
Fast Searches for Effective Optimization Phase Sequences

Prasad Kulkar ni1, Stephen Hines1, Jason Hiser2,
David Whalley1, Jack Davidson2, Douglas Jones3

1Computer Science Dept., Florida State University, Tallahassee, FL 32306-4530; e-mail: whalley@cs.fsu.edu
2Computer Science Dept., University of Virginia, Charlottesville, VA 22904; e-mail: jwd@virginia.edu

3Electr ical and Computer Eng. Dept, University of Illinois, Urbana, IL 61801; e-mail: dl-jones@uiuc.edu

ABSTRACT
It has long been known that a fixed ordering of optimization
phases will not produce the best code for every application. One
approach for addressing this phase ordering problem is to use an
ev olutionary algorithm to search for a specific sequence of phases
for each module or function. While such searches have been
shown to produce more efficient code, the approach can be
extremely slow because the application is compiled and executed
to evaluate each sequence’s effectiveness. Consequently, evolu-
tionary or iterative compilation schemes have been promoted for
compilation systems targeting embedded applications where
longer compilation times may be tolerated in the final stage of
development. Inthis paper we describe two complementary gen-
eral approaches for achieving faster searches for effective opti-
mization sequences when using a genetic algorithm.The first
approach reduces the search time by avoiding unnecessary execu-
tions of the application when possible.Results indicate search
time reductions of 65% on average, often reducing searches from
hours to minutes. The second approach modifies the search so
fewer generations are required to achieve the same results.Mea-
surements show that the average number of required generations
decreased by 68%. These improvements have the potential for
making evolutionary compilation a viable choice for tuning
embedded applications.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors− compilers, opti-
mization D.4.7 [Operating Systems]: Organization and Design−
real-time systems and embedded systems.

General Terms
Measurement, Performance, Experimentation, Algorithms.

Keywords
Phase ordering, interactive compilation, genetic algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
PLDI’04, June 9-11, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-807-5/04/0006...$5.00.

1. INTRODUCTION
The phase ordering problem has long been known to be a difficult
dilemma for compiler writers [17, 19]. One sequence of optimiza-
tion phases is highly unlikely to be the most effective sequence for
ev ery application (or even for each function within a single appli-
cation) on a given machine. Whetheror not a particular optimiza-
tion enables or disables opportunities for subsequent optimiza-
tions is difficult to predict since it depends on the application
being compiled, the previously applied optimizations, and the tar-
get architecture [19].

One approach to deal with this problem is to search for effec-
tive optimization phase sequences using genetic algorithms [5,
11]. Whenthe fitness criteria for such searches involve dynamic
measures (e.g., cycle counts or power consumption), thousands of
direct executions of an application may be required. The search
time can be significant, often needing hours or days when finding
effective sequences for a single application, making it less attrac-
tive for developers.

There are application areas where long compilation times are
acceptable. For example, long compilation times may be tolerated
in application areas where the problem size is directly related to
the execution time to solve the problem. In fact, the size of many
computational chemistry and high-energy physics problems is
limited by the elapsed time to reach a solution (typically a few
days or a week).Long compilation times may be acceptable if the
resulting code allows larger problem instances to be solved in the
same amount of time.

Evolutionary compilation systems have also been proposed
for compilation systems targeting embedded systems where meet-
ing strict constraints on execution time, code size, and power con-
sumption is paramount.Here long compilation times are accept-
able because in the final stages of development an application is
compiled and embedded in a product where millions of units may
be shipped.For embedded systems, the problem is further exacer-
bated because the software development environment is often dif-
ferent from the target environment. Obtainingperformance mea-
sures on cross-platform development environments often requires
simulation which can be orders of magnitude slower than native
execution. Even when it is possible to use the target machine to
gather performance data directly, the embedded processor may be
significantly slower (slower clock rate, less memory, etc.) than
available general-purpose processors.We hav efound that search-
ing for an effective optimization sequence can easily require hours
or days even when using direct execution on a general-purpose
processor. For example, using a conventional genetic algorithm to
search for effective optimization sequences for thejpeg applica-
tion on an Ultra SPARC III processor required over 20 hours to

-1-

complete. Thus,finding effective sequences to tune an embedded
application may result in an intolerably long search time.

In this paper we describe approaches for achieving faster
searches for effective optimization sequences using a genetic algo-
rithm. We performed our experiments using the VISTA (VPO
Interactive System for Tuning Applications) framework [20]. One
feature of VISTA is that it can automatically obtain performance
feedback information which can be presented to the user and can
be used to make phase ordering decisions [11].We use this per-
formance information to drive the genetic algorithm searches for
effective optimization sequences.

The remainder of the paper is structured as follows. First,we
review other aggressive compilation techniques that have been
used to tune applications. Second, we give an overview of the
VISTA framework in which our experiments are performed.
Third, we describe methods for reducing the overhead of the
searches for effective sequences. Fourth, we discuss techniques
for finding effective sequences in fewer generations. Fifth, we
show results that indicate the effectiveness of using our techniques
to perform faster searches for optimization sequences.Finally, we
outline future work and present the conclusions of the paper.

2. RELATED WORK
Prior work has used aggressive compilation techniques to improve
performance. Superoptimizershave been developed that use an
exhaustive search for instruction selection [12] or to eliminate
branches [7]. Selecting the best combination of optimizations by
turning on or off optimization flags, as opposed to varying the
order of optimizations, has also been investigated [4].

Some systems perform transformations and use performance
feedback information to tune applications.Iterative techniques
using performance feedback information after each compilation
have been applied to determine good optimization parameters
(e.g., blocking sizes) for specific programs or library routines [10,
18]. Another technique uses compile-time performance estima-
tion [16]. All of these systems are limited in the set of optimiza-
tions they apply.

