
Fast and Efficient Searches for Effective
Optimization-Phase Sequences

PRASAD A. KULKARNI, STEPHEN R. HINES, and DAVID B. WHALLEY
Florida State University
JASON D. HISER and JACK W. DAVIDSON
University of Virginia
and
DOUGLAS L. JONES
University of Illinois at Urbana-Champaign

It has long been known that a fixed ordering of optimization phases will not produce the best
code for every application. One approach for addressing this phase-ordering problem is to use an
evolutionary algorithm to search for a specific sequence of phases for each module or function.
While such searches have been shown to produce more efficient code, the approach can be ex-
tremely slow because the application is compiled and possibly executed to evaluate each sequence’s
effectiveness. Consequently, evolutionary or iterative compilation schemes have been promoted for
compilation systems targeting embedded applications where meeting strict constraints on execu-
tion time, code size, and power consumption is paramount and longer compilation times may be
tolerated in the final stage of development, when an application is compiled one last time and
embedded in a product. Unfortunately, even for small embedded applications, the search process
can take many hours or even days making the approach less attractive to developers. In this paper,
we describe two complementary general approaches for achieving faster searches for effective op-
timization sequences when using a genetic algorithm. The first approach reduces the search time
by avoiding unnecessary executions of the application when possible. Results indicate search time
reductions of 62%, on average, often reducing searches from hours to minutes. The second approach
modifies the search so fewer generations are required to achieve the same results. Measurements
show this approach decreases the average number of required generations by 59%. These improve-
ments have the potential for making evolutionary compilation a viable choice for tuning embedded
applications.

A preliminary version of this research was described in the ACM SIGPLAN ’04 Conference on
Programming Language Design and Implementation under the title “Fast Searches for Effective
Optimization Phase Sequences.”
Authors’ addresses: P. Kulkarni, S. Hines, and D. Whalley, Computer Science Department, Florida
State University, Tallahassee, FL 32306-4530; email: kulkarni,hines,whalley@cs.fsu.edu; phone:
(850) 644-3506; J. Hiser and J. Davidson, Computer Science Department, University of Virginia,
Charlottesville, VA 22904; email: hiser,jwd@virginia.edu; phone: (434) 982-2209; D. Jones, Electri-
cal and Computer Engineering Department, University of Illinois at Urbana-Champaign, Urbana,
IL 61801; email: dl-jones@uiuc.edu; phone: (217) 244-6823.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1544-3566/05/0600-0165 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005, Pages 165–198.

166 • P. A. Kulkarni et al.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
optimization; D.4.7 [Operating Systems]: Organization and Design—Real-time systems and em-
bedded systems

General Terms: Measurement, Performance, Experimentation, Algorithms

Additional Key Words and Phrases: Phase ordering, interactive compilation, genetic algorithms

1. INTRODUCTION

The phase-ordering problem has long been known to be a difficult dilemma for
compiler designers [Vegdahl 1982; Whitfield and Soffa 1997]. One sequence of
optimization phases is highly unlikely to be the most effective sequence for
every application (or even for each function within a single application) on a
given machine. Whether or not a particular optimization enables or disables
opportunities for subsequent optimizations is difficult to predict, since it de-
pends on the application being compiled, the previously applied phases, and
the target architecture [Whitfield and Soffa 1997].

One approach to deal with this problem is to search for effective optimization-
phase sequences using genetic algorithms [Cooper et al. 1999; Kulkarni et al.
2003]. When the fitness criteria for such searches involve dynamic measures
(e.g., cycle counts or power consumption), thousands of direct executions of an
application may be required. The search time can be significant, often requiring
hours or days when finding effective sequences for a single application, making
it less attractive for developers.

There are application areas where long compilation times are acceptable.
For example, long compilation times may be tolerated in an application where
the problem size is directly related to the execution time to solve the problem.
In fact, the size of many computational chemistry and high-energy physics
problems is limited by the elapsed time to reach a solution (typically a few
days or a week). Long compilation times may be acceptable if the resulting code
allows larger problem instances to be solved in the same amount of time.

Evolutionary systems have also been proposed for compilation systems
targeting embedded systems where meeting strict constraints on execution
time, code size, and power consumption is paramount. Here long compilation
times are acceptable because in the final stages of development an application
is compiled and embedded in a product where millions of units may be shipped.
For embedded systems, the problem is further exacerbated because the soft-
ware development environment is often different from the target environment.
Obtaining performance measures on cross-platform development environments
often requires simulation, which can be orders of magnitude slower than na-
tive execution. Even when it is possible to use the target machine to gather
performance data directly, the embedded processor may be significantly slower
(slower clock rate, less memory, etc.) than available general-purpose processors.
We have found that searching for an effective optimization sequence can easily
require hours or days, even when using direct execution on a general-purpose
processor. For example, using a conventional genetic algorithm to search for
effective optimization sequences for the jpeg application on an Ultra SPARC III

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 167

processor required over 20 hours to complete. Thus, finding effective sequences
to tune an embedded application may result in an intolerably long search time.

In this paper, we describe approaches for achieving faster searches for
effective optimization sequences using a genetic algorithm. We performed our
experiments using the VISTA (VPO Interactive System for Tuning Applica-
tions) framework [Zhao et al. 2002], which allows a user to interact with a com-
piler backend to tune applications. For example, VISTA can obtain and present
performance information that can be used by an application developer to make
phase-ordering decisions [Kulkarni et al. 2003]. We use this performance in-
formation to drive the genetic algorithm searches for effective optimization
sequences.

The remainder of the paper is structured as follows. First, we review other
aggressive compilation techniques for tuning applications. Second, we give an
overview of the VISTA framework in which our experiments are performed.
Third, we describe and evaluate methods for reducing the overhead of the
searches for effective sequences. Fourth, we discuss and evaluate techniques
for finding effective sequences in fewer generations. Finally, we outline future
work and present the conclusions of the paper.

2. RELATED WORK

Several groups have worked on the problem of attempting to find the best
sequence of compiler optimization phases and/or optimization parameters in
an attempt to reduce execution time, code size, and/or power consumption.
Specifications of code-improving transformations have been automatically an-
alyzed to determine if one type of transformation can enable or disable another
[Whitfield and Soffa 1997]. This information can provide insight into how to
specify an effective optimization-phase ordering for a conventional optimizing
compiler. While it was found that many pairs of optimization phases may not
enable or disable another, there are still many instances where one phase can
affect the optimization opportunities for another. In such cases, the determi-
nation of the order-dependent phases cannot be automated and resolving the
order requires detailed knowledge of the compiler. This work differs from ours
in that we search for effective optimization sequences when compiling spe-
cific functions rather than one general optimization sequence to be used when
compiling any program.

There has been some work on using iterative compilation to tune compila-
tion heuristics. A neural network has been used to tune static branch predic-
tions [Calder et al. 1995]. Another system used genetic algorithms to derive
improved compiler heuristics for hyperblock formation, register allocation, and
data prefetching [Stephenson et al. 2003]. While these searches are used to tune
compiler heuristics instead of individual applications, compiler tuning searches
can still be quite time consuming.

There has been much research investigating searches for optimization
sequences to improve the code for individual applications. When the search
space is relatively small, exhaustive approaches can then be used. Such
techniques have been developed to search for optimal instruction sequences

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

168 • P. A. Kulkarni et al.

[Massalin 1987] or to eliminate branches [Granlund and Kenner 1992]. How-
ever, these approaches can only be used in very limited contexts.

When the search space is too large to be exhaustively searched, techniques
are needed to intelligently probe or prune the space and/or to provide fast
evaluation of a specific sequence. Rather than changing the order of optimiza-
tion phases, there has been work done on attempting to find the best set of
optimizations to turn on or off using optimization flags to a conventional com-
piler. User-supplied information, profile information, and static heuristics have
been used to recommend optimization flag options [Granston and Holler 2001].
Searches for the best combination of optimization flags using fractional facto-
rial design have also been investigated [Chow and Wu 1999]. In contrast, our
system supports changing the order of the optimization phases rather than just
determining whether or not an optimization should be applied.

