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Abstract

It is advantageous to not only calculate the WCET of an
application, but to also perform transformations to reduce
the WCET since an application with a lower WCET will
be less likely to violate its timing constraints. In this
paper we describe an environment consisting of an inter-
active compilation system and a timing analyzer, where a
user can interactively tune the WCET of an application.
After each optimization phase is applied, the timing ana-
lyzer is automatically invoked to calculate the WCET of
the function being tuned. Thus, a user can easily gauge
the progress of reducing the WCET. In addition, the user
can apply a genetic algorithm to search for an effective
optimization sequence that best reduces the WCET. Using
the genetic algorithm, we show that the WCET for a num-
ber of applications can be reduced by 7% on average as
compared to the default batch optimization sequence.

1. Introduction

Generating acceptable code for applications on embed-
ded systems is challenging. Unlike most general-purpose
applications, embedded applications often have to meet
various stringent constraints, such as time, space, and
power. Constraints on time are commonly formulated as
worst-case (WC) constraints. If these constraints are not
met, even only occasionally in a hard real-time system,
then the system may not be considered functional. The
worst-case execution time (WCET) must be calculated to
determine if a timing constraint will be met.

Unfortunately, many embedded system developers
empirically estimate the WCET by testing the application
and measuring the execution time. Testing alone is unsafe
since the WC input data is often difficult to derive. This
approach can result in an unsafe application since WC
timing constraints may not be met when an application is
deployed. More knowledgeable developers will test, mea-
sure, and make conservative assumptions in case the tim-
ing measurements do not truly reflect the WCET, which

can result in loose estimates and higher overall costs.
Thus, accurate WCET predictions are required to produce
safe and cost effective embedded systems. Accurate
WCET predictions can only be obtained by a tool that stat-
ically analyzes an application to calculate the WCET.
Such a tool is called a timing analyzer, and the process of
performing this calculation is called timing analysis.

WCET constraints can impact power consumption as
well. In order to conserve power, one can determine the
WC number of cycles required for a task and lower the
clock rate to still meet the timing constraint with less
slack. In contrast, conservative assumptions concerning
WCET may result in a processor being deployed that has a
higher clock rate and consumes more power.

Automatically generating acceptable code for embed-
ded microprocessors with a compiler is often much more
difficult than generating code for general-purpose proces-
sors. Besides sometimes having to meet a variety of con-
flicting constraints, embedded microprocessors are typi-
cally much less regular and have many specialized archi-
tectural features. Because of the typical large volumes
produced for a product involving an embedded computer
system, many embedded systems applications are still
being developed in assembly language by hand in order to
meet the imposed constraints and to deal with the diffi-
culty of exploiting the features of the machine. In fact,
two of the authors of this paper have recently spent time in
industry and have personally witnessed the development
and maintenance of assembly code applications. How-
ev er, dev eloping an application in assembly has many dis-
advantages that include higher development and mainte-
nance costs and less portable code.

It would be desirable to develop embedded system
applications in a high level language and still be able to
tune the WCET of an application. We hav e provided this
capability by integrating a WCET timing analyzer with an
interactive compilation system called VISTA (Vpo Inter-
active System for Tuning Applications) [1, 2]. One fea-
ture of VISTA is that it can automatically obtain
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performance feedback information, which can be used by
both the application developer and the compiler to make
phase ordering decisions. This information can include a
variety of measures, such as execution time or code size.
In this paper we describe how we modified VISTA so it
can use WCET as one of its performance criteria.

The remainder of the paper is structured as follows.
First, we review related work on improving, displaying,
and estimating WCET. Second, we give a brief overview
of the timing analyzer that we used in this work. Third,
we summarize the StarCore SC100 and how we retargeted
our compiler and timing analyzer for this processor.
Fourth, we describe VISTA and how we integrated the
timing analyzer with this framework. Fifth, we show the
benefits that were achieved by performing searches using a
genetic algorithm to improve the WCET. Finally, we dis-
cuss future plans for developing compiler optimizations to
improve WCET and give the conclusions of the paper.