Specifications of code-improving transformations have been
automatically analyzed to determine if one type of transformation
can enable or disable another [19]. This information can provide
insight into how to specify an effective optimization phase order-
ing for a conventional optimizing compiler.

A number of systems have been developed that use evolu-
tionary algorithms to improve compiler optimizations.A neural
network has been used to tune static branch predictions [3].
Genetic algorithms have been used to better parallelize loop nests
[13]. Anothersystem used genetic algorithms to derive improved
compiler heuristics for hyperblock formation, register allocation,
and data prefetching [15].A low-level compilation system devel-
oped at Rice University uses a genetic algorithm to reduce code
size by finding efficient optimization phase sequences [5, 6].The
Rice system uses a similar genetic algorithm as in VISTA for find-
ing phase sequences.However, the Rice system is batch oriented
instead of interactive and applies the same optimization phase
order for all of the functions within a file. Some aspects of the
approaches described in our paper may be useful for obtaining
faster searches in all of these systems.

3. THE VISTA FRAMEWORK
This section provides a brief overview of the framework used for
the experiments reported in this paper. A more detailed descrip-
tion of VISTA’ s architecture can be found in prior publications
[20, 11]. Figure 1 illustrates the flow of information in VISTA,
which consists of a compiler and a viewer. The programmer ini-
tially indicates a file to be compiled and then specifies requests
through the viewer, which include sequences of optimization
phases, manually specified transformations, and queries.The
compiler performs the specified actions and sends program repre-
sentation information back to the viewer. Each time an optimiza-
tion sequence is selected for the function being tuned, the com-
piler instruments the code, produces assembly code, links and
executes the program, and gets performance measures from the
execution. When the user chooses to terminate the session,
VISTA writes the sequence of transformations to a file so they can
be reapplied at a later time, enabling future updates.

EASE

Display
User

File

Assembly

File

Linked
Executable

Source

File

Request
Measure

Measures
Performance

Requests

Program Representation Info. Transformation Info.

Compiler

New Instructions

Selections

Saved

State
Viewer

Figure 1: Interactive Code Improvement Process

The compiler used in VISTA is based on VPO (Very Portable
Optimizer), which is a compiler back end that performs all of its
optimizations on a single low-level representation called RTLs
(register transfer lists) [1, 2].Because VPO uses a single repre-
sentation, it can apply most analyses and optimization phases
repeatedly and in an arbitrary order. This feature facilitates find-
ing more effective sequences of optimization phases.

Figure 2 shows a snapshot of the viewer with the history of a
sequence of optimization phases displayed. Note that not only is
the number of transformations associated with each optimization
phase displayed, but also the improvements in instructions
executed and code size are shown. Thisinformation allows a user
to quickly gauge the progress that has been made in improving the
function. Thefrequency of each basic block relative to the func-
tion is also shown in each block header line, which allows a user
to identify the critical regions of a function.

VISTA allows a user to specify a set of distinct optimization
phases and have the compiler attempt to find the best sequence for
applying these phases. Figure 3 shows the different options that
we provide the user to control the search. The user specifies the
sequence length, which is the total number of phases applied in
each sequence.Our experiments used thebiased sampling search,
which applies a genetic algorithm in an attempt to find the most
effective sequence within a limited amount of time since in many
cases the search space is too large to evaluate all possible
sequences [9].A population is the set of solutions (sequences)

-2-

Figure 2: Main Window of VISTA Showing History of Optimization Phases

that are under consideration. The number of generations indicates
how many sets of populations are to be evaluated. Thepopulation
size and the number of generations limits the total number of
sequences evaluated. VISTA also allows the user to choose
dynamic and static weight factors, where the relative improvement
of each is used to determine the overall fitness.

Figure 3: Selecting Options to Search for Possible Sequences

Performing these searches is time consuming, typically
requiring tens of minutes for a single function, and hours or days
for an entire application even when using direct execution. Thus,
VISTA provides a window showing the current search status.Fig-
ure 4 shows a snapshot of the status of the search selected in Fig-
ure 3. The percentage of sequences completed, the best sequence,
and its effect on performance are given. Theuser can terminate
the search at any point and accept the best sequence found so far.

4. REDUCING THE SEARCH OVERHEAD
Performing a search for an effective optimization phase sequence
can be quite expensive, perhaps requiring hours or days for an
entire application even when using direct execution. Oneobvious
benefit for speeding up these searches is that the technique is more
likely to be used. Another benefit is that the search can be made
more aggressive, such as increasing the number of generations, in
an attempt to produce a better tuned application.

Figure 4: Window Showing the Search Status

VISTA performs the following tasks to obtain dynamic per-
formance measurements for a single sequence. (1) The compiler
applies the optimization phases in the order specified by the
sequence. (2)The generated code for the function is instrumented
if required to obtain performance measurements and the assembly
code for that function and the remaining assembly code for the
functions in the current source file are written to a file. (3) The
newly generated assembly file is assembled. (4) The object files
comprising the entire program are linked together into an
executable by a command supplied in a configuration file. (5) The
program is executed using a command in a configuration file,
which may involve direct execution or simulation. As a side
effect of the execution, performance measurements are produced.
(6) The output of the execution is compared to the desired output
to provide assurance that the new sequence did not cause the gen-
erated code to become invalid. Tasks 2-6 often dominate the
search time, which is probably due to these tasks requiring I/O
and task 1 being performed in memory.

