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Optimizations1
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Many performance optimizations rely on or are enhanced by run-time profile information. However, both
offline and online profiling techniques suffer from intrinsic and practical limitations that affect the quality
of delivered profile data. The quality of profile data is its ability to accurately predict (relevant aspects of) fu-
ture program behavior. While these limitations are known, their impact on the effectiveness of profile-guided
optimizations, compared to the ideal performance, is not as well understood. We define ideal performance
for adaptive optimizations as that achieved with a precise profile of future program behavior.

In this work we study and quantify the performance impact of fundamental profiling limitations by com-
paring the effectiveness of typical adaptive optimizations when using the best profiles generated by offline
and online schemes against a baseline where the adaptive optimization is given access to profile information
about the future execution of the program. We model and compare the behavior of three adaptive JVM op-
timizations – heap memory management using object usage profiles, code cache management using method
usage profiles, and selective just-in-time compilation using method hotness profiles – for the Java DaCapo
benchmarks. Our results provide insight into the advantages and drawbacks of current profiling strategies,
and shed light on directions for future profiling research.
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1. INTRODUCTION

Program profiling is a powerful technique to discover, understand and reason about
the dynamic or run-time behavior of a program. Accurate, comprehensive, and timely
profiling information can not only enhance the effectiveness of existing run-time algo-
rithms, but also enable new adaptive or feedback-driven optimizations (FDO) resulting
in significant improvements to program performance. Indeed, run-time systems, such
as Java virtual machines (VM), have a critical need for profiling assisted algorithms,
and employ them for many optimization tasks to benefit performance.

1Extension of Conference Paper: While not truly an extension, Section 5 of this paper borrows from
our earlier conference paper [Robinson et al. 2016]. This current paper has an entirely different theme –
including introduction, related work, conclusions, etc. – from our earlier conference submission. Apart from
section 5, all other sections in this paper are original contributions of this work.
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Profile information is typically collected using one of two strategies: (1) additional
prior runs of the same program (offline strategy), or (2) dynamically, during the current
program run (online strategy). Both online and offline profiling strategies suffer from
several intrinsic and practical limitations. We define intrinsic limitations as those that
exist even when the profile data obtained is as accurate and timely as is possible with
that technique without any constraints on physical costs. We define practical limita-
tions as those that are imposed by cost, overhead, and other physical factors. These
limitations can affect the predictability of the obtained profile data as compared to the
ideal profile that is generated with precise knowledge of the future program behavior.

Many static compilers, like GNU gcc/g++, provide the option of offline profiling
based optimizations [Hwu et al. 1993; Mock et al. 2000; Chang et al. 1991; Pettis and
Hansen 1990]. Although the resulting performance improvements are often signifi-
cant, offline profiling based systems face the following intrinsic limitations: (a) a dif-
ferent input set or execution environment can cause the application’s run-time behav-
ior to differ from its behavior during the profiling run, and (b) profiling data collected
during a separate run must be structured and aggregated so that it can be used by
FDOs. Data aggregation can reduce the effectiveness of FDOs by limiting its ability to
customize for different sections/phases of the program run. Additionally, offline profil-
ing also suffers from the practical restriction presented by the difficulty or inability in
certain cases to collect a profile trace of the application prior to execution. It is believed
that an ability to perform the profiling at run-time using an online strategy may help
overcome some of these drawbacks [Arnold et al. 2000a; Arnold et al. 2002].

Unfortunately, intrinsic limitations persist with online profiling. Adaptive optimiza-
tions desire accurate knowledge of future program behavior to be most effective. How-
ever, existing online profiling schemes are typically reactive (they can only monitor the
program’s past execution events). Thus, FDOs often use simple models that predict
that a program’s future execution will truly mirror its past behavior. Naturally, adap-
tive optimizations may perform quite poorly if this prediction turns out to be incorrect.

A practical problem with online profiling schemes is that the cost imposed by com-
prehensive profile collection at run-time may be prohibitively expensive, and could
slow down overall program execution. In such cases, VMs use low-overhead techniques,
such as sampling, and only gather partial behavior data that is quick and easy to col-
lect at run-time. The result is often incomplete or inaccurate program profile infor-
mation, which can reduce or even negate the benefit of adaptive feedback-driven op-
timizations. Additionally, collection of sufficient profile data after program start may
delay the application of some FDOs, which can affect program performance.

These limitations with offline and online profiling are generally known. Yet, we do
not entirely understand their impact on the effectiveness of FDOs. In this work we
employ a set of common adaptive VM tasks/optimizations and conduct a fundamental
study to assess, evaluate, and quantify the impact of the intrinsic profiling limitations.
For each adaptive task, we develop a baseline where the task has access to profile
information from the remaining future execution of the program. This methodological
baseline is called future profiling in the rest of this paper. It is important to note that
future profiling is not a new profiling strategy, but only serves as a baseline against
which realizable offline and online profiling strategies can be evaluated. Additionally,
future profiling is not an oracle, and adaptive tasks employing the future profile may
still on occasions make sub-optimal optimization decisions.

We construct detailed experimental frameworks to conduct each study. These frame-
works constrain the behavior of the VM to make our analysis more manageable. Each
framework supplies the selected adaptive task with the best profile data that could
be collected by offline, online, and future profiling techniques without cost/overhead
considerations. The performance of each adaptive task with the different instances of
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profile data are evaluated and compared. We also evaluate the performance achieved
by each adaptive task for a standard online profiling technique that only has access to
profile data that is limited by the physical and practical constraints of profile collection
overhead and/or delay at run-time.

We employ three adaptive VM tasks for this work: (a) heap memory management
that uses profiles of object access patterns to save energy, (b) code cache management
that employs method usage profiles to reduce memory consumption, and (c) just-in-
time (JIT) compilation that uses method hotness data to improve speed. These tasks
were chosen as they are representative of adaptive optimizations performed by VMs.

The primary contribution of this work is a comparison of the potential benefits of
basic profiling techniques and a deeper understanding of the performance impact of
intrinsic profiling limitations for three adaptive VM tasks in the context of the DaCapo
benchmarks and the HotSpot Java VM. We conduct the following tasks in this work.

— We design and build creative VM-based frameworks to compare the performance of
adaptive VM tasks with the best profiles generated by offline and online strategies
against the future profiling baseline. Our experimental frameworks allow us to ef-
fectively control profiling accuracy and cost, while achieving realistic comparisons.

— For offline profiling, we measure: (a) the performance impact of the difference in
training and evaluation inputs on performance of FDOs, and (b) the effect of aggre-
gating profile information across the entire program run.

— For online profiling, we: (a) assess the effectiveness of FDOs when they have access
to the best online profiling data while ignoring any cost overhead, and (b) evaluate
the impact of online techniques that only have access to incomplete profile informa-
tion due to practical issues of run-time overhead and profile data collection delay.

2. RELATED WORK

In this section we survey past works in the areas of evaluating profiling accuracy,
reducing online profiling overhead, exploring the predictability of program behavior,
and the use of predictive models during VM tasks.

Researchers have attempted to evaluate the accuracy of (estimation-based) pro-
filers. Anderson et al.’s experiments with their Digital continuous profiling frame-
work revealed that sampling-based profilers must collect their samples randomly to
achieve accuracy [Anderson et al. 1997]. Mytkowicz et al. compared the accuracy of
four sampling-based Java profilers, and made a similar observation [Mytkowicz et al.
2010]. Researchers that develop a new profiling strategy also often attempt to evalu-
ate its accuracy. In cases where a correct profile is available, the new profiling data can
simply be compared with this correct profile [Arnold and Grove 2005; Duesterwald and
Bala 2000; Moseley et al. 2007]. Arnold and Grove used this scheme for their profiling
strategy measuring method call frequencies [Arnold and Grove 2005]. In other cases,
a known correct profile may not be available because of the observer effect, where the
act of collecting the profile affects the measured value. Timing data is an example of
such a value. In such cases, researchers have used causality analysis to assess if their
profile is actionable, i.e., acting on the profile yields the expected outcome [Mytkowicz
et al. 2010; Rubin et al. 2002]. While establishing appropriate profiler accuracy is an
implementation and cost issue, our quest in this work is different and more fundamen-
tal. We aim to understand and evaluate the limitations of offline and reactive online
profiling schemes even when the profiles that they generate are completely accurate.