2. Related Work

There have been a variety of different techniques used
for timing analysis of optimized code over the years [3, 4,
5, 6, 7]. However, we are unaware of any timing analyzer
whose predictions are used by a compiler to select which
optimizations should be applied.

While there has been much work on developing com-
piler optimizations to reduce execution time and, to a
lesser extent, compiler optimizations to reduce space and
power consumption, there has been very little work where
compiler optimizations have been developed to reduce
WC performance. Marlowe and Masticola outlined how a
variety of standard compiler optimizations could poten-
tially affect timing constraints of critical portions in a task.
However, no implementation was described [8]. Hong and
Gerber developed a programming language with timing
constructs and used a trace scheduling approach to
improve code in what would be deemed a critical section
of the program. However, no empirical results were given
since the implementation did not interface with a timing
analyzer to serve as a guide for the optimizations or to
evaluate the impact on reducing WCET [9]. Both of these
papers outlined strategies that attempt to move code out-
side of critical portions within an application that have
been designated by a user to contain timing constraints. In
contrast, most real-time systems use the WCET of entire
tasks to determine if a schedule can be met. Lee et. al.
used WCET information to choose how to generate code
on a dual instruction set processor for the ARM and the
Thumb [10]. ARM code is generated for a selected subset
of basic blocks that can impact the WCET. Thumb code is
generated for the remaining blocks to minimize code size.

In contrast, we are using WCET information to select
compiler optimizations, as opposed to which instruction
set to select for code generation.

A user interface was developed at Florida State Univer-
sity that allows users to select portions of source code and
obtain timing predictions. Unlike VISTA, this interface
did not allow the user to affect the generated code or pro-
vide feedback during the compilation process [11, 12, 13].

Genetic algorithms have long been used to search for
solutions in a space that is too large to exhaustively evalu-
ate. Genetic algorithms have been used to search for
effective optimization sequences to improve speed, space,
or a combination of both [14, 2]. Genetic algorithms have
also been used in the context of timing analysis for empiri-
cally estimating the WCET, where mutations on the input
resulted in different execution times (objective function)
[15, 16, 17]. Our approach, in contrast, relies on a genetic
algorithm to identify optimization phase sequences that
result in reduced WCET, which is an orthogonal problem.

3. The Timing Analyzer

In this section we briefly describe the timing analyzer
that we have previously developed and that served as the
starting point for the timing analyzer in this study. Figure
1 depicts the organization of the framework that was used
by the authors in the past to make WCET predictions. The
VPO (Very Portable Optimizer) compiler [18] was modi-
fied to produce the control flow and constraint information
as a side effect of the compilation of a source file. A static
cache simulator uses the control-flow information to give a
caching categorization for each instruction and data mem-
ory reference in the program. The timing analyzer uses
the control-flow and constraint information, caching cate-
gorizations, and machine-dependent information (e.g.
pipeline characteristics) to make the timing predictions.
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Figure 1: Overview of the Existing Process
to Obtain WCET Predictions

The timing analyzer calculates the WCET for each
function and loop in the program. It performs this analy-
sis in a bottom up fashion, where the WCET for an inner
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loop (or called function) is calculated before determining
the WCET for an outer loop (or calling function). The
WCET information for an inner loop (or called function)
is used when it is encountered in an outer-level path.

Besides addressing architectural features, such as
caching [19, 3, 20, 21, 22, 23] and pipelining [24, 3], the
timing analyzer also automatically detects control-flow
constraints. One type of constraint is the maximum itera-
tions associated with each loop, including nonrectangular
loop nests [25, 26, 27]. Another constraint type is when a
branch will be taken or fall through. The timing analyzer
uses these constraints to detect infeasible paths through
the code or how often a given path can be executed [28, 4].