The following subsections describe methods to reduce the
search overhead by inferring the outcome of a sequence.Figure 5
illustrates the order in which the different methods are attempted.
The methods are ordered according to cost. Each method handles

-3-

a superset of the sequences handled by the methods applied before
it, but the later methods are more expensive.

generate

sequence

candidate

Application

Execute

phases

best

Function

Identical

Check for

Function

Equivalent

Check for

Sequences

executable

calculate

mapped
checksum

new measure

found found

calculate unmapped checksum

foundfound
previous measure

sequence

next

phases

apply
Active

Check

Sequences

Attempted

Check

Algorithm

Genetic

Figure 5: Methods for Reducing Search Overhead

4.1 Finding Redundant Attempted Sequences
Sometimes the same optimization phase sequence is reattempted
during the search.Consider Figure 6, where each optimization
phase in a sequence is represented by a letter. The same sequence
can be reattempted due to mutation not occurring on any of the
phases in the sequence (e.g. sequencei remaining the same in Fig-
ure 6). Likewise, a crossover operation or mutation changing
some individual phases can produce a previously attempted
sequence (e.g. sequencek mutates to be the same as sequencej
before mutation in Figure 6).A hash table of attempted sequences
along with the performance result for each sequence is main-
tained. Ifa sequence is found to be previously attempted, then the
evaluation of the sequence is not performed and the previous
result is used. This technique of using a hash table to capture pre-
viously attempted solutions has been previously used to reduce
search time [5, 15, 11].

c d

fcdad

after mutationbefore mutation

cae b seq k:seq k:
......

seq j:seq j:
...

e

c

dbcf

f ca c d

fcdead

dbcf

f a

...

seq i:seq i:
......

......

b a

Figure 6: Example of Redundant Attempted Sequences

4.2 Finding Redundant Active Sequences
A transformation is a sequence of changes to the program repre-
sentation, where the semantic behavior is preserved. Aphase is a
sequence of transformations caused by a single type of optimiza-
tion. Borrowing from biological terminology, an activeoptimiza-
tion phase (gene) is one that applies transformations, while ador-
mantoptimization phase (gene) is one that has no effect. Anopti-
mization phase is dormant when the enabling conditions for the
optimization to be applied are not satisfied. As one would expect,
only a subset of the attempted phases in a sequence will typically
be active. It is common that a dormant phase may be mutated to
another dormant phase, but it would not affect the compilation.
Figure 7 illustrates how different attempted sequences can map to
the same active sequence, where the bold boxes represent active

phases and the nonbold boxes represent dormant phases.A sec-
ond hash table is used to record sequences where only the active
phases are represented.

active: ce seq j: fced

seq i:attempted: d e d c f seq j: d a e b c fb

fseq i: d

Figure 7: Example of a Redundant Active Sequence

4.3 Detecting Identical Code
Sometimesidentical code can be generated from different active
sequences. Oftendifferent optimization phases can be applied
and can have the same effect. Considerthe two different ways
that the pair of instructions in Figure 8 can be merged together.
Instruction selection symbolically merges the instructions and
checks to see if the resulting instruction is legal. Thesame effect
in this case can be produced by constant propagation followed by
dead assignment elimination.We also found that performing
some optimization phases in a different order will have no effect
on the final code that is generated.For instance, consider apply-
ing branch chaining before and after register allocation.Both
branch chaining and register allocation will neither inhibit nor
enable the other phase.

after instruction selection
r[3]=r[4]+1;

after constant propagation
r[2]=1;

r[3]=r[4]+1;

after dead assignment elimination
r[3]=r[4]+1;

original code segmentoriginal code segment
r[2]=1; r[2]=1;

r[3]=r[4]+r[2];r[3]=r[4]+r[2];

Figure 8: Different Optimizations Having the Same Effect

VISTA has to efficiently detect when different active
sequences generate identical code to be able to reduce the search
overhead. Asearch may result in thousands of unique function
instances, which may be too large to store in memory and very
expensive to access on disk. The key realization in addressing this
issue was that while we need to detect when function instances are
identical, we can tolerate occasionally treating different instances
as being identical since the sequences within a population are
sorted and the best sequence found by the genetic algorithm must
be completely evaluated. Thus,we calculate a CRC (cyclic redun-
dancy code) checksum on the bytes of the RTLs and keep a hash
table of these checksums.CRCs are commonly used to check the
validity of data transmitted over a network and have an advantage
over conventional checksums in that the order of the bytes of data
does affect the result [14].If the checksum has been generated for
a previous function instance, then we use the performance results
of that instance.We hav everified it is rare that we generate the
same checksum for different function instances and that the best
fitness value found is never affected in our experiments.

-4-

4.4 Detecting Equivalent Code
Sometimes the code generated by different optimization
sequences areequivalent, in reg ard to speed and size, but not iden-
tical. Consider two function instances that have the same
sequence of instruction types, but use different registers. Thiscan
occur since different optimization phases compete for registers.
For instance, consider the source code in Figure 9(a).Figures 9(b)
and 9(c) show two possible translations given two different order-
ings of optimization phases that consume registers.