Generating comprehensive profile information at run-time can be intolerably expen-
sive. Several works attempt to manage the overhead of online profiling, especially by
using parallelism on multi-core machines. SHIM is a sampling-based fine-grain pro-
filing tool that exploits unutilized hardware to execute a profiling thread with very
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high profile resolution and low overhead [Yang et al. 2015]. Approaches like shadow
profiling and SuperPin attempt to gather accurate profile data using instrumented
slices that run in parallel with the original uninstrumented program on multi-core
machines [Moseley et al. 2007; Wallace and Hazelwood 2007]. The PiPA approach
performs low-overhead profiling in the same thread, but conducts the more heavy-
weight profile analysis in separate threads [Zhao et al. 2008]. Whaley developed a low-
overhead profiler that samples the program stack frame at arbitrary points using a
different dedicated profiler thread [Whaley 2000]. Arnold and Ryder employ sampling-
based bursty tracing to reduce overhead [Arnold and Ryder 2001]. The Java Virtual
Machine Tool Interface (JVMTI) [Oracle 2014] supports both sampling and instrumen-
tation for profiling some program events, is supported by most common Java VM imple-
mentations, but rarely provides a high-performance solution [Hofer and Mössenböck
2014; Binder 2006]. Other profiling approaches, including those using hardware per-
formance counters [Inoue and Nakatani 2009], have also being developed earlier. Our
goal in this work is different – we assess effectiveness of adaptive algorithms when
they have access to the best online profiling data while ignoring any cost overhead.

Researchers have studied the predictability of program behavior across different in-
puts and its variability during the same run. Berube studied issues relating to input-
dependent program behavior to enhance FDO performance in ahead-of-time compil-
ers [Berube 2012]. This study is particularly relevant to our work as it addresses the
challenge of workload selection and profile data aggregation from multiple training
runs during offline profiling. Other researchers have found that inputs may need to be
specifically designed to ensure reasonably representative profiles, and even then the
results are not always as desired or ideal. For example, high variability was reported
between the specially designed training and reference input sets for several bench-
marks in the popular SPEC cpu2000 [Hsu et al. 2002] benchmark suite, and for a few
of the SPEC cpu2006 [Gove and Spracklen 2007] benchmarks. Another study observed
that programs typically exhibit significant variability in behavior even at the level of
millions of instructions during the same program execution [Duesterwald et al. 2003],
concluding that reactive online profiling approaches may be inadequate. These stud-
ies reveal the challenges facing FDO, especially those relying on offline profiling that
not only need to use profiles from distinct program runs/inputs, but also aggregate the
profile information over the entire run before its application to FDO.

Many FDOs employ simple prediction models that assume future behavior to faith-
fully reflect the past [Arnold et al. 2000b]. Earlier research suggests that such reac-
tive online profiling techniques may not be able to accurately predict future behav-
ior [Duesterwald et al. 2003; Namjoshi and Kulkarni 2010]. Some works derive en-
hanced knowledge of future behavior in targeted situations. For instance, knowledge
of loop bounds was used to predict function hotness [Namjoshi and Kulkarni 2010].
Machine learning was used to correlate certain program behaviors with values of in-
put parameters to guide early and better optimization decisions [Jiang et al. 2010].
This learning scheme was later extended to correlate the behaviors of unrelated loop
bounds to predict program behavior patterns and improve dynamic method version se-
lection [Wu et al. 2012]. Static analysis has also been used to reduce overhead of online
profiling based GC optimizations [Huang et al. 2004]. A priori knowledge of method
compilation and execution times was used to derive an ideal method compilation or-
dering to improve VM performance [Ding et al. 2014]. Researchers have also attempted
to find and exploit the periodicity in program behavior (program phases), for instance,
to enhance online predictor accuracy [Duesterwald et al. 2003]. While we don’t evalu-
ate the effectiveness of such predictive schemes, our work provides further motivation
for these and other related techniques to improve the ability of profiling schemes to
predict future program behavior more quickly, accurately and at lower costs.
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3. COMMON EXPERIMENTAL SETUP

We design innovative and detailed VM-based frameworks to conduct our experiments
in this work. These frameworks provide a controlled environment to study profiling
properties and understand their impact on FDOs. We construct our profiling models in
this framework using traces from actual VM runs.

Our experiments use Oracle’s production-grade HotSpot Java virtual machine to col-
lect trace information [Paleczny et al. 2001; Kotzmann et al. 2008]. We extend HotSpot
(JDK-6 or JDK-9 depending on available partial frameworks from our earlier works) to
collect the required profile data for each selected task, as well as to run any validation
experiments. In this section we provide a brief background on the internal workings of
HotSpot that are relevant to our current work.

HotSpot includes a high-performance threaded bytecode interpreter and multiple
JIT compilers. The execution of a new program begins in the interpreter. HotSpot uses
each method’s hotness count, which is a sum of the method’s invocation and loop back-
edge counters, to promote methods to (higher levels of) JIT compilation. We insert our
own invocation and backedge counters in the HotSpot interpreter that are incremented
at all times outside of the profiling flags. The native code generated after compilation is
stored in a region of heap memory called the code cache. HotSpot and our constructed
frameworks do not currently detect or employ program phases.

Data objects (class instances) created by the Java program at run-time also occupy a
region of heap memory. Periodically, the heap area will fill with objects created by the
application, triggering a garbage collection (GC). During GC, the VM frees up space
associated with the dead (unreachable) objects, and possibly shrinks or expands the
virtual memory space depending on the current need.

Our experiments employ the DaCapo Java benchmarks [Blackburn et al. 2006], and
we report results with their default input size. We also collect profiles of executions
with the small input sizes, but this data is only used to make predictions with the
offline-diff strategy (described in the following sections). The run-time experiments
were performed on a cluster of Intel x86-64 machines running Fedora Linux as the
operating system. All the run-time results in these sections report the (geometric) av-
erage over 10 runs for each benchmark-configuration pair [Georges et al. 2007].

4. HEAP MEMORY MANAGEMENT

Our first study examines the effectiveness of different profiling strategies to divide
heap objects into sets according to their expected usage patterns. Such a capability
may be employed during many optimizations. For example, researchers have used pro-
filing of memory access patterns to improve locality by storing hot data closer together
or in a cache-conscious way [Calder et al. 1998; Chilimbi and Shaham 2006; Huang
et al. 2004; Sudan et al. 2010; Brock et al. 2013; Guo et al. 2015]. Partitioning objects/-
data with different access patterns, capacities, and/or latency requirements is also an
essential element of efficient execution on systems with heterogeneous memory archi-
tectures. Several recent projects have used profiling to guide memory management to
improve performance, reduce power, and/or benefit durability in such systems [Chen
et al. 2014; Chang et al. 2014; Meswani et al. 2015; Agarwal et al. 2015].

We explore the problem of employing profile information to organize heap objects
into hot/cold sets to improve memory power management. Energy efficiency in memory
is critically important in mobile and embedded domains, and in high-end domains,
such as enterprise and scientific computing [Malladi et al. 2012; Lefurgy et al. 2003;
Hoelzle and Barroso 2009; Lim et al. 2009]. According to one estimate [Lefurgy et al.
2003], memory accounts for about 40% of the energy consumed in a typical server –
comparable to or slightly higher than the processors’ contribution.
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To reduce energy costs in memory, most modern systems include the ability to au-
tomatically transition individual memory devices into low-power states (such as “self-
refresh”) when they are not in active use [JEDEC 2009]. To amplify the effectiveness of
this technique, it is often desirable to co-locate objects that will be accessed frequently
(i.e. hot objects) onto their own small set of memory devices. This configuration allows
the other memory devices, which are filled with cold objects that are not likely to be
accessed, to transition to low-power states more often.

