Exploring Single and Multi-Level JIT Compilation Policy for Modern
Machines?

MICHAEL R. JANTZ, PRASAD A. KULKARNI
University of Kansas, Lawrence, Kansas

Dynamic or Just-in-Time (JIT) compilation is essential thiave high-performance emulation for programs written in
managedanguages, such as Java and C#. It has been observed thaeavabime JIT compilation policy is most effective
to obtain good runtime performance without impeding agpian progress on single-core machines. At the same tinte, it
often suggested that a more aggressive dynamic compilatiategy may perform best on modern machines that provide
abundant computing resources, especially with virtualhimas (VM) that are also capable of spawning multiple corssur
compiler threads. However, comprehensive research oreste] bl compilation policy for such modern processors angVM
is currently lacking. The goal of this work is to explore theperties of single-tier and multi-tier JIT compilationlio@es
that can enable existing and future VMs to realize the begjram performance on modern machines.

In this work, we design novel experiments and implement név d6nfigurations to effectively control the compiler
aggressiveness and optimization levélsandwhenmethods are compiled) in the industry-standard Oracle ptait3ava
VM to achieve this goal. We find that the best JIT compilatiatiqy is determined by the nature of the application and
the speed and effectiveness of the dynamic compilers. Vémeaarlier results showing the suitability of conseneatVT
compilation on single-core machines for VMs with multiplencurrent compiler threads. We show that employing the free
compilation resources (compiler threads and hardwaresttre@ggressively compil@oreprogram methods quickly reaches
a point of diminishing returns. At the same time, we also fimat uising the free resources to reduce compiler queue backup
(compile selected hot methodarly) significantly benefits program performance, especialtysfower (highly-optimizing)
JIT compilers. For such compilers, we observe that acdyrpt®ritizing JIT method compiles is crucial to realizestmost
performance benefit with the smallest hardware budgetllfzimee show that a tiered compilation policy, although cdexp
to implement, greatly alleviates the impact of more andyedil compilation of programs on modern machines.

Categories and Subject Descriptors: D.R4odgramming Language$: Processors—Optimizations, Run-time environments,
Compilers

General Terms: Languages, Performance
Additional Key Words and Phrases: virtual machines, dyearampilation, multi-core, Java

ACM Reference Format:

Michael Jantz and Prasad Kulkarni, 2013. Exploring Singié sulti-Level JIT Compilation Policy for Modern Machines.
ACM Trans. Architec. Code Optir, N, Article A (January YYYY), 26 pages.

DA : http://dx.doi.org/10.1145/0000000.0000000

LExtension of Conference Paper.This work extends our conference submission, titl#@ Compilation Policy for
Modern Machinespublished in the ACM international conference on Obje@ied programming systems languages and
applications (OOPSLA) [Kulkarni 2011]. We extend this @arlvork by: (a) re-implementingll experiments in the latest
HotSpot JVM that provides a new state-of-the-art multi-tempiler and supports improved optimizations in the serve
compiler, (b) for the first time, investigating the effectsaggressive compilation and multiple compiler threadsrariti-
tiered JIT compilation strategies, (c) providing more comprehengesults, with differentiation on benchmark features, (
re-analyzing our observations and conclusions, and (éperp a different set of heuristic priority schemes.

This work is supported by the National Science Foundatiodeu NSF CAREER award CNS-0953268.

Author’s addresses: M. Jantz and P. Kulkarni, Departmerile€trical Engineering and Computer Science, University o
Kansas, Lawrence, KS 66045.

Permission to make digital or hard copies of part or all o$ thiork for personal or classroom use is granted without fee
provided that copies are not made or distributed for proft@nmercial advantage and that copies show this notice on the
first page or initial screen of a display along with the futhtion. Copyrights for components of this work owned by ahe
than ACM must be honored. Abstracting with credit is peredittTo copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this worlotiner works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., A@M, 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax+1 (212) 869-0481, or permissions@acm.org.

© YYYY ACM 1544-3566/YYYY/01-ARTA $15.00

DA : http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimizationl, VONo. N, Article A, Publication date: January YYYY.