To detect this situation, we identify the live ranges of all of
the registers in the function and map each live range to a distinct
pseudo register. Equivalent function instances become identical
after mapping, which is illustrated for the example in Figure 9(d).
We compute the CRC checksum for the mapped function instance
and check in a separate hash table of CRC checksums to see if the
mapped function had been previously generated.

r[32]=r[32]+r[36];
r[34]=r[34]+4;
IC=r[34]?r[35];
PC=IC<0,L3;

L3

(a) Source Code
sum += a[i];

for (i = 0; i < 1000; i++)
sum = 0;

L3

Register Allocation
(c) Code Motion before

PC=IC<0,L3;
IC=r[1]?r[9];
r[1]=r[1]+4;
r[11]=r[11]+r[8];
r[8]=M[r[1]];

r[9]=4000+r[10];
r[1]=r[10];
r[10]=r[10]+LO[a];
r[10]=HI[a];
r[11]=0;

r[36]=M[r[34]];

r[9]=4000+r[12];

r[12]=r[12]+LO[a];

r[10]=r[10]+r[8];

(b) Register Allocation
before Code Motion

r[10]=0;
r[12]=HI[a];

r[1]=r[12];

r[8]=M[r[1]];

r[1]=r[1]+4;
IC=r[1]?r[9];
PC=IC<0,L3;

L3

(d) After Mapping Registers

r[32]=0;
r[33]=HI[a];
r[33]=r[33]+LO[a];
r[34]=r[33];
r[35]=4000+r[33];

Figure 9: Different Functions with Equivalent Code

On most machines there is a uniform access time for each
register in the register file. Likewise, most statically scheduled
processors do not generate stalls due to anti (write after read) and
output (write after write) dependences.However, these depen-
dences could inhibit future optimizations.Thus, comparing regis-
ter mapped functions to avoid executions in the search should only
be performed after all remaining optimizations (e.g. filling delay
slots) have been applied.Given that these assumptions are true, if
we find that the current mapped function is equivalent to a previ-
ous mapped instance of the function, then we can assume the two
are equivalent and will produce the same result after execution.

5. PRODUCING SIMILAR RESULTS IN
FEWER GENERATIONS

Another approach that can be used to reduce the search time for
finding effective optimization sequences is to produce the same
results in fewer generations of the genetic algorithm. If this
approach is feasible, then users can either specify fewer genera-
tions to be performed in their searches or they can stop the search
sooner once the desired results have been achieved. Thefollow-
ing subsections describe the different techniques that we use to
obtain effective sequences of optimization phases in fewer genera-
tions. All of these techniques identify phases that are likely to be
active or dormant at a given point in the compilation process.

5.1 Using the Batch Sequence
The traditional orbatchversion of our compiler always attempts
the same order of optimization phases for each function.We
obtain the sequence of active phases (those phases that were able
to apply one or more transformations) from the batch compilation
of the function. We hav e used the length of the active batch
sequence to establish the length of the sequences attempted by the
genetic algorithm in previous experiments [11].

We propose to use the active batch sequence for the function
as one of the sequences in the initial population.The premise is
that if we initialize a sequence in the population with optimization
phases that are likely to be active, then this may allow the genetic
algorithm to converge faster on the best sequence it can find.This
approach is similar to including in the initial population the com-
piler writer’s manually specified priority function when attempt-
ing to tune a compiler heuristic [15].

5.2 Prohibiting Specific Phases
While many different optimization phases can be specified as can-
didate phases for the genetic algorithm, sometimes specific phases
can never be active for a given function. If the genetic algorithm
only attempts phases that have an opportunity to be active, then
the algorithm may converge on the best sequence it can find in
fewer attempts. There are several situations when specific opti-
mizations should not be attempted.Loop optimization phases
cannot be active for a function that does not contain any loops.
Register allocation in VPO cannot be active for a function that
does not contain any local variables or parameters. Branch opti-
mizations and unreachable code elimination cannot be active for a
function that contains a single basic block.Detecting that a spe-
cific set of optimization phases can never be active for a given
function requires simple analysis that only needs to be performed
once at the beginning of the genetic algorithm.

5.3 Prohibiting Prior Dormant Phases
When compiling a function, we find certain optimization phases
will be dormant given that a specific prefix of active phases has
been performed.Given that the same prefix of phases is attempted
again, there is no benefit from attempting the same dormant phase
in the same situation since it will remain dormant.To avoid
repeating these dormant phases, we represent the active phases as
nodes in a tree, where each child corresponds to the next phase in
an active sequence. We also store at each node the set of phases

-5-

that were found to be dormant for that prefix of active phases.
Figure 10 shows an example tree where the bold portions repre-
sent active prefixes and the nonbold boxes represent dormant
phases given that prefix. For instance,a andf are dormant phases
for the prefixbac. To prohibit applying a prior dormant phase, we
force a phase to change during mutation until we find a phase that
has either been active with the specified prefix or has not yet been
attempted.

b

a c e

c d fa b

efb a b d

f

Figure 10: A Tree Representing Active Prefixes

5.4 Prohibiting Unenabled Phases
Certain optimization phases when performed cannot become
active again until enabled. For instance, register allocation
replaces references to variables in live ranges with registers. A
live range is assigned to a register when a register is available at
that point in the coloring process.After the compiler applies reg-
ister allocation, this optimization phase will not have an opportu-
nity to be active again until the register pressure has changed.
Unreachable code elimination and a variety of branch optimiza-
tions will not affect the register pressure and thus will not enable
register allocation. Figure 11 illustrates that a specific phase, the
nonbold box of the sequence on the right, will at times be unen-
abled and cannot be active. Again the premise is that if the
genetic algorithm concentrates on the phases that have an opportu-
nity to be active, then it will be able to apply more active phases in
a sequence and converge to the best sequence it can find in fewer
attempts. Notethat determining which optimization phases can
enable another phase requires careful consideration by the com-
piler writer.

b and d do not enable ac enables a

a ...cba... a ...dba...