Many researchers have developed automatic searches for finding efficient
optimization sequences where the order and/or the parameters of the optimiza-
tion phases have been varied. Some have concentrated more on optimization
parameters rather than the order of optimization phases. Iterative techniques
using actual execution times after each compilation have been applied to deter-
mine good optimization parameters, such as tile sizes and loop unroll factors,
for specific programs or library routines [Kisuki et al. 2000; Whaley et al. 2001].
These researchers have used grid and line search-based algorithms to attempt
to find a combination of parameters that produces the most efficient code.

Other researchers have also varied how optimizations are applied and have
instead used static estimations of performance to reduce the search time.
One method searches through the different ways to apply loop fission, fusion,
interchange, and outer loop unrolling in an attempt to optimize loop nests
[Wolf et al. 1996]. This method does not actually generate code, but instead
uses an estimate based on the original loop nest and the potential benefit for a
transformation. Thus, their approach is limited, since the estimator only works
on the set of optimizations being considered. The search space is pruned in dif-
ferent ways. The decisions regarding how to apply some optimizations, such as
outer loop-unrolling factors, are made independently from other optimizations
since it was felt that it would not be affected by how inner loops would be opti-
mized. The number of loops to be varied when tuning other optimizations, such
as tile size and loop interchange, are also limited. Other methods for integrat-
ing different optimization phases were also studied [Irigoin and Triolet 1988;
Gao et al. 1993].

Another method, called Optimization-Space Exploration, also uses static
performance estimators to reduce search time [Triantafyllis et al. 2003]. This
approach is very general, since code for critical segments are actually generated
and a static performance estimation is applied. Thus, any set of optimizations
could be used in this approach. In order to prune the search space, they limited
the number of configurations of optimization-parameter value pairs to those
that are likely to contribute to performance improvements. The compiler also
prunes other remaining configurations based on the success of the configura-
tions it has already tried. The optimizations under consideration include coa-
lescing multiple adjacent loads and stores, loop unrolling, software pipelining,

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 169

and if-conversion. Beside the differences in the search and optimizations used,
these systems also concentrate on critical segments of code, where our system
attempts to tune entire functions.

The prior work that is most related to the VISTA system for finding effective
optimization sequences is the low-level compilation system developed at Rice
University, which also searches for efficient optimization phase sequences using
a genetic algorithm to reduce code size and dynamic instruction count [Cooper
et al. 1999, 2002]. The Rice system uses a similar genetic algorithm as in VISTA
for finding phase sequences and, in fact, was the inspiration for much of our
work in this paper. They also attempted to characterize the space that such
an adaptive compiler must search [Almagor et al. 2004]. However, the Rice
system is strictly batch oriented instead of interactive and applies the same
optimization-phase order for all of the functions within a file.

Some aspects of the approaches described in our paper may be useful for
obtaining faster searches in many of these systems. Our work on avoiding
redundant sequences of optimization phases essentially guarantees when per-
formance will be identical to a sequence that has been seen previously in the
search. We believe our approach could be used when performing searches that
attempt to determine compilation heuristics [Stephenson et al. 2003] or effec-
tive sequences of optimization phases [Cooper et al. 1999, 2000; Almagor et al.
2004]. While the static estimators used in other search techniques [Wolf et al.
1996; Triantafyllis et al. 2003] will always be more efficient in terms of search
time, obtaining more accurate performance information via direct execution or
simulation may be desirable when tuning high-performance kernels or embed-
ded applications where longer compilation times are more likely to be tolerated.
Our techniques for producing similar results in fewer generations are designed
to work in the context of a search algorithm that randomly probes a subset of
the search space in order to remember or predict when a particular phase will
not be active. These techniques may be applicable to the Rice approach [Cooper
et al. 1999, 2002; Almagor et al. 2004], but may be less useful when applying
a search technique that enumerates the different parameters and explicitly
prunes various portions of the space [Kisuki et al. 2000; Whaley et al. 2001;
Triantafyllis et al. 2003].

3. EXPERIMENTAL FRAMEWORK

This section provides a brief overview of the framework used for the
experiments reported in this paper. This includes a description of VISTA, the
candidate optimization phases, and the test programs used. A transformation
is a sequence of changes to the program representation, where the semantic
behavior is preserved. A phase is a sequence of transformations caused by a sin-
gle type of optimization. An optimization-phase sequence is a specified order of
optimization phases applied by the compiler. This paper describes techniques
for achieving faster searches for effective optimization sequences.

VISTA is a low-level interactive compilation system. A more detailed descrip-
tion of VISTA’s architecture can be found in prior publications [Zhao et al. 2002;
Kulkarni et al. 2003]. Figure 1 illustrates the flow of information in VISTA,

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

170 • P. A. Kulkarni et al.

Fig. 1. Interactive code improvement process.

which consists of a compiler and a viewer. The programmer initially indicates
a file to be compiled and then specifies requests through the viewer, which
include sequences of optimization phases, manually specified transformations,
and queries. The compiler performs the specified actions and sends program
representation information back to the viewer. Each time an optimization
sequence is selected for the function being tuned, the compiler instruments
the code, produces assembly code, links and executes the program, and gets
performance measures from the execution. When the user chooses to termi-
nate the session, VISTA writes the sequence of transformations to a file so
they can be reapplied at a later time, enabling future updates to the program
representation.

The interactiveness of VISTA is an important aspect of the environment. A
user can view the program representation after each phase or transformation
along with performance feedback to gauge the improvement during the tuning
process. In addition, a user can manually specify transformations, which is par-
ticularly useful when there are architectural features that the compiler cannot
exploit. Note that traditional compiler optimization phases can be applied even
after manually specifying transformations.

The compiler used in VISTA is based on VPO (Very Portable Optimizer),
which is a compiler backend that performs all of its optimizations on a
single low-level representation called RTLs (register transfer lists) [Benitez
and Davidson 1988, 1994]. Because VPO uses a single representation, it can
apply most analyses and optimization phases repeatedly and in an arbitrary
order. This feature facilitates finding more effective sequences of optimization
phases.

Figure 2 shows a snapshot of the viewer with the history of a sequence of opti-
mization phases displayed. Note that not only is the number of transformations
associated with each optimization phase displayed, but also the improvements
in instructions executed and code size are shown. Likewise, we could interface
with a simulator to obtain improvements in cycle count and power consump-
tion. This information allows a user to quickly gauge the progress that has been
made in improving the function. The frequency of each basic block relative to

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 171

Fig. 2. Main window of VISTA showing history of optimization phases.

Fig. 3. Selecting options to search for possible sequences.

the function is also shown in each block header line, which allows a user to
identify the critical regions of a function.

VISTA allows a user to specify a set of distinct optimization phases and have
the compiler attempt to find the best sequence for applying these phases for
a given function. Figure 3 shows the different options that VISTA provides
the user to control the search. The user specifies the sequence length, which is
the total number of phases applied in each sequence. Our experiments used the
biased sampling search, which applies a genetic algorithm in an attempt to find
the most effective sequence within a limited amount of time, since, in many
cases, the search space is too large to evaluate all possible sequences [Holland
1975]. A population is the set of solutions (sequences) that are under consider-
ation. The number of generations indicates how many sets of populations are
to be evaluated. The population size and the number of generations must be
specified, which limits the total number of sequences evaluated. These terms
are described in more detail later in the paper. VISTA also allows the user to

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

172 • P. A. Kulkarni et al.

Fig. 4. Window showing the search status.

choose dynamic and static-weight factors, where the relative improvement of
each is used to determine the overall fitness.

Performing these searches is time consuming, typically requiring tens of min-
utes for a single function, and hours or days for an entire application even when
using direct execution. Thus, VISTA provides a window showing the current
search status. Figure 4 shows a snapshot of the status of the search selected
in Figure 3. The percentage of sequences completed, the best sequence, and its
effect on performance are given. The user can terminate the search at any point
and accept the best sequence found so far.

Table I shows each of the candidate code-improving phases that we used in
the experiments when compiling each function. In addition, register assign-
ment, which is a compulsory phase that assigns pseudo registers to hardware
registers, must be performed. VISTA implicitly performs register assignment
before the first code-improving phase in a sequence that requires it. After
applying the last code-improving phase in a sequence, we perform another com-
pulsory phase, which inserts instructions at the entry and exit of the function
to manage the activation record on the runtime stack. Finally, we also perform
additional code-improving phases afterward, such as filling delay slots.