In previous work, we found significant potential to increase DRAM energy efficiency
by coordinating object placement decisions across the hardware, lower-, and upper-
level software [Jantz et al. 2015]. For this work, we repurpose our cross-layer frame-
work to evaluate the effectiveness of different profiling strategies when applied to an
optimization to reduce DRAM energy consumption. We presume the existence of a run-
time (similar to the HotSpot-6 based framework from our earlier work) that is capable
of periodically assigning heap objects to disjoint hot and cold spaces corresponding to
different groups of memory devices. The optimization problem then is to maximize the
size of the objects assigned to the cold space, while at the same time, ensuring that
the number of accesses to such objects remains low enough to allow the corresponding
“cold” memory devices to transition to low-power states. Thus, the effectiveness of this
technique depends upon the ability to accurately predict future object access patterns.

4.1. Motivation

In this section we demonstrate the importance of prediction accuracy during heap ob-
ject management for reducing energy consumption. For these experiments, we extend
the MemBench benchmark from our earlier work [Jantz et al. 2015]. MemBench cre-
ates two types of objects: HotObject and ColdObject. Each object contains a 1MB array
of integers, which represent the object’s memory resources. The custom JVM has the
ability to recognize the object type at allocation time, and allocate objects to different
heap partitions based on their type.

On initialization, MemBench allocates a large number of hot and cold objects. It then
spawns a software thread for each underlying hardware thread and divides the objects
equally amongst them. The threads continuously iterate over the objects, selecting the
next hot/cold object to access and writing data to each cell of its associated array.

In the ideal (perfect prediction) scenario, the accessor threads only write to objects
of the HotObject type, allowing the devices in which the ColdObjects reside to fre-
quently operate in low-power states. We further extend MemBench with an additional
parameter that controls the likelihood that each accessor thread selects and accesses a
ColdObject at each iteration. Controlling this parameter allows us to model the effect
of mis-predicting the hotness/coldness of a set of application data objects.

Our experiments use a single socket of an HP ProLiant DL380p Gen8 server ma-
chine with an Intel E5-2620 v2 (Ivy Bridge) processor. This machine has 6 2.1GHz
cores with hyperthreading enabled and 4 8GB DIMMs of HP DDR3 SDRAM (product
#: 713979-B21), which are each connected to their own channel. We configure Mem-
Bench to allocate roughly 24 GB of cold program objects and 3.5 GB of hot program
objects. The objects are allocated in random order. Hence, in the default configura-
tion, HotObjects and ColdObjects are stored intermittently throughout the application
heap, and ultimately, across all four memory modules. In the modified JVM, however,
objects of the ColdObject type are allocated to a separate heap region, which is backed
with physical memory corresponding to only 3 of the 4 DIMMs in the system. The
remaining objects (including the HotObjects) reside on the other DIMM.

For each MemBench run, the threads iterate for 100 seconds, and use a delay fac-
tor of 200ns between memory accesses. Performance is recorded as the total number
of (hot or cold) objects processed. We estimate energy consumption using the same
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Fig. 1. Rising fraction of mis-predicted accesses can rapidly diminish/erase the benefit of the heap memory
management optimization. (Lower is better is all the graphs in this paper.)

model [David et al. 2011] and tools employed in our previous work. Our results report
the average performance and energy measurements over five experimental runs.

The design and configuration parameters of MemBench were chosen to model DRAM
energy consumption with an application that allocates most of the system’s memory,
but only requires frequent access to a small portion (about 10% to 15%) of its objects.
It is important to note, however, that the energy expense of memory does not directly
depend on the size of the objects in memory, but instead, is mainly determined by
the distribution of objects across the system’s memory hardware and the rate and
pattern of access to objects in memory. In a separate set of experiments, we configured
MemBench to use smaller objects (24 bytes per object instead of 1MB) and less overall
capacity (about 840MB in total), but did not change the distribution of objects across
the DRAM devices or the rate or pattern of access to the objects. We found that this low
capacity version of MemBench had very similar DRAM and CPU energy requirements
as the high capacity version presented here.2

Figure 1 shows the DRAM and (CPU+DRAM) energy consumed while running Mem-
Bench on the adopted JVM framework, which assigns HotObjects and ColdObjects to
separate memory devices, compared to a run with the default JVM. Each dot in each se-
ries presents the relative energy consumed with a different proportion of mis-predicted
accesses (i.e., accesses to ColdObjects) along the X-axis.

With ideal prediction (no mis-predicted accesses), partitioning the hot and cold ob-
jects reduces DRAM energy consumption by 32.9%. However, increasing the percent-
age of mis-predicted accesses quickly diminishes the effectiveness of this optimiza-
tion. For instance, we found that mis-predicting 20% of object accesses reduces the
energy savings by about 2

3 compared to the ideal prediction. Mis-prediction rates 40%
or higher negate all of the efficiency improvements enabled by this technique.3 These
experiments reveal that low-overhead and accurate profiling is critical to realizing po-
tential energy savings with this optimization.

2The high capacity version consumes 20.9 Watts of DRAM power (50.5W of CPU+DRAM power) with the de-
fault JVM and 14 Watts of DRAM power (43.6W of CPU+DRAM power) with the custom JVM with zero mis-
predicted accesses. The low capacity version consumes 20.1 Watts and 13.5 Watts of DRAM power (50.5W
and 44.0W of CPU+DRAM power) with the same default and custom JVM configurations, respectively.
3The observed energy reductions are solely due to a reduced rate of DRAM power consumption. Performance
with the modified JVM is similar to or slightly worse than the default configuration, regardless of the mis-
prediction rate. In the worst case, with 100% mis-prediction, performance is 6.5% worse than the default
configuration. On average, performance degrades by 1.5% with the modified JVM framework.
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4.2. Profiling for Hot and Cold Objects

In this section, we present experiments conducted using a framework we developed
to compare the effectiveness of various profiling strategies to identify and co-locate
objects with similar usage rates. Our framework first generates a trace of the total size
and number of accesses to objects created at different static program allocation sites
during each fixed-length interval of the program run. Our heap memory management
algorithm can employ this trace data to partition the heap memory into hot/cold sets,
which can then be assigned to different memory DIMMs. Different profiling strategies
have access to and/or can employ different partitions of trace data before or during the
program run to make optimization decisions. We study the impact these differences in
the profiling strategies have on the effectiveness of our heap management algorithm
as compared to one that has access to future trace information at each program point.

Evaluation Metrics:. Memory energy depends not only on the rate of usage, but also
the number of devices in use. Thus, we consider both heap size and the number of
accesses to objects in the cold set as evaluation metrics. Our model assumes that the
system allows a fixed small fraction of memory accesses to the objects in the cold set to
achieve energy efficiency. If the fraction of accesses to the cold set is greater than the
maximum allowed by our configuration, then it suggests that the profiling strategy
incorrectly assigned too many hot objects to the cold set, potentially preventing the
“cold” memory devices from transitioning to low-power states. On the other hand, if
the strategy turned out to be too conservative, and it assigns a large number of cold
objects to the hot set, the system could miss potential opportunities for energy savings.

Methodology:. Our framework provides a profiling mechanism for recording the com-
bined size and usage information of objects created at the same program allocation site.
(see Section 7.1 of [Jantz et al. 2015]). Using this mechanism, we record the memory
usage activity of all but two benchmarks in the DaCapo suite.4 Each profile run prints
the heap usage information at regular, timer-based intervals. We experimented with
a range of timer intervals and found that 250msec provides a good balance between
the compute/memory resources required to perform the profiling and experiments in
our framework while also providing an adequate number of samples. Results with the
different intervals are presented in Figure 6. All other results in this section were
collected using a 250msec interval.

Table I presents information on the DaCapo benchmarks used in our studies.
Columns 3 – 7 show heap usage statistics that were collected with our profiling frame-
work, specifically: the number of profiling intervals, the number of allocation sites
reached during the run, the total size of objects allocated on the heap, the maximum
heap size recorded at one interval, and total heap accesses. Hence, the selected bench-
marks exhibit a wide range of capacity and usage requirements.