4. Porting to the SC100

In order to determine the effectiveness of improving the
WCET for applications on an embedded processor, we
ported both the VPO compiler and the timing analyzer to
the StarCore SC100 processor [29]. In the past we had
made WCET predictions for the MicroSPARC I, which is
a general-purpose processor [30]. We were able to pro-
duce very tight WCET predictions with respect to a
MicroSPARC I simulator that we had developed. Unfortu-
nately, it is very difficult to produce cycle-accurate simula-
tions for a general-purpose processor due to complexity of
its memory hierarchy and its interaction with an operating
system that can cause execution times to vary. Unlike the
MicroSPARC I, the SC100 has neither a memory hierar-
chy (no caches or virtual memory system) nor an OS [29].
In addition, we were able to obtain a simulator for the
SC100 from StarCore [31]. Many embedded processor
simulators, in contrast to general-purpose processor simu-
lators, can very closely estimate the actual number of
cycles required for an application’s execution.

Some of the general features of the SC100 are as fol-
lows. The SC100 has no architectural support for floating-
point operations since it is a digital signal processor and
was designed instead for fixed-point arithmetic. It has 16
data registers and 16 address registers. The size of
instructions can vary from one word (two bytes) to five
words (ten bytes) depending upon the type of instruction,
addressing modes used, and register numbers that are ref-
erenced. The SC100 has a simple five stage pipeline,
where most instructions can execute in a single stage.
There are no pipeline interlocks. It is the compiler’s
responsibility to insert noop instructions to delay a subse-
quent instruction that uses the result of a preceding
instruction when the result will not be available in the
pipeline. Transfers of control (taken branches, uncondi-
tional jumps, calls, returns) result in a one to three cycle
penalty depending on the addressing mode used and if a

transfer of control uses a delay slot.

There were several modifications we made to support
timing analysis of applications compiled for the SC100.
First, we modified the machine-dependent information
(see Figure 1) to indicate how instructions proceed
through the SC100 pipeline. We had to identify the
instructions that require extra cycles in the pipeline. For
instance, if a memory addressing mode on the SC100 per-
forms an arithmetic calculation, then one additional one
cycle is required. Second, we also updated the timing ana-
lyzer to treat all cache accesses as hits since instructions
and data on the SC100 can in general be accessed in a sin-
gle cycle from ROM and RAM, respectively. Thus, the
static cache simulation step shown in Figure 1 is now
bypassed for the SC100. Third, we had to modify the tim-
ing analyzer to address the penalty for transfers of control.
When calculating the WCET of a path, we had to deter-
mine if each conditional branch in the path was taken or
fell through since untaken branches are not assessed this
penalty. In addition, we had to determine the size of each
instruction and its alignment in memory. SC100 instruc-
tions are grouped into fetch sets, which are four words
(eight bytes) in size. Transferring control to an instruction
in a new fetch set that spans more than one fetch set
results in an additional cycle delay.

We hav e found that transfer of control penalties can
lead to nonintuitive WCET results. For instance, consider
the flow graph in Figure 2. A superficial inspection would
lead one to believe that the path 1→2→3 is the WCET
path through the graph. However, if the taken branch
penalty in the path 1→3 outweighs the cost of executing
the instructions in block 2, then 1→3 would be the WCET
path. This simple example illustrates the importance of
using a timing analyzer to calculate the WCET. Simply
measuring the execution time is not safe since it is very
difficult to manually determine the WC paths and the input
data that will cause the execution of these paths.

2
blk 2 insts

3
blk 3 insts

blk 1 insts
1

Figure 2: Example Control-Flow Graph

Measurements indicating the accuracy of the WCET
predictions produced by our timing analyzer will be
shown later in the paper. In general, we could produce
fairly accurate WCET predictions since some of the more
problematic issues, which include memory hierarchies and
operating systems, are not present on this processor.
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5. Integrating with VISTA

This section provides a brief overview of the VISTA
framework used for tuning the WCET of applications. We
also describe the modifications that were required to inte-
grate our timing analyzer with VISTA so that the current
WCET can be presented to the user and can be used by the
compiler when tuning an application.