We used a subset of the MiBench benchmarks, which are C applications
targeting specific areas of the embedded market [Guthaus et al. 2001]. We used
one benchmark from each of the six categories of applications. When executing
each of the benchmarks, we used the sample input data that was provided with
the benchmark. Table II contains descriptions of these programs.

We first perform experiments on an Ultra SPARC III processor so that the
results could be obtained in a reasonable time. Thus, the experimental results
reported to evaluate the effectiveness of the methods described in the next two
sections were obtained for the SPARC. After ensuring that the techniques were
sound, we obtained results for the Intel StrongARM SA-110 processor, which
has a clock rate that is more than five times slower than the Ultra SPARC III.

Our genetic algorithm search for obtaining the baseline measurements
was accomplished in the following manner. Past studies using genetic algo-
rithms to generate better code have performed searches on entire applications

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 173

Table I. Candidate Optimization Phases in the Genetic Algorithm with Their Designations

Optimization Phase Gene Description
branch chaining b Replaces a branch or jump target with the target of the

last jump in the jump chain.
common subexpression

elimination
c Performs global analysis to eliminate fully redundant

calculations, which also includes global constant and
copy propagation.

remove unreachable
code

d Removes basic blocks that cannot be reached from the
function entry block.

remove useless blocks e Removes empty blocks from the control flow graph.
dead assignment

elimination
h Uses global analysis to remove assignments when the

assigned value is never used.
block reordering i Removes a jump by reordering basic blocks when the

target of the jump has only a single predecessor.
minimize loop jumps j Removes a jump associated with a loop by duplicating a

portion of the loop.
register allocation k Uses graph coloring to greedily replace references to a

variable within a live range with a register.
loop transformations l Performs loop-invariant code motion, recurrence

elimination, loop strength reduction, and
induction-variable elimination on each loop ordered by
loop nesting level. Each of these transformations can
also be individually selected by the user.

merge basic blocks m Merges two consecutive basic blocks a and b when a is
only followed by b and b is only preceded by a.

evaluation order
determination

o Reorders RTLs within a single basic block in an attempt
to use fewer registers.

strength reduction q Replaces an expensive instruction with one or more
cheaper ones. For this version of the compiler, this
means changing a multiply, by a constant, into a series
of shift, adds, and subtracts.

reverse branches r Eliminates an unconditional jump by reversing a
conditional branch when it branches over the jump.

instruction selection s Combines pairs or triples of instructions together where
the instructions are linked by set-use dependencies.
After combining the effects of the instructions, it also
performs constant folding and checks if the resulting
effect is a legal instruction before committing to the
transformation.

remove useless jumps u Removes jumps and branches whose target is the
following positional block.

Table II. MiBench Benchmarks Used in the Experiments

Category Program Description
auto/industrial bitcount test bit manipulation abilities of a processor
network dijkstra calculates shortest path between nodes using

Dijkstra’s Algorithm
telecomm fft performs a fast fourier transform on an array of data
consumer jpeg image compression and decompression
security sha secure hash algorithm
office stringsearch searches for given words in phrases

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

174 • P. A. Kulkarni et al.

[Nisbet 1998; Cooper et al. 1999; Stephenson et al. 2003]. In contrast, we per-
form a search on each function (a total of 106 functions in our test suite),
which requires longer compilations but results in better overall improvements
[Kulkarni et al. 2003]. In fact, most of the techniques we are evaluating would
be much less effective if we searched for a single sequence to be applied on an
entire application. We set the sequence (chromosome) length to be 1.25 times
the number of active phases that were applied for the function by the batch com-
piler. We felt this length was a reasonable limit that gives VISTA an opportunity
to apply more active phases than what the batch compiler could accomplish.
Note that this length is much less than the number of phases attempted during
the batch compilation. The sequence lengths used in these experiments varied
between 3 and 50 with an average of 14.15. We set the population size (fixed
number of sequences or chromosomes) to 20 and each of these initial sequences
is randomly initialized with candidate optimization phases. We performed 100
generations when searching for the best sequence for each function. We sort the
sequences in the population by a fitness value calculated using 50% weight on
speed and 50% weight on code size. The speed factor we used was the number
of instructions executed, since this was a measure that could be consistently
obtained. This allowed us to obtain baseline measurements within a reason-
able period of time; it has been used in similar studies [Cooper et al. 1999;
Kulkarni et al. 2003]. We could obtain a more accurate measure of speed by
using a cycle-accurate simulator. However, the main point of our experiments
was to evaluate the effectiveness of techniques for obtaining faster searches,
which can be applied with any type of fitness evaluation criteria. At each gen-
eration (time step), we remove the worst sequence and three others from the
lower (poorer performing) half of the population chosen at random. Each of the
removed sequences are replaced by randomly selecting a pair of the remaining
sequences from the upper half of the population and performing a crossover
(mating) operation to create a pair of new sequences. The crossover operation
combines the lower half of one sequence with the upper half of the other se-
quence and vice versa to create two new sequences. Fifteen (75%) sequences are
then candidates for being changed (mutated) by considering each optimization
phase (gene) in the sequence. Mutation of each phase in a sequence occurs with
a probability of 10 and 5% for the lower and upper halves of the population,
respectively. When an optimization phase is mutated, it is randomly replaced
with another phase. The four sequences subjected to crossover and the best
performing sequence are not mutated. Finally, if we find identical sequences in
the same population, we then replace the redundant sequences with ones that
are randomly generated.

Table III shows more detailed information about the functions in each of the
benchmarks. The unexecuted functions are grouped together as one entry in the
four benchmarks where not all of the functions were executed. Associated with
each function are the number of basic blocks and instructions before performing
any compiler optimizations. The sequence length is the number of optimization
phases that are attempted for each sequence during the genetic algorithm run.
We set the sequence length to be 1.25 times the number of active phases that
were applied for the function by the batch compiler. The final two columns

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 175

Table III. Function Information for the MiBench Benchmarks Used in the Experiments

Renaming InstructionsBasic Sequence
Benchmark Function Blocks Insts Length Static (%) Dynamic (%)
bitcount AR btbl bitcount 2 85 12 23.5 23.5

BW btbl bitcount 2 40 8 45.0 45.0
bit count 7 45 12 26.7 18.6
bit shifter 8 46 9 36.2 30.9
bitcount 2 101 9 41.6 41.6
main 15 208 24 43.9 24.4
ntbl bitcnt 4 47 14 34.7 35.4
ntbl bitcount 2 98 9 40.8 40.8
unexecuted funcs 4.5 58.1 12.3 38.5
average 5.2 80.9 12.1 36.8 32.5

dijkstra dequeue 4 73 10 45.3 45.3
dijkstra 19 284 27 47.3 39.0
enqueue 10 112 14 35.6 31.3
main 14 158 50 47.3 25.8
print path 4 56 13 46.7 47.2
qcount 2 5 4 66.7 66.7
average 8.8 114.7 19.7 48.2 42.6

fft CheckPointer 4 28 10 58.1 72.7
IsPowerOfTwo 6 31 9 51.5 40.7
NumberOfBits... 8 51 19 52.7 30.3
ReverseBits 6 49 13 32.0 26.9
fft float 31 661 30 40.0 28.7
main 33 663 28 40.8 38.0
unexecuted funcs 6 160 13 41.4
average 13.4 234.7 17.4 45.8 39.6

jpeg finish input ppm 1 1 3 100.0 100.0
get raw row 4 64 12 37.3 36.2
jinit read ppm 2 43 10 40.9 40.9
main 25 417 22 44.5 37.7
parse switches 132 1275 20 41.5 40.9
pbm getc 13 144 13 27.8 26.9
read pbm integer 17 141 15 40.2 38.0
select file type 24 244 15 41.3 42.0
start input ppm 49 884 27 32.3 31.5
write stdout 2 10 8 40.0 40.0
unexecuted funcs 11.9 193.3 15.2 35.7
average 25.5 310.5 14.6 43.8 43.4

sha main 10 107 15 43.6 39.6
sha final 5 126 13 30.3 27.5
sha init 2 47 7 39.6 39.6
sha print 2 42 10 32.6 32.6
sha stream 5 70 14 54.7 27.0
sha transform 20 504 30 32.5 28.0
sha update 7 124 18 31.8 32.5
average 7.3 145.7 15.3 37.9 32.4

string search init search 10 87 24 53.3 26.6
main 18 233 24 43.4 30.5
strsearch 13 126 22 41.4 38.3
unexecuted funcs 14 161 25 46.1
average 13.8 151.8 25.8 46.0 31.8

Average 12.3 173.0 17.1 43.1 37.0

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

176 • P. A. Kulkarni et al.