We express the problem of partitioning the profiled allocation sites into hot and cold
sets as an instance of the 0/1 knapsack optimization problem. We implement a num-
ber of different partitioning strategies by varying the profile information provided as
its input. To compare partitionings with different input profiles, we select knapsack
capacities as a percentage of the total number of accesses in the input profile. For ex-
ample, a knapsack with a capacity of 5% selects allocation sites that account for no
more than 5% of the total number of accesses in the input profile. We select five differ-
ent knapsack capacities, (1%, 2%, 5%, 10%, and 20%), and evaluate each partitioning
strategy with each capacity.

4We omit tradebeans and tradesoap from our study because profiling these benchmarks with the default
input fails before completing one full iteration. In both cases, the failure is due to a timeout exception that
occurs while the application is reading a socket.
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Table I. Benchmark statistics. The columns from left to right show the: benchmark name, run-time in seconds, # of heap
profile intervals (with an interval length of 250msec), # of allocation sites reached during the run, total size of heap
allocations (in KB), maximum heap size (in KB), total # of heap accesses (R/W), # of invoked methods, # of hot methods,
and the size occupied by the hot compiled code (in KB). †Run-time is measured using an unmodified HotSpot-6 with
default parameters. ‡Heap usage is collected using the framework (with HotSpot-6 as base) from Section 4.2. §The
number of invoked and hot methods, and size of compiled code are recorded using HotSpot-6 with the default c1 compiler.

Benchmark RT (s)† Heap Usage‡ Methods§
#PIs #Sites Alloc. KB Max KB Acc.’s (R/W) #Inv. #Hot Hot KB

avrora 1.88 139 3,481 71,914 66,896 223,645,512 3,808 630 894
batik 2.27 145 5,106 200,276 198,085 329,194,041 8,073 1,451 2,357
eclipse 21.22 2,135 9,157 5,059,544 542,729 5,261,032,053 16,785 5,446 7,177
fop 1.56 53 10,234 139,724 138,390 94,280,502 7,450 1,573 3,118
h2 3.90 2,597 3,367 3,735,070 736,734 2,462,413,765 4,804 1,093 2,113
jython 5.81 729 10,903 2,181,187 535,963 1,871,017,740 9,100 2,226 5,444
luindex 1.03 100 2,973 42,935 34,224 242,376,049 3,476 532 1,102
lusearch 2.83 310 2,633 5,209,205 490,887 1,332,093,822 2,901 495 894
pmd 2.22 143 3,522 361,285 265,307 224,140,701 5,661 1,758 2,982
sunflow 2.14 1,446 3,900 2,471,177 511,412 1,828,971,660 4,457 405 1,107
tomcat 3.21 184 8,520 633,851 315,908 599,033,048 13,465 3,092 6,465
tradebeans 3.18 - - - - - 33,653 3,055 5,868
tradesoap 10.30 - - - - - 34,319 6,044 12,470
xalan 2.23 268 3,590 936,435 475,789 620,287,563 4,815 1,820 3,197

Our evaluation reuses the collected profile data to produce the effect of each parti-
tioning strategy. At each profile interval, we compute a partitioning of the application’s
allocation sites using one of the strategies described below. Then, we assign the inter-
val’s object size and access counts as either “hot” or “cold” according to the partitioning.
If the interval contains an allocation site that is not in the partitioning, we always opt
to assign the unknown allocation site’s size and access counts to the “hot” set.

Our study compares the following partitioning strategies:

Future:. Our baseline strategy uses future memory usage data to achieve the ideal
hot/cold partitioning. It recomputes the knapsack partitioning at the start of every
profile interval using the size and access counts for the same interval.

Offline:. An offline strategy only computes the knapsack once using aggregated size
and access counts from all the profile intervals in a separate run. We evaluate two
different offline strategies: (a) Offline-same: The same program input is used to
generate the offline knapsack and evaluate the heap partitions, and (b) Offline-diff:
The offline knapsack is generated and evaluated using a different program input.
Specifically, DaCapo’s small input size is used to compute the offline knapsack when
evaluating heap partitions for a run with the default input.

Reactive:. The reactive strategies use past profiling information from the same run to
guide partitioning at each interval. We evaluate two different sets of reactive strate-
gies: (a) Reactive-KS: These techniques recompute the knapsack at every interval
using aggregated profile information from the interval(s) immediately preceding the
current interval, and (b) Reactive-fast: It is often infeasible to construct the knap-
sack partitioning at run-time due to the large overhead of profiling object access
patterns. Our earlier work [Jantz et al. 2015] provides a realistic reactive approach
based on the low-overhead scheme proposed by Huang et al. [Huang et al. 2004].
This realistic reactive online profiling approach samples thread call stacks to con-
struct its profile input. For our model, call stacks are sampled once every 10msec, for
a total of 25 samples per interval with our default heap sampling rate of 250msec.
For both reactive strategies, we evaluate five distinct configurations that differ by
the number of profile intervals they use to construct the partitioning scheme (either
1, 2, 4, 8, or all of the preceding intervals).
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Fig. 2. Future profiling (an idealized approach for baseline comparison) effectively finds a high fraction of
‘cold’ heap objects that account for a small fraction of total heap accesses (given by the knapsack capacity).

4.3. Results and Observations

Cold Space Sizes with Future Profiling. Figure 2 shows, for each benchmark, the por-
tion of objects assigned to the cold space with future profiling with different knapsack
sizes. As expected, increasing the knapsack capacity allows the approach to add more
objects to the cold space. On average, future profiling policy identifies 40.3% of heap
objects that account for 1% of heap accesses, and 77.8% of objects that account for up
to 20% of heap accesses. The size of the cold space objects varies significantly among
different benchmarks. For instance, with sunflow, the coldest objects that account for
up to 20% of heap accesses make up more than 99% of the heap, while, with lusearch,
the same size knapsack yields a cold set with only 28% of total heap space.

Accuracy of Different Profiling Strategies. Figures 3 and 4 summarize the accuracy
of the hot/cold partitionings generated with each profiling strategy in terms of mis-
assigned heap accesses and size compared to the future strategy, respectively. For each
profiling strategy, the positive bar shows the accumulated heap accesses/size from al-
location sites that are predicted to be cold by the profiling strategy, but are determined
to be hot by the future strategy, while the negative bar shows the accumulated result
from sites that are predicted to be hot, but are assigned as cold by the future strat-
egy. Other than the reactive-fast policy, we evaluate each strategy with five knapsack
capacities (1%, 2%, 5%, 10%, 20%), and compare it against the future configuration
with the same size knapsack. Although the reactive-fast strategy does not employ a
knapsack partitioning, we still present five sets of bars to show its accuracy relative
to the future policy with different knapsack sizes. Results are computed at each pro-
gram interval, normalized by the total amount of heap accesses/size at the interval,
and then averaged over all intervals. Due to space constraints, we plot only one pair
of bars for each of the offline strategies and five pairs of bars for each of the reactive
strategies. The sets of bars for the reactive-KS and reactive-fast strategies are plotted
in ascending order by the number of preceding intervals of profile data that were used
to construct the partitioning strategy (i.e., from left-to-right, the bars show results
computed with 1, 2, 4, 8, and all preceding intervals of profile data).

Object partitioning affects both heap access counts and size, and makes it difficult
to compare profiling strategies that result in different allocations of both metrics. To
directly compare each strategy, we develop an approach that uses fixed heap sizes at
each interval. These experiments employ the same profiling strategies, but modify the
partitioning routines so that the sizes of the hot/cold sets match (or are as close as pos-
sible to) the sizes generated by the future strategy for the same program interval. We
first compute an ideal partitioning where, similar to our earlier experiments, the per-
centage of accesses to the cold set is as close as possible to the knapsack size, without
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Fig. 3. Mis-assigned heap accesses compared to future profiling. Standard profiling strategies mis-assign
a large fraction of heap accesses to the cold (positive bars) or hot sets (negative bars). Mis-assigned heap
accesses to the cold space can quickly negate the energy saving potential of the heap memory management.
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Fig. 4. Mis-assigned portion of object size compared to future profiling. Standard profiling strategies mis-
assign a fraction of hot heap objects to the cold set (positive bars) and cold heap objects to the hot set
(negative bars). Mis-assigned cold objects indicate a sub-optimal utilization of the low-power (cold) DIMMs.

exceeding it. Next, the modified knapsack routines, given the ideal sizes, partition the
objects so as to maximize the amount of accesses to the hot set. For the reactive-fast
strategy, if the generated hot and cold sets do not match the ideal sizes, allocation sites
are randomly added to (or removed from) the hot set until the hot set size is equal to
or just less than the ideal size. At each interval, the modified strategies employ future
knowledge of the ideal hot and cold heap sizes. Hence, these experiments are not in-
tended to estimate the effect of each strategy in a realistic system, but are only used to
ease the comparison of the relative accuracy of each profiling approach. Figure 5 shows
the percentage of accesses mis-assigned to the cold set with the modified partitioning
strategies with fixed heap sizes. This experiment provides a sense of the relative en-
ergy benefits that can be achieved by each profiling strategy for this adaptive VM task.