A:2 M. Jantz and P. Kulkarni

1. INTRODUCTION

To achieve application portability, programs writtenntanagedorogramming languages, such as
Java [Gosling et al. 2005] and C# [Microsoft 2001], are distied as machine-independent inter-
mediate language binary codes fovigual machine(VM) architecture. Since the program binary
format does not match the native architecture, VMs have fg@yreither interpretation or dynamic
compilation for executing the program. Additionally, theecheads inherent during program inter-
pretation make dynamic or Just-in-Time (JIT) compilati@sential to achieve high-performance
emulation of such programs in a VM [Smith and Nair 2005].

Since it occurs at runtime, JIT compilation contributeshe bverall execution time of the ap-
plication and can potentially impede application progiasd further degrade it®sponsdime, if
performed injudiciously. Therefore, JIT compilation pidis need to carefully tunié, when and
how to compile different program regions to achieve the bestalv@erformance. Researchers
invented the technique sklective compilatioto address the issuesibfandwhento compile pro-
gram methods during dynamic compilation [Holzle and Unt@96; Paleczny et al. 2001; Krintz
et al. 2000; Arnold et al. 2005]. Additionally, several mod&Ms provide multiple optimization
levels along with decision logic to control and decli®vto compile each method. Whilesingle-
tier compilation strategy always applies the same set of opditioizs to each method,raulti-tier
policy may compile the same method multiple times at distiptimization levels during the same
program run. The control logic in the VM determines each mé%hotnesdevel (or how much of
the execution time is spent in a method) to decide its cortipildevel.

Motivation: Due to recent changes and emerging trends in hardware and®Mextures, there is
an urgent need for a fresh evaluation of JIT compilationtstyi@s on modern machines. Research
on JIT compilation policies has primarily been conductedsomgle-processor machines and for
VMs with a single compiler thread. As a result, existing piglg that attempt to improve program
efficiency while minimizing application pause times anciférence are typically quite conserva-
tive. Recent years have withessed a major paradigm shiftdroprocessor design from high-clock
frequency single-core machines to processors that nowrate multiple cores on a single chip.
These modern architectures allow the possibility of rugrtimee compiler thread(s) on a separate
core(s) to minimize interference with the application #deVM developers are also responding to
this change in their hardware environment by allowing the ¥W\imultaneously initiate multiple
concurrent compiler threads. Such evolution in the hare\aad VM contexts may require radically
different JIT compilation policies to achieve the most efiiee overall program performance.

Objective:The objective of this research is to investigate and reconahdel compilation strategies
to enable the VM to realize the best program performance iy single/multi-core processors
and future many-core machines. We vary teenpilation thresholdthe number of initiated com-
piler threads, and single and multi-tier compilation sgges to controif, when andhowto detect
and compile important program methods. The compilatioaghold is a heuristic value that indi-
cates thénotnesf each method in the program. Thus, more aggressive pekeigloy a smaller
compilation threshold so that more methods bectimtesooner. We induce progressive increases
in the aggressiveness of JIT compilation strategies, amddimber of concurrent compiler threads
and analyze their effect on program performance. While glsitier compilation strategy uses a
single compiler (and fixed optimization set) for each hothmoet a multi-tier compiler policy typi-
cally compiles a hot method with progressivalyvancedthat apply more and better optimizations
to potentially produce higher-quality code), but slowéF, dompilers. Our experiments change the
different multi-tier hotness thresholds in lock-step teogdartially control how (optimization level)
each method is compiledAdditionally, we design and construct a novel VM configuratio con-
duct experiments for many-core machines that are not cortyrawailable as yet.

2In contrast to the two components of ‘if’ and ‘when’ to conepithe issue of how to compile program regions is much
broader and is not unique to dynamic compilation, as cantbstatl by the presence of multiple optimization levels ifGGC

and the wide body of research in profile-driven compilati@rgham et al. 1982; Chang et al. 1991; Arnold et al. 2002;
Hazelwood and Grove 2003] and optimization phase ordes@hedtion [Whitfield and Soffa 1997; Haneda et al. 2005;

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:3

Findings and ContributionsThis is the first work to thoroughly explore and evaluate ¢éhesrious
compilation parameters and strategies 1) on multi-coreraady-core machines and 2) together.
We find that the most effective JIT compilation strategy dejseon several factors, including: the
availability of free computing resources, program feaduf@articularly the ratio of hot program
methods), and the compiling speed, quality of generated,cad the method prioritization algo-
rithm used by the compiler(s) employed. In sum, the majotrimutions of this research are:

(1) We design original experiments and VM configurationsit@stigate the most effective JIT com-
pilation policies for modern processors and VMs with siraytel multi-level JIT compilation.