Fig. 5. Speed-only improvements for the SPARC.

Fig. 6. Size-only improvements for the SPARC.

Fig. 7. Size and speed improvements for the SPARC.

show the percentage of the remaining instructions in code size and dynamic
instruction counts obtained by the batch compiler as compared to unoptimized
code.

Figures 5, 6, and 7 show the percentage improvement obtained for the SPARC
when optimizing for speed only, size only, and 50% for each factor, respec-
tively. Performance results for the ARM, a widely used embedded processor, are
presented later in this paper. The baseline measures were obtained using the
batch VPO compiler, which iteratively applies optimization phases until no
more improvements can be obtained. This baseline is much more aggressive

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 177

than always using a fixed length sequence of phases [Kulkarni et al. 2003].
The average benefits shown in the figure are slightly improved from previ-
ously published results, since the searches now include additional optimization
phases that were not previously exploited by the genetic algorithm [Kulkarni
et al. 2003]. Note that the contribution of this paper is that the search for these
benefits is more efficient, rather than the actual benefits obtained.

4. REDUCING THE SEARCH OVERHEAD

Performing a search for an effective optimization phase sequence can be quite
expensive, perhaps requiring hours or days for an entire application, even when
using direct execution instead of simulation to evaluate performance. One
obvious benefit for speeding up these searches is that the technique is more
likely to be used. Another benefit is that the search can be made more aggres-
sive, such as increasing the number of generations, in an attempt to produce a
better tuned application. The following subsections describe methods to reduce
the search overhead and the results of applying these methods.

4.1 Methods for Reducing the Search Overhead

VISTA performs the following tasks to obtain dynamic performance measure-
ments for a single sequence. (1) The compiler applies the optimization phases
in the order specified by the sequence. (2) The generated code for the function
is instrumented, if required, to obtain performance measurements and the as-
sembly code for that function and the remaining assembly code for the functions
in the current source file are written to a file. (3) The newly generated assembly
file is assembled. (4) The object files comprising the entire program are linked
together into an executable by a command supplied in a configuration file. (5) To
obtain performance measurements, the program is executed using a command
in a configuration file, which may involve direct execution or simulation. (6) The
output of the execution is compared to the desired output to provide assurance
that the new sequence did not cause the generated code to become invalid.1

Tasks 2–6 often dominate the search time, which is probably due to these tasks
requiring I/O; task 1.15 performed in memory.

The following subsections describe methods to reduce the search overhead by
inferring the outcome of a sequence. Figure 8 illustrates the order in which the
different methods are attempted. Each optimization phase sequence generated
by the genetic algorithm is checked by up to four methods. The methods are
ordered according to cost. Each method handles a superset of the sequences
handled by the methods applied before it, but the later methods are more
expensive. The first method checks if the attempted sequence has been pre-
viously encountered for the function. If so, the compilation, by applying these
phases, is then avoided. The second, third, and fourth methods are used to avoid
the evaluation of the function, which comprise tasks 2–6, described earlier.

1It is possible that a new optimization sequence can cause the generated code to produce incorrect
output. In the rare case when this happens, we assign a poor fitness value to the sequence so that
it will not be selected by the genetic algorithm.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

178 • P. A. Kulkarni et al.

Fig. 8. Methods for reducing search overhead.

Fig. 9. Example of redundant attempted sequences.

4.1.1 Finding Redundant Attempted Sequences. Sometimes the same
optimization-phase sequence is reattempted during the search. Consider
Figure 9, where each optimization phase in a sequence is represented by a
letter. The same sequence can be reattempted due to mutation not occurring
on any of the phases in the sequence (e.g., sequence i remaining the same in
Figure 9). Likewise, a crossover operation or mutation changing some indi-
vidual phases can produce a previously attempted sequence (e.g., sequence k
mutates to be the same as sequence j before mutation in Figure 9). A hash table
of attempted sequences, along with the performance result for each sequence,
is maintained. If a sequence is found to be previously attempted, then the eval-
uation of the sequence is not performed and the previous result is used. This
technique of using a hash table to capture prior attempted solutions has been
previously used to reduce search time [Cooper et al. 1999; Stephenson et al.
2003; Kulkarni et al. 2003].

We realized that different sequences with the same attempted phases may
generate the same code, since some optimization phases are independent in that
the order in which they are performed cannot affect the final code that is being
generated. For instance, consider applying branch chaining before and after reg-
ister allocation. Branch chaining does not change the live range of any variable
that is a candidate for register allocation. Likewise, register allocation does not
affect branch chaining since it does not affect conditional branches or uncondi-
tional jumps. Both branch chaining and register allocation will neither inhibit
nor enable the other phase. Therefore, we identified for each optimization phase

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 179

Table IV. Independent Optimization Phases

Optimization Phase Gene b c d e h i j k l m o q r s u

branch chaining b x x x x x x x
comm subexpr elim c x x x x
remv unreach code d x x x x x x x
remv useless blocks e x x x x x x x x
dead asg elim h x x x x x x x
block reordering i x x x x x x x x
min loop jumps j x x x x x x x
register allocation k x x x x x x
loop trans l x x x x x
merge basic blocks m x x x x
eval order determ o x x x x x x x x x
strength reduction q x x x x x x x x x x
reverse branches r x x x x x x
instruction select s x x x x x x x x
remv useless jumps u x x x x x x x x x

x indicates if the two phases are independent.

whether or not it is independent with each of the other phases. Rather than
directly using the attempted sequence in the hash, we instead first sort the
phases within the sequence so that two consecutively applied phases that are
independent are always performed in the same order. We then use the sorted
sequence of phases when accessing the hash table. Using the sorted sequence
will allow more redundant sequences to be detected so more compilations can
be avoided. The x entries in Table IV indicate which optimizations are indepen-
dent of one another in the VPO compiler. For instance, branch chaining (b) is
independent of register allocation (k).

We used our experience and insight in deriving the information in this
table indicating which optimization phases are independent of one another.
We inserted sanity checks when running our experiments to ensure that this
information was correct. We were surprised that our initial reasoning was
often incorrect and corrected the independence information. This process is
described in more detail in the Section 7, which appears later in the paper.

4.1.2 Finding Redundant Active Sequences. Borrowing from biological
terminology, an active optimization phase (gene) is one that applies transforma-
tions, while a dormant optimization phase (gene) is one that has no effect. An
optimization phase is dormant when the enabling conditions for the optimiza-
tion to be applied are not satisfied. In other words, a dormant phase does not
apply any transformations. As one would expect, only a subset of the attempted
phases in a sequence will typically be active. It is common that a dormant phase
may be mutated to another dormant phase, but it would not affect the compi-
lation. Figure 10 illustrates how different attempted sequences can map to the
same active sequence, where the bold boxes represent active phases and the
nonbold boxes represent dormant phases. A second hash table is used to record
sequences where only the active phases are represented. As when accessing the
attempted hash table, we also sort the phases in the active sequence so that
two consecutive independent phases are always applied in the same order.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

180 • P. A. Kulkarni et al.

Fig. 10. Example of a redundant active sequence.

Fig. 11. Different optimizations having the same effect.

4.1.3 Detecting Identical Code. Sometimes identical code can be generated
from different active sequences. Often different optimization phases can be
applied and can have the same effect. Consider the two different ways that the
pair of instructions in Figure 11 can be merged together.

Instruction selection symbolically merges the instructions and checks to see
if the resulting instruction is legal. The same effect in this case can be produced
by constant propagation (actually part of common subexpression elimination
in VPO) followed by dead assignment elimination.

We also found that while some optimization phases are not independent,
the order in which they are applied often do not affect the generated code.
For instance, branch chaining causes a transfer of control to go directly to the
end of a chain of unconditional jumps. It is possible that one of those uncondi-
tional jumps in the chain can become unreachable code after performing branch
chaining. However, this is unlikely to happen.