The flow of information is depicted in Figure 3, which
includes the VPO compiler, a viewer, and the timing ana-
lyzer described in Section 3. The programmer initially
indicates a source file to be compiled and then specifies
requests through the viewer, which include the order and
scope of the optimization phases to be applied. After
applying each optimization phase, the compiler sends
information about the current instructions, control flow,
and constraint information to the timing analyzer and the
timing analyzer sends its WCET predictions back to the
compiler. The user is presented with the state of the
requested performance criteria, which for this version of
VISTA includes the WCET and the code size.

Viewer
StateDisplay

User

Requests

Compiler

Saved

timing predictions

Source File

Selections

Performance Info.

Assembly File

Instruction, Control,

and Constraint Info.

Transformation Info.

Timing
Analyzer

Figure 3: Overview of Tuning WCET in VISTA

Figure 4: Main Window of VISTA Showing History of Optimization Phases

In previous versions of VISTA, the compiler obtained
dynamic measurements after applying each optimization
phase by instrumenting the code, producing the assembly
code, linking and executing the program, and getting per-
formance measures from the execution [2]. Since we used
representative input data to obtain this dynamic measure,
we were in effect obtaining average case execution time
(ACET) information.

Figure 4 shows a snapshot of the viewer when tuning
an application for the SC100. The right side of the win-
dow displays the state of the current function as a control
flow graph with RTLs representing instructions. The user
also has the option to display the instructions in assembly.
The left side shows the history of the different optimiza-
tion phases that have been performed in the session. Note
that not only is the number of transformations associated
with each optimization phase depicted, but also the
improvements in WCET and code size are shown. Thus, a
user can easily gauge the progress that has been made at
tuning the current function.

Besides applying predefined compiler optimization
phases, an application developer can also specify transfor-
mations manually by inserting, modifying, and deleting
instructions. Upon request the system also answers
queries, such as which registers are live at a specific point
in the program representation. This information can assist
the developer to make safe and effective manual transfor-
mations. The ability to specify transformations manually
is useful for exploiting special-purpose hardware that cur-
rently cannot be automatically exploited by the compiler.
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The user also has the ability to reverse previously
applied transformations, which supports experimentation
when tuning an application. This is accomplished by writ-
ing the sequence of applied transformations to a file.
Afterwards, VISTA reads in the intermediate code gener-
ated by the front end and applies the list of transforma-
tions to generate the program representation that was pre-
viously produced in the compilation. The sequence of
applied transformations is also written to a file when the
user chooses to complete the tuning of a function or termi-
nate the session. This file is automatically read when
VISTA is later invoked so these transformations can be
reapplied at a later time, enabling future updates.

There are some initial actions that are performed by
VISTA before a function can have its WCET tuned. The
information to be sent to the timing analyzer from the
compiler includes the number of loop iterations. The
compiler detects this information as a side effect of per-
forming a number of optimizations. Thus, VISTA was
modified to automatically perform a set of optimizations
when a function is being compiled for the first time that
allows the compiler to calculate this information. The
code-improving transformations are then automatically
reversed. In a second pass, the compiler performs the
compulsory phases, which includes register assignment
(assigning pseudo registers to hardware registers) and fix
entry/exit (inserting instructions to manage the run-time
stack). The compiler emits the information and the timing
analyzer is invoked to obtain the baseline WCET for each
function. At this point VISTA can be used to tune the
WCET for each function within the application.