(2) We quantify the impact of altering ‘if’, ‘when’, and onspect to ‘how’ methods are compiled on
application performance. Our experiments evaluate JVNop@ance with various settings for
compiler aggressiveness and the number of compilatiomdsreas well as different techniques
for prioritizing method compiles, with both single and ninldtvel JIT compilers.

(3) We explain the impact of different JIT compilation ségies on available single/multi-core and
future many-core machines.

The rest of the paper is organized as follows. In the nexi@®aive present background infor-
mation and related work on existing JIT compilation pokcid/e describe our general experimental
setup in Section 3. Our experiments exploring different ddmpilation strategies for VMs with
multiple compiler threads on single-core machines arerdest in Section 4. In Section 5, we
present results that explore the most effective JIT cortipiigolicies for multi-core machines. We
describe the results of our novel experimental configunaticstudy compilation policies for future
many-core machines in Section 6. We explain the impact ofpiiing method compiles, and effect
of multiple application threads in Sections 7 and 8. Finallg present our conclusions and describe
avenues for future work in Sections 9 and 10 respectively.

2. BACKGROUND AND RELATED WORK

Several researchers have explored the effects of condumimpilation at runtime on overall pro-
gram performance and application pause times. The PaBlaalltalk VM [Deutsch and Schiff-
man 1984] followed by the Self-93 VM [Holzle and Ungar 1996dneered many of the adaptive
optimization techniques employed in current VMs, inclydselective compilation with multiple
compiler threads on single-core machines. Aggressive gatigm on such machines has the po-
tential of degrading program performance by increasingctirapilation time. The technique of
selective compilation was invented to address this isstledyinamic compilation [Holzle and Un-
gar 1996; Paleczny et al. 2001; Krintz et al. 2000; Arnold €@05]. This technique is based on the
observation that most applications spend a large majofitiyesr execution time in a small portion
of the code [Knuth 1971; Bruening and Duesterwald 2000; At al. 2005]. Selective compi-
lation uses online profiling to detect this subsehof methods to compile at program startup, and
thus limits the overhead of JIT compilation while still dénig the most performance benefit. Most
current VMs employ selective compilation withstagedemulation model [Hansen 1974]. With
this model, each method is interpreted or compiled with arfas-optimizing compiler at program
start to improve application response time. Later, the Viédeines and selectively compiles and
optimizes only the subset of hot methods to achieve bettgrpm performance.

Unfortunately, selecting the hot methods to compile rezgiinture program execution infor-
mation, which is hard to accurately predict [Namjoshi andkideni 2010]. In the absence of any
better strategy, most existing JIT compilers employ a sempkdiction model that estimates that
frequently executedurrent hot methods will also remain hot in the future [Grcevski et24104;
Kotzmann et al. 2008; Arnold et al. 2000a]. Online profilisgised to detect these current hot meth-
ods. The most popular online profiling approaches are baséustrumentatiortountersHansen
1974; Holzle and Ungar 1996; Kotzmann et al. 2008], intetrtimer-basedampling[Arnold et al.

Cavazos and O'Boyle 2006; Sanchez et al. 2011; Jantz ancikuilR013] for static and dynamic compilers. Consequently,
we only explore one aspect of ‘how’ to compile methods in tiisk.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

A4 M. Jantz and P. Kulkarni

2000a], or a combination of the two methods [Grcevski et @04. The method/loop is sent for
compilation if the respective method counters exceed a fixexshold.

Finding the correct threshold value is crucial to achievedyprogram startup performance in a
virtual machine. Setting a higher than ideal compilatiare#ihold may cause the virtual machine to
be too conservative in sending methods for compilationycady program performance by denying
hot methods a chance for optimization. In contrast, a canpiith a very low compilation threshold
may compile too many methods, increasing compilation cz&dh Therefore, most performance-
aware JIT compilers experiment with many different thrédhalues for each compiler stage to
determine the one that achieves the best performance ogsgeallenchmark suite.

Resource constraints force JIT compilation policies to ens&veral tradeoffs. Thus, selective
compilation limits the time spent by the compiler at the afgiotentially lower application perfor-
mance. Additionally, the use of online profiling causes gela making the compilation decisions
at program startup. The first component of this delay is cabyehe VM waiting for the method
counters to reach the compilatidhresholdbefore queuingit for compilation. The second fac-
tor contributing to the compilation delay occurs as eachmitation request waits in the compiler
queue to be serviced by a free compiler thread. Restrictiethad compiles and the delay in op-
timizing hot methods results in poor application startufgrenance as the program spends more
time executing in unoptimized code [Kulkarni et al. 2007irKz 2003; Gu and Verbrugge 2008].

