://dacapobench.org/RELEASE NOTES.txt, 12 2009.

[8] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking de-
velopment and analysis. In Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications, OOPSLA ’06, pages 169–190. ACM, 2006.

[9] W. J. Bowman, S. Miller, V. St-Amour, and R. K. Dybvig. Profile-
guided meta-programming. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 403–412,
2015.

[10] P. P. Chang, S. A. Mahlke, and W. mei W. Hwu. Using profile
information to assist classic code optimizations. Software Practice
and Experience, 21:1301–1321, 1991.

[11] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicing judo: Java
under dynamic optimizations. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 13–26,
2000.

[12] E. Duesterwald and V. Bala. Software profiling for hot path prediction:
Less is more. SIGPLAN Notices, 35(11):202–211, Nov. 2000.

[13] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. In Proceedings of the conference on Object-
oriented programming systems and applications, pages 57–76, 2007.

[14] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. SIGPLAN Notices, 17(6):120–126, 1982.

[15] U. Hölzle and D. Ungar. Reconciling responsiveness with perfor-
mance in pure object-oriented languages. ACM Trans. Program. Lang.
Syst., 18(4):355–400, 1996. ISSN 0164-0925.

[16] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz.
Profile-guided automated software diversity. In Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), CGO ’13, pages 1–11, 2013.

[17] S. Hong, J.-C. Kim, J. W. Shin, S.-M. Moon, H.-S. Oh, J. Lee, and H.-
K. Choi. Java client ahead-of-time compiler for embedded systems. In
Proceedings of the Conference on Languages, Compilers, and Tools
for Embedded Systems, LCTES ’07, pages 63–72, 2007.

[18] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: Improving pro-
gram locality. In Proceedings of the Conference on Object-oriented

Programming, Systems, Languages, and Applications, OOPSLA ’04,
pages 69–80, 2004.

[19] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E.
Haab, J. G. Holm, and D. M. Lavery. The superblock: An effective
technique for vliw and superscalar compilation. J. Supercomput., 7
(1-2):229–248, 1993. ISSN 0920-8542.

[20] M. R. Jantz, F. J. Robinson, P. A. Kulkarni, and K. A. Doshi. Cross-
layer memory management for managed language applications. In
Proceedings of the Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 488–504, 2015.

[21] D.-H. Jung, S.-M. Moon, and H.-S. Oh. Hybrid compilation and
optimization for java-based digital tv platforms. ACM Trans. Embed.
Comput. Syst., 13(2s):62:1–62:27, Jan. 2014.

[22] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead
of dynamic compilation. Software: Practice and Experience, 31(8):
717–738, December 2000.

[23] P. A. Kulkarni. JIT Compilation policy for modern machines. In Pro-
ceedings of the Conference on Object Oriented Programming Systems
Languages and Applications, pages 773–788, 2011.

[24] M. Mock, C. Chambers, and S. J. Eggers. Calpa: A tool for automating
selective dynamic compilation. In Proceedings of the Symposium on
Microarchitecture, pages 291–302, 2000.

[25] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri. Shadow
profiling: Hiding instrumentation costs with parallelism. In Proceed-
ings of the Symposium on Code Generation and Optimization, CGO
’07, pages 198–208, 2007.

[26] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Evaluating
the accuracy of java profilers. In Proceedings of the Conference on
Programming Language Design and Implementation, PLDI ’10, pages
187–197, 2010.

[27] H.-S. Oh, J. H. Yeo, and S.-M. Moon. Bytecode-to-c ahead-of-time
compilation for android dalvik virtual machine. In Proceedings of the
Design, Automation & Test in Europe Conference & Exhibition, pages
1048–1053, 2015.

[28] M. Paleczny, C. Vick, and C. Click. The Java HotSpot™server com-
piler. In Proceedings of the Symposium on Java Virtual Machine Re-
search and Technology Symposium, pages 1–12, 2001.

[29] K. Pettis and R. C. Hansen. Profile guided code positioning. In
Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, PLDI ’90, pages 16–27, 1990.

[30] F. J. Robinson, M. R. Jantz, and P. A. Kulkarni. Code cache manage-
ment in managed language vms to reduce memory consumption for
embedded systems. In Proceedings of the Conference on Languages,
Compilers, Tools, and Theory for Embedded Systems, pages 11–20,
2016.

[31] S. Rubin, R. Bodı́k, and T. Chilimbi. An efficient profile-analysis
framework for data-layout optimizations. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 140–153. ACM, 2002.

[32] M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta. Quicksilver:
A quasi-static compiler for java. In Proceedings of the Conference
on Object-oriented Programming, Systems, Languages, and Applica-
tions, pages 66–82, 2000.

[33] SPEC2008. Specjvm2008 benchmarks.
http://www.spec.org/jvm2008/, 2008.

[34] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani.
Design and evaluation of dynamic optimizations for a java just-in-
time compiler. ACM Transactions on Programming Languages and
Systems, 27(4):732–785, July 2005.

[35] C.-S. Wang, G. Perez, Y.-C. Chung, W.-C. Hsu, W.-K. Shih, and H.-R.
Hsu. A method-based ahead-of-time compiler for android applica-
tions. In Proceedings of the Conference on Compilers, Architectures
and Synthesis for Embedded Systems, pages 15–24, 2011.

[36] Y. Wu and J. R. Larus. Static branch frequency and program profile
analysis. In Proceedings of the Symposium on Microarchitecture,
pages 1–11, 1994.


	Introduction
	Background and Related Work
	Tools, Benchmarks, and Experimental Setup
	Constructed Experimental Frameworks
	Detect User-Defined Program Execution Points
	Import/Export Profile Data
	Control Method Compilation Order
	Similarity or Representativeness of Program Inputs

	Experiments, Results and Analysis
	Impact of Profiling on Generated Code Quality
	Impact of Profile Data Amount on Code Quality
	Impact of Profile Data Accuracy on Code Quality
	Offline Profiling with DaCapo small Input
	Offline Profiling with Randomized Program Input
	Randomizing Profile-Site Decisions at Compilation

	Contribution of Profile Data Types to Performance

	Future Work
	Conclusions