Figure 11: Enabling Previously Applied Phases

We implemented this technique by forcing a phase to mutate
if the same phase has already been performed and there are no
intervening phases that can enable it.We realized that a specific
phase can become unenabled after an attempted phase is found to
be active or dormant. We first follow the tree of active prefixes,
which was described in the previous subsection, to determine
which phases are currently enabled.For example, consider again
Figure 10. Assume thatb can be enabled bya, but cannot be
enabled byc. Giv en the prefixbac, we know that b cannot be
active at this point sinceb was dormant after the prefixba andc
cannot reenable it. After reaching a leaf of the tree we track
which phases cannot be enabled by just examining the subse-
quently attempted phases.

6. EXPERIMENTS
This section describes the results of a set of experiments to illus-
trate the effectiveness of the previously described techniques for
obtaining fast searches for effective optimization phase sequences.
We first perform experiments on a Ultra SPARC III processor so
that the results could be obtained in a reasonable time.After
ensuring ourselves that the techniques were sound, we use these
techniques when obtaining results for the Intel StrongARM
SA-110 processor, which has a clock rate that is more than 5 times
slower than the Ultra SPARC III.

We used a subset of themibenchbenchmarks, which are C
applications targeting specific areas of the embedded market [8].
We used one benchmark from each of the six categories of appli-
cations. Whenexecuting each of the benchmarks, we used the
sample input data that was provided with the benchmark.Table 1
contains descriptions of these programs.

Category Program Description

auto/industrial bitcount test bit manipulation abilities
network dijkstra calculates shortest path between

nodes using Dijkstra’s algorithm
telecomm fft performs fast fourier transform
consumer jpeg image compression & decompression
security sha secure hash algorithm
office stringsearch searches for words in phrases

Table 1: MiBench Benchmarks Used in the Experiments

Table 2 shows each of the candidate code-improving phases
that we used in the experiments when compiling each function.In
addition, register assignment, which is a compulsory phase that
assigns pseudo registers to hardware registers, has to be per-
formed. VISTA implicitly performs register assignment before
the first code-improving phase in a sequence that requires it.
After applying the last code-improving phase in a sequence, we
perform another compulsory phase which inserts instructions at
the entry and exit of the function to manage the activation record
on the run-time stack.Finally, we also perform additional code-
improving phases afterwards, such as filling delay slots.

Our genetic algorithm search for obtaining the baseline mea-
surements was accomplished in the following manner. Unlike
past studies using genetic algorithms to generate better code [13,
5, 15], we perform a search on each function (a total of 106 func-
tions in our test suite), which requires longer compilations but
results in better overall improvements [11]. In fact, most of the
techniques we are evaluating would be much less effective if we
searched for a single sequence to be applied on an entire applica-
tion. We set the sequence (chromosome) length to be 1.25 times
the number of active phases that were applied for the function by
the batch compiler. We felt this length was a reasonable limit and
gives us an opportunity to apply more active phases than what the
batch compiler could accomplish, which is much less than the
number of phases attempted during the batch compilation.The
sequence lengths used in these experiments varied between 4 and
48 with an average of 14.15.We set the population size (fixed
number of sequences or chromosomes) to twenty and each of
these initial sequences is randomly initialized with candidate opti-
mization phases.We performed 100 generations when searching
for the best sequence for each function.We sort the sequences in

-6-

Optimization Phase Description

branch chaining Replaces a branch or jump target with the target of the last jump in a jump chain.

common subexpression elimination Eliminates fully redundant calculations, which also includes constant and copy propagation.

remove unreachable code Removes basic blocks that cannot be reached from the entry block of the function.

remove useless blocks Removes empty blocks from the control-flow graph.

dead assignment elimination Removes assignments when the assigned value is never used.

block reordering Removes a jump by reordering basic blocks when the target of the jump has only a single predecessor.

minimize loop jumps Removes a jump associated with a loop by duplicating a portion of the loop.

register allocation Replaces references to a variable within a specific live range with a register.

loop transformations Performs loop-invariant code motion, recurrence elimination, loop strength reduction, and induction variable
elimination on each loop ordered by loop nesting level. Eachof these transformations can also be individually
selected by the user.

merge basic blocks Merges two consecutive basic blocksa andb whena is only followed byb andb is only preceded bya.

evaluation order determination Reorders RTLs in an attempt to use fewer registers.

strength reduction Replaces an expensive instruction with one or more cheaper ones.

reverse jumps Eliminates an unconditional jump by reversing a conditional branch when it branches over the jump.

instruction selection Combine instructions together and perform constant folding when the combined effect is a legal instruction.

remove useless jumps Removes jumps and branches whose target is the following block.

Table 2: Candidate Optimization Phases in the Genetic Algorithm Experiments

the population by afitness valuecalculated using 50% weight on
speed and 50% weight on code size. The speed factor we used
was the number of instructions executed since this was a measure
that could be consistently obtained, it has been used in similar
studies [5, 11], and allowed us to obtain baseline measurements
within a reasonable period of time.We could obtain a more accu-
rate measure of speed by using a cycle-accurate simulator. How-
ev er, the main point of our experiments was to evaluate the effec-
tiveness of techniques for obtaining faster searches, which can be
applied with any type of fitness evaluation criteria. At each gener-
ation (time step) we remove the worst sequence and three others
from the lower (poorer performing) half of the population chosen
at random. Each of the removed sequences are replaced by ran-
domly selecting a pair of the remaining sequences from the upper
half of the population and performing a crossover (mating) opera-
tion to create a pair of new sequences. Thecrossover operation
combines the lower half of one sequence with the upper half of
the other sequence and vice versa to create two new sequences.
Fifteen sequences are then changed (mutated) by considering each
optimization phase (gene) in the sequence. Mutation of each
phase in a sequence occurs with a probability of 10% and 5% for
the lower and upper halves of the population, respectively. When
an optimization phase is mutated, it is randomly replaced with
another phase. The four sequences subjected to crossover and the
best performing sequence are not mutated.Finally, if we find
identical sequences in the same population, then we replace the
redundant sequences with ones that are randomly generated.