Together, Figures 3, 4, and 5 allow us to make a number of interesting observations.
(a) Intrinsic limitations prevent even the best offline and online profiling strategies
from achieving the effectiveness of the future policy for this heap memory management
optimization. The mispredictions seen by the offline-same strategy show the effect of
profile data aggregation. The reactive-KS policy degrades performance (over future
strategy) because past program behavior is not always able to accurately predict the
future execution. (b) The accuracy of the offline strategy depends on the quality of its
training data. For instance, in Figure 3, observe that, for each knapsack capacity, the
offline-diff approach generates a larger portion of mis-assigned heap accesses than the
offline-same strategy. (c) Figure 3 also shows that the reactive strategies that use only
the most recent profile interval mis-assign more heap accesses than configurations
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Fig. 5. The fixed heap-size configuration allows a more direct comparison of the accuracy (effectiveness) of
the different profiling strategies for heap memory management.

that use data over more past intervals. However, Figure 4 reveals that profiles con-
structed with older information tend to mis-assign a larger portion of heap object data.
We suspect this effect is due to the fact that recently-used objects are more likely to be
accessed than objects used in the distant past, and so, profiles that give equal weight
to both tend to assign more objects to the hot space. Figure 5 shows that, overall, only
using the more recent profile data during online profiling seems to be a more effec-
tive policy for this FDO. (d) For both heap accesses and size, employing additional past
profile intervals with the reactive-KS strategies seems to mirror the aggregating effect
noticed by the offline policies. (e) Although the reactive-KS strategy is more effective,
it requires a very high implementation overhead. Unfortunately, the more practical
reactive-fast strategy, which relies on partial profile data and a simpler partitioning
scheme, is not sufficiently accurate. This observation suggests the need for further
research to achieve the potential of online profiling in standard runtime systems.

Impact of Profiling Frequency. All of the preceding experiments profile memory ac-
tivity at the same rate (of 250msec). To understand how different profiling rates affect
our results, we collected heap usage activity for each benchmark with five distinct
profiling rates: 50msec, 100msec, 250msec, 500msec, and 1 second. For each selected
heap profiling rate, the reactive-fast strategy uses the same call stack sampling rate
(of 10msec). Although the standard sampling mechanism in HotSpot supports a min-
imum sampling rate of 10msec, we selected 50msec as the smallest profiling interval
because: 1) we wanted to ensure that the reactive-fast strategy had more than a few
stack samples per interval, and 2) we found that shorter rates required prohibitively
large space and time costs. The maximum rate of 1 second was selected to ensure that
each of our benchmarks produces more than a few profile intervals.5

Figure 6, which is presented in a similar style as Figure 3, shows the percentage of
mis-assigned heap accesses for each profiling strategy with a 5% knapsack with dif-
ferent profiling rates.6 For the profiling intervals we tested, the interval length only
has a small effect on the accuracy of most profiling strategies. The exception is the
reactive-fast strategy, which becomes more accurate as the length of the profiling in-
terval is increased. Since the stack sampling rate is kept constant, a longer profiling
interval allows the stack profiler to collect more samples during each heap profiling
interval. Thus, with the reactive-fast strategy, it is important to balance the frequency
and overhead of stack sampling to achieve the best possible accuracy and performance.

5The smallest benchmark in our set, fop, generates 13 intervals with a 1 second profiling rate.
6Due to space limitations, we do not present heap size results for different profiling rates. However, the
trends found in the size results are similar to Figure 6, and do not change our conclusions.
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Fig. 6. In theory, more samples (shorter intervals) allow us to better understand the intrinsic data aggre-
gation effect for the offline strategies and the impact of past (rather than future) profiles for the online
strategies. However, shorter intervals diminish the accuracy of the reactive-fast strategy because it uses a
constant call-stack sampling rate (of 10msec) and collects fewer samples per interval.

5. CODE CACHE MANAGEMENT

We use code cache management (CCM) in run-time systems as our next adaptive
profile-driven VM task. We study how data obtained from offline, online-reactive, and
default profiling mechanisms can impact the performance of the CCM algorithm com-
pared to the baseline future profiling at different constrained code cache sizes. Our
experiments model the client HotSpot VM configuration that includes the interpreter
and one compilation level (c1). We choose this HotSpot configuration because by us-
ing a lower compilation threshold it may place greater pressure on the code cache by
compiling more methods at program startup.

The code cache storage enables the native code produced for a method after JIT com-
pilation to be reused later, without re-generating it on every invocation. The code cache
management in the VM is responsible for finding and evicting previously compiled re-
gions from the cache, (a) to maintain program correctness in dynamic languages if the
assumptions made during compilation are later found to be incorrect, and (b) to make
room for the native code from later compilations if the code cache is full.

The code cache is a constrained resource. VMs can place a heavy load on a system’s
memory resources, especially on memory-constrained devices. We found that compil-
ing just the hot program methods (with the c1 compiler) for the DaCapo benchmarks
results in an average code cache size of over 4MB. Devices also typically have multi-
ple processes running simultaneously. Thus, performance efficiency with a small code
cache is an important goal for systems operating with resource constrains.

The CCM algorithm has a choice when selecting a method to purge from the code
cache to accommodate a later compilation. Ideally, the algorithm needs to find a
method that is not currently hot and will not become hot in the future. Better code
cache management can enable the VM to enhance performance by supporting larger
applications, allowing more aggressive compilation to improve performance, and by
keeping more programs simultaneously resident in memory to improve response time.

5.1. Performance Metric

Similar to our methodology in the last section, we construct a trace-based experimental
setup to explore the impact of the limitations of different profiling strategies on the ef-
fectiveness of the CCM algorithm. Our experimental setup is described in Section 5.2.
Here, we describe the performance metric we devise for our CCM experiments.

Method Hotness Count:. JIT compilation attempts to improve performance by reduc-
ing the amount of time spent by the program in the slower execution (interpretation)
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mode. The profiler in the HotSpot interpreter uses the method’s hotness count to esti-
mate the time spent in the method. Thus, a lower total hotness count over all program
methods indicates that the program spent less time in the interpreter and more time
in high-performance compiled native code, which should result in better performance.

If a previously compiled method is evicted from the code cache, then future invoca-
tions of the method will execute in the interpreter, until the evicted method becomes
hot again and is recompiled. Thus, on every request to create space for a new method
compile, a good CCM algorithm should find a method to evict that minimizes the (fu-
ture) time spent by the program in the interpreter. Hence, better code cache manage-
ment will result in a smaller total program hotness count over the entire program run.
Our framework computes the total program hotness count as the primary measure of
the quality of the CCM algorithm.

From Hotness Counts to Execution Time:. In addition to the hotness count, it is in-
teresting to study the effect of different CCM policies on program execution time. We
develop a simple mechanism to associate program hotness count with program execu-
tion time. Such association depends and is specific to the characteristics of the selected
VM (and interpreter/compiler). In this section we present our mechanism to achieve
this association for the HotSpot VM using both its c1 and c2 JIT compilers.