VISTA has to efficiently detect when different active sequences generate
identical code to be able to lower the search overhead. A search may result
in thousands of unique function instances, which may be too large to store
in memory and be very expensive to access on disk. The key realization in
addressing this issue was that while VISTA needs to detect when function
instances are identical, it can occasionally tolerate treating different instances
as being identical since the sequences within a population are sorted and the
best sequence found by the genetic algorithm must be completely evaluated.
Thus, VISTA calculates a CRC (cyclic-redundancy code) checksum on the bytes
of the RTLs and keeps a hash table of these checksums. CRCs are commonly
used to check the validity of data transmitted over a network and have an
advantage over conventional checksums in that the order of the bytes of data
does affect the result [Peterson and Brown 1961]. If the checksum has been
generated for a previous function instance, then the performance results of

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 181

Fig. 12. Different functions with equivalent code.

that instance are used. We have verified that it is rare that the same checksum
is generated for different function instances and we never observed that the
best fitness value found was affected in our experiments.

4.1.4 Detecting Equivalent Code. Sometimes the code generated by dif-
ferent optimization sequences are equivalent, with regard to speed and size,
but are not identical. Consider two function instances that have the same se-
quence of instruction types, but use different registers. This situation can occur
since different optimization phases compete for registers. For instance, con-
sider the source code in Figure 12(a). Figures 12(b) and 12(c) show two possible
translations given two different orderings of optimization phases that consume
registers.

To detect this situation, VISTA identifies the live ranges of all of the registers
in the function and maps each live range to a distinct pseudo register. Equiv-
alent function instances become identical after mapping, which is illustrated
for the example in Figure 12(d). The CRC checksum for the mapped function
instance is computed and checked in a separate hash table of CRC checksums
to see if the mapped function had been previously generated.

On most machines there is a uniform access time for each register in the
register file. Likewise, most statically scheduled processors do not generate
stalls due to anti (write after read) and output (write after write) dependences.
However, these dependences could inhibit future optimizations. Thus, compar-
ing register mapped functions to avoid executions in the search should only
be performed after all remaining optimizations (e.g., filling delay slots) have
been applied. Given that these assumptions regarding a uniform register ac-
cess time and no stalls due to anti or output dependences are true, if the current
mapped function is equivalent to a previous mapped instance of the function,
then we can assume the two are equivalent and will produce the same result
after execution.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

182 • P. A. Kulkarni et al.

Fig. 13. Number of avoided executions.

4.2 Experimental Results

We applied the techniques in Section 4.1 to each of the benchmarks shown in
Table II. Again, we used a population size of 20 and 100 generations when
attempting to find an effective optimization sequence using the genetic algo-
rithm once for each function. Thus, 2000 optimization-phase sequences are
generated for each function.

Figure 13 shows the average number of sequences whose executions were
avoided for each benchmark using the four different methods described in
Section 4. Each function is weighted equally, since the same number of se-
quences were applied for each function. The average bar is for the average of
the percentages for the six benchmarks. These results do not include the func-
tions in the benchmarks that were not executed when using the sample input
data since these functions were evaluated on code size only and did not require
execution of the application. As mentioned previously, each method in Section 4
is able to find a superset of the sequences handled by methods applied before it.
On average, 38.2% of the sequences were detected as redundantly attempted
using the technique in Section 4.1.1, 36.6% were caught as redundant active
sequences using the technique in Section 4.1.2, 10.5% were discovered to pro-
duce identical code as generated by a previous sequence using the technique
in Section 4.1.3, and 2.5% were found to produce unique, but equivalent, code
using the technique in Section 4.1.4. Thus, over 87.7% of the executions were
avoided. We discovered that sorting the phases in a sequence, so that consecu-
tively applied independent phases are in the same order, increased the number
of avoided executions by 1.15%. We found that sorting was more successful when
hashing the active sequences than the attempted sequences, since there was
a greater chance of having a redundant sequence due to the sequence lengths
being shorter after removing the dormant phases.2

Figure 14 shows the relative search time required when applying the meth-
ods described in Section 4 to not applying these methods. These methods

2The results presented in Figure 13 are slightly different than the results presented in a previous
version of this paper [Kulkarni et al. 2004]. The reasons for these differences include changes to
the compiler, sorting of the independent phases within the attempted and active sequences before
accessing the hash tables, and enhancements for detecting identical and equivalent functions.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 183

Fig. 14. Relative total search time on the SPARC.

Fig. 15. Number of redundant executions avoided per generation.

reduced the search time by 62%. The average time required to evaluate each of
the six benchmarks improved from 6.31 to 2.86 hours. The reduction appears
to be affected not only by the percentage of the avoided executions, but also by
the size of the functions. The larger functions tended to have fewer avoided ex-
ecutions and also had longer compilations. While the average search time was
significantly reduced for these experiments using direct execution on a SPARC
processor, the savings would only increase when using simulation, since the ex-
ecutions of the application would comprise a larger portion of the search time.

By observing the search status, as shown in Figure 4, we found that search
progressed more quickly as the number of generations performed increased.
Figure 15 shows the average number of redundant sequences, where execution
was not required, for each of the 100 generations in the searches. The average
number of redundant sequences generally increases as more generations are
performed. This phenomenon is not surprising since there is a limited number
of sequences that will produce different code. Thus, a user can double the num-
ber of generations to be performed with only a small increase in search time.
Likewise, we could check for improvement for the last n generations and use
this as a termination condition for the genetic algorithm.

We also found that searches performed with shorter sequences had a higher
percentage of redundant executions that could be avoided. Note that the se-
quence length is established by the batch compilation. Smaller functions tended
to have shorter sequence lengths due to fewer opportunities for optimization

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

184 • P. A. Kulkarni et al.

Fig. 16. Number of redundant executions avoided per generation for different sequence lengths.

Fig. 17. Average times each phase was active.

phases to be active. Figure 16 shows three plots with sequence lengths ranging
from 3 to 10, 11 to 20, and 21 to 50. The shorter sequence lengths quickly become
almost entirely redundant in a few generations. A sequence that has a shorter
length is more likely to be redundant due to fewer active phases affecting the
generated code. In addition, the likelihood of mutation is less when there are
fewer phases in a sequence to mutate. In contrast, the longer sequences are, on
average, much less redundant, since longer sequence lengths yield more pos-
sible active sequences and more possible ways in which the final code can be
generated. All three plots show that the search finds an increasing number of
redundant sequences as the number of generations increases.

Figures 17, 18, and 19 display information regarding the number of times
an optimization phase was active. Figure 17 shows the average number of
times that the different optimization phases were active for each sequence. One
should realize that an optimization phase may not be active in a sequence since
the genetic algorithm may simply not select that particular phase through-
out the sequence. Also, this information does not depict the number of trans-
formations that were applied in each active phase. However, the figure does
illustrate that some optimization phases, such as instruction selection and com-
mon subexpression elimination, are much more likely to be active than other

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 185

Fig. 18. Percentage that each phase was active when attempted.

Fig. 19. Number of times each phase was active given it was active at least once.

phases. In addition, some phases can be accomplished by a combination of other
phases. For instance, common subexpression elimination and dead assignment
elimination can often have the same effect as instruction selection. Finally, the
success of phases is also affected by the code-generation strategy. For instance,
the front end that we used always generated intermediate code where a label
preceded the epilogue code at the end of a function in case there were return
statements in the source code from other locations in the function. For functions
with no conditional control flow, this return block was always merged with the
entry block. Thus, the merge basic blocks optimization phase was successful
more frequently than if another code-generation strategy was used.

Figure 18 shows how often an optimization phase will be active given that
it was actually attempted. It is interesting to note that while instruction selec-
tion was the phase that was active most often, common subexpression elim-
ination was active a greater percentage of the time when it was selected.
Instruction selection has a direct impact on both code size and speed. Some-
times common subexpression elimination does not reduce code size and may
not be deemed as beneficial as instruction selection by the genetic algorithm.
Likewise, evaluation order determination could often be applied successfully
when attempted, but had little impact on performance. The phases that did

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

186 • P. A. Kulkarni et al.

not help performance are likely to be in sequences that are in the lower half of
the population. These sequences could be replaced by the crossover operation
and had a higher mutation rate applied to them. Thus, phases having little
impact on performance were applied less often. In addition, evaluation order
determination could only be applied before assigning pseudo to hardware reg-
isters, which was implicitly performed before the first code-improving phase in
the sequence that requires it.

