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SUMMARY

Compiler optimization phase ordering is a fundamental, pervasive and longstanding problem for optimizing
compilers. This problem is caused by interacting optimization phases producing different codes when
applied in different orders. Producing the best phase ordering code is very important in performance-oriented
and cost-constrained domains, such as embedded systems. In this work we analyze the causes of the phase
ordering problem in our compiler, VPO, and report our observations. We devise new techniques to eliminate,
what we call, false phase interactions in our compiler. We find that reducing such false phase interactions
significantly prunes the phase order search space. We also develop and study algorithms to find the best
average performance that can be delivered by a single phase sequence over our benchmark set, and discuss
the challenges in resolving this important problem. Our results show that there is no single sequence in VPO
that can achieve the optimal phase ordering performance across all functions. Copyright c© 2011 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Finding the best set and ordering of optimization phases is a fundamental, pervasive and long-

standing problem in optimizing compilers. Current compilers contain several different optimization

phases. Every phase attempts to apply a series of transformations, that consist of a sequence of

changes that preserve the semantic behavior of the program while typically improving its efficiency.

Many of these optimization phases use and share resources (such as machine registers), and may also

need specific patterns in the code to be applicable. As a result, optimization phases interact with each

other by enabling and disabling opportunities for successively applied phases. In earlier compiler

optimization research, such phase interactions were widely studied [2, 3, 4, 5]. These studies show

that phase interaction can often cause different orders of applying optimization phases to produce

different output codes, with significant performance variations. The best phase application sequence

depends on the program being optimized, the characteristics of the target machine, and the manner

in which the optimizations are implemented in the compiler. At the same time, the potentially

large performance difference between the codes produced by different phase sequences can have

major implications on the cost (e.g., memory size) or power requirements of the application. Such

∗This work extends our earlier conference submission, titled Eliminating False Phase Interactions to Reduce
Optimization Phase Order Search Space, published in the ACM conference on Compilers, architectures and synthesis
for embedded systems (CASES), 2010 [1]. We extend this earlier work by conducting a more thorough investigation
with additional benchmarks, validation for many of our earlier experiments with SimpleScalar cycle-accurate simulation
and native runs of the latest ARM hardware, more detailed analysis of the results, and re-evaluating and updating our
description and conclusions. We also perform new studies (entire Section 7) in this paper that have never been reported.
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2 M. JANTZ AND P. KULKARNI

implications make finding a good ordering of optimization phases very attractive in performance-

critical application domains such as embedded systems.

Most conventional compilers are plagued with this fundamental problem of determining the ideal

sequence of optimization phases to apply to each function or program so as to maximize the gain in

either speed, code-size, power, or any combination of these performance constraints. With more and

more compiler optimization phases being implemented in conventional compilers, it is becoming

increasingly difficult to keep track of all possible ways in which different phases might interact,

and their effects on program performance. Most existing approaches to address this phase ordering

problem are based on the premise that the task of deciphering and eliminating the actual phase

interactions is highly daunting, and may be impossible in the presence of the large number of

phase combinations, programs, program inputs, and architectural contexts that might need to be

considered. Thus, increasingly, individual phases are designed with minimal regard to the phase

ordering problem, and the issue of the most appropriate phase sequence is dealt with as an after-

thought at the end of the compiler design process. Empirical search algorithms are commonly used

to iterate over possible phase sequences or orderings for each input program, applying, evaluating,

and comparing each sequence with all others to find the best one [6, 7, 8, 9, 10, 11, 9, 12].

Unfortunately, optimization phase ordering/selection search spaces in current compilers have been

reported to consist in excess of 1532 [13], or 1610 [14], or 260 [15] unique phase sequences,

making exhaustive phase order searches highly time-consuming and impractical. Consequently,

current research to resolve the phase application problem is mainly focused on studying novel

machine-learning-based algorithms and search heuristics to more intelligently traverse the large

phase ordering search spaces.

We believe that such existing closed-box approaches have several drawbacks. Lack of proper

consideration of the phase ordering problem during the design of optimization phases at compiler

construction time may result in implementations that further increase the phase interactions.

Additionally, as compilers keep increasing their set of optimization phases, search algorithms may

be required to operate with increasing search space sizes in the future. Empirical searches are

already time-consuming, even with probabilistic and machine-learning heuristics. Their high cost

restricts the applicability of iterative searches to certain domains that permit time-consuming static

compilation, and larger search spaces only exacerbate this problem. Finally, treating compiler phases

as black boxes provides no clue or guidelines to compiler developers on how to implement future

optimizations so as to minimize their interactions with other phases. Availability of such guidelines

will strike at the root of the phase ordering problem, and likely benefit all current and future

approaches to address this problem in compilers. These factors motivated us to study, understand

and, if possible, resolve the most prominent optimization phase interactions in our compiler, VPO

(Very Portable Optimizer) [3]. Eliminating the most important phase interactions can prune the

phase order search space, allowing existing and new search techniques to more quickly find the best

phase ordering solutions. In this paper, we report our observations from this study.

Phase interactions due to the limited number of available registers and high register pressure

in many programs has been observed in earlier works, and is considered as one of the most

prominent causes of the phase ordering problem [3, 16]. Our analysis of the most significant phase

interactions confirms the importance of architectural registers during optimizations in our compiler

backend. However, deeper analysis revealed that many phase interactions are not caused by register

contention, but exist due to the dependences between phase transformations that reuse the same

register numbers. We term such dependences as false phase interactions. We explore the extent and

impact of phase interactions due to false register dependences on our phase order search space size

and generated code performance. We then devise novel mechanisms to minimize the false register

dependences and evaluate their impact on the phase order search space and quality of generated

code during conventional compilation.

Several researchers also believe that it is unlikely for a single set or ordering of optimization

phases to produce optimal code for every application [17, 10, 11, 9, 6]. However, no previous

study has attempted to evaluate the performance of all possible phase sequences over a large

benchmark set to validate this belief, or to find the single best optimization phase sequence over a
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ANALYZING FALSE INTERACTIONS DURING OPTIMIZATION PHASE ORDERING 3

large benchmark set. Therefore, in this work, we also explore this problem of automatically finding

the best average performance that can be achieved by any single compiler phase sequence in our

compiler, and discuss the challenges in addressing this issue. Our study empirically shows the non-

existence of a single phase sequence that can achieve optimal code for all functions.

Although phase ordering is a pervasive issue across all or most compilers, we must necessarily

restrict this study to a single compiler. The presence of an exhaustive framework for phase ordering

research, along with our intimate knowledge of its internal organization made VPO the best

choice for us to conduct this research. However, we believe that our motivation and methodology

for exploring and addressing phase interaction issues should be more generally applicable to

other compilers. Most of all, we believe that even though different compilers may have different

optimization phases, implementations and phase interactions, this study shows the potential and

benefit of understanding such interactions to guide future implementation decisions that minimize

the phase ordering problem and generate higher-quality code in compilers. The major contributions

of this research work are as follows:

1. This is the first research that provides the methodology and presents the benefits of analyzing

and alleviating the optimization phase interactions to reduce the phase order search space and

improve code quality.

2. We show that the problem of false phase interactions is a significant contributor to the size of

the phase order search space.

3. We develop and evaluate techniques that reduce the discovered false phase interactions to

substantially prune the phase order search space in our compiler VPO.

4. We study techniques to find empirical limits on the best performance that can be achieved by

any single phase sequence for any benchmark set.

The rest of the article is organized as follows. We present our experimental framework in the

next section. We explain our observations regarding the effect of register availability on phase

interactions in Section 3. In Section 4 we show that the effects of false register dependence are

often independent of register pressure issues. In Section 5 we develop mechanisms to reduce false

register dependence for a hypothetical ARM-based machine with virtually unlimited registers. We

adapt these techniques for use on real embedded ARM architectures in Section 6. In Section 7 we

develop new mechanisms that employ our analysis of the phase order search space to improve code

quality of conventional compilation. We describe related work in Section 8. We list avenues for

future research in Section 9, and present our conclusions in Section 10.

2. EXPERIMENTAL SETUP

In this section we describe our compiler framework and the setup employed to perform our studies.

2.1. Compiler Framework

The research in this paper uses the Very Portable Optimizer (VPO) [3], which was a part of the

DARPA and NSF co-sponsored National Compiler Infrastructure project. VPO is a compiler back

end that performs all its optimizations on a single low-level intermediate representation called RTLs

(Register Transfer Lists). Since VPO uses a single representation, it can apply most analysis and

optimization phases repeatedly and in an arbitrary order. VPO compiles and optimizes one function

at a time. This is important for the current study since restricting the phase ordering problem to

a single function, instead of the entire file, helps to make the optimization phase order search

space more manageable. At the same time, customizing optimization phase sequences to individual

functions instead of the entire program has been observed to provide better performance results [18].

VPO has been targeted to produce code for a variety of different architectures. For this study we

used the compiler to generate code for the ARM processor using Linux as its operating system. The

ARM is a simple 32-bit RISC instruction set. The relative simplicity of the ARM ISA combined
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4 M. JANTZ AND P. KULKARNI

Optimization Phase Code Description

branch chaining b Replaces a branch/jump target with the target of the last jump in the
chain.

common subexpression elim-
ination

c Performs global analysis to eliminate fully redundant calculations,
which also includes global constant and copy propagation.

unreachable code elimination d Removes basic blocks that cannot be reached from the function entry
block.

loop unrolling g To potentially reduce the number of comparisons and branches at run
time and to aid scheduling at the cost of code size increase.

dead assignment elimination h Uses global analysis to remove assignments when the assigned value is
never used.

block reordering i Removes a jump by reordering blocks when the target of the jump has
only a single predecessor.

loop jump minimization j Removes a jump associated with a loop by duplicating a portion of the
loop.

register allocation k Uses graph coloring to replace references to a variable within a live
range with a register.

loop transformations l Performs loop-invariant code motion, recurrence elimination, loop
strength reduction, and induction variable elimination on each loop
ordered by loop nesting level.

code abstraction n Performs cross-jumping and code-hoisting to move identical instruc-
tions from basic blocks to their common predecessor or successor.

evaluation order determina-
tion

o Reorders instructions within a single basic block in an attempt to use
fewer registers.

strength reduction q Replaces an expensive instruction with one or more cheaper ones. For
this version of the compiler, this means changing a multiply by a
constant into a series of shift, adds, and subtracts.

branch reversal r Removes an unconditional jump by reversing a conditional branch when
it branches over the jump.

instruction selection s Combines pairs or triples of instructions that are are linked by set/use
dependencies. Also performs constant folding.

useless jump removal u Removes jumps and branches whose target is the following positional
block.

Table I. VPO Optimization Phases

with the low-power consumption of ARM-based processors have made this ISA dominant in the

embedded systems domain.

The 15 reorderable optimization phases currently implemented in VPO are listed in Table I. Most

of these phases can be applied repeatedly and in an arbitrary order. Unlike the other VPO phases,

loop unrolling is applied at most once. The VPO compiler is tuned for generating high-performance

code while managing code-size for embedded systems, and hence uses a loop unroll factor of

2. In addition, register assignment, which is a compulsory phase that assigns pseudo registers to

hardware registers, is automatically performed by VPO before the first code-improving phase in a

sequence that requires it. After applying the last code-improving phase in a sequence, VPO performs

another compulsory phase that inserts instructions at the entry and exit of the function to manage the

activation record on the run-time stack. Finally, the compiler also performs instruction scheduling

before generating the final assembly code.