To relate hotness counts with program run-time we execute each benchmark with
the default HotSpot VM (for both c1 and c2 separately) for 24 different hotness thresh-
olds from 100 to 100,000,000. Each benchmark and hotness threshold configuration
will send a different set of methods to compile in the first program iteration. We run
each benchmark for 10 iterations. We only allow methods selected for compilation in
the first iteration to be compiled. We extract the total program hotness count and exe-
cution time (program wall-time) for the last iteration in each run to discard the compi-
lation overhead. We then plot all of the points associating hotness count and run-time
for each benchmark, and then fit a (quadratic) curve over these points.

We use the developmental release of HotSpot/JDK-9 to conduct our experiments to
associate program hotness count with execution time. HotSpot-9 implements a seg-
mented code cache that make it easier and more precise to control the per-benchmark
size of the code cache. Our experiments associating hotness counts to execution time
employ 12 DaCapo Java benchmarks with their default input size. 7

Figure 7 shows these association plots for the different DaCapo benchmarks with
both the c1 and c2 compiler configurations. Thus, we can see that (for the HotSpot VM
and DaCapo benchmarks) interpreter hotness counts are a good indicator of overall
program performance, even when the measured execution time includes aspects of
VM execution such as CCM and garbage collection. The per-benchmark mathematical
equation forming the regression curve is used to associate hotness counts with time
during later experimental runs. We employ both the hotness count and (correlated)
execution time to compare different profiling policies in the remainder of this section.

5.2. Experimental Setup

Methodology: We instrument HotSpot in JDK-6 to generate and log the trace and ex-
ecution data for our experiments. We conduct two runs for each benchmark. In the
first run, HotSpot runs the program in the interpreter alone, and divides the execu-
tion into 10msec intervals.8 At the end of each 10msec interval, HotSpot dumps the

7batik, and eclipse fail with the default build of HotSpot-9 without any of our modifications. batik seems to
fail due to updated reflection rules in HotSpot-9 that prevent access to some JVM internal packages (under
com.sun.*). eclipse fails with the error message “The type java.lang.CharSequence cannot be resolved”.
8We use 10msec intervals since we found that to be the smallest stable sampling interval for HotSpot’s
monitoring subsystem.
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Fig. 7. These plots provide the equations associating hotness counts with program execution time. For each
program run, the corresponding interpreter count and run-time (in msec) are plotted on the X-axis and Y-
axis respectively. We use the solid (blue) line for the ‘c1’ plot and the dashed (red) line for the ‘c2’ plot. As
expected, program execution time with the ‘c2’ compiler is typically faster and with a smaller hotness count
(likely due to more inlining) than that with the ‘c1’ compiler for a given compile-threshold value.

hotness counts of all program methods. The other program run determines the size of
the compiled native code with the client build of HotSpot-6 for hot program methods.
For each benchmark, we also measure the maximum space needed for the code cache
when all hot methods are compiled and resident in the cache.

Our evaluation runs use this trace data to reproduce the operation of the code cache
manager with different method eviction algorithms and code cache sizes. Experiments
use 100%, 90%, 75%, 50%, and 25% of the maximum code cache space needed for each
benchmark. The maximum code cache space is the total accumulated size of all com-
piled methods in the default program run, and is different for each benchmark. Table I
presents the maximum code cache space, as well as the total number of invoked and
hot methods (with c1’s default compile threshold), for each of the DaCapo benchmarks.

At the end of each 10msec interval, a method is compiled if its total hotness count
exceeds the default HotSpot compilation threshold. If the code cache is full, then the
code cache manager uses one of several strategies to find and evict existing methods
from the code cache. On every eviction request, each algorithm finds contiguous space
that is equal to or greater than the size of the new compiled method. If the new method
does not occupy the entire space that is created, then the remainder can be merged
with the adjacent unoccupied blocks, whenever possible. We experimented with the
following method eviction algorithms:

Future:. Our baseline heuristic looks into the future profile of the program to find close
to the best set of contiguous methods to evict from the code cache to fit the new
compiled method. It finds the set of methods that, combined together as a unit,
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have the smallest remaining hotness counts. Thus, with this algorithm, methods
that will never be used again are given the highest priority for deletion, and are
sorted based on their size (largest size first). Methods that will never be compiled
again are given the second highest priority and will be deleted in the order of their
future hotness counts (fewer counts first). Lowest priority is given to methods that
will exceed their compile threshold again, sorted to order later compiles first.9

Offline:. This set of algorithms use information from a prior program run, and aggre-
gate the information over all intervals of the profile run. The profile data is used to
sort methods in ascending order of their total hotness counts over the entire run.
Then, in the later measured run, methods are selected for eviction from the code
cache in the order of lowest counts first. We study the following offline profiling
schemes: (a) Offline-same: The same input is used for the offline profiling run and
the later evaluation/measured run. (b) Offline-diff: The profiling run uses the Da-
Capo small input while the measured runs uses the default input. With different
inputs for the profiling and measured runs, it is possible for the profile to not have
any information about certain events (invoked methods) in the measured run. For
such methods, this algorithm assigns the lowest priority for eviction.

Reactive:. For these CCM algorithms, profiling data collected during the past execu-
tion of the same program run is used to guide the CCM task to optimize the remain-
ing program execution. In this case the best (set of contiguous) methods to evict is
determined based on their hotness count in earlier intervals of the same run. The
following formula finds the hotness count for each method by assigning progres-
sively lower weights to older profile data: τn+1 = α ∗ tn + (1 − α)τn where, τn+1 is
the predicted hotness count for the next interval, and tn is the actual hotness count
in interval ‘n’. We experimented with α values of 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0. We
present the results for α = 0.1, which provided the best overall numbers.

Stack scan:. The default policy in the latest HotSpot-8 release (that we call,
stack scan) uses low-overhead sampling based profiling. Stack scan uses a sweeper
thread to periodically mark the methods found on the call-stack of any application
thread. This policy evicts a method from the code cache if it is left unmarked over
several sweeper periods. This policy disables compilation if the code cache is full,
and restarts compilation after the sweeper again creates adequate free space in the
code cache. We implement a version of this algorithm in our trace-based experimen-
tal framework as an example of a practical online/reactive CCM policy.

For our experiments, all compiled methods are eligible to be de-compiled. Addition-
ally, all methods marked for eviction are deleted instantaneously from the code cache.
Thus, a method evicted from the code cache will be interpreted in the next interval.

5.3. Results and Observations

In this section we present the results of our experiments to evaluate the effectiveness
of different CCM algorithms compared with our baseline future profiling approach that
uses knowledge of the future program behavior to make CCM decisions.

Performance Potential with Future CCM Policy. Figure 8 shows the potential of fu-
ture profiling with CCM at different constrained code cache sizes. Along the primary
Y-axis, each bar plots the ratio of the program hotness count with the future CCM

9Our future profiling CCM heuristic is not guaranteed to produce optimal results. An ideal CCM strategy
will require solving the knapsack problem while allowing fragmentation in the code cache or a complete re-
organization of the code cache at each (10ms) interval. Since (as opposed to our approach in Section 4) the fu-
ture profiling decisions are not used to measure the performance of the other CCM techniques (hotness count
is used instead), we decided to employ a simpler future CCM algorithm that works well in practice.
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0.88

0.92

0.96

1

1.04

1.08

1.12

1.16

0.88

0.92

0.96

1

1.04

1.08

1.12

1.16

c1
 a

n
d

 c
2

 t
im

e
 r

a
ti

o

IC
 r

a
ti

o
 c

o
m

p
a

re
d

 t
o

 F
u

tu
re

 C
C

M
 

p
o

li
cy

Benchmarks

IC 90% IC 75% IC 50% IC 40% IC 25% C1 C2

1.26

1.20

1.18 1.67 1.60 1.18

Fig. 9. Past execution profiles (with no cost/overhead concerns) allow CCM algorithm using the reactive
profiling strategy to deliver performance that is very close to that achieved with the future profiling baseline.

policy and indicated code cache size to the run-time with the same algorithm and an
unlimited code cache. An unlimited code cache never needs to evict compiled meth-
ods from the cache. We observe that the future CCM algorithm often finds the right
methods to evict from the cache to minimize performance impact. On average, we see
very negligible performance losses with code cache sizes restricted to 90%, and 75%
of required code cache space. With 50%, 40% and 25% of desired code cache size the
(geometric) average hotness count loss is 29%, 64% and 3.16X respectively. The corre-
sponding impact in terms of (correlated) program run-time with the HotSpot c1 (circle)
and c2 (cross) JIT compilers is indicated along the secondary Y-axis in Figure 8. This
result shows that CCM has the potential to significantly reduce an executing program’s
code cache memory requirement with small performance losses in many cases.