Figure 19 shows the average number of times an optimization phase was
active in a sequence given that it was active at least once. There are several
optimization phases, such as branch chaining, that were active at most a single
time. This shows that perhaps these phases are typically not enabled by other
phases.

5. PRODUCING SIMILAR RESULTS IN FEWER GENERATIONS

Another approach that can be used to reduce the search time for finding effective
optimization sequences is to produce the same results in fewer generations of
the genetic algorithm. If this approach is feasible, then users can either specify
fewer generations to be performed in their searches or they can stop the search
sooner once the desired results have been achieved.

5.1 Methods for Producing Similar Results in Fewer Generations

The following subsections describe the different techniques that we use to
obtain effective sequences of optimization phases in fewer generations. All of
these techniques identify phases that are likely to be active or dormant at a
given point in the compilation process.

5.1.1 Using the Batch Sequence. The traditional or batch version of our
compiler always attempts the same order of optimization phases for each func-
tion. We obtain the sequence of active phases (those phases that were able to
apply one or more transformations) from the batch compilation of the function.
We have used the length of the active batch sequence to establish the length
of the sequences attempted by the genetic algorithm in previous experiments
[Kulkarni et al. 2003].

We propose to use the active batch sequence for the function as one of the se-
quences in the initial population. The premise is that if we initialize a sequence
in the population with optimization phases that are likely to be active, then this
may allow the genetic algorithm to converge faster on the best sequence it can
find. This approach is similar to including in the initial population the com-
piler writer’s manually specified priority function when attempting to tune a
compiler heuristic [Stephenson et al. 2003].

5.1.2 Prohibiting Specific Phases. While many different optimization
phases can be specified as candidate phases for the genetic algorithm, some-
times specific phases can never be active for a given function. If the genetic
algorithm only attempts phases that have an opportunity to be active, then
the algorithm may converge on the best sequence it can find in fewer at-
tempts. There are several situations when specific optimizations should not be

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 187

Fig. 20. A DAG representing active prefixes.

attempted. Loop optimization phases cannot be active for a function that does
not contain loops. Register allocation in VPO cannot be active for a function
that does not contain any local variables or parameters. Branch optimizations
and unreachable code elimination cannot be active for a function that contains
a single basic block. Detecting that a specific set of optimization phases can
never be active for a given function requires simple analysis that only needs to
be performed once at the beginning of the genetic algorithm.

5.1.3 Prohibiting Prior Dormant Phases. When compiling a function, we
find certain optimization phases will be dormant given that a specific prefix
of active phases has been performed. Given that the same prefix of phases
is reattempted, there is no benefit from attempting the same dormant phase
in the same situation, since it will remain dormant. To avoid repeating these
dormant phases, VISTA represents the active phases as nodes in a DAG, where
each child corresponds to the next phase in an active sequence. For each node,
VISTA calculates the CRC checksum for the bytes of the RTLs at that point
after applying the associated optimization phase. A node in the DAG has more
than one parent when different prefixes produce identical RTLs. We also store
at each node the set of phases that were found to be dormant for that prefix
of active phases. Figure 20 shows an example DAG where the bold portions
represent active prefixes and the nonbold boxes represent dormant phases given
that prefix. The genetic algorithm finds that the prefixes bcb and be produce
identical code. At that point, the algorithm merges the prefixes so that they
both point to the same f node in the DAG. For instance, a and f are dormant
phases for the prefix bac. To prohibit applying a prior dormant phase, VISTA
forces a phase to change during mutation until we find a phase that has either
been active with the specified prefix or has not yet been attempted.

5.1.4 Prohibiting Unenabled Phases. Certain optimization phases when
performed cannot become active again until enabled. For instance, register
allocation replaces references to variables in live ranges with registers. A live
range is assigned to a register when a register is available at that point in the
coloring process. After the compiler applies register allocation, this optimiza-
tion phase will not have an opportunity to be active again until the register
pressure has changed. Unreachable code elimination and a variety of branch
optimizations will not affect the register pressure and thus will not enable reg-
ister allocation. Figure 21 illustrates that a specific phase, the nonbold box of
the sequence on the right will, at times, be unenabled and cannot be active.
Again the premise is that if the genetic algorithm concentrates on the phases

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

188 • P. A. Kulkarni et al.

Fig. 21. Enabling previously applied phases.

that have an opportunity to be active, then it will be able to apply more active
phases in a sequence and converge to the best sequence it can find in fewer at-
tempts. Note that determining which optimization phases can enable another
phase requires careful consideration by the compiler writer.

We implemented this technique by forcing a phase to mutate if the same
phase has already been performed and there are no intervening phases that
can enable it. We realized that a specific phase can become unenabled after an
attempted phase is found to be active or dormant. We first follow the DAG of
active prefixes, which was described in the previous subsection, to determine
which phases are currently enabled. For example, reconsider Figure 20. Assume
that b can be enabled by a, but cannot be enabled by c. Given the prefix bac,
we know that b cannot be active at this point, since b was dormant after the
prefix ba and c cannot reenable it. After reaching a leaf of the DAG, we track
which phases cannot be enabled by just examining the subsequently attempted
phases.

5.2 Experimental Results

In this section we determined the average number of generations that were
evaluated for each of the functions before finding the best fitness value in the
search.3 The baseline result is without using any of the techniques described in
Section 5.1. The other results indicate the generation when the first sequence
was found whose performance equaled the best sequence found in the base-
line search. We did not include the results for the functions when the best
fitness value found was not as good as the best fitness value in the baseline,
which occurred on about 3% of the functions. Not including these results caused
the baseline to vary, since the functions with different fitness values were not
always the same when applying each of the techniques. About 9.4% of the func-
tions had improved fitness values and about 2.8% of the functions had worse
fitness values when all of the techniques were applied. On average, the best
fitness values improved by 0.04% (by 0.30% for only the differing functions).
The maximum number of generations, before finding the best fitness value for
any function, was 98 out of a possible 100, when not applying any of the four
techniques. The maximum was 89 when all four techniques were used. The
techniques occasionally caused the best fitness value to be found later, which
we believe is due to the inherent randomness of using a genetic algorithm.
However, on average, all of the techniques were beneficial.

Figure 22 shows the effect of using the batch sequence in the initial popu-
lation, which, in general, was quite beneficial. The last three bars show the

3The results after applying the techniques in Section 5 also changed slightly from the results that
were presented in a previous version of this paper [Kulkarni et al. 2004]. These differences were
due to not only changes in the compiler, but also to using a DAG instead of a tree, where a checksum
is stored with each node, so that more redundant active prefixes can be detected.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 189

Fig. 22. Number of generations before finding the best fitness value when using the batch
sequence.

Fig. 23. Number of generations before finding the best fitness value when prohibiting specific
phases.

average effect when separating the benchmarks according to the sequence
length used in the search. Note that sequence length for each function is es-
tablished by multiplying the active sequence of the batch compiler by 1.25. We
found that this technique worked well for the smaller functions in the appli-
cations, since it was often the case that the batch compiler produced code that
was as good as the code generated by the best sequence found in the search.
However, the smaller functions tended to converge on the best sequence in the
search in fewer generations anyway, since the sequence lengths were typically
shorter. In fact, it is likely that performing a search for an effective optimization
sequence is, in general, less beneficial for smaller functions, since there is less
interplay between phases. Using the batch sequence for the larger functions
often resulted in finding the best sequence in fewer generations, even though
the batch compiler typically did not produce code that was as good as produced
by the best sequence found in the baseline results. Thus, simply initializing the
population with one sequence containing phases that are likely to be active is
quite beneficial. The effect of prohibiting specific phases throughout the search
was less beneficial, as shown in Figure 23.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

190 • P. A. Kulkarni et al.

Fig. 24. Percentage of functions where each phase could be prohibited.

Fig. 25. Number of generations before finding the best fitness value when prohibiting prior
dormant phases.