For this work we use a subset of the benchmarks from the MiBench benchmark suite, which

are C applications targeting specific areas of the embedded market [19]. We randomly selected

two benchmarks from each of the six categories of applications present in MiBench. The same

benchmarks were also used in previous phase ordering studies with VPO [20, 13]. Table II contains

descriptions of these programs. As noted earlier, VPO compiles and optimizes individual functions

at a time. The 12 selected benchmarks contain a total of 244 functions, out of which 87 are executed

with the standard input data provided with each benchmark.

2.2. Algorithm for Exhaustive Search Space Enumeration

Our goal in this research is to understand the effect of false phase interactions on the size of

the phase order search space. This effect can be most clearly demonstrated by the reduction in

the exhaustive phase order search space that can be achieved for each benchmark. Additionally,
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ANALYZING FALSE INTERACTIONS DURING OPTIMIZATION PHASE ORDERING 5

Category Program #Lines Description

auto bitcount 584 test processor bit manipulation abilities
qsort 45 sort strings using the quicksort sorting algorithm

network dijkstra 172 Dijkstra’s shortest path algorithm
patricia 538 construct patricia trie for IP traffic

telecomm fft 331 fast fourier transform
adpcm 281 compress 16-bit linear PCM samples to 4-bit

samples
consumer jpeg 3575 image compression and decompression

tiff2bw 401 convert color tiff image to b&w image
security sha 241 secure hash algorithm

blowfish 97 symmetric block cipher with variable length key
office string-search 3037 searches for given words in phrases

ispell 8088 fast spelling checker

Table II. MiBench Benchmarks Used in the Experiments
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Figure 1. DAG for Hypothetical Function with Optimization Phases a, b, and c

exhaustive phase order searches are crucial to: (a) better explore and understand the properties

of the search space [21, 14, 12], (b) determine the ideal optimization phase ordering(s) for a

given benchmark-input pair [22, 13], and (c) quantify the effectiveness of machine-learning and

model-driven search approaches in realizing this ideal performance [20, 21, 14]. We implement

the framework presented by Kulkarni et al. [13] to generate per-function exhaustive phase order

search spaces over all of VPO’s 15 reorderable optimization phases. In this section we describe this

algorithm to generate exhaustive phase order search spaces.

A simple approach to enumerate the exhaustive phase order search space would be to generate

(and evaluate the performance of) all possible combinations of optimization phases. This approach

is clearly intractable and naı̈ve since it does not account for the fact that many such sequences

may produce the same code (also called function instance). Another way of interpreting the phase

ordering problem is to enumerate all possible function instances that can be produced by any

combination of optimization phases for any possible sequence length (to account for repetitions of

optimization phases in a single sequence). Such an interpretation makes the problem of exhaustive

phase order enumeration much more practical by exploiting the redundancy of several phase

sequences generating identical code.

The phase order search space can now be viewed as a directed acyclic graph (DAG) of distinct

function instances. † Each DAG is function or program specific, and may be represented as in

†In theory, compiler optimizations can undo changes made by preceding phases and introduce back-edges in the directed
graph. However, for our set of 244 benchmark functions, the exhaustive search algorithm only produced “acyclic” graphs
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6 M. JANTZ AND P. KULKARNI

Figure 1 for a hypothetical function and for the three optimization phases, a, b, and c. Nodes

in the DAG represent function instances, and edges represent transition from one function instance

to another on application of an optimization phase. The unoptimized function instance is at the root.

Each successive level of function instances is produced by applying all possible phases to the distinct

nodes at the preceding level. It is assumed in Figure 1 that no phase can be successful multiple times

consecutively without any intervening phase(s) in between. This algorithm computes multiple hash-

values for each function instance, including CRC (cyclic-redundancy code) checksum on the bytes

of the RTLs in that function. On generating a new function instance, these hash-values are used to

quickly compare that instance with all previously generated code instances to find and eliminate

phase orderings that generate the same function instance as the one produced by some earlier

phase sequence during the search [13]. This comparison for detecting redundant (previously-seen)

function instances check for identical as well as equivalent instances. Two function instances are

deemed identical only if their codes match in every respect. Since this is a stricter requirement than

necessary, the algorithm also checks for function instances that are equivalent, in regard to speed

and size, but not identical. We detect this situation by mapping all register live ranges in a function

to distinct pseudo-registers. Thus, equivalent function instances become identical after mapping.

Eliminating identical and equivalent function instances enables this algorithm to prune away large

portions of the phase order search space, and allows exhaustive search space enumeration for most of

the functions in our benchmark set with the default compiler configuration. The algorithm terminates

when no additional phase is successful in creating a new distinct function instance.

Thus, this approach can make it possible to generate/evaluate the entire search space, and

determine the optimal phase ordering solution. It is also interesting to note that this exhaustive

solution to the phase ordering problem subsumes the related issue of phase selection, which deals

with deciding what transformations to apply without considering their order [23, 7, 15]. Any phase

sequence of any length from the phase order/selection search space can be mapped to a node in the

DAG of Figure 1. This space of all possible distinct function instances for each function is, what we

call, the actual optimization phase order search space, and the size of each search space is measured

as the number of nodes in this DAG. We restrict the exhaustive phase order search for each individual

function to a maximum of two weeks. With this restriction, the algorithm allows exhaustive phase

ordering search space enumeration for 234 of our 244 benchmark functions (including 81 of 87

executed functions). Note that our techniques to prune the phase order search space discussed in this

paper will enable more effective and quicker resolution of all (including the larger) search spaces.

The number of distinct function instances found by the exhaustive search algorithm range from a few

tens to several millions of instances. The time to explore and evaluate the entire exhaustive phase

order search space is directly proportional to the number of distinct nodes in the search space DAG.

All our search space comparisons in this paper evaluate the reduction in the number of nodes of the

exhaustive search space DAG of the unmodified compiler that is accomplished by each technique.

Thus, the goal of all our phase order search space reduction techniques is to enable distinct phase

order sequences to converge to the same node (function instance) in the search space DAG by

eliminating (false) interactions between corresponding phases.

2.3. Dynamic Performance Measurements

Each per-function exhaustive phase order search space experiment requires the algorithm to evaluate

the performance of all generated distinct function instances to find the best one. As noted, such

exhaustive experiments can generate millions of distinct function instances in several cases. Thus,

even though native execution of the benchmarks on actual ARM processors to measure the dynamic

run-time for each distinct function instance would be ideal, we did not have access to enough

ARM machines to make such a native evaluation feasible for all our experiments. In contrast,

when using simulation, multiple individual function-level searches can be performed in parallel

on our cluster of high-performance x86 machines. ARM processors are also considerably slower

(no back-edges), and so we call them DAGs in this paper. The acyclic nature of the graphs is not a requirement for the
exhaustive search algorithm.
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than state-of-the-art x86 machines, which increases the time spent during compilation even as it

reduces the program execution time (compared to simulation). Therefore, performing hundreds of

long-running experiments was impractical for us to arrange with the available (ARM) hardware

resources. We use the SimpleScalar set of functional and cycle-accurate simulators [24] for the

ARM to estimate dynamic performance measures. To our knowledge, SimpleScalar provides the

most advanced and popular open-source simulators for the ARM processors. The SimpleScalar

cycle-accurate simulator models the ARM SA-1 core that emulates the pipeline used in Intel’s

StrongARM SA-11xx processors. SimpleScalar developers have validated the simulator’s timing

model against a large collection of workloads, including the same MiBench benchmarks that we

also use in this work. They found that the largest measured error in performance (CPI) to be only

3.2%, indicating the preciseness of the simulators [19].

Even invoking the cycle-accurate simulator for estimating the performance of every distinct

phase sequence produced by the search algorithm is prohibitively expensive. Additionally, the

validated SimpleScalar cycle-accurate simulator only provides whole-program performance results,

that are not at the granularity of individual benchmark functions. Therefore, we have adopted

another technique that can provide quick (and micro-architecture independent) dynamic instruction

counts for all function instances with only a few program simulations (with the faster functional

SimpleScalar simulator) per phase order search [25, 13]. Researchers have previously shown that

dynamic instruction counts bear a strong correlation with simulator cycles for simple embedded

processors like the ARM SA-11xx [13]. In this scheme, program simulation is only needed on

generating a function instance during the exhaustive search with a yet unseen control-flow. Such

function instances are then instrumented using the EASE instrumentation framework [26]. On

program execution / simulation, the added instrumentations output the number of times each basic

block in that control-flow is reached during execution. Then, dynamic performance is calculated as

the sum of the products of each block’s execution count times the number of static instructions in

that block. The VPO compiler has also been updated to track changes made by optimizations to

the control-flow graph, like reversing branch conditions, to accurately detect all distinct control-

flows. Later, we use the whole-program SimpleScalar cycle-accurate simulator to validate our

techniques by computing and comparing the run-time processor cycles of only the best generated

codes delivered by the dynamic instruction count estimates for several experiments in this paper.

The SimpleScalar simulator we employ models the very old ARM-SA11xx (micro) architecture

core. Although accurate for this older architecture, this simulator does not guarantee precise

performance estimates for newer architectures. Therefore, we also employ the latest ARM

“pandaboard” to validate many of our benchmark-wide best performance results. Our OMAP4460

based pandaboard contains a 1.2Ghz dual-core ARM chip implementing the Cortex A9 architecture.

We installed the latest Ubuntu Linux operating system (version 10.10) on this board. The Cortex

A9 implements an 8-stage pipeline, which is, unfortunately, very different from the 5-stage pipeline

used by the SA-11xx ARM cores. Similarly, the Cortex A9 also uses different instruction/data cache

configurations than those simulated by SimpleScalar. Therefore, it is hard to directly compare the

benefit in program execution cycles provided by SimpleScalar with the run-time gains on the ARM

Cortex A9 hardware. However, our techniques in this work are primarily concerned with reducing

the size of the phase order search spaces without negatively affecting the performance of the best

generated function codes. Therefore, we believe that the ARM A9 results in this paper are still

valuable for providing such validation of our techniques on the latest ARM micro-architecture.

Additionally, the VFP (Vector Floating Point) technology used by the ARM Cortex A9 to provide

hardware support for floating-point operations is not opcode-compatible with the SA-11xx’s FPA

(Floating Point Accelerator) architecture that is emulated by SimpleScalar (and hence used by

VPO). Therefore, we were only able to run the seven (out of 12) integer benchmarks on the ARM A9

hardware platform – adpcm, dijkstra, jpeg, patricia, qsort, sha, and stringsearch. We also observed

that inserting timer instrumentations in the source code to collect function-level run-time measures

introduces significant noise for most program functions in our benchmark set. Therefore, in this

work we only use timer instrumentations at the start and end of the main function, and only collect

whole-program run-times on the ARM hardware. In summary, we use the simple and fast dynamic

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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instruction counts to estimate the best function-level phase orderings for our various experimental

configurations, and then validate the performance of programs generated using only these best per-

function optimization sequences with the SimpleScalar cycle-accurate simulator and on the latest

ARM Cortex A9 processor hardware.

2.4. Baseline Exhaustive Phase Order Search Space Results

Table III in Appendix A presents various statistics for our MiBench benchmark functions and the

exhaustive phase order search space experiments that are used as a baseline for this work. For each

program in our benchmark suite, Table III provides its constituent functions in the first column

sorted in ascending order of its code-size listed in the next column. We measure the function code-

size in terms of the number of RTLs in the unoptimized function instance. For each function, column

3 presents the dynamic instruction count for code generated using the default VPO batch compiler.