Performance Potential of Other CCM Policies. Next we compare the performance ef-
fectiveness of the other CCM policies as compared to the performance delivered by the
future profiling baseline. The profiling driven CCM algorithms in our framework have
access to the most comprehensive, accurate, and timely profile data possible by that
profiling technique with no run-time overhead.

Figure 9 shows the performance of the CCM algorithm when using the best Reac-
tive profiling strategy (for α = 0.1) as compared with the corresponding future profiling
baseline and corresponding code cache sizes. Again, the hotness count ratios are plot-
ted along the primary Y-axis and the corresponding correlated program run-time ratios
with the c1/c2 compilers are shown on the right Y-axis. We find that a good reactive
strategy can achieve program performance close to that delivered by the future policy
even for heavily constrained code cache sizes. The average hotness count degradation
(compared to the future policy) with this reactive strategy are only 0.2%, 2.0%, 7.5%,
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Fig. 11. Practical reactive profiling strategies (like stack-scan) used by VMs to manage run-time profiling
overhead are unable to realize the potential of the reactive strategy for CCM.

8.0%, and 5.4% for code cache sizes that are 90%, 75%, 50%, 40%, and 25% of the max-
imum needed, respectively. These results suggest that past program behavior is a good
indicator of future execution for CCM for our benchmarks. Remember that the cost of
collecting profiling information at run-time is ignored during this algorithm.

Figure 10 presents the performance comparison of the offline-same code cache evic-
tion algorithm compared with the corresponding future policy. We see that with a
perfectly representative offline profile, the CCM algorithm performs quite well. The
offline-same strategy results in an average hotness count loss of 0.5%, 4.5%, 11.6%
17.1%, and 23.2% for our five code cache sizes respectively, compared to the future al-
gorithm. Even with perfect offline profile data, the performance loss with offline-same
is higher than that observed with the reactive CCM strategy, and indicates the nega-
tive impact of profile data aggregation during offline profiling for CCM.

Again, we see a larger performance loss when the profile does not (exactly) match
the measured run. We find performance (hotness count) losses of 5.2%, 22.1%, 60.0%,
84.7%, and 90.6%, on average, with the Offline-diff scheme compared to the future
strategy for the code cache sizes of 90%, 75%, 50%, 40%, and 25% respectively.

Performance with Default CCM Policy. HotSpot uses a low-overhead sampling-based
mechanism to collect partial profiling data to guide its default stack-scan CCM policy.
We realize that this default HotSpot CCM policy may not be tested or intended to be
employed on devices with constrained code caches. Yet, we employ this CCM strategy
as an instance of a fast, low-cost and less precise online reactive profiling policy. The
actual implementation of this policy in HotSpot has been heavily tuned for different
situations, and is associated with several flags and other tuning knobs. We imple-
mented a close variant of this complex policy in our framework.
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Figure 11 displays the the hotness count (along the primary Y-axis) and c1/c2 cor-
related time (along the secondary Y-axis) comparison of the stack-scan CCM algo-
rithm compared with the corresponding future CCM approach. We found that this pol-
icy fares quite poorly and achieves performance (hotness count) that is 3.79X, 6.40X,
21.07X, 21.57X, and 27.80X worse over the future configuration, on average, at 90%,
75%, 50%, 40%, and 25% code cache sizes respectively. This result demonstrates the
importance of profiling accuracy, and suggests that imprecise profiling may misrepre-
sent the true worth of adaptive optimizations and even prevent their adoption.10

6. SELECTIVE JIT COMPILATION

The final adaptive optimization task we study is selective compilation. This technique
finds and compiles only the important (or hot) program methods to limit compilation
overhead while maximizing the overall performance benefit [Hölzle and Ungar 1996;
Paleczny et al. 2001; Krintz et al. 2000; Arnold et al. 2005]. In HotSpot, a method is
hot if its hotness count exceeds a fixed threshold value. Selective compilation needs
accurate profile information about the hot program methods to be most effective.

We choose to study selective compilation in this work as it provides an example
of a task that differs from the adaptive VM tasks previously studied in this paper.
First, (given a large enough code cache) decisions for selective compilation are only
taken once and use aggregate method hotness information over the entire program
run. Therefore, data aggregation is a non-issue during the offline profiling strategy for
(the HotSpot implementation of) selective compilation. Second, fast and low-overhead
online reactive profiling to find the set of hot methods for selective compilation is feasi-
ble with current VM technology. Therefore, we do not develop or investigate any other
practical implementation of online/reactive profiling for selective compilation (as we
did for the previous adaptive tasks studied in this paper).

Our experiments in this section use program execution times from actual program
runs in HotSpot. We extend HotSpot as described below to accomplish selective com-
pilation for all our profiling strategies. We conduct this study in HotSpot-6 using the
default c1 (client) compiler. Our run-time experiments were performed on a cluster of
8-core 2.83GHz Intel x86 machines.

6.1. Experimental Approach

We evaluate the following profiling strategies for selective compilation.

Steady:. Our steady configuration assumes that all hot methods are accurately known
and compiled before the program begins. We use this configuration to provide a
lower-bound for the program execution time.

Future:. For VMs that support background compilation [Krintz et al. 2000], the order
of compiling program methods can affect the program run-time. The future profiling
baseline can employ knowledge regarding the future program execution to compile
the set of hot methods in the order that will minimize the overall time spent by the
execution in the slow interpreter mode (and maximize the time spent in JIT com-
piled code) [Ding et al. 2014]. Although HotSpot supports background compilation,
we disable this feature for our present study to nullify the effects of compilation de-
lay due to queue backup at program startup [Jantz and Kulkarni 2013], which can
conceal the effects that we actually wish to investigate for this work. Consequently,

10Since this CCM policy is available in HotSpot, we conducted actual HotSpot runs with the same con-
strained code cache sizes. We used HotSpot-9’s client (c1) compiler, and a startup configuration where each
benchmark was run for one iteration. With these actual HotSpot runs, the default stack scan policy results
in an (geometric) average performance (execution time) loss of 30%, 43.8%, 2.5X, 3.6X, and 5.7X at our five
code cache sizes respectively compared to a HotSpot configuration with unlimited code cache size.
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the future strategy now mirrors the offline-same configuration for this study. Addi-
tionally, disabling background compilation allows us to more precisely account for
the compilation overhead, and allow compiled methods to become available earlier.

Offline-same:. Our offline-same configuration employs a profile/training run to deter-
mine the set of hot methods using the same program input as that used later dur-
ing the measured evaluation run. During the evaluation run, this known set of hot
methods are sent to compile in the order the methods are reached during execution.
The hot methods are compiled on their first invocation.

Offline-diff:. For offline-diff, we again employ the results of the profile run with the
small input for an evaluation run with the default input.

Reactive:. This is the default profiling policy used by HotSpot. Each method is com-
piled if and when it reaches the compile threshold. A reactive strategy works on the
assumption that a method detected as hot in the past program run will remain hot
in the future. In cases when this assumption is incorrect, a reactive profiling based
configuration may lose performance due to the inability to recoup the compilation
overhead by faster program execution in the resulting generated native code.

Several implementation issues need to be overcome in HotSpot to enable a fair com-
parison of different profiling strategies. Such issues include: (a) We need the ability
to ignore the profiling and compilation cost for our Steady strategy. (b) Each strategy
should compile the same set of hot methods for each benchmark-input configuration.
(c) Varying method compilation orders can influence performance by affecting opti-
mizations, especially method inlining. (d) We need the capability to force HotSpot to
compile the pre-determined set of hot methods. For instance, with the Offline-diff pol-
icy, program runs with the default input should compile methods found to be hot during
the program run with the small inputs. (e) All strategies, other then Reactive, compile
their methods at the earliest opportunity (execution count of 1). HotSpot implements
a few FDOs in the c1 compiler, that rely and work differently depending on the values
in the method’s invocation, backedge, and other profiling counters. Therefore, these
counter values need to be warmed-up (about equally) for all our experiments.