Specific phases can only be safely prohibited when the function is relatively
simple and a specific condition (such as no loops, no variables, or no uncondi-
tional jumps) can be detected. Several applications, such as stringsearch, had
no or very few functions that met these criteria. The simpler functions also
tended to converge faster to the best sequence found in the search, since the se-
quence length established by the length of the batch compilation was typically
shorter. Likewise, the simpler functions also have little impact on the size of the
entire application and have little impact on speed when they are not frequently
executed.

Figure 24 shows how often each type of phase could be prohibited. Several
transfer of control optimization phases could be prohibited when the function
had no such instructions. Minimize loop jumps and loop transformations could
be prohibited when there were no loops in a function. Register allocation could
be prohibited for only very simple functions that referenced no local variables
or arguments. Several optimization phases were never prohibited, since these
phases could either be commonly performed or the analysis to determine they
could not be applied was difficult to accomplish.

In contrast, prohibiting prior dormant and unenabled phases, which are
depicted in Figures 25 and 26, had a more significant impact since these

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 191

Fig. 26. Number of generations before finding the best fitness value when prohibiting unenabled
phases.

Fig. 27. Number of generations before finding the best fitness value when applying all techniques.

techniques could be applied to all functions. Without using these two tech-
niques, it was often the case that many phases were reattempted when there
was no opportunity for them to be active.

Applying all the techniques produced the best overall results, as shown in
Figure 27. In fact, only about 41% of the generations, on average (from 21.38
to 8.85 generations) were required to find the best sequence in the search as
compared to the baseline. As expected, applying all of the techniques did not
result in the sum of the benefits of the individual techniques, since some of the
phases that were prohibited would be caught by multiple techniques.

Consider Figure 28, which depicts the number of avoided executions. The
top bar shows the results given in Figure 13 applying only Section 4 tech-
niques. The bottom bar for each benchmark shows the number of executions
that are avoided when all of the techniques described in Section 5 are applied.
No active sequences were considered redundant after applying the technique
described in Section 5.1.3, since we checked the checksums stored in the DAG
of active prefixes to determine if the active sequences produced identical code.
Thus, detecting sequences as identical also detects redundant active sequences.
On average, one can see that the number of redundantly attempted sequences

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

192 • P. A. Kulkarni et al.

Fig. 28. Number of avoided executions when using Section 5 techniques.

Fig. 29. Average benefit relative to the best fitness value per generation.

decreased. We found that many of the smaller functions had more hash table
hits for attempted sequences after applying the techniques in Section 5; the
larger functions typically had fewer hits. We believe this phenomenon is due
to applying the techniques to prohibit prior dormant and unenabled phases.
For the smaller functions with shorter sequence lengths, the possible phases
to attempt were often exhausted and an active phase that was used before was
often attempted. Likewise, the larger functions with longer sequence lengths
and significantly larger search spaces tended to not reattempt previously dor-
mant phases, but did not exhaust the possible phases and had fewer hits in the
hash table. The average number of avoided executions decreases by about 1.4%,
which means a greater number of functions with unique code were generated.
However, the decrease in avoided executions is much less than the average de-
crease in generations required to reach the best sequence found in the search,
as shown in Figure 27. Figure 29 shows the impact that applying all of the
techniques in Section 5 had on the average performance of the code for each
generation relative to the best fitness value found in the search. A significant
improvement is obtained by performing the batch sequence in the initial genera-
tion. After a few generations, prohibiting prior dormant phases and prohibiting
unenabled phases result in a greater benefit than using the batch sequence. Per-
forming all of the techniques resulted in the best result. This graph shows that
the number of generations could be reduced with a neglible loss in performance
of the generated code.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 193

Fig. 30. Relative search time before finding the best fitness value.

Fig. 31. Speed-only improvements for the ARM.

Figure 30 shows the relative time for finding the best fitness value when
all of the techniques in Section 5 were applied. The actual times are shown in
minutes, since finding the best sequence is accomplished in a fraction of the
total generations performed in the search. Note the baseline for finding the
best fitness value includes all of the methods described in Section 4, to avoid
unnecessary executions. The best fitness value was found 65.0% of the time, on
average, as compared to the baseline.

6. APPLYING THE TECHNIQUES ON AN EMBEDDED PROCESSOR

After ensuring that the techniques we developed to improve the search time for
effective sequences were sound, we obtained results on the Intel StrongARM
SA 110 processor. Figures 31, 32, and 33 show the percentage improvement
when optimizing for speed only, size only, and 50% for each factor, respectively.
Figure 34 shows the relative time for running the genetic algorithm on the ARM
when all of the techniques in Section 4 were applied. The search time using the
Section 4 techniques required 35.9% of the time on average as compared to
not applying these techniques. The average time required to obtain results for
each of the benchmarks when optimizing for both speed and size on the ARM
required 11.54 instead of 26.68 hours.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

194 • P. A. Kulkarni et al.

Fig. 32. Size-only improvements for the ARM.

Fig. 33. Size and speed improvements for the ARM.

Fig. 34. Relative total search time on the ARM.

7. IMPLEMENTATION ISSUES

During the process of this investigation, we encountered several implementa-
tion issues that made this work challenging. First, the VISTA framework was
designed so that a user could interactively make selections using a mouse. We
set up a mode in VISTA where selections could be specified in a file so that
the experiments could be performed in a batch mode. Second, producing code
that always generates the correct output for different optimization phase se-
quences is difficult. Even implementing a conventional compiler that always
generates code that produces correct output when applying one predefined

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 195

sequence of optimization phases is not an easy task. In contrast, generating
code that always correctly executes for thousands of different optimization
phase sequences is a severe stress test. Ensuring that all sequences in the
experiments produced valid code required tracking down many errors that had
not yet been discovered in the VISTA system. Third, determining which phases
were independent (see Table IV), prohibiting specific phases (see Section 5.1.2),
and prohibiting unenabled phases (see Section 5.1.4) required analysis and
judgment by the compiler writer to determine when optimization phases could
be enabled or disabled. We inserted sanity checks when running experiments
without using these methods to ensure that our assertions concerning the en-
abling of optimization phases were accurate. For instance, we checked that
the attempted and active sequences for every function produced the same code
when applied directly or when applied after sorting the independent phases. We
found several cases where our reasoning was faulty after inspecting the situa-
tions uncovered by these sanity checks and we were able to correct our enabling
assertions. Fourth, we sometimes found that dormant optimization phases
did have unexpected side effects by changing the analysis information, which
could enable or disable a subsequent optimization phase. These side effects can
affect the results of the methods described in Sections 4.1.2, 5.1.3, and 5.1.4.
We also inserted sanity checks to ensure that different dormant phases did not
cause different effects on subsequent phases. We detected when these situa-
tions occurred, properly set the information about what analysis is required
and invalidated by each optimization phase, and now rarely encounter these
problems. Finally, these experiments were quite time-consuming, particularly
when obtaining a baseline without using our techniques to reduce the search
overhead. We modified the system to log information during the search, such
as each attempted sequence, the corresponding active sequence, the checksum
of the function produced by the sequence, and the effect on speed and space. In
order to reduce the time required to isolate problems when performing various
sanity checks, we would process the log file rather than rerunning the entire
search.

8. FUTURE WORK

There is much future research that can be accomplished on providing fast
searches for effective optimization sequences. We have shown that detecting
when a particular optimization phase will be dormant can result in fewer gen-
erations to converge on the best sequence in the search. We believe it is possible
to estimate the likelihood that a particular optimization phase will be active
given the active phases that precede it by empirically collecting this informa-
tion. This information could be exploited by adjusting the mutation operation
to more likely mutate to phases that have a better chance of being active with
the goal of converging to a better fitness value in fewer generations.

Another area of future work is to vary the characteristics of the search. It
would be interesting to see the effect on a search as one changes aspects of
genetic algorithm, such as the sequence length, population size, and number
of generations. We may find that certain search characteristics may be better

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

196 • P. A. Kulkarni et al.

for one class of functions, while other characteristics may be better for other
functions. In addition, it would be interesting to perform searches involving
more compiler optimizations and benchmarks.