The batch VPO compiler applies a fixed order of optimization phases in a loop until there are

no additional changes made to the program by any phase, and thus provides a very aggressive

baseline. An empty cell in this column indicates that the corresponding function is not reached

during execution with the standard input provided with MiBench. Column 4 presents per-function

phase order search space size (number of distinct function instances in the search space DAG). An

empty cell denotes that the function phase order search space is too big to exhaustively explore

using our current algorithm stopping criteria (search time exceeding two weeks). The search time

is directly proportional to the search space size. Note that, the goal of this work is to understand

and eliminate false phase interactions to reduce the phase order search space size and make it

possible to enumerate even the larger function search spaces in reasonable time. Finally, column

5 in Table III lists the percentage reduction in dynamic instruction count over the batch compiler

performance for functions compiled using the best phase ordering provided by the per-function

exhaustive phase order search space evaluation experiments. Thus, estimations provided by dynamic

instruction counts reveal that customizing optimization phase orderings improves performance by as

much as 33%, with a geometric mean of over 4% over our 81 executed benchmark functions. Note

that, in the final row of Table III, and throughout the rest of this article, we report the arithmetic

mean to summarize raw values and the geometric mean to summarize normalized values [27].

Next, to validate the dynamic instruction count benefit of per-function phase ordering

customization, we compile each benchmark program such that individual executed program

functions are optimized with their respective best phase ordering sequence (found by the exhaustive

search using dynamic instruction count estimates) and the remaining functions with the batch

VPO optimization sequence. We then employ the cycle-accurate SimpleScalar simulator and native

execution on the ARM A9 processor to measure the whole program performance gain of function

customization over an executable compiled with the VPO batch compiler. However, our exhaustive

phase order search space exploration may find multiple phase sequences (producing distinct function

instances) that yield program code with the same best dynamic instruction counts for each function.

Therefore, for each of these whole program experiments, VPO generates code by randomly selecting

one of its best phase sequences for each executed function, and using the default batch sequence for

the other compiled program functions. We perform 100 such runs and use the best cycle-count /

run-time from these 100 runs for each benchmark and experiment. We choose to measure the best

run-time since the goal of the exhaustive phase order searches is to find the ideal phase ordering

for each function/benchmark. Our experimental setup allows the scenario where quicker (but less

precise) simulation results are used to search the entire phase order space, followed by a limited set

of runs with only the “potentially best” sequences on the real embedded (ARM) hardware to find

the actual ideal performance. Additionally, while simulator cycle counts are deterministic, actual

program run-times are not due to unpredictable hardware, timer, and operating system (OS) effects.

Therefore, for all native ARM experiments we run each program 61 times (including one startup

run), and report the average run-time over the final 60 runs.

Figure 2 plots the ratio of best simulator cycles and program run-time of code generated using

the best customized per-function phase sequences over the batch compiler generated code for all

our benchmarks. Thus, we can see that using customized optimization sequences, whole program
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Figure 2. Whole program performance benefit of customizing phase sequences over VPO batch compiler
with SimpleScalar cycle-accurate simulator counts and native execution on ARM A9 processor. The
following benchmarks contain floating-point instructions and do not execute on the ARM A9 with VPO

generated codes: blowfish, bitcount, fft, ispell, and tiff.

processor cycles reduce by up to 16.3%, and 2.3% on average. We emphasize that whole-program

cycles / run-time includes the portion spent in (library and OS) code that is not compiled by VPO and

not customized using our techniques. This is likely the reason our average whole-program processor

cycle-count benefit is lower than the average per-function benefit of customizing optimization phase

orderings. However, we also find that native program run-time on the ARM Cortex A9 processor

improves by up to 22% (with stringsearch) and 13.9%, on average, with our custom per-function

phase sequences over the batch VPO compiler. We again note that SimpleScalar models a very

different (StrongARM) micro-architectural as compared the ARM A9 processor, which may explain

the difference in performance improvement numbers. However, for our set of benchmarks, we find

that customizing phase sequences results in performance gains for many functions and programs.

Please note that the purpose of our validation experiments is to show that the best per-function

sequence(s) found during the exhaustive search using dynamic instruction counts also produces

a corresponding benefit in simulated processor cycle counts and wall-time on a modern ARM

processor. Since the goal of this work is to analyze and exploit optimization phase interactions to

prune the phase order search space (while maintaining the same best phase ordering performance),

each benchmark/function is executed with only a single input in all our experiments in this paper.

For these same reasons, validating/exploring the benefit of a single (best) phase ordering sequence

with multiple benchmark inputs is outside the scope of this work. However, the effect of different

input data sets on iteratively tuning compilers and optimization orderings has been studied by earlier

works [28, 29]. These works have observed that a compiler phase sequence trained using one or a

few input data sets still performs very well on other data sets.

3. OPTIMIZATION PHASE INTERACTIONS

The goal of this work is to explore, understand, and possibly resolve phase interactions that cause the

phase ordering problem, without affecting the best (phase ordering) code produced by the compiler.

We employed the exhaustive phase order search algorithm to generate the search spaces for a few

of our benchmark functions, and designed several scripts to assist our manual study of these search

spaces to detect and analyze the most common phase interactions. Due to the importance of registers

during many optimization phases, we focused on the effect of register availability and assignment on

phase interactions, and the impact of such interactions on the size of the phase order search space.

Architectural registers are a key resource whose availability, or the lack thereof, can affect (enable

or disable) several compiler optimization phases. Our explorations confirmed earlier observations

that the limited number of available registers in current machines and the requirement for particular

program values (like arguments) to be held in specific registers hampers compiler optimizations

and is a primary cause for the phase ordering problem [3]. As an example, consider the interaction

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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1. r[12] = LA[L20];

2. R[r[13] + .TMP] = r[12];

...

3. PC = L25

L24

4. r[12] = R[r[13] + .TMP];

5. r[0] = LA[r[12] + 108];

6. r[1] = r[13] + .365_val;

7. ST = sscanf;

L25

...

8. PC = c[0] < 0, L24

(a). Original code (b). Register allocation (c). Code motion

      code motion

       followed by        followed by

      register allocation

1. r[12] = LA[L20];

...

3. PC = L25

L24

5. r[0] = LA[r[12] + 108];

6. r[1] = r[13] + .365_val;

7. ST = sscanf;

L25

...

8. PC = c[0] < 0, L24

1. r[12] = LA[L20];

2. R[r[13] + .TMP] = r[12];

...

4. PC = L25

L24

5. r[12] = R[r[13] + .TMP];

L25

...

9. PC = c[0] < 0, L24

8. ST = sscanf;

6. r[0] = LA[r[12] + 108];

2.       = r[12];r[2]

4. r[12] =       ;r[2]

7. r[1] =       ;r[2]

    r[2] = r[13] + .365_val;3.

Figure 3. Optimization Phase Interaction between Register Allocation and Code Motion. The RTL notations
used in the figure are as follows: LA – Load Address; R[..] – Memory load/store; PC= – Program Counter,

denotes branch/jump; ST= – Function Call; r[13] – Stack Pointer; c[0] – Condition Flag

between the phases of register allocation and code motion, each of which requires registers to do

their work. Figure 3(a) shows an example code segment before applying either register allocation

or code motion. Consider that, at this point, there is only one register that is available across the

entire code segment. If register allocation is applied before code motion, then it uses the available

register to hold a value that would otherwise have to be retrieved from memory on every iteration

of the loop, generating code as shown in Figure 3(b). Conversely, if code motion is applied before

register allocation, it employs the available register to store a sum that would otherwise have to be

recomputed on every iteration of the loop, generating code as shown in Figure 3(c). Thus, different

ordering of applying optimization phases produces distinct function instances. This example shows

a case of a true phase interaction that exists due to the contention between optimization phases for

the limited number of available machine registers.

However, we were surprised to observe that many individual phase interactions occur, not due to

conflicts caused by the limited number of available registers, but by the particular register numbers

that are used in surrounding instructions. The limited supply of registers on most conventional

architectures force optimization phases to minimize their use, and recycle register numbers as

often as possible. Many compilers also use a fixed order in which free registers are assigned,

when needed. Different phase orderings can assign different registers to the same program live

ranges. Different register assignments sometimes result in false register dependences that disable

optimization opportunities for some phase orderings while not for others, and cause optimizations

applied in different orders to produce distinct codes. Such false register dependence may result in

additional copy (register to register move) instructions in certain cases, or may cause optimizations

to miss opportunities at code improvement due to unfavorable reuse of certain registers at particular

program locations. We term phase interactions that are caused by false register dependences as false

interactions. Such false interactions are often quite arbitrary and not only impact the search space

size, but may also make it more difficult for manual and intelligent heuristic search strategies to

predict good phase orderings.

Figures 4 and 5 illustrate examples of phase interactions due to false register dependence between

instruction selection and common subexpression elimination (CSE). In the first example, Figure 4(a)

shows the code before applying either of these two phases. Figures 4(b) and 4(c) show code instances

that are produced by applying CSE and instruction selection in different orders. Without going into

the specific details of what this code does, we note that the code in Figure 4(c) is inferior due to

a redundant copy instruction left in the code due to an unfavorable register assignment. Even later

and repeated application of optimization phases are often not able to correct the effects of such

register assignments. Similarly, in the second example shown in Figure 5, applying CSE before

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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1.  r[18] = LA[L1];

5.  r[5] = R[r[18]];

2.  r[7] = r[18];
1.  r[18] = LA[L1];

5.  r[5] = R[r[18]];

2.  r[7] = LA[L1];

5.  r[5] = R[r[7]];

1.  r[18] = LA[L1];
2.  r[7] = r[18];
3.  r[21] = r[7];
4.  r[24] = R[r[21]];
5.  r[5] = r[24];

18

(d) copy propagation

     removes false register

     dependence

(b) instruction selection

      followed by common

     subexpression elimination

(c) common subexpression

      by instruction selection

      elimination followed
(a). original code

6.  ...... = r[7]; 6.  ...... = r[7]; 6.  ...... = r[7]; 6.  ...... = r[   ];

Figure 4. Using copy propagation to eliminate false register dependence

(d) register remapping

     removes false register

     depenedence

(c) common subexpression

     elimination followed by

     instruction selection

1. r[12] = r[12] − 8;

4. r[   ] = r[13] + .LOC;

(a) original code (b) instruction selection

     followed by common

     subexpression elimination

1. r[12] = r[12] − 8;

2. r[1] = r[12];

4. r[12] = r[13] + .LOC;

3. r[1] = r[1] << 2;

2. r[1] = r[12] − 8;

4. r[12] = r[13] + .LOC;

1. r[12] = r[12] − 8;

4. r[12] = r[13] + .LOC;

3. r[1] = r[12] << 2;

5. r[12] = R[r[12] + r[1]]; 5. r[12] = R[r[12] + (r[1] << 2)]; 5. r[12] = R[r[12] + r[1]];

16
5. r[12] = R[r[   ] + (r[12] << 2)];16

Figure 5. Using register remapping to eliminate false register dependence

instruction selection is inferior due to the reuse of register r[12], which prevents instruction

selection from combining instructions numbered 3 and 5, and thus leaving an additional instruction

in the generated code (Figure 5(c)). Applying instruction selection before CSE avoids this false

register dependence issue, producing better code in Figure 5(b). Thus, phase interactions due to

false register dependences can produce distinct function instances. Successive optimization phases

working on such unique function instances produce even more distinct points in the search space

in a cascading effect that often causes an explosion in the size of the phase order search space.