Various strategies have been developed to address theses dielJIT compilation at program
startup. Researchers have explored the potential of offlia&ling and classfile annotation [Krintz
and Calder 2001; Krintz 2003], early and accurate prediatichot methods [Namjoshi and Kulka-
rni 2010], and online program phase detection [Gu and Vgdpel2008] to alleviate the first delay
component caused by online profiling. Likewise, reseaschave also studied techniques to address
the second component of the compilation delay caused byatleup and wait time in the method
compilation queue. These techniques include increasiagtiority [Sundaresan et al. 2006] and
CPU utilization [Kulkarni et al. 2007; Harris 1998] of therogpiler thread, and providing a priority-
queue implementation to reduce the delay foriib&er program methods [Arnold et al. 2000b].

However, most of the studies described above have only laegeted for single-core machines.
There exist few explorations of JIT compilation issues farltincore machines. Krintz et al. in-
vestigated the impact of background compilation in a sepdtaead to reduce the overhead of
dynamic compilation [Krintz et al. 2000]. This techniquess single compiler thread and employs
offline profiling to determine and prioritize hot methods tmpile. Kulkarni et al. briefly discuss
performing parallel JIT compilation with multiple compiléareads on multi-core machines, but do
not provide any experimental results [Kulkarni et al. 20@&Histing JVMs, such as Sun’s HotSpot
server VM [Paleczny et al. 2001] and the Azul VM (derived fretotSpot), support multiple com-
piler threads, but do not present any discussions on ideapitation strategies for multi-core ma-
chines. Prior work by Bohm et al. explores the issue of pelrdllT compilation with a priority queue
based dynamic work scheduling strategy in the context af thanamic binary translator [Bohm
et al. 2011]. Esmaeilzadeh et al. study the scalability oifovs Java workloads and their power /
performance tradeoffs across several different architestfEsmaeilzadeh et al. 2011]. Our earlier
publications explore some aspects of the impact of vanjiegaggressiveness of dynamic compi-
lation on modern machines for JVMs with multiple compilerethds [Kulkarni and Fuller 2011,
Kulkarni 2011]. This paper extends our earlier works by (@yving more comprehensive results,
(b) re-implementing most of the experiments in the latesti@DK JVM that provides a state-of-
the-art multi-tier compiler and supports improved optiatians, (c) differentiating the results and
re-analyzing our observations based on benchmark chasdict® (d) exploring different heuristic
priority schemes, and (e) investigating the effects of aggive compilation and multiple compiler
threads on the multi-tiered JIT compilation strategiese®a production-grade Java VMs, includ-
ing the Oracle HotSpot and IBM J9, now adopt a multi-tier cdatjpn strategy, which make our
results with the multi-tiered compiler highly interestiagd important.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A5

Table I. Threshold parameters in the tiered compiler

Parameter Description Client Server
Default Default
Invocation Threshold] Compile method if invocation count exceeds this threshold 200 5000

Backedge Threshold OSR compile method if backedge count exceeds this threshold 7000 40000
Compile Threshold | Compile method if invocation+ backedge count exceeds this 2000 15000
threshold (and invocation count Minimum Invocation Threshold)
Minimum Invocation | Minimum number of invocations required before method can|be 100 600

Threshold considered for compilation

3. EXPERIMENTAL FRAMEWORK

The research presented in this paper is performed usinge®&zpenJDK/HotSpot Java virtual
machine (build 1.6.25-b06) [Paleczny et al. 2001]. The HotSpot VM uses intdgti@n at pro-
gram startup. It then employs a counter-based profiling raugisim, and uses the sum of a method’s
invocationand loopback-edgeounters to detect and promote hot methods for compilaiiencall
the sum of these counters threcution counof the method. Methods/loops are determined to be
hot if the corresponding method execution count exceedgd thweshold. The HotSpot VM allows
the creation of an arbitrary number of compiler threadspasiied on the command-line.