Figures 12, 13, and 14 show the percentage improvement that
we obtained for the SPARC when optimizing for speed only, size
only, and 50% for each factor, respectively. Performance results
for the ARM, a widely used embedded processor, are presented
later in this section. The baseline measures were obtained using
the batch VPO compiler, which iteratively applies optimization
phases until no more improvements can be obtained. This base-
line is much more aggressive than always using a fixed length

sequence of phases [11]. The average benefits shown in the figure
are slightly improved from previously published results [11] since
the searches now include additional optimization phases that were
not previously exploited by the genetic algorithm. Note that the
contribution of our paper is that the search for these benefits is
more efficient, rather than the actual benefits obtained.

Figure 12: Speed Only Improvements for the SPARC

Figure 13: Size Only Improvements for the SPARC

-7-

Figure 14: Size and Speed Improvements for the SPARC

Figure 15 shows the average number of sequences whose
executions were avoided for each benchmark using the methods
described in Section 4.These results do not include the functions
in the benchmarks that were not executed when using the sample
input data since these functions were evaluated on code size only
and did not require execution of the application.Consider for now
only the top bar for each benchmark, which represents the results
without applying any of the techniques in Section 5.As men-
tioned previously, each method in Section 4 is able to find a super-
set of the sequences handled by methods applied before it.On
av erage 41.3% of the sequences were detected as redundantly
attempted, 27.0% were caught as redundant active sequences,
14.9% were discovered to produce identical code as generated by
a previous sequence, and 1.0% were found to produce unique, but
equivalent code. Thus, over 84% of the executions were avoided.
We found that we could avoid a higher percentage of the execu-
tions when tuning smaller functions since we used shorter
sequence lengths that were established by the batch compilation
due to fewer optimization phases being active. A shorter sequence
length results in more redundant sequences.For instance, the
likelihood of mutation is less when there are fewer phases in a
sequence to mutate. Also, identical or equivalent code is more
likely when fewer phases could be applied.

Figure 15: Number of Avoided Executions

Figure 16 shows the relative search time required when
applying the methods described in Section 4 to not applying these
methods. Theav erage search time required 0.35 of the time when
no executions were avoided and 0.51 of the time when redundant
attempted sequences were avoided. Theav erage time required to
evaluate each of the six benchmarks improved from 5.57 hours to

2.27 hours. The reduction appears to be affected not only by the
percentage of the avoided executions, but also by the size of the
functions. Thelarger functions tended to have fewer avoided
executions and also had longer compilations.While the average
search time was significantly reduced for these experiments using
direct execution on a SPARC processor, the savings would only
increase when using simulation since the executions of the appli-
cation would comprise a larger portion of the search time.

Figure 16: Relative Total Search Time

Figures 17-21 show the average number of generations that
were evaluated for each of the functions before finding the best fit-
ness value in the search.Thebaselineresult is without using any
of the techniques described in Section 5. The other results indi-
cate the generation when the first sequence was found whose per-
formance equaled the best sequence found in the baseline search.
To ensure a fair comparison, we did not include the results for the
functions when the best fitness value found was not identical to
the best fitness value in the baseline, which occurred on about
18% of the functions. This caused the baseline results to vary
slightly since the functions with different fitness values were not
always the same when applying each of the techniques.About
11.3% of the functions had improved fitness values and about
6.6% of the functions had worse fitness values whenall of the
techniques were applied. On average the best fitness values
improved by 0.24% (by 1.33% for only the differing functions).
The maximum number of generations before finding the best fit-
ness value for any function was 91 out of a possible 100 when not
applying any of the four techniques. The maximum was 56 when
all four techniques were used. The techniques occasionally
caused the best fitness value to be found later, which we believe is
due to the inherent randomness of using a genetic algorithm.
However, all of the techniques were beneficial on average.

Figure 17 shows the effect ofusing the batch sequencein the
initial population, which in general was quite beneficial.We
found that this technique worked well for the smaller functions in
the applications since it was often the case that the batch compiler
produced code that was as good as the code generated by the best
sequence found in the search.However, the smaller functions
tended to converge on the best sequence in the search in fewer
generations anyway since the sequence lengths were typically
shorter. In fact, it is likely that performing a search for an effec-
tive optimization sequence is in general less beneficial for smaller
functions since there is less interplay between phases. Using the
batch sequence for the larger functions often resulted in finding
the best sequence in fewer generations even though the batch
compiler typically did not produce code that was as good as pro-
duced by the best sequence found in the baseline results.Thus,

-8-

simply initializing the population with one sequence containing
phases that are likely to be active is quite beneficial.

Figure 17: Number of Generations before Finding
the Best Fitness Value When Using the Batch Sequence

The effect of prohibiting specific phasesthroughout the
search was less beneficial, as shown in Figure 18. Specific phases
can only be safely prohibited when the function is relatively sim-
ple and a specific condition (such as no loops, no variables, or no
unconditional jumps) can be detected.Several applications, such
asstringsearch, had no or very few functions that met these crite-
ria. Thesimpler functions also tended to converge faster to the
best sequence found in the search since the sequence length estab-
lished by the length of the batch compilation was typically shorter.
Likewise, the simpler functions also have little impact on the size
of the entire application and have little impact on speed when they
are not frequently executed.

Figure 18: Number of Generations before Finding the
Best Fitness Value When Prohibiting Specific Phases

In contrast,prohibiting prior dormantandunenabled phases,
which are depicted in Figures 19 and 20, had a more significant
impact since these techniques could be applied to all functions.
Without using these two techniques, it was often the case that
many phases were reattempted when there was no opportunity for
them to be active.