At the same time, we believe that due to their arbitrary nature, even existing machine-learning

and classifier-based heuristic techniques will find it hard to systematically account for such false

interactions. In the next section, we show that the problem of false phase interactions persists even

when the number of available registers is virtually unlimited.

4. EFFECT OF REGISTER PRESSURE ON PHASE ORDER SEARCH SPACE AND

PERFORMANCE

We introduced the notion of true and false register dependences (and phase interactions) in the

last section. Unlike the true dependences, false register dependence will likely not be resolved

even if more registers become available later. Such resolution, if it happens, may show itself by

shrinking the size of the exhaustive phase order search space since the different phase orderings

in such cases will converge to identical code. However, a greater number of registers may also

enable additional optimization phases and expand the phase order search space. The effect of these

additional transformations in such cases may then become visible by some increase in performance

of the best phase ordering generated during the search. In this section we present the first study of

the effect of different number of available registers on the size of the phase order search space and

the performance (dynamic instruction counts) of the best code that is generated.

The ARM architecture provides 16 general-purpose registers, of which three are reserved by

VPO (stack pointer, program counter, and link register). We modified the VPO compiler to produce

code with several other register configurations ranging from 24 to 512 registers. We successfully

gathered the entire phase order search space in all register configurations for 230 of the 234 original

benchmark functions (with the exception of: ispell-askmode, ispell-correct, tiff-main, and fft-main).
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Figure 6. Search space size compared to default for different register configurations

These remaining four functions generated search spaces that were too large to completely enumerate

in at least one of the register configurations.

Since our existing ARM-SimpleScalar simulator cannot simulate codes generated (by VPO) with

the other illegal register configurations, we use a novel strategy to evaluate dynamic instruction

counts in such cases. As described in Section 2.3, measuring dynamic performance during our

search space exploration only requires program simulations for instances with unseen basic block

control-flows. Thus, until the generation of a new control-flow, there is no need for further

simulations. Our performance evaluation strategy stores all the control-flow information generated

for each function during its exhaustive search space search with 16 registers, and reuses that

information to collect dynamic instruction count results during the other illegal VPO register

configurations. We find that eight of the 81 executed benchmark functions (dijkstra-main, ispell-

strtoichar, adpcm-adpcm coder, stringsearch-main, ispell-askmode, jpeg-parse switches, tiff-main,

and fft-main) either generate additional control flows or generate search spaces that are too large to

exhaustively enumerate for these other VPO configurations. Thus, our scheme allows us to measure

and compare the dynamic instruction counts for 73 executed functions in all register configurations.

Figure 6 illustrates the impact of various register configurations on the size of the phase order

search space, averaged (geometric mean) over all 230 benchmark functions, as compared to the

default search space size with 16 registers. Thus, we can see that the search space, on average,

increases mildly with increasing number of available registers, and reaches a steady state when

the additional registers are no longer able to create any further optimization opportunities for any

benchmark functions. Figure 7 shows the number of functions that notice a difference in the size of

the search space with changing number of available registers. We observe that the search spaces for

about 30% of the functions are affected by varying the number of registers. Furthermore, search

space sizes are more likely to increase rather than decrease when the number of architectural

registers is increased. Performance for most of the 73 executed functions either improves or remains

the same, resulting in an average improvement of 1.85% to 1.89% in all register configurations over

the default.

The overall increase in the search space size indicates that the expansion caused by additional

optimization opportunities generally exceeds the decrease (if any) caused by reduced phase

interactions. In fact, we have verified that the current implementation of phases in VPO assumes

limited registers and naturally reuses them whenever possible, regardless of prevailing register

pressure. Therefore, false register dependences may be an important contributor to the phase order

search space. More informed optimization phase implementations may be able to minimize false

register dependences and reduce the phase order search space. We explore this possibility further in

the next two sections.
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Figure 7. Number of functions that changed search space size for different register configurations

5. MEASURING THE EFFECT OF FALSE REGISTER DEPENDENCE ON THE PHASE

ORDER SEARCH SPACE

Our observations presented in the previous section suggest that current implementation of

optimization phases typically do not account for the effect of unfavorable register assignments

producing false phase interactions. Rather than altering the implementation of all VPO optimization

phases, we propose and implement two new stand-alone optimization phases in VPO, copy

propagation and register remapping, that are implicitly applied after every reorderable phase

during our iterative search space algorithm to reduce false register dependences between phases.

The default VPO compiler applies copy and constant propagation during common-subexpression

elimination. Implicit phase application implies that the optimization phase is automatically applied,

is invisible and is not explicitly selected for application by the user. In this section, we evaluate

these techniques in a compiler configuration with sufficient (512) number of registers to avoid

register pressure issues. In the default VPO configuration extended with 512 available registers,

the search spaces for two of the original 234 benchmark functions (ispell-askmode and fft-main)

become too large to exhaustively enumerate. Therefore, in this section, all of our experiments were

performed over the remaining 232 benchmark functions. In Section 6 we employ observations from

this Section to adapt our techniques to reduce the search space size and improve performance in the

default ARM-VPO configuration with 16 registers.

5.1. Copy Propagation to Remove False Register Dependences

Based on our manual analysis of false phase interactions in VPO, we implemented a stand-alone

version of copy propagation ([30], pp. 356 – 362) to be implicitly applied after each of the other

phases to potentially minimize the effects of unfavorable register assignments. Copy propagation is

often used in compilers as a clean-up phase to remove copy instructions by replacing the occurrences

of targets of direct assignments with their values. Copy propagation is also often performed during

register allocation by coalescing the pairs of nodes in the copy instructions in the interference

graph [31, 32]. Although copy propagation is a well-known optimization, no previous study has

explored the effect of (implicit) application of this transformation on phase order search space size.

Figure 4(d) shows the result of applying copy propagation (implicitly after every phase) to the

code in Figure 4(c). We can see that applying copy propagation transmits and replaces r[7] by

r[18] on line 6 of Figure 4(d) and eliminates the dead copy instruction on line 2. Thus, the

resulting code in Figure 4(d) is now equivalent to that in Figure 4(b). Hence, copy propagation

can remove some false interactions between optimization phases. However, copy propagation can

also extend register live ranges and thus tends to increase register pressure, which can affect the

operation of successively applied phases. Therefore, we performed our initial experiments to study

the potential impact of implicitly applying copy propagation to reduce false phase interactions on

the size of the phase order search space in a compiler configuration with sufficient (512) number of

registers to avoid register pressure issues.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe



14 M. JANTZ AND P. KULKARNI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o

p
y

 p
ro

p
. 

se
a

rc
h

 s
p

a
ce

 s
iz

e
 /

d
e

fa
u

lt
 s

e
a

rc
h

 s
p

a
ce

 s
iz

e

Functions

Figure 8. Search space size (# of nodes) with copy propagation implicitly applied during the exhaustive
search (512 registers)

Figure 8 shows the change in the phase order search space size compared to default (with 512

registers) if every original VPO phase when successful is followed by the clean-up phase of copy

propagation during the exhaustive phase order search space exploration for each function. In this

figure, and in each of the subsequent figures comparing the search space size presented in this

paper, functions are displayed in the order from smallest to largest default search space size in the

graphs. The rightmost bar in each figure presents the average (geometric mean). Thus, on average,

the application of copy propagation is able to reduce the size of the search space by 37.9% per

function. Interestingly, this technique has a much more significant impact on functions with larger

default search space sizes. Indeed, the sum of the search space sizes across all functions with this

configuration compared to the sum of search space sizes with the default VPO configuration (with

512 registers) shows a total search space reduction of more than 67.2%.

Our intention for this work is to employ copy propagation as a cleanup phase to reduce the

phase order search space while achieving the same best phase ordering code as with the default

configuration. However, copy propagation can also directly improve performance by eliminating

copy instructions. Thus, while our new configuration that implicitly applies copy propagation after

every phase achieves at least the same performance (dynamic instruction counts) as the default

configuration in all cases, it occasionally improves the best generated phase ordering performance

(0.41% better than default, on average). ‡

5.2. Register Remapping to Remove False Register Dependences

Experiments described in this section evaluate the potential of renaming register names on the size of

the phase order search space and the dynamic instruction counts of the best phase ordering. Register

remapping or renaming reassigns registers to live ranges in a function, and is a transformation

that is commonly employed to reduce false register dependences, especially during phases such as

instruction scheduling [30]. Similar to copy propagation in the earlier section, register remapping is

also a popular optimization phase. However, this is the first work that proposes and studies the use

of this phase to reduce false phase interactions to prune the size of the phase order search space.

Figure 5(d) illustrates the effect of applying register remapping (after every phase) to the code in

Figure 5(c) to eliminate the false dependence caused by r[12] in instruction #4 by remapping that

register to r[16].

‡We also report that including our new stand-alone copy propagation explicitly as a distinct (16th) reorderable phase
during the search space exploration (and not applying it implicitly after every phase) expands the phase order search space
for most functions. 13 of the original 232 search spaces become too large to completely enumerate in our search time
limit of two weeks. Among the enumerated search spaces, the average search space size increases by 69.7%. Performance
improves by 0.6%, on average, over the default configuration.
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Algorithm 1 Register Remapping Algorithm

Input: Function code (in RTLs) organized as a control flow graph (cfg)

Output: Function code with registers remapped

1: procedure REMAPREGISTERS(c f g)

2: rlg ← calculateRegisterLiveRanges(c f g)
3: rlg.markReservedRegs()
4: ireg ← initRemapRegNum() ⊲ 16, to not conflict with hardware registers

5: c f g ← remapRT Ls(c f g,rlg, ireg)
6: return c f g

7: end procedure

8: procedure REMAPRTLS(c f g,rlg, ireg)

9: for block in c f g.blocks() do

10: for rtl in block.RT Ls() do

11: for reg in rtl.regs() do

12: rlgnode ← rlg. f indNode(block,rtl,reg)
13: if not rlgnode.isRemapped() then

14: if rlgnode.isReserved() then

15: rlgnode.remapRegNum ← getRegNum(reg)
16: else

17: rlgnode.remapRegNum ← ireg

18: for sibrlg in rlgnode.siblings() do

19: sibrlg.remapRegNum ← ireg

20: sibrlg.setRemapped()
21: end for

22: ireg ← nextRemapRegNum() ⊲ typically, ireg+1

23: end if

24: rlg.setRemapped()
25: end if

26: copyreg(reg,makeReg(rlgnode.remapRegNum))
27: end for

28: end for

29: end for

30: return c f g

31: end procedure

In this study we use our extended 512-register ARM configuration to remap as many of the

conflicting live ranges as possible to unique register numbers and measure its impact on the size of

the phase order search space. Algorithm 1 presents our algorithm for remapping program registers.

Our algorithm employs register live range information, which is stored in a graph structure during

remapping (rlg). Each register occurrence (set or use) in the input code has a corresponding

node (rlgnode) in the register live range graph and sibling nodes (rlgnode.siblings) in the graph

correspond to register live ranges. A linear scan over the RTLs assigns free register numbers to

live ranges as they are encountered and overwrites each register occurrence in the input code with

a new register corresponding to the remapped register number. Reserved registers (stack pointer,

program counter, and link register) and registers constrained by machine calling conventions are

not remapped. As done with copy propagation in the previous section, we implicitly apply this

transformation after each regular optimization during the exhaustive phase order search space

exploration for every function.