VISTA also allows a user to specify a set of distinct
optimization phases and have the compiler attempt to find
the best sequence for applying these phases. Figure 5
shows the different options that VISTA provides the user
to control the search. The user specifies the sequence
length, which is the total number of phases applied in each
sequence. We performed a set of experiments described in
the next section that use the biased sampling search,
which applies a genetic algorithm in an attempt to find the
most effective sequence within a limited amount of time
since in many cases the search space is too large to
exhaustively evaluate [32]. The genetic algorithm treats
each optimization phase as a gene and each sequence of
phases as a chromosome. A population is the set of solu-
tions (sequences) that are under consideration. The num-
ber of generations indicates how many sets of populations
are to be evaluated. The population size and the number
of generations limits the total number of sequences evalu-
ated. VISTA also allows the user to choose WCET and
code size weight factors, where the relative improvement
of each is used to determine the overall fitness.

Figure 5: Selecting Options to Search for Sequences

Performing these searches can be time consuming since
thousands of potential optimization sequences may need
to be evaluated. Thus, VISTA provides a window showing
the current status of the search. Figure 6 shows a snapshot
of the status of the search that was selected in Figure 5.
The percentage of sequences completed along with the
best sequence and its effect on performance are displayed.
The user can terminate the search at any point and accept
the best sequence found so far.

Figure 6: Window Showing the Search Status

6. Experiments

This section describes the results of a set of experi-
ments to illustrate the effectiveness of improving the
WCET by using VISTA’ s biased sampling search, which
uses a genetic algorithm to find efficient sequences of opti-
mization phases. Table 1 shows the benchmarks and
applications we used for our experiments. These include a
subset of the DSPstone fixed-point kernel benchmarks1

and other DSP benchmarks or programs that we have used

1 The only DSPstone fixed-point kernel benchmarks we did not in-
clude were those that could not be automatically processed by our timing
analyzer. In particular, the number of iterations for loops in some bench-
marks could not be statically determined by our compiler. While our
framework allows a user to interactively supply this information, we ex-
cluded such programs to facilitate automating the experiments.

-5-



Category Program Description

convolution performs a convolution filter
complex_update performs a single mac operation on complex values
dot_product computes the product of two vectors
fir performs a finite impulse response filter
fir2dim performs a finite impulse response filter on a 2D image
iir_biquad_one_section performs an infinite impulse response filter on one section
iir_biquad_N_sections performs an infinite impulse response filter on multiple sections
lms least mean square adaptive filter
matrix computes matrix product of two 10x10 matrices
matrix_1x3 computes the matrix product of 3x3 and 3x1 matrices
n_complex_updates performs a mac operation on an array of complex values
n_real_updates performs a mac operation on an array of data
real_update performs a single mac operation

DSPstone

fft 128 point complex FFT
summidall sums the middle half and all elements of a 1000 integer vector
summinmax sums the minimum and maximum of the corresponding elements of two 1000 integer vectors
sumnegpos sums the negative, positive, and all elements of a 1000 integer vector
sumoddeven sums the odd and even elements of a 1000 integer vector
sym tests if a 100x100 matrix is symmetric

other

Table 1: Benchmarks Used in the Experiments

in previous studies. Many DSP benchmarks represent ker-
nels of applications where most of the cycles occur. Such
kernels in DSP applications have been historically opti-
mized in assembly code by hand to ensure high perfor-
mance [33]. In contrast, all of the results in this section
are from code that was automatically generated by VISTA.

Note that the DSPstone fixed-point kernel benchmarks
are small and do not have conditional constructs, such as
if statements. The other benchmarks shown in Table 1
were selected since they do hav e conditional constructs,
which means the WCET and ACET input data may not be
the same.

Tuning for ACET or WCET may result in similar code,
particularly when there are few paths through a program.
However, tuning for WCET can be performed faster since
the timing analyzer is used to evaluate each sequence.
The analysis time required for our timing analyzer is pro-
portional to the number of unique paths at each loop and
function level in the program. In contrast, tuning for
ACET typically takes much longer since the simulation
time of the SC100 simulator is proportional to the number
of instructions executed. We found that the average time
required to tune the WCET of each function in our experi-
ments was about 25 minutes and this would have taken
several hours if we had used simulation.