Applying all the techniques produced the best overall results,
as shown in Figure 21. In fact, only about 32% of the generations
on average (from 25.74 to 8.24) were required to find the best
sequence in the search as compared to the baseline. As expected,
applying all of the techniques did not result in the sum of the ben-
efits of the individual techniques since some of the phases that
were prohibited would be caught by multiple techniques.

Figure 19: Number of Generations before Finding the Best
Fitness Value When Prohibiting Prior Dormant Phases

Figure 20: Number of Generations before Finding the
Best Fitness Value When Prohibiting Unenabled Phases

Figure 21: Number of Generations before Finding
the Best Fitness Value When Applying All Techniques

Consider again Figure 15, which depicts the number of
avoided executions. Thebottom bar for each benchmark shows
the number of executions that are avoided when all of the tech-
niques described in Section 5 are applied.One can see that while
the number of redundantly attempted sequences decrease, the
number of sequences caught by the three other techniques
increase. Theremaining redundantly attempted sequences were
the sequences created by the crossover operation and the best
sequence in the population, which were not subject to mutation,
and the redundant sequences with only active phases. Theav erage
number of avoided executions decreases by about 10%, which
means a greater number of functions with unique code were

-9-

generated. However, the decrease in avoided executions is much
less than the average decrease in generations required to reach the
best sequence found in the search, as shown in Figure 21.

Figure 22 shows the relative time for finding the best fitness
value when all of the techniques in Section 5 were applied.The
actual times are shown in minutes since finding the best sequence
is accomplished in a fraction of the total generations performed in
the search.Note the baseline for finding the best fitness value
includes all of the methods described in Section 4 to avoid unnec-
essary executions. Thebest fitness value was found in 53.0% of
the time on average as compared to the baseline.

Figure 22: Relative Search Time
before Finding the Best Fitness Value

After ensuring that the techniques we developed to improve
the search time for effective sequences were sound, we obtained
results on the Intel StrongARM SA-110 processor. Figures 23,
24, and 25 show the percentage improvement when optimizing for
speed only, size only, and 50% for each factor, respectively. The
av erage time required to obtain results for each of the benchmarks
when optimizing for both speed and size on the ARM required
12.67 hours. Using the average ratio shown in Figure 16, we esti-
mate it would have taken over 36.19 hours without applying the
techniques in Section 4.

7. IMPLEMENT ATION ISSUES
During the process of this investigation, we encountered several
implementation issues that made this work challenging. First,
producing code that always generates the correct output for differ-
ent optimization phase sequences is difficult. Even implementing
a conventional compiler that always generates code that produces
correct output when applying one predefined sequence of opti-
mization phases is not an easy task. In contrast, generating code
that always correctly executes for thousands of different optimiza-
tion phase sequences is a severe stress test.Ensuring that all
sequences in the experiments produced valid code required track-
ing down many errors that had not yet been discovered in the
VISTA system. Second,the techniques presented in Sections 5.2
and 5.4 required analysis and judgement by the compiler writer to
determine when optimization phases will be enabled.We inserted
sanity checks when running experiments without using these
methods to ensure that our assertions concerning the enabling of
optimization phases were accurate.We found several cases where
our reasoning was faulty after inspecting the situations uncovered
by these sanity checks and we were able to correct our enabling
assertions. Third,we sometimes found that dormant optimization
phases did have unexpected side effects by changing the analysis
information, which could enable or disable a subsequent

Figure 23: Speed Only Improvements for the ARM

Figure 24: Size Only Improvements for the ARM

Figure 25: Size and Speed Improvements for the ARM

optimization phase.These side effects can affect the results of the
methods described in Sections 4.2, 5.3, and 5.4.We also inserted
sanity checks to ensure that different dormant phases did not
cause different effects on subsequent phases.We detected when
these situations occurred, properly set the information about what
analysis is required and invalidated by each optimization phase,
and now rarely encounter these problems.

8. FUTURE WORK
There is much future research that can be accomplished on pro-
viding fast searches for effective optimization sequences.We
have shown that detecting when a particular optimization phase
will be dormant can result in fewer generations to converge on the
best sequence in the search.We believe it is possible to estimate
the likelihood that a particular optimization phase will be active

-10-

given the active phases that precede it by empirically collecting
this information. This information could be exploited by adjust-
ing the mutation operation to more likely mutate to phases that
have a better chance of being active with the goal of converging to
a better fitness value in fewer generations.

Another area of future work is to vary the characteristics of
the search. It would be interesting to see the effect on a search as
one changes aspects of genetic algorithm, such as the sequence
length, population size, number of generations, etc.We may find
that certain search characteristics may be better for one class of
functions, while other characteristics may be better for other func-
tions. In addition, it would be interesting to perform searches
involving more compiler optimizations and benchmarks.

Finally, the use of a cluster of processors can reduce the
search time. Certainly different sequences within a population
can be evaluated in parallel [15].Likewise, functions within the
same application can be evaluated independently. Even with the
use of a cluster, the techniques we have presented in our paper
would still be useful since they will further enhance the search
time. Inaddition, not every developer has access to a cluster.