Figure 9 compares the size of the resulting search space with the default for each function. The

results show significant variations with the search spaces for several functions, either substantially

increasing or shrinking as compared to the default. Although register remapping can reduce the size
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Figure 9. Search space size with register remapping implicitly applied during the exhaustive search (512
registers)

of the phase order search space by removing false register dependences, it is also an enabling phase

that can provide more opportunities to optimizations following it. These new opportunities increase

the size of the search space for several functions. On average, the size of the space reduces by 15.6%

per function, while the sum of search space sizes over all functions reduces by only 4.1% compared

to the default.

Interestingly, while the objective of our experiment was only to explore the impact of implicit

application of register remapping on search space size, we observed that eliminating false register

dependences enable additional optimization opportunities for the remaining phases. Consequently,

implicit application of register remapping has an inadvertent positive impact on the code quality

delivered by individual compiler phase sequences. Figure 10 shows the performance of the best

code generated for each function in the exhaustive search configuration with register remapping

implicitly applied as compared to the best code generated by the default configuration (with 512

registers). 65 of the original 81 executed functions (with the exception of: jpeg-pbm getc, bitcount-

bit count, bitcount-bit shifter, fft-reverse bits, ispell-trydict, jpeg-start input ppm, dijkstra-main,

ispell-strtoichar, adpcm-adpcm coder, ispell-ichartostr, ispell-skipoverword, ispell-treelookup,

ispell-askmode, ispell-pfx list chk, tiff-main, and fft-main) did not generate a new control flow in

the configuration with register remapping implicitly applied and thus we measure their performance

as described in Section 2.3. Although the best phase ordering code improves in most cases, we

surprisingly found that this configuration may also degrade the best performance in a few cases.

We explore this phenomenon in more detail in Section 5.4. On average, implicitly applying register

remapping during the exhaustive search enabled an improvement in the best performance reached

over the default configuration by 0.84%. §

5.3. Combining Register Remapping and Copy Propagation

Combining our two techniques has a greater impact on pruning the phase order search spaces. Thus,

as shown in Figure 11, implicitly applying both register remapping and copy propagation after

every phase prunes the phase order search spaces by over 68.3%, on average. This technique also

has a more significant effect on functions with larger default search spaces. Thus, this configuration

reduces the total number of distinct function instances generated across all functions by a substantial

86.1%. The performance characteristics of the best code generated in this configuration are similar

to what we saw in the configuration with only register remapping implicitly applied, yielding a

§Again, we report that explicit application of register remapping as the 16th reorderable phase in VPO during the
exhaustive phase order searches causes an unmanageable increase in the size of the search space for most functions,
preventing the searches for 46 of the original 232 functions from finishing. Among the search spaces we were able to
gather completely, the average search space size increases by almost 14 times the original size. Performance improves
by 4.12%.
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Figure 10. Best code performance with register remapping implicitly applied during the exhaustive search
(512 registers)
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Figure 11. Search space size with register remapping and copy propagation implicitly applied during the
exhaustive search (512 registers)

slightly smaller average improvement over the default configuration (0.7%). Thus, reducing false

phase interactions caused by differing register assignments can significantly prune the phase order

search space size for most functions, given a large number of available registers.

5.4. Machine-dependent Optimization Phase Implementations to Improve Performance

We analyzed several of the functions where our configuration with register remapping implicitly

applied is not able to find a phase ordering with performance better than or equal to that found by

the default exhaustive phase order search (see Figure 10). Interestingly, in every case we studied,

the performance loss was due to issues stemming from the non-orthogonal use of registers. The

calling convention for our target ARM machine requires that function arguments be held in specific

registers. We found that implicitly applying register remapping may preclude register assignments

that interact favorably with this requirement.

An example of the non-orthogonal use of registers affecting the performance of register remapped

code is shown in Figure 12. Figures 12(a) and 12(b) show the example codes before and after

applying register allocation (RA), with no implicit application of register remapping. Figures 12(c)

and 12(d) show the corresponding codes in a configuration with register remapping applied after

every phase. RA allocates locals (WORD in this example) to a register. VPO uses a fixed order to

assign available registers, where r[12] (if available) is assigned before r[0]. For the code in

Figure 12(a), the live range of register r[12] (instructions #1 and #2) conflicts with the live range

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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3. r[0] = R[r[13] + .WORD];

1. r[12] = LA[L2];

2. R[r[13]] = r[12];

4. r[1] = 1;

5. ST = good;

(a). default configuration

     before register allocation

(b). default configuration

     after register allocation

     configuration before

     register allocation

(c). register remapped

     configuration after

     register allocation

(d). register remapped

4. r[1] = 1;

5. ST = good;

1. r[12] = LA[L2];

2. R[r[13]] = r[12];

4. r[1] = 1;

5. ST = good;

3. r[0] = R[r[13] + .WORD];

4. r[1] = 1;

5. ST = good;

1. r[16] = LA[L2];

2. R[r[13]] = r[16];

1. r[16] = LA[L2];

2. R[r[13]] = r[16];

3. r[0] =         ;

3. r[0] =        ;r[0]

r[12]

Figure 12. Non-orthogonal use of registers affects the performance of register remapped code

of the local WORD, which causes RA to assign WORD to register r[0]. Note that WORD is passed as

the first argument to the function good, and thus according to the ARM-Linux calling conventions,

needs to be present in register r[0] before the call to function good. RA has conveniently

assigned WORD to r[0] allowing a later application of dead assignment elimination to trivially

eliminate instruction #3 in Figure 12(b). On the other hand, in our configuration with register

remapping implicitly applied, the live range of register r[12] is remapped to register r[16].

Since register r[12] is now available, RA is able to assign the live range of the local WORD to

r[12]. Unfortunately, this assignment ensures that the copy instruction required to pass WORD as

the first argument to function good in register r[0] (instruction #3 in Figure 12(d)) persists in the

final code. Thus, non-orthogonal use of registers can cause the compiler with register remapping

implicitly applied to produce poorer code than the default, and can result in substantial performance

losses if the extraneous instruction(s) is executed repeatedly. This effect is particularly burdensome

with our implementation of register remapping which assigns register live ranges to virtual registers

(numbered 16–512) and always requires an additional copy instruction to prepare arguments for

function calls.

As done in VPO, compiler optimization phases are often designed to be machine-independent

to enhance compiler portability for easier retargeting to different architectures. The interaction

between register remapping and register allocation in VPO is an example of the potential

performance tradeoff of this design decision. To minimize this interaction for our current

experiments, we updated the RA phase in VPO to encode the knowledge regarding function calling

conventions for our target ARM architecture. Thus, for locals that are passed as arguments in

function calls, RA attempts to allocate them to the same registers as they would be expected to

occupy before function calls.

We again ran the earlier experiment (from Section 5.2) comparing our configuration with

implicit application of register remapping to the default exhaustive search setup (targeted to

a machine with 512 registers) with the machine-dependent version of RA applied in each

configuration. Figure 13 compares the performance of the best code generated for each function.

Thus, while some functions still yield some performance degradation, machine-dependent RA

mitigates or completely eliminates most of the performance degradation introduced by the implicit

application of register remapping. On further analysis, we found that the remaining performance

degradations in this experiment were still due to non-orthogonal use of registers. Although possible,

resolving these issues would require more extensive modifications to other VPO optimization phase

implementations, and so we leave those to future work. The average performance of the best code
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Figure 13. Best code performance with register remapping implicitly applied during the exhaustive search
(512 registers) in a compiler with machine-dependent implementation of register allocation

generated for all of the executed functions now improves by 2.63%, on average (as compared to

only 0.84% improvement in the original configuration). The change in search space size is similar to

what we saw in the configurations with the original RA algorithm. Thus, eliminating false register

dependences by the implicit application of register remapping during the exhaustive phase order

search can improve the best performing code without prohibitively increasing the search space size.

Note also that, such machine-dependent phase implementation changes coming at the cost of

compiler retargetability may be desirable in compilers built for achieving the best possible output

code for specialized application domains like embedded systems. We found that applying this small

change during the exhaustive search with the default VPO compiler (with no register remapping and

targeted to a real machine with 16 registers) improves the best performance found for 4 of our 81

executed functions. While this results in only a small (0.33%) average improvement, this technique

does not incur any performance degradations, and the performance of some functions improves

significantly (the maximum improvement for one function is 11.4%).

5.5. Observations Applicable to Real Architectures

Our results in this section on a hypothetical architecture with 512 registers demonstrate the potential

of copy propagation and register remapping in reducing false register dependence. Copy propagation

(by itself and in combination with register remapping) results in a significant pruning of the phase

order search space, while finding at least the same best phase ordering performance in all cases.

Additionally, these results also show that false register dependence is a major contributor to false

phase interactions (in VPO). We also observe that implicit application of register remapping is not

as effective by itself in reducing the default phase order search space size. At the same time, we

find that eliminating the false register dependences by register remapping shows the potential of

enabling additional transformations in other optimization phases, resulting in improving the best

phase ordering performance.

6. ELIMINATING FALSE REGISTER DEPENDENCE ON REAL EMBEDDED

ARCHITECTURES

In the previous section, we show that applying copy propagation and register remapping can

effectively reduce the phase order search space and/or improve performance in a machine with

virtually unlimited registers. Unfortunately, both these transformations show a tendency to increase

register pressure, which can affect the operation of successively applied phases. In this section

we show how we can employ our observations from the last section to adapt the behavior and
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Figure 14. Search space size with copy propagation implicitly applied during the exhaustive search (16
registers)

application of these transformations for use on real machine architectures to reduce search space

size and improve generated code quality.

6.1. Reducing the Search Space with Copy Propagation

Aggressive application of copy propagation can increase register pressure and introduce register

spill instructions. Increased register pressure can further affect other optimizations, that may

ultimately result in changing the shape of the original phase order search space and eliminate the best

code instance that is detected during the default search. For this reason, we developed a conservative

implementation of copy propagation for application on real machines (ARM with 16 registers) that

is only successful in cases where the copy instruction becomes redundant and can be removed later.

Thus, our transformation only succeeds in instances where we can avoid increasing the register

pressure. Our aim here is still to reduce the phase order search space size, while achieving the same

best phase ordering performance as detected by the default exhaustive phase order search.

We now apply our version of conservative copy propagation implicitly after each reorderable

optimization phase during exhaustive phase order search space exploration (similar to its application

in the last section). Figure 14 plots the size of the search space with this configuration as compared

to the search space size with the default compiler for each of our benchmark functions. Thus, we

can see that, similar to our results in the last section, our technique here reduces the size of the

search space, on average, by 34.6% per function, and the total number of distinct function instances

by 57.5%. Figure 15 compares the performance of the best code generated with and without implicit

application of copy propagation during the exhaustive search algorithm in terms of per-function

dynamic instruction counts (Figure 15(a)) and whole-program simulator cycles and native ARM

run-time (Figure 15(b)). Figure 15(a) shows that implicit application of copy propagation only

improves the best generated code for a few functions, leaving the average dynamic instruction

count almost unchanged (reduced by 0.59%).¶ The whole-program simulator cycles and native

run-time are collected using the same methodology described earlier in Section 2.4 (Figure 2). In

particular, we first enumerate the phase orderings that provide the best dynamic instruction counts

for each executed function. For each program, VPO generates code by randomly selecting one of

its best phase orderings to optimize each executed function and the default batch sequence for all

other compiled functions, and repeats this process to generate 100 executables for each benchmark.