Table 2 shows each of the candidate code-improving
phases that we used in the experiments when tuning each
function with the genetic algorithm. In addition, register
assignment, which is a compulsory phase that assigns
pseudo registers to hardware registers, has to be

performed. VISTA implicitly performs register assign-
ment before the first code-improving phase in a sequence
that requires it. After applying the last code-improving
phase in a sequence, we perform another compulsory
phase, fix entry/exit, which inserts instructions at the entry
and exit of the function to manage the activation record on
the run-time stack. Finally, we also perform additional
code-improving phases after the sequence, such as instruc-
tion scheduling. For the SC100 another compulsory phase
is required to insert noops when pipeline constraints need
to be addressed.

Our genetic algorithm searches were accomplished in
the following manner. We set the sequence (chromosome)
length to be 1.25 times the number of phases that success-
fully applied one or more transformations by the batch
compiler for the function. We felt this was a reasonable
limit and gives us an opportunity to successfully apply
more phases than what the batch compiler could accom-
plish. Note that this length is much less than the number
of phases attempted during the batch compilation. We set
the population size (fixed number of sequences or chromo-
somes) to twenty and each of these initial sequences is
randomly initialized with candidate optimization phases.
We performed 200 generations when searching for the
best sequence for each function. We sort the sequences in
the population by a fitness value based on the WCET pro-
duced by the timing analyzer and/or code size. At each
generation (time step) we remove the worst sequence and
three others from the lower (poorer performing) half of the
population chosen at random. Each of the removed
sequences are replaced by randomly selecting a pair of the
remaining sequences from the upper half of the population
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Optimization Phase Description

branch chaining Replaces a branch or jump target with the target of the last jump in a jump chain.

common subexpr elim Eliminates fully redundant calculations, which also includes constant and copy propagation.

remove unreachable code Removes basic blocks that cannot be reached from the entry block of the function.

remove useless blocks Removes empty blocks from the control-flow graph.

dead assignment elim Removes assignments when the assigned value is never used.

block reordering Removes a jump by reordering basic blocks when the target of the jump has only a single predecessor.

minimize loop jumps Removes a jump associated with a loop by duplicating a portion of the loop.

register allocation Replaces references to a variable within a specific live range with a register.

loop transformations Performs loop-invariant code motion, recurrence elimination, loop strength reduction, and induction variable
elimination on each loop ordered by loop nesting level. Each of these transformations can also be individually
selected by the user.

merge basic blocks Merges two consecutive basic blocks a and b when a is only followed by b and b is only preceded by a.

evaluation order determination Reorders RTLs in an attempt to use fewer registers.

strength reduction Replaces an expensive instruction with one or more cheaper ones.

reverse jumps Eliminates an unconditional jump by reversing a conditional branch when it branches over the jump.

instruction selection Combine instructions together and perform constant folding when the combined effect is a legal instruction.

remove useless jumps Removes jumps and branches whose target is the following block.

Table 2: Candidate Optimization Phases in the Genetic Algorithm Experiments

and performing a crossover (mating) operation to create a
pair of new sequences. The crossover operation combines
the lower half of one sequence with the upper half of the
other sequence and vice versa to create two new
sequences. Fifteen sequences are then changed (mutated)
by considering each optimization phase (gene) in the
sequence. Mutation of each optimization phase in the
sequences occurs with a probability of 10% and 5% for
the lower and upper halves of the population, respectively.
When an optimization phase is mutated, it is randomly
replaced with another phase. The four sequences sub-
jected to crossover and the best performing sequence are
not mutated. Finally, if we find identical sequences in the
same population, then we replace the redundant sequences
with ones that are randomly generated. The characteris-
tics of this genetic algorithm search are very similar to
those used in past studies, [14, 2] except the objective
function now is minimizing the WCET.