9. CONCLUSIONS
There are several contributions that we have presented in this
paper. First, we have shown there are effective methods to reduce
the search overhead for finding effective optimization phase
sequences by avoiding expensive executions or simulations.
Detecting when a phase was active or dormant by instrumenting
the compiler was very useful since many sequences can be
detected as redundant by memoizing the results of active phase
sequences. We also discovered that the same code is often gener-
ated by different sequences.We demonstrated that using efficient
mechanisms, such as a CRC checksum, to check for identical or
equivalent functions can also significantly reduce the number of
required executions of an application.Second, we have shown
that on average the number of generations required to find the best
sequence can be reduced by over two thirds. Onesimple, but
effective technique is to insert the active sequence of phases from
the batch compilation as one of the sequences in the initial popu-
lation. We also found that we could often use analysis and empiri-
cal data to determine when phases could not be active. These
techniques result in faster convergence to more effective
sequences, which can allow equally effective searches to be per-
formed with fewer generations of the genetic algorithm.

An environment to tune the sequence of optimization phases
for each function in an embedded application can be very benefi-
cial. However, the overhead of performing searches for effective
sequences using a genetic algorithm can be quite significant and
this problem is exacerbated when performance measurements for
an application are obtained by simulation or on a slower embed-
ded processor. Many dev elopers are willing to wait for tasks to
run overnight to improve a product, but are unwilling to wait
longer. We hav eshown that the search overhead can be signifi-
cantly reduced, perhaps to a tolerable level, by using methods to
avoid redundant executions and techniques to converge to the best
sequence it can find in fewer generations.

ACKNOWLEDGEMENTS
Clark Coleman and the anonymous reviewers provided helpful
suggestions that improved the quality of the paper. This research
was supported in part by National Science Foundation grants
EIA-0072043, ACI-0203956, CCR-0208892, ACI-0305144, and
CCR-0312493.

10. REFERENCES
[1] M. E. Benitez and J. W. Davidson, “A Portable Global Opti-

mizer and Linker,” Proceedings of the SIGPLAN ’88 Sym-
posium on Programming Language Design and Implemen-
tation, pp. 329-338 (June 1988).

[2] M. E. Benitez and J. W. Davidson, “The Advantages of
Machine-Dependent Global Optimization,” Proceedings of
the Conference on Programming Languages and Systems
Architectures, pp. 105-124 (March 1994).

[3] B. Calder, D. Grunwald, and D. Lindsay, “Corpus-based
Static Branch Prediction,” Proceedings of the SIGPLAN ’95
Conference on Programming Language Design and Imple-
mentation, pp. 79-92 (June 1995).

[4] K. Chow and Y. Wu, “Feedback-Directed Selection and
Characterization of Compiler Optimizations,” Workshop on
Feedback-Directed Optimization, (November 1999).

[5] K. Cooper, P. Schielke, and D. Subramanian, “Optimizing
for Reduced Code Space Using Genetic Algorithms,” ACM
SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems, pp. 1-9 (May 1999).

[6] K. Cooper, D. Subramanian, and L. Torczon, “Adaptive
Optimizing Compilers for the 21st Century,” Journal of
Supercomputing23(1) pp. 7-22 ().

[7] T. Granlund and R. Kenner, “Eliminating Branches using a
Superoptimizer and the GNU C Compiler,” Proceedings of
the SIGPLAN ’92 Conference on Programming Language
Design and Implementation, pp. 341-352 (June 1992).

[8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “MiBench: A Free, Commercially Represen-
tative Embedded Benchmark Suite,” IEEE Workshop on
Workload Characterization, (December 2001).

[9] J. Holland, Adaptation in Natural and Artificial Systems,
Addison-Wesley (1989).

[10] T. Kisuki, P. Knijnenburg, and M. O’Boyle, “Combined
Selection of Tile Sizes and Unroll Factors Using Iterative
Compilation,” Proceedings of the 2000 International Con-
ference on Parallel Architectures and Compilation Tech-
niques, pp. 237-248 (October 2000).

[11] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J.
Davidson, M. Bailey, Y. Paek, and K. Gallivan, “Finding
Effective Optimization Phase Sequences,” ACM SIGPLAN
Conference on Languages, Compilers, and Tools for
Embedded Systems, pp. 12-23 (June 2003).

[12] H. Massalin, “Superoptimizer - A Look at the Smallest Pro-
gram,” Proceedings of the 2nd International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 122-126 (October, 1987).

[13] A. Nisbet, “Genetic Algorithm Optimized Parallelization,”
Workshop on Profile and Feedback Directed Compilation,
(1998).

-11-

[14] W. Peterson and D. Brown, “Cyclic Codes for Error Detec-
tion,” Proceedings of the IRE49pp. 228-235 (January
1961).

[15] M. Stephenson, S. Amarasinghe, M. Martin, and U.
O’Reilly, “Meta Optimization: Improving Compiler Heuris-
tics with Machine Learning,” ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pp. 77-90 (June 2003).

[16] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D.
August, “Compiler Optimization Space-Exploration,” ACM
SIGMICRO International Symposium on Code Generation
and Optimization, (March 2003).

[17] S.Ve gdahl, “Phase Coupling and Constant Generation in an
Optimizing Microcode Compiler,” International Symposium
on Microarchitecture, pp. 125-133 (1982).

[18] R. Whaley, A. Petitet, and J. Dongarra, “Automated Empiri-
cal Optimization of Software and the ATLAS Project,” Par-
allel Computing27(1) pp. 3-35 (2001).

[19] D. Whitfield and M. L. Soffa, “An Approach for Exploring
Code-Improving Transformations,”ACM Transactions on
Programming Languages and Systems19(6) pp. 1053-1084
(November 1997).

[20] W. Zhao, B. Cai, D. Whalley, M. Bailey, R. van Engelen, X.
Yuan, J. Hiser, J. Davidson, K. Gallivan, and D. Jones,
“VISTA: A System for Interactive Code Improvement,”
ACM SIGPLAN Conference on Languages, Compilers, and
Tools for Embedded Systems, pp. 155-164 (June 2002).

-12-