The best whole-program cycle-count / run-time from these 100 executables is used for our plots.

Additionally, the average time of the (last) 60 program runs is used for each native ARM experiment.

¶Applying conservative copy propagation explicitly as a distinct reorderable increases the size of the search space by over
77%, on average, and reduces dynamic instruction counts by 0.76%, on average, over the default VPO configuration.
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Figure 15. Dynamic instruction count and performance benefit of implicitly applying copy propagation
during the exhaustive search (16 registers). The following benchmarks contain floating-point instructions

and do not execute on the ARM A9 with VPO generated codes: blowfish, bitcount, fft, ispell, and tiff.

Thus, we can see from Figure 15(b) that the whole-program SimpleScalar simulator cycles show

almost no significant change for any benchmark (the largest difference is a 0.8% improvement

for stringsearch), while run-time (on ARM Cortex A9) improves by 2.2%, on average, over the

best respective performance measures obtained by the default exhaustive phase order search space

experiments. Thus, prudent application of copy propagation to remove false register dependences

can be very effective at reducing the size of the phase order search space even on real ARM

machines.

6.2. Localized Register Remapping to Improve Performance on Real Embedded Architectures

We have found it more difficult to develop an effective conservative version of register remapping

for implicit application during phase order searches. Instead, building on our observations regarding

the phase enabling characteristics of register remapping, we develop techniques to explore if

removing false register dependences during traditional optimization phases can be used to increase

optimization opportunities and improve the quality of the generated code.

We select instruction selection to demonstrate our application of localized register remapping,

but the same technique can also be applied to other phases. As illustrated in Figure 5(c), instruction

selection (or some other optimization phase) might miss optimization opportunities due to some

false register dependences. We modify instruction selection to only remap those live ranges that

are blocking its application due to a false register dependence, if the transformation would be

successful otherwise. Thus, when instruction selection fails to combine instructions due to one

or more register conflicts, we identify the conflicting live ranges in these instructions, attempt to

remap them so that they no longer conflict, and then attempt to combine the instructions again. Such

localized application of register remapping can minimize any increase in register pressure as well

as potentially provide further optimization opportunities and generate better code.

We found that, on average, this technique is able to marginally improve the performance of

the best codes generated during the exhaustive search with only limited increases to search space

size. Figure 16 shows the difference in the per-function dynamic instruction counts and whole-

program performance (simulator cycles and native ARM run-time) of the best code found by the

exhaustive phase order search space algorithm with the modified instruction selection over the

default exhaustive search configuration. We again employ a similar experimental setup as used

in Section 6.1 to compare the best whole-program processor cycle-counts and run-times. Thus,

Figure 16(a) shows that this technique reduces the dynamic instruction counts of the best generated

code for 10 of our 81 functions (with one function improving by 13.6%), and yields an average

improvement of 0.6%. Figure 16(b) shows that, on average, our instruction remapping technique

yields best whole-program simulator cycles that are similar to those obtained by the default

exhaustive search, although one benchmark (adpcm) degrades by 7.6%. Similarly, average hardware

run-time improves slightly (by 0.9%), but one benchmark (sha) degrades by 6.5% when compared to
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Figure 16. Dynamic instruction count and performance benefit for best codes generated with instruction
selection remapping transformation compared to default exhaustive search (16 registers). The following
benchmarks contain floating-point instructions and do not execute on the ARM A9 with VPO generated

codes: blowfish, bitcount, fft, ispell, and tiff.

the performance of codes compiled with the best sequences from the default exhaustive search. We

note that our localized register remapping can also be applied to eliminate false register dependences

for the remaining VPO optimization phases and may enable higher performance benefits. This

register remapping technique can increase optimization opportunities and results in a small increase

in the size of the search space by 7.96% on average. The total number of distinct function instances

increases by 19.1%.

7. APPLYING EXHAUSTIVE SEARCH TECHNIQUES TO CONVENTIONAL

COMPILATION

Even with large search space reductions, exhaustive searches may still be too time consuming for

many problem domains. In this section, we employ our analysis of the phase order search space to

improve conventional compilation. We also present results on finding a single best phase ordering

sequence over all functions.

7.1. Copy Propagation and Localized Register Remapping to Improve Performance of

Conventional Compilation

Our observations from the previous sections indicate that eliminating false register dependences

achieved by conservative copy propagation and register remapping can improve code quality by

enabling additional opportunities for other optimizations. In this section we test the usefulness of

implicitly applying our conservative version of copy propagation as well as employing our modified

instruction selection (with localized register remapping) during conventional (batch) compilation.

Figure 17(a) shows the dynamic execution counts of the code generated by this configuration

compared to the code generated by the default batch compiler for each of our 87 executed functions.

Thus, we can see that, on average, our techniques improve the quality of the code generated by

our batch compiler by 0.59%. The modified batch compiler affects the function dynamic instruction

counts for ten of the executed functions. Of these, nine yield performance improvements (with a

maximum improvement of 11.1%), while the performance of one function degrades (by 9.1%). We

analyzed this degrading function and found that, although our techniques do not affect register

pressure, they may still affect the operation of successive phases. In this case, our techniques

enable the combination of some instructions that contain common subexpressions. This affects

the applicability of common subexpression elimination and other successive phases. Thus, in the

case of this degrading function, removal of false phase interactions reduces the performance of the

generated code by exposing a new true phase interaction that was previously not encountered.
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Figure 17. Performance of batch compilation with copy propagation applied after every phase and localized
register remapping applied during instruction selection.

We also validate our results in this section, by measuring the whole-program cycle count

performance (with the SimpleScalar cycle-accurate simulator) and native run-time (on the ARM A9)

of the code generated by our modified batch compiler. As we can see in Figure 17(b), this technique

yields improvements in whole-program processor cycle counts over the default batch compiler

(1.1%, on average), although individual benchmark performance may show some degradations

(tiff shows the largest degradation of 5.9%). Similarly, native run-time execution also improves

on average (by 4.3%), with one benchmark (adpcm) yielding a 4.7% performance loss. Thus,

eliminating false register dependences during conventional compilation shows potential to improve

code quality even during conventional compilation.

7.2. Searching for Optimization Phase Sequences that Achieve the Best Average Performance for a

Set of Functions

Conventional compiler developers are typically tasked with the challenge of finding a single

optimization phase sequence that performs well for all input programs. In contrast, evaluating the

entire phase order search space makes it possible to find an optimization phase sequence that

generates the best code for an individual function, but is very expensive even when possible.

Recently, researchers are also developing compiler design time supervised learning techniques

to find a mapping between program features and effective optimization phase sequences. Such

mappings can then be used to customize optimization decisions for unseen programs [12, 33].

However, there has been little work in exploring algorithms to find the best performance that can be

achieved by a single phase sequence over a large benchmark set. Unfortunately, such algorithms are

likely to be NP-complete. In this section, we develop some approximation algorithms to derive a

single optimization phase sequence to produce the best phase ordering code, on average, for a set of

functions, and discuss the challenges and the progress we make in resolving this important problem.

Any path from the root to another node in the search space DAG denotes a phase sequence, which

generates the function instance corresponding to that node. There can be orders of magnitude more

paths than nodes in the DAG. Therefore, although researchers have developed algorithms that can

evaluate the performance of all nodes, there has been no attempt to evaluate all paths in the search

space DAG. Given a set of functions (with corresponding search space DAGs), our algorithms in this

section attempt to find a single phase sequence that generates function instances (nodes) to achieve

best average performance over all functions. Our algorithm simultaneously searches the entire set of

search space DAGs over all functions. This approach is shown in Algorithm 2. Starting at the root

nodes of each DAG (and with an empty phase sequence), we compute the average performance of

the current set of nodes. Next, we “apply” each of our optimization phases to the current set of nodes

(line 19). In this context, applying an optimization phase returns the node reached on application

of that phase (i.e., we simply follow the edge from the given node corresponding to that phase). If

a node has no edge corresponding to an optimization phase, application of that phase returns the

original node. We then perform a recursive call with this new set of nodes (line 26) to continue the

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe



24 M. JANTZ AND P. KULKARNI

Algorithm 2 Simultaneous Search Algorithm

Input: Root node of every search space DAG and the set of optimization phases

Output: The best average performance and the phase sequence that generates it

Note: pos, best per f , and bestseq are global variables.

1: procedure MAIN(roots,opts)

2: pos ← 1

3: best per f ← avgper f (roots)
4: bestseq ← curseq ← Null

5: for i ← 1 to length(roots) do

6: markBestSubtreePer f s(roots[i],opts)
7: end for

8: simSearch(roots, pos,opts)
9: return (best per f , bestseq)

10: end procedure

11: procedure SIMSEARCH(nodes, pos,opts)

12: if avgper f (nodes) < best per f then

13: best per f ← avgper f (nodes)
14: copyseqn(bestseq,curseq, pos)
15: end if

16: for o ∈ opts do

17: newchild ← False

18: for i ← 1 to length(nodes) do

19: newnodes[i] ← apply(o,nodes[i])
20: if newnodes[i] 6= nodes[i] then

21: newchild ← True

22: end if

23: end for

24: if newchild and bestSubtreePer f Avg(newnodes) < best per f then

25: curseq[pos] ← o

26: simSearch(newnodes, pos+1)
27: end if

28: end for

29: end procedure

search. We do not have any way of keeping track of which sets of nodes have already been traversed

together as a set. Instead, we simply compare the new node set to the current node set and, if none

of the nodes have changed, do not continue the search from this point. Throughout the search, we

maintain global data to record the best average performance and the sequence that generates this

performance, and we return this information when the search terminates.

The complexity of the simSearch algorithm is equal to the sum of the set of distinct paths (phase

sequences) over all of our input DAGs. The number of distinct paths in each search space DAG is

15N , where ‘15’ is the number of distinct optimization phases in VPO and ‘N’ is the depth of the

DAG (in our experiments, maximum depth of a search space DAG is 37). Techniques to detect

and eliminate duplicate function nodes in the DAG enable us to reduce the number of distinct

phase sequences scanned by this algorithm for a given set of search space DAGs. Unfortunately,

we found even this number is too large (over 1.8 ∗ 1016) to complete an exhaustive simultaneous

search in a practical amount of time. As a result, we devised additional measures to prune away

portions of the search space that cannot lead to the best average performance. Before beginning

the search, we invoke another algorithm that employs a depth-first search to determine the best

performance in the subtree rooted at each node in the DAG (this is shown in Algorithm 2 by calling

markBestSubtreePer f s on line 6). We use this information during our simSearch algorithm to only
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Figure 18. Example DAGs for Simultaneous Search Algorithm

continue searching whenever the average (geometric mean) of the best reachable performances from

the subtrees of the new set of nodes is better than the best average performance we have computed

up to this point.

We illustrate our algorithm using Figure 18 that shows example DAGs for two hypothetical

search spaces with optimization phases a, b, and c. In this example, each node is labeled with

(from top to bottom): a unique label to identify the node, the actual performance of the node, ‖ and

the best performance reachable from the node’s subtree. Edges are labeled with the optimization

phase whose application corresponds to the transition from one function instance to another.∗∗

The simultaneous search algorithm begins with the root nodes X1 and Y 1 and the initial best

average performance is computed as the average performance of these two nodes (3.25). Inside

the simSearch function, we “apply” our first optimization phase a to the current nodes (X1 and Y 1)

in each DAG to create a new node set: X2 and Y 2. The best average reachable performance for these

new nodes (1.0) is less than the best average performance we have computed up to this point (3.25),

and thus, we perform a recursive call with this new node set. Inside the recursive call, we find that the

average performance of our current node set (2.1) is less than the current best average performance.