Table 3 shows the WCET prediction results for the
benchmarks in Table 1. The batch sequence results are
those that are obtained from the sequence of applied
phases when we use VPO’s default batch optimizer. The
batch compiler iteratively applies optimization phases
until there are no additional improvements. Thus, the
batch compiler provides a much more aggressive baseline
than a compiler that always uses a fixed length of phases
[2]. The observed cycles were obtained from running the
compiled programs through the SC100 simulator. All

input and output were accomplished by reading from and
writing to global variables to avoid having to estimate the
WCET of performing actual I/O. The WCET cycles are
the WCET predictions obtained from our timing analyzer.
The ratios show that these predictions are reasonably close
to the actual WCET.2 The ratios for the best sequence
from GA results in Table 3 are similar, but the code being
measured was the best sequence found by the genetic
algorithm. The WCET GA to WCET batch ratio shows the
ratio of WCET cycles after applying the genetic algorithm
to the WCET cycles from the code produced by the batch
sequence of optimization phases. We found that the aver-
age number of generations to find the best sequence was
51 out of the 200 generations attempted. Some applica-
tions, like fft, had significant improvements. The applica-
tions with larger functions tend to have more successfully
applied phases, which can often lead to larger
improvements when searching for an effective optimiza-
tion sequence. While there were some aberrations due the
randomness of using a genetic algorithm, most of the
benchmarks had improved WCETs. The WCET cycles
decreased by 6.6% on average. This illustrates the benefit
of using a genetic algorithm to search for effective opti-
mization sequences to improve WCET.

2 There are still small some overestimations that we need to ad-
dress. This problem is exacerbated due to not having access to the source
code of the SC100 simulator and the simulated pipeline behavior not al-
ways exactly matching the behavior described in the SC100 documenta-
tion.
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Batch Sequence Best Sequence from GA WCET GA

Observed WCET Observed WCET to WCET
Cycles Cycles Cycles Cycles Batch Ratio

Ratio Ratio
Category Program

convolution 683 691 1.012 619 627 1.013 0.907
complex_update 152 158 1.039 149 155 1.040 0.981
dot_product 121 132 1.091 110 119 1.082 0.902
fir 1133 1140 1.006 1004 1012 1.008 0.888
fir2dim 5809 6100 1.050 5430 5668 1.044 0.929
iir_biquad_one_section 133 140 1.053 130 137 1.054 0.979
iir_biquad_N_sections 1175 1194 1.016 1282 1297 1.012 1.086
lms 1599 1609 1.006 1259 1269 1.008 0.789
matrix 39213 39668 1.012 35624 35976 1.010 0.907
matrix_1x3 274 291 1.062 260 274 1.054 0.942
n_complex_updates 2869 2875 1.002 2821 2826 1.002 0.983
n_real_updates 1698 1705 1.004 1442 1449 1.005 0.850
real_update 81 88 1.086 85 90 1.059 1.023

DSPstone

fft 78128 78645 1.007 61572 61634 1.001 0.784
summidall 19508 19515 1.000 18510 18516 1.000 0.949
summinmax 24011 24017 1.000 22010 22016 1.000 0.917
sumnegpos 20010 20015 1.000 20010 20015 1.000 1.000
sumoddeven 22021 23045 1.046 22023 22045 1.001 0.957
sym 223366 228125 1.021 218416 223076 1.021 0.978

other

av erage 23262 23639 1.027 21724 22011 1.022 0.934

Table 3: WCET Prediction Results

optimizing for WCET optimizing for space optimizing for both

effect effect effect effect effect effect avg effect
on WCET on size on WCET on size on WCET on size on both