We update HotSpot to resolve these issues for this study. We configure the DaCapo
benchmark harness to run each program over multiple iterations. We add a new set of
per-iteration method counters in HotSpot that are incremented during the run, but are
reset after each iteration. The first iteration performs no compilation and is only used
to warm all method counters. HotSpot detects the end of each benchmark iteration us-
ing our added callback. At the end of the first iteration, HotSpot loads a file containing
a pre-determined set of selected hot methods to compile, and marks them. The next
iteration compiles the marked methods when the per-iteration method counters reach
their desired thresholds. The execution time of this iteration is recorded as the pro-
gram run-time, and is used as our performance metric in this section. For the steady
policy, the benchmark is run for a few more iterations before recording the run-time to
discard the compilation overhead.

To limit the impact of different method compilation orders, we currently turn off
method inlining for the Offline and Reactive profiling strategies. We also disable
HotSpot’s OSR (on-stack replacement) compilation to ensure that method compilation
proceeds uniformly in all our configurations. Thus, while the exact implementation
details vary, our framework is similar to the widely used experimental methodology
called replay compilation [Huang et al. 2004] that is designed to facilitate performance
analysis by controlling nondeterminism during different runs and configurations.

Results and Observations. Figure 12 compares benchmark run-times with our se-
lected profiling strategies for selective compilation. To account for inherent run-time
timing variations, all our execution-time results report the mean and 95% confidence
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Fig. 12. Absence of the profile data aggregation effect allows the offline-same profiling strategy to exceed
the performance achieved by the reactive strategy, which suffers due to a delay in collecting and utilizing
the profile data at run-time, during selective compilation.

intervals over 10 runs for each benchmark-configuration pair [Georges et al. 2007].
Our observations reflect the differences identified earlier between selective compila-
tion and the previously studied adaptive VM tasks. The baseline employs the Inter-
preted strategy, where no methods are compiled and the program runs in the inter-
preted mode for its entire execution. We again find that representative program inputs
are important during offline profiling. Since offline profiling mechanism does not suffer
from the effect of aggregating profile data, it can be more effective than the reactive
scheme for selective compilation. Likewise, the reactive mechanism does not suffer
from a high online profiling penalty. However, compilation decisions are delayed until
sufficient profile data is available after program start, which forces the execution to
spend more time in slow interpretation mode. This delay penalizes performance com-
pared to offline-same, and has been reported by some previous studies [Kulkarni 2011].
On average, we see that program performance with offline-same, offline-diff, and reac-
tive profiling policies are 38%, 85% and 46% worse than the steady policy respectively.

7. DISCUSSION AND FUTURE WORK

In this work, we design and build innovative experimental frameworks to understand
the fundamental limitations of offline and online profiling techniques. We quantify the
impact of these profiling limitations on the effectiveness of multiple real adaptive VM
tasks, as compared to a constructed baseline that knows the precise relevant future
program behavior. We design the future, offline, and reactive strategies to assume no
profiling overhead and the profiles generated to be as accurate as can be obtained by
each technique. Additionally, we compare our results from these idealistic models to
profiling techniques that have been used or proposed for a realistic VM setting.

Our study performs a systematic evaluation and quantitatively confirms many
known or expected issues with online and offline profiling for the adaptive tasks in-
vestigated and benchmarks used. Our experiments enable us to make the following
observations. (1) Experiments using our future profiling baseline identify the true po-
tential of VM optimization tasks. Knowledge of the ideal impact is critical to prevent
the possibility of an adaptive task being discarded due to poor performance resulting
from inaccurate or partial profile data. (2) We validate that intrinsic profiling lim-
itations have a noticeable impact for many adaptive VM tasks as compared to the
future profiling baseline. Intrinsic limitations include profile data aggregation during
offline-same profiling and the reliance on past, rather than the future, program be-
havior knowledge during online-reactive profiling. (3) We found that past profile is an
excellent predictor of future program execution behavior for the adaptive tasks and
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runtime employed. Accurate and comprehensive past profiles can enable the adaptive
VM task to attain close to ideal benefits, but may be too expensive to obtain at run-
time. At the same time, incomplete online profile data was seen to severely reduce the
effectiveness for the studied FDOs. This justifies the need to continue enhancing the
standard profiling techniques used in current runtime systems to enable reactive pro-
filing based adaptive tasks to reach their performance potential. (4) FDOs relying on
offline profiling show noticeable negative performance effects from profile data aggre-
gation. However, matching profiles used during the training and evaluation runs can
still enable excellent performance for dependent FDOs. The challenge then is to devise
techniques to find such matching profiles for all program executions irrespective of in-
put and environmental settings. (5) As expected, dissimilar input sets used during the
training and evaluation program runs (offline-diff configuration) were seen to signif-
icantly reduce FDO performance. Yet, in many cases, offline-diff still achieves higher
effectiveness than the practical reactive techniques that only provide access to lossy
profile data due to the issues of run-time overhead and profile data collection delay.

Accurate online profiling can involve an intolerably high overhead at run-time. For
instance, the reactive strategy we employ for CCM will require the profiler to insert
a counter at each function entry and loop back-edge. Likewise, naı̈vely profiling object
accesses during heap memory management will also likely cause unacceptably high
overheads. Researchers are developing mechanisms to increase accuracy of online pro-
filing while reducing overhead using unutilized hardware [Yang et al. 2015; Moseley
et al. 2007; Zhao et al. 2008; Whaley 2000]. However, several environments, including
embedded systems, may lack the necessary hardware and energy resources.

Offline profiling benefits decline if inputs to the evaluation runs do not match well
to those used by the training runs. Other researchers have observed the influence of
input arguments on a program’s run-time behavior, and explored mechanisms to un-
derstand and exploit this influence [Mao and Shen 2009; Tian et al. 2010; Shen et al.
2013; Samadi et al. 2012; Berube 2012]. However, more work is needed to adapt ex-
isting input characterization and modeling schemes during offline profiling to several
different run-time optimizations and algorithms.

In the future, we plan to: (a) quantify the impact of different amounts of profiling
data and/or longer collection periods on the performance of adaptive tasks, (b) deter-
mine how to maximize the benefits of profile guidance while balancing the run-time
overhead and/or the need for additional hardware resources, (c) devise novel tech-
niques to improve the accuracy of offline profiling strategies so they may be reliably
employed irrespective of inputs used during the training and actual program runs,
and (d) develop predictive models to overcome the effectiveness issues of incomplete
profile data in cases where full and accurate information is too costly or too difficult
to collect. Finally, this study relied on traces obtained and/or environment provided
by the HotSpot VM and was conducted using solely the DaCapo benchmarks. Future
research will generalize our findings for other adaptive tasks, runtimes and programs.

8. CONCLUSIONS

Many performance-critical VM tasks require guidance regarding the future program
behavior to be most effective. Unfortunately, both offline and online profiling ap-
proaches face fundamental limitations in their ability to estimate the desired future
behavior. While these limitations are generally known, their implication on the effec-
tiveness of dependent profile-driven VM tasks is not well studied. This work presents
a systematic exploration of the impact of the inherent profiling limitations on the per-
formance of three important dependent VM optimizations for DaCapo benchmarks.

This study quantifies the performance impact that intrinsic limitations of profiling
techniques have on adaptive tasks. We find that both offline and online profiling can
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generate profile data that can enable adaptive tasks to achieve close-to-ideal effec-
tiveness in many cases. However, achieving such results will require the development
of new techniques to locate and determine closely representative program inputs for
offline profiling, and/or enable comprehensive data collection without incurring pro-
hibitive costs/overhead at run-time for online profiling. Overall, our study concludes
that improving the predictability of profile data is important to modern run-time sys-
tems, and suggests greater focus on developing and quantifying techniques that can
achieve such predictability while minimizing the associated run-time overhead.
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