Hence, we update our global state information to record our new best average performance and best

phase sequence (which, at this point, is simply (a)). From here, we again attempt to apply each

optimization phase to the current node set. Applying phase a does not change the current node set

and so we next apply phase b, which yields the nodes X6 and Y 5, and the search continues. In this

example, the search returns the sequence (c,a,c,a,b) that achieves the best average normalized

performance of 1.05. Note that we are also able to prune many phase orderings from our search

by employing the best subtree performance information stored at each node. For instance, in this

example, after exploring the phase orderings prefixed with phase a, we do not need to explore any

phase orderings prefixed with phase b because at this point, (X3 and Y 3) in the search algorithm,

we have already discovered a phase sequence (a,c,a,b) with better average performance (1.15)

than the best possible performance of phase sequences prefixed with phase b (1.25).

We implemented and executed the simultaneous search algorithm with the search space DAGs

for our 81 executed benchmark functions as input. Unfortunately, despite the pruning techniques

described above, we found that there are simply too many phase orderings to explore. Our

‖In order to weigh functions equally, we normalize the performance of each function instance to the optimal function
instance in their respective search spaces, with the performance of the optimal phase ordering node(s) as 1.0.
∗∗Edges corresponding to applications of optimization phases which do not lead to different function instances are not
explicitly represented in our actual data structures, but these are helpful in understanding our algorithm and thus shown
here as dashed edges.
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Figure 19. Performance of sequence generated by simultaneous search (with edge marking) compared to
default batch compiler. Functions along the x axis are unordered and the average is shown as the rightmost

bar.

experiment did not complete even after several weeks. Thus, more advanced pruning techniques

will be necessary to realize our goal of finding one phase sequence that achieves the best average

performance across all our benchmark functions.

Even though our exact simSearch algorithm did not finish, we found that slight modifications to

this simultaneous search algorithm can quickly generate very good phase sequences. We modified

our simSearch algorithm to mark the edges in each search space DAG as it traverses them and to only

perform recursive calls when application of an optimization phase traverses at least one unmarked

edge. This version of the simultaneous search considers each phase interaction at least once, but

limits the number of phase orderings considered to the number of edges in our search space DAGs

(rather than the enormous number of paths). Running the modified simultaneous search with our

81 executed functions as input completes in only a few seconds and generates the following phase

sequence:

(b, o, s, o, j, k, h, k, l, s, h, k, s, c, b, s, h, k, c, q, l, g,

b, s, h, c, s, h, l, i, r, s, j, c, l, s, n, d, r, i, g)

Figure 19 compares the performance of the code generated by this sequence to the code generated

by the default batch compiler. Thus, this sequence generates slightly better code than the manually

tuned and aggressive phase sequence in our default batch compiler that applies phases in a loop until

no phase can produce any further changes to the code. One function achieves a dynamic instruction

count benefit of more than 20%, while, on average, this sequence yields an average improvement of

1% over the batch compiler sequence. We also find that the performance of the codes produced by

this single phase sequence are, on average, only 3.16% worse than the performance of the optimal

function instances produced by the individual exhaustive phase order searches.

While this is an encouraging result, this technique may be ignoring single phase orderings that

could potentially achieve even better average performance. Furthermore, there is no way of knowing

how close the performance of this sequence is to the best average performance that can be achieved

by any single sequence for our set of functions. Therefore, we performed further experiments

to place bounds on the best achievable single sequence average performance. These experiments

restrict our simultaneous search algorithm to only search those portions of the search space that

achieve a certain target average performance. If the restricted search completes without finding a

sequence that achieves the target performance, there must not exist any such single phase sequence

for the input set of functions. We modified our original simultaneous search algorithm to only

recurse on sets of nodes when the average of their best subtree performances is less than some target

average performance. We then conducted a series of experiments where we gradually increase the

target performance (in increments of 0.05%) until our final run did not complete even after several
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weeks. We find that there is no single sequence that can achieve an average performance within

2.2% of the average individual optimal function instances in our benchmark set. Thus, our best

detected single sequence achieves an average performance that is at least within 0.96% of any other

potential best single sequence average performance for our benchmark set.

8. RELATED WORK

In this section we describe previous work in the areas of understanding and addressing the issues

of optimization phase ordering and selection. Researchers have developed techniques to enumerate

the phase order search space generated by sub-groups of optimization phases in their compilers to

understand aspects of the phase order search space. One such work exhaustively enumerated a 10-

of-5 subspace (optimization sequences of length 10 from 5 distinct optimizations) for some small

programs [14]. Another study evaluated different orderings of performing loop unrolling and tiling

with different unroll and tiling factors [21, 6]. Kulkarni et al. developed a novel search strategy

to achieve exhaustive evaluation of their compiler’s entire phase order search space to find the

best phase ordering for functions in their embedded systems benchmarks [22, 13]. Such exhaustive

searches typically required several hours to a few weeks in most cases [14, 22]. These research

efforts have found the search space to be highly non-linear, but with many local minima that are

close to the global minimum [34, 14, 20]. Such analysis has also helped researchers devise better

heuristic search algorithms. We employ Kulkarni et al.’s algorithm for exhaustive search space

evaluation (described in Section 2.2) for our current experiments and show that our techniques

to reduce false phase interactions often prunes the phase order search space to enable much faster

exhaustive searches. Thus, our work to understand and reduce the phase order search space will

most likely further benefit such exhaustive enumeration schemes.

Most recent research efforts to address the phase ordering problem employ iterative compilation

to partially evaluate a part of the search space that is most likely to provide good solutions.

Many such techniques use machine learning algorithms, such as genetic algorithms, hill-

climbing, simulated annealing and predictive modeling to find effective, but potentially suboptimal,

optimization phase sequences [10, 34, 11, 14, 12, 20, 15]. Other approaches employ statistical

techniques such as fractional factorial design and the Mann-Whitney test to find the set of

optimization flags that produce more efficient output code [35, 36, 7]. Researchers have also

observed that, when expending similar effort, most heuristic algorithms produce comparable quality

code [14, 20]. Our results presented in this paper can enable iterative searches to operate in smaller

search spaces, allowing faster and more effective phase sequence solutions.

Our motivation for understanding phase interactions in this work is to reduce the phase order

search space to enable faster searches. Past work has also developed algorithms to manage the

search time during iterative searches. Static estimation techniques have been employed to avoid

expensive program simulations for performance evaluation [25, 13, 9]. Similar techniques are used

in our work to speed-up program performance estimations. Agakov et al. characterized programs

using static features and developed adaptive mechanisms using statistical correlation models to

reduce the number of sequences evaluated during the search [12]. Using program features they

first characterized an optimization space of 145 phase sequences, and then employed statistical

correlation models to speed up the search on even the larger optimization spaces. Kulkarni et

al. employed several pruning techniques to detect redundant phase orderings that are guaranteed

to produce code that was already seen earlier during the search to avoid over 84% of program

executions during their genetic algorithm search [37]. Fursin et al. exploited program phases in

larger programs to evaluate multiple optimization configurations within different equal intervals

of the same program run to enable faster iterative searches [38]. We employ several of these

complementary techniques even as we explore new mechanisms that exploit false phase interactions

in this work to realize our goal of understanding and pruning the exhaustive phase order search

space.

The traditional approach of iterative compilation that repeatedly executes individual benchmarks

with different optimization combinations may be too expensive in certain application domains.
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Consequently, researchers have also developed techniques that use iterative compilation along with

machine learning at compiler design time to build static models that guide optimization decisions

at runtime. For example, Stephenson et al. invented a methodology called meta optimization that

uses iterative compilation with genetic programming to automatically tune complex compiler

heuristics [39]. Supervised learning algorithms have also been used to build classifier-based

techniques that automatically learn if, how, and when to apply optimization phases. MILEPOST

GCC employs empirical training runs to learn a model that can correlate program features with

optimization settings [40]. The model can then be used to predict good phase orderings and

sequences for unseen programs based on their feature sets. Similarly, Stephenson and Amarasinghe

employed program feature-vector based supervised learning to construct nearest neighbor and

support vector machine classifier systems to predict loop unroll factors [41]. Supervised learning

techniques have also been developed to predict customized method-specific optimization sequences

during dynamic just-in-time compilations, based on their corresponding method features [42, 33].

Such compiler design-time techniques provide a more practical mechanism to get the benefits of

program customization in a real-world scenario. We expect our insights from this work to make

exhaustive phase order searches faster, which can then be used to evaluate the effectiveness of

heuristic schemes in finding the best solution.

Research has also been conducted to understand and apply observations regarding optimization

phase interactions. Some such studies use static and dynamic techniques to determine the enabling

and disabling interactions between optimization phases. Such observations allowed researchers to

construct a single compromise phase ordering offline [17] and generate a batch compiler that can

automatically adapt its phase ordering at runtime for each application [22]. The goal of these earlier

works was to improve conventional compilation, and their techniques were able to generate phase

orderings that often performed better that the original optimization sequence used in their compilers.

Instead, our current work attempts to understand the causes behind (the enabling/disabling) phase

interactions and exploit that understanding to prune the phase order search space. We also explore

the issue of finding a single best phase sequence over our set of benchmark functions.

Most related to our current research are studies that analyzed and corrected the dependences

between specific pairs of optimization phases. Leverett noted the interdependence between the

phases of constant folding and flow analysis, and register allocation and code generation in

the PQCC (Production-Quality Compiler-Compiler) project [43]. Vegdahl studied the interaction

between code generation and compaction for a horizontal VLIW-like instruction format

machine [5], and suggested various approaches to combine the two phases together for improved

performance in certain situations. The interaction between register allocation and code scheduling

has been studied by several researchers. Suggested approaches include using postpass scheduling

(after register allocation) to avoid overusing registers and causing additional spills [16, 30],

construction of a register dependence graph (used by instruction scheduling) during register

allocation to reduce false scheduling dependences [44, 45], and other methods to combine the

two phases into a single pass [4]. Earlier research has also studied the interaction between register

allocation and instruction selection [3], and suggested using a common representation language for

all the phases of a compiler, allowing them to be re-invoked repeatedly to take care of several

such phase re-ordering issues. Other research has also observed that combining analyses and

transformations instead of applying them in some (or more) orders can yield better results [46].

As a proof of concept, the researchers combined the optimization phases of conditional constant

propagation and global value numbering to get an optimization that is more than the sum of its

parts. Much of this earlier work was focused on resolving the issue of phase ordering between

specific pairs of phases for efficient code generation in a traditional compiler. Our work, in the

context of exhaustive phase order search space evaluation, discovers and addresses causes of false

phase interactions between all compiler phases to reduce the phase order search space.
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9. FUTURE WORK

There are several avenues for future work. For our current research we focus on phase interactions

produced by false register dependences and different register assignments. In the future we plan

to study other causes of false phase interactions and investigate possible solutions. We believe that

eliminating such false interactions will not only reduce the size of the phase order search space,

but will also make the remaining interactions more predictable. We would like to explore if this

predictability can allow heuristic search algorithms to detect better phase ordering sequences faster.