Category Program

convolution 0.907 0.956 0.907 0.956 0.907 0.956 0.931
complex_update 0.981 0.964 1.272 0.982 0.981 0.982 0.982
dot_product 0.902 0.927 0.902 0.927 0.902 0.927 0.914
fir 0.888 0.948 1.149 0.916 0.889 0.948 0.918
fir2dim 0.929 0.976 0.930 0.906 0.930 0.906 0.918
iir_biquad_one_section 0.979 0.981 1.021 1.000 0.979 0.981 0.980
iir_biquad_N_sections 1.086 1.000 1.226 0.991 1.136 0.991 1.063
lms 0.789 0.926 0.789 0.921 0.890 0.955 0.922
matrix 0.907 0.929 0.997 0.996 0.967 0.969 0.968
matrix_1x3 0.942 0.846 0.942 0.846 0.942 0.846 0.894
n_complex_updates 0.983 1.000 1.033 0.966 0.994 0.990 0.992
n_real_updates 0.850 0.949 0.850 0.949 0.850 0.949 0.899
real_update 1.023 1.014 1.023 1.014 0.898 0.942 0.920

DSPstone

fft 0.784 0.942 0.788 0.913 0.775 0.898 0.836
summidall 0.949 1.021 0.949 1.021 0.949 1.021 0.985
summinmax 0.917 0.889 1.333 0.857 0.917 0.889 0.903
sumnegpos 1.000 1.000 1.000 1.022 1.000 1.000 1.000
sumoddeven 0.957 1.134 1.305 1.000 0.979 1.015 0.997
sym 0.978 0.961 0.999 0.931 1.000 0.971 0.985

other

av erage 0.934 0.967 1.022 0.953 0.941 0.954 0.948

Table 4: Effect on WCET and Code Size Using the Three Fitness Criteria

In addition to improving WCET, we thought it would
be interesting to see the improvement in code size. Table
4 shows the results obtained for each benchmark by apply-
ing the genetic algorithm when changing the fitness crite-
ria. For each benchmark we performed three different
searches, which are based on WCET only (optimizing for
WCET), code size only (optimizing for space), and 50%

for each factor (optimizing for both). For each type of
search, we show the effect both on WCET and on code
size. The results that are supposed to improve according
the specified fitness criteria used are shown in boldface.
For these results, the genetic algorithm was able to typi-
cally find a sequence for each benchmark that either
achieves the same result or obtains an improved result as
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compared to the batch compilation. The results when
optimizing for both WCET and code size showed that we
were able to achieve a better overall benefit when both
WCET and code size are considered.

7. Future Work

There is much future research that can be accomplished
on tuning the WCET of embedded applications. We can
vary the characteristics of the genetic algorithm search. It
would be interesting to see the effect on a search as one
changes aspects of the genetic algorithm, such as the
sequence length, population size, number of generations,
etc. In addition, it would be interesting to perform
searches involving more aggressive compiler optimiza-
tions, different benchmarks, and different processors.

Now that we have integrated a timing analyzer with a
compiler, there are a number of compiler optimizations
that we plan to develop with the goal of reducing the
WCET. These optimizations will use the WCET path
information provided by the timing analyzer to drive the
optimizations that will be performed.

8. Conclusions

There are several contributions that we have presented
in this paper. First, we have demonstrated that it is possi-
ble to integrate a timing analyzer with a compiler and that
these WCET predictions can be used by the application
developer and the compiler to make phase ordering deci-
sions. Displaying the improvement in WCET during the
tuning process allows a developer to easily gauge the
progress that has been made. To the best of our knowl-
edge, we believe this is the first compiler that interacts
with a timing analyzer to use WCET predictions during
the compilation of applications. Second, we have shown
that the WCET predictions can be used as a fitness criteria
by a genetic algorithm that finds effective optimization
sequences to improve the WCET of applications on an
embedded processor. One advantage of using WCET as a
fitness criteria is that the searches for an effective
sequence are much faster. The development environment
for many embedded systems is different than the target
environment. Thus, simulators are used when testing an
embedded application. Executing the timing analyzer typ-
ically requires a small fraction of the time that would be
required to simulate the execution of the application.
Finally, we hav e shown that both WCET and code size
improvements can be simultaneously obtained. Both of
these criteria are important factors when tuning applica-
tions for an embedded processor.
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