Finally, the use of a cluster of processors can reduce the search time.
Certainly different sequences within a population can be evaluated in parallel
[Stephenson et al. 2003]. Likewise, functions within the same application can be
evaluated independently. Even with the use of a cluster, the techniques we have
presented in our paper would still be useful, since they will further enhance
the search time. In addition, not every developer has access to a cluster.

9. CONCLUSIONS

There are several contributions that we have presented in this paper. First,
we have shown that there are effective methods to reduce the search over-
head for finding effective optimization-phase sequences by avoiding expensive
executions or simulations. Detecting when a phase was active or dormant by
instrumenting the compiler was very useful, since many sequences can be de-
tected as redundant by memorizing the results of active phase sequences. We
also discovered that the same code is often generated by different sequences.
We demonstrated that using efficient mechanisms, such as a CRC checksum,
to check for identical or equivalent functions, can also significantly reduce the
number of required executions of an application. Second, we have shown that,
on average, the number of generations required to find the best sequence can
be reduced by over two thirds. One simple, but effective, technique is to in-
sert the active sequence of phases from the batch compilation as one of the
sequences in the initial population. We also found that we could often use anal-
ysis and empirical data to determine when phases could not be active. These
techniques result in faster convergence to more effective sequences, which can
allow equally effective searches to be performed with fewer generations of the
genetic algorithm.

An environment to tune the sequence of optimization phases for each func-
tion in an embedded application can be very beneficial. However, the overhead
of performing searches for effective sequences using a genetic algorithm can
be quite significant. This problem is exacerbated when performance measure-
ments for an application are obtained by simulation or on a slower embedded
processor. Many developers are willing to wait for tasks to run overnight to
improve a product, but are unwilling to wait longer. We have shown that the
search overhead can be significantly reduced, perhaps to a tolerable level, by
using methods to avoid redundant executions and techniques to converge to the
best sequence it can find in fewer generations.

ACKNOWLEDGMENTS

Clark Coleman and the anonymous reviewers provided many helpful sug-
gestions that improved the quality of the paper. In particular, we thank
Keith Cooper and Tim Harvey for their insightful comments. This research
was supported in part by National Science Foundation grants EIA-0072043,
ACI-0203956, CCR-0208892, ACI-0305144, and CCR-0312493.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

Fast/Efficient Searches for Effective Optimization-Phase Sequences • 197

REFERENCES

ALMAGOR, L., COOPER, K. D., GROSUL, A., HARVEY, T. J., REEVES, S. W., SUBRAMANIAN, D., TORCZON, L., AND

WATERMAN, T. 2004. Finding effective compilation sequences. In LCTES ’04: Proceedings of the
2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems. ACM Press, New York. 231–239.

BENITEZ, M. E. AND DAVIDSON, J. W. 1988. A portable global optimizer and linker. In Proceedings
of the SIGPLAN’88 Conference on Programming Language Design and Implementation. ACM
Press, New York. 329–338.

BENITEZ, M. E. AND DAVIDSON, J. W. 1994. The advantages of machine-dependent global opti-
mization. In Proceedings of the 1994 International Conference on Programming Languages and
Architectures. 105–124.

CALDER, B., GRUNWALD, D., AND LINDSAY, D. 1995. Corpus-based static branch prediction. In Pro-
ceedings of the SIGPLAN ’95 Conference on Programming Language Design and Implementation.
79–92.

CHOW, K. AND WU, Y. 1999. Feedback-directed selection and characterization of compiler
optimizatons. Proc. 2nd Workshop on Feedback Directed Optimization.

COOPER, K. D., SCHIELKE, P. J., AND SUBRAMANIAN, D. 1999. Optimizing for reduced code space using
genetic algorithms. In Workshop on Languages, Compilers, and Tools for Embedded Systems.
1–9.

COOPER, K., SUBRAMANIAN, D., AND TORCZON, L. 2002. Adaptive optimizing compilers for the 21st
century. Journal of Supercomputing 23, 1, 7–22.

GAO, G. R., OLSEN, R., SARKAR, V., AND THEKKATH, R. 1993. Collective loop fusion for array contrac-
tion. In Proceedings of the 5th International Workshop on Languages and Compilers for Parallel
Computing. Springer-Verlag, London. 281–295.

GRANLUND, T. AND KENNER, R. 1992. Eliminating branches using a superoptimizer and the GNU
C compiler. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language
Design and Implementation. ACM Press, New York, San Francisco, CA. 341–352.

GRANSTON, E. D. AND HOLLER, A. 2001. Automatic recommendation of compiler options. In Proc.
4th Workshop of Feedback-Directed and Dynamic Optimization.

GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN, T. M., MUDGE, T., AND BROWN, R. B. 2001.
MiBench: A free, commercially representative embedded benchmark suite. IEEE 4th Annual
Workshop on Workload Characterization.

HOLLAND, J. H. 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI.

IRIGOIN, F. AND TRIOLET, R. 1988. Supernode partitioning. In POPL ’88: Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,
New York. 319–329.

KISUKI, T., KNIJNENBURG, P., AND O’BOYLE, M. 2000. Combined selection of tile sizes and unroll
factors using iterative compilation. In Proc. PACT. 237–246.

KULKARNI, P., ZHAO, W., MOON, H., CHO, K., WHALLEY, D., DAVIDSON, J., BAILEY, M., PAEK, Y., AND GALLIVAN,
K. 2003. Finding effective optimization phase sequences. In Proceedings of the 2003 ACM
SIGPLAN Conference on Language, Compiler, and Tool for Embedded Systems. ACM Press, New
York. 12–23.

KULKARNI, P., HINES, S., HISER, J., WHALLEY, D., DAVIDSON, J., AND JONES, D. 2004. Fast searches for
effective optimization phase sequences. In Proceedings of the ACM SIGPLAN ’04 Conference on
Programming Language Design and Implementation. ACM Press, New York.

MASSALIN, H. 1987. Superoptimizer: a look at the smallest program. In Proceedings of the Second
International Conference on Architectual Support for Programming Languages and Operating
Systems. IEEE Computer Society Press. Washington, DC, Palo Alto, CA. 122–126.

NISBET, A. 1998. Genetic algorithm optimized parallelization. Workshop on Profile and Feedback
Directed Compilation.

PETERSON, W. AND BROWN, D. 1961. Cyclic codes for error detection. Proceedings of the IRE 49,
228–235.

STEPHENSON, M., AMARASINGHE, S., MARTIN, M., AND O’REILLY, U.-M. 2003. Meta optimization: im-
proving compiler heuristics with machine learning. In Proceedings of the ACM SIGPLAN 2003

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

198 • P. A. Kulkarni et al.

Conference on Programming Language Design and Implementation. ACM Press, New York.
77–90.

TRIANTAFYLLIS, S., VACHHARAJANI, M., VACHHARAJANI, N., AND AUGUST, D. I. 2003. Compiler
optimization-space exploration. In Proceedings of the International Symposium on Code
Generation and Optimization. IEEE Computer Society, Washington, DC. 204–215.

VEGDAHL, S. R. 1982. Phase coupling and constant generation in an optimizing microcode com-
piler. In Proceedings of the 15th Annual Workshop on Microprogramming. IEEE Press, Palo Alto,
CA. 125–133.

WHALEY, R. C., PETITET, A., AND DONGARRA, J. J. 2001. Automated empirical optimization of soft-
ware and the ATLAS project. Parallel Computing 27, 1–2, 3–35. Also available as University of
Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/
lawn147.ps).

WHITFIELD, D. L. AND SOFFA, M. L. 1997. An approach for exploring code improving transforma-
tions. ACM Trans. Program. Lang. Syst. 19, 6, 1053–1084.

WOLF, M. E., MAYDAN, D. E., AND CHEN, D.-K. 1996. Combining loop transformations considering
caches and scheduling. In MICRO 29: Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture. IEEE Computer Society, Washington, DC. 274–286.

ZHAO, W., CAI, B., WHALLEY, D., BAILEY, M., VAN ENGELEN, R., YUAN, X., HISER, J., DAVIDSON, J.,
GALLIVAN, K., AND JONES, D. 2002. Vista: A system for interactive code improvement. In ACM
SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems. ACM, New
York. 155–164.

Received August 2004; revised March 2005; accepted April 2005

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 2, June 2005.