Here, we integrated localized register remapping with instruction selection to produce higher-quality

code. In the future, we will attempt to similarly modify other compiler optimizations and study their

effect on performance. We also plan to explore if it is possible to implicitly apply other optimization

phases outside the phase order search to reduce the search space size without affecting the best

achievable performance. Finally, we plan to continue our exploration of new algorithms to find exact

empirical bounds on the best average performance that can be achieved by any single optimization

phase sequence, and to find the single best phase ordering for a given set of functions.

10. CONCLUSIONS

The problem of optimization phase ordering is a pervasive and long-standing issue for optimizing

compilers. The appropriate resolution of this problem is crucial to generate the most effective code

for applications in cost and performance-critical domains, such as embedded systems. Although

several research directions are attempting to address this problem, very few recent efforts focus

on understanding and alleviating optimization phase interactions, which are the root cause of this

problem. In this work we highlight the issue of false phase interactions, and in particular false

register dependences, in our compiler VPO. We devise experiments to show that just lowering the

register pressure may not be sufficient to eliminate these false register dependences. Based on our

manual observations regarding phase interactions in VPO, we employ two common transformations,

copy propagation and register remapping, to reduce these false dependences. We also show how the

reduction in false phase interactions achieved by these transformations can be used to prune the

phase order search space size while generating the same best phase ordering solution. In this work

we also develop and study algorithms to find a single phase sequence (of any length) to achieve

the best performance for all our benchmark functions, and discuss the challenges in resolving this

problem. Our approximation algorithms can be used by compiler developers to automatically find

an effective single phase ordering to be employed in traditional compilers. Our results can not only

enable fast exhaustive phase order searches to generate the best phase ordering code, but may also

allow conventional compilation to produce better codes.

We also note that different compilers can employ different intermediate representations, and

implement different and/or more optimization phases. For example, GCC uses three different

intermediate representations (VPO-like RTL, tree-based GENERIC, and static-single-assignment-

based GIMPLE), and additional esoteric optimization phases as compared to VPO [47]. As a result,

different compilers may show distinct true and false phase interactions. Consequently, techniques

that we used in this work to reduce false phase interactions for VPO may be applicable to varying

degrees in other compiler frameworks. Regardless, the goal of this work is primarily to highlight the

issue of false phase interactions and show the possibility, potential, and benefits of understanding

and resolving this problem in compilers. We believe that such understanding is essential to provide

guidelines to compiler developers to appropriately address this problem in all current and future

compilers.
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A. FUNCTION-LEVEL RESULTS OF OUR EXHAUSTIVE PHASE ORDER SEARCH SPACE

EXPLORATION

Function
Code size

(# of RTLs)

Dynamic exe.
count (batch

compiler)

Default search
space size (#

of nodes)

Dyn. count with best seq.
from search / dyn. count

with batch compiler

adpcm

main 139 16465 1676 0.9999
adpcm decoder 306 32381
adpcm coder 384 59612617 24437 0.9828

bf

main 460 4989969 1896446 0.9906

bitcount

bfclose 16 9

alloc bit array 24 30
bit count 35 5450392 169 0.9862
flipbit 38 61
getbit 41 55
ntbl bitcnt 43 7650000 220 0.7647
bit shifter 47 18600000 224 1.0000

btbl bitcnt 47 252
bfread 58 206

bfwrite 59 230
bfopen 62 862
setbit 64 736
BW btbl bitcount 68 1875000 72 1.0000
bstr i 70 4497
AR btbl bitcount 83 1650000 87 1.0000
bitcount 133 2100000 44 1.0000
ntbl bitcount 138 2100000 48 1.0000
main 220 3412776 60282 0.9231

dijkstra

qcount 12 59980 7 1.0000
print path 63 3556 188 0.9488
dequeue 76 374375 102 1.0000

enqueue 122 7705076 468 0.9981
main 175 121393 9462 0.9984
dijkstra 353 37852465 88586 0.9600

fft

IsPowerOfTwo 30 7 378 1.0000
CheckPointer 35 18 93 0.6667
ReverseBits 44 278528 304 1.0000
NumberOfBitsNeeded 59 58 3235 0.7759
Index to frequency 86 234
main 624 1011840 2135723 0.9595
fft float 679 2712533

ispell

move 5 3
inverse 5 3
erase 5 3
backup 5 3
normal 5 3
stop 9 3
putch 11 15
mymalloc 11 15
posscmp 18 16
tryveryhard 23 4669 22 0.8571
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Function
Code size

(# of RTLs)

Dynamic exe.
count (batch

compiler)

Default search
space size (#

of nodes)

Dyn. count with best seq.
from search / dyn. count

with batch compiler

ispell

tbldump 25 92
pdictcmp 26 27
combineaffixes 33 106
done 40 100
chupcase 41 25
lowcase 41 327

upcase 41 20838 327 1.0000
forcelc 43 1261
flagout 46 30
wrongcapital 47 7337 36 0.9091
line size 50 2941
issubset 51 1178
treeload 51 296
myfree 52 440
ins cap 55 6367
onstop 61 10
TeX skip parens 62 330
TeX open paren 62 330
printichar 65 561
copyout 66 19234 834 0.9359
ichartosstr 66 70
TeX strncmp 67 2190
strtosichar 70 78
entryhasaffixes 77 318
forcevheader 78 1538
toutword 85 712
trydict 88 168 783 0.9048

extraletter 91 54878 3543 0.9459
ins root cap 94 8147
expand pre 97 977
expand suf 110 779
transposedletter 117 53705 5350 0.9572
hash 119 13753679 55126 0.9497
insert 127 4294
strtoichar 140 74842 10812 1.0000
TeX skip args 146 871
usage 153 16
setdump 155 6084
subsetdump 156 2288
inserttoken 162 20445
treelookup 166 1638486 67507 1.0000
getline 173 26340
TeX math check 174 613
show line 178 12583
TeX LR check 179 3732
ichartostr 184 13852632 40956 1.0000

wrongletter 192 2235563 22137 0.8699
whatcap 192 21443
lookharder 194 18042
lookup 194 12553001 24936 0.9286
tinsert 196 7458
entdump 205 2896
dumpmode 207 1160
skipoverword 211 69090 63772 0.9291
TeX LR begin 215 264
addvheader 217 1631
compoundgood 220 6670 118136 0.9000
TeX math end 221 568
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Function
Code size

(# of RTLs)

Dynamic exe.
count (batch

compiler)

Default search
space size (#

of nodes)

Dyn. count with best seq.
from search / dyn. count

with batch compiler

ispell

save cap 226 123891
acoversb 233 10450
chk suf 240 10026766 62709 0.9916
findfiletype 241 15014
missingletter 252 2344344 8922 0.8858
pr suf expansion 257 18660

missingspace 261 56858 14974 0.9614
combine two entries 261 1492
xgets 273 61520 37960 1.0000
makepossibilities 278 177422 52555 1.0000
stringcharlen 283 65712
toutent 283 6564
combinecaps 284 23789
update file 294 5460
chk aff 298 13638854 149513 0.9994
good 311 17268636 82476 1.0000
show char 331 57285
TeX math begin 336 50113
casecmp 339 366006
givehelp 346 584
checkfile 414 118966
shellescape 417 244201
dofile 431 3432
pr pre expansion 466
terminit 475 3072
expandmode 491 23530
treeinsert 509 1416522

cap ok 520
initckch 534 1922 652348 1.0000
makedent 552 1014659
flagpr 581
pfx list chk 638 18069232 428526 0.9589
treeinit 660 117 8940 1.0000
TeX skip check 679 5112
treeoutput 767 13
suf list chk 820 169775823
skiptoword 866 82646 257483 0.9422
askmode 937 7368 144305 0.9647
save root cap 1132
correct 1289 961334
checkline 1362 94365
linit 1831 578309
main 3323 289

jpeg

finish input tga 5 3
finish input ppm 5 1 3 1.0000
finish input gif 5 3
finish input bmp 5 3
write stdout 16 4 9 1.0000
read stdin 16 9
SkipDataBlocks 18 66
pbm getc 40 375 92 1.0000
text getc 40 92
jinit read ppm 45 11 22 1.0000
read non rle pixel 48 969
ReInitLZW 51 52
jinit read gif 52 30
read byte 52 112
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Function
Code size

(# of RTLs)

Dynamic exe.
count (batch

compiler)

Default search
space size (#

of nodes)

Dyn. count with best seq.
from search / dyn. count

with batch compiler

jpeg

ReadByte 52 112
read byte targa 52 112
jinit read bmp 52 30
jinit read targa 52 30

get raw row 59 3328 105 1.0000
InitLZWCode 64 60
DoExtension 66 20
GetDataBlock 69 88
get memory row 69 129
get 8bit gray row 70 504
ReadColorMap 79 272
get text gray row 79 912
keymatch 92 26939
get 24bit row targa 104 868
read rle pixel 116 12750
get pixel rows 117 1292
get text rgb row 123 944
read colormap targa 123 1072
get scaled gray row 125 1396
read pbm integer 129 185 3690 0.9514
get 8bit row targa 131 1352
read scan integer 138 44402
read text integer 138 41427
get word gray row 143 3352
get 24bit row 145 2168
select file type 147 28 400 1.0000
set quant slots 154 11365

preload image targa 156 760
get 16bit row targa 158 1040
get scaled rgb row 165 1512
get 8bit row 171 2800
set sample factors 204 20511
read colormap 216 1036
get word rgb row 219 2688
load interlaced image 235 4784
read quant tables 238 9171
get interlaced row 247 16900
preload image 266 3510
GetCode 339 63641
usage 344 34
main 464 4244 24379 0.9472
LZWReadByte 470 38535
read scan script 478 30000
start input ppm 789 117 7018 0.9829
start input tga 961 51316
start input gif 997 38605
parse switches 1216 176 162066 0.9375
start input bmp 1361 38390

patricia

bit 15 525440 37 1.0000
pat count 68 430
pat search 108 1982309 5608 0.9945
insertR 160 49783 2462 0.9953
pat insert 466 217990 950285 1.0000
main 476 864505 12818 0.9275
pat remove 549 924825
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Function
Code size

(# of RTLs)

Dynamic exe.
count (batch

compiler)

Default search
space size (#

of nodes)

Dyn. count with best seq.
from search / dyn. count

with batch compiler

qsort

compare 37 1171434 81 0.7944
main 174 140037 31559 1.0000

sha

sha stream 55 489 210 0.9162
sha print 60 12 45 0.9167
sha init 87 15 68 1.0000
main 101 30 11262 0.9333
sha update 118 57042 5504 0.9993
byte reverse 146 2685023 2755 0.9964
sha final 155 23 1853 1.0000
sha transform 541 11397947 459442 0.9128

stringsearch

bhmi cleanup 14 7
init search 103 1437417 1430 0.9963
strsearch 127 73770 22835 0.9857
main 175 39050 30941 1.0000
bmh search 179 345619
bmhi search 182 179178
bmh init 194 5900
bmha search 199 372445
bmha init 248 35531
bmhi init 308 11644

tiff

checkcmap 67 2106
cpTags 68 152 965 1.0000
usage 78 1324
compresssep 82 345
compresscontig 94 25031072 240 1.0000
compresspalette 106 17496
processCompressOptions 289 1734
cpTag 301 515 522 0.9883

main 1268 39104 1969143 0.9998

totals

min 5 1 3 0.6667
max 3323 169775823 2135723 1.0000
average 234.27 5515263.82 74176.34 0.9598

Table III. Function-level statistics for our basic exhaustive phase order search space evaluation results
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