The HotSpot VM implements two distinct optimizing comps#en improve application perfor-
mance beyond interpretation. Tlakent compilerprovides relatively fast compilation times with
smaller program performance gains to reduce applicatiamugt time (especially, on single-core
machines). Theerver compilerapplies an aggressive optimization strategy to maximizéope
mance benefits for longer running applications. We condletperiments to compare the overhead
and effectiveness of HotSpot's client and server compibarfigurations. We found that the client
compiler is immensely fast, and onlgquires about 2% of the time, on average, taken by the server
compilerto compile the same set of hot methods. At the same time, thyglesiand fastlient com-
piler is able to obtain most (95%) of the performance gaitatige to interpreted code) realized by
the server compiler

In addition to the single-level client and server compilétstSpot provides dgiered compiler
configuration that utilizes and combines the benefits of iemtcand server compilers. In the most
common path in the tiered compiler, each hot method is firstgied with the client compiler
(possibly with additional profiling code inserted), ancetlaif the method remains hot, is recompiled
with the server compiler. Each compiler thread in the HotSipoed compiler is dedicated to either
the client or server compiler, areich compiler is allocated at least one thredd account for the
longer compilation times needed by the server compilerSidot automatically assigns the compiler
threads at a 2:1 ratio in favor of the server compiler. Theprty of the client compiler to quickly
produce high-quality optimized code greatly influenceskbbavior of the tiered compiler under
varying compilation loads, as our later experiments in plaiper will reveal.

There is a singleompiler queualesignated to each (client and server) compiler in thediere
configuration. These queues employ a simple execution doased priority heuristic to ensure
the most active methods are compiled earlier. This heargstimputes the execution count of each
method in the appropriate queue since the last queue rertedyadl the most active method. As the
load on the compiler threads increases, HotSpot dynamizalteases its compilation thresholds
to prevent either the client or server compiler queues froowing prohibitively long. In addition,
the HotSpot tiered compiler has logic to automatically reesialemethods that have stayed in the
queue for too long. For our present experiments, we disaklatitomatic throttling of compilation
thresholds and removal of stale methods to appropriatelgeintine behavior of a generic tiered
compilation policy. The tiered compiler uses differenetstiolds that move in lockstep to tune the
aggressiveness of its component client and server corapilable | describes these compilation
thresholds and their default values for each compiler irtifred configuration.

The experiments in this paper were conducted using all tmehyearks from three different
benchmark suites, SPECjvm98 [SPEC98 1998], SPECjvm20BEC2008 2008] and DaCapo-

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

A6 M. Jantz and P. Kulkarni

Table Il. Benchmarks used in our experiments.

SPECjvm98 SPECjvm2008 DaCapo-9.12-bach

Name | #M | #AT || Name | #M | #AT |[Name | #M | #AT
_201.compress100 517 1 || compiler.compiler 3195 1 [| avroradefault 1849 6
_201 compresslO 514 1 || compiler.sunflow 3082 1 || avrorasmall 1844 3
202 jess100 778 1 || compress 960 1 || batik default 4366 1
202 jess10 759 1 || crypto.aes 1186 1 || batik. small 3747 1
_205 raytrace100 657 1 || crypto.rsa 960 1 || eclipsedefault 11145 5
_205 raytracel0 639 1 || crypto.signverify 1042 1 || eclipsesmall 5461 3
_209.db_100 512 1 || derby 6579 1 || fop_default 4245 1
_209.db_10 515 1 mpegaudio 959 1 || fop_small 4601 2
_213javac100 1239 1 || scimark.fft.small 859 1 || h2.default 2154 3
_213javac10 1211 1 || scimark.lu.small 735 1 || hZsmall 2142 3
_222 mpegaudiol00 659 1 || scimark.montecarlo 707 1 || jython.default 3547 1
_222 mpegaudiol0 674 1 || scimark.sor.small 715 1 || jythonsmall 2070 2
_227-mtrt. 100 658 2 || scimark.sparse.small 717 1 || luindexdefault 1689 2
_227.mtrt.10 666 2 || serial 1121 1 || luindexsmall 1425 1
_228jack 100 736 1 || sunflow 2015 5 || lusearchdefault 1192 1
_228jack 10 734 1 || xml.transform 2592 1 || lusearchsmall 1303 2
xml.validation 1794 1 || pmd.default 3881 8

pmd.small 3058 3

sunflow.default 1874 2

sunflow.small 1826 2

tomcatdefault 9286 6

tomcatsmall 9189 6

xalandefault 2296 1

xalansmall 2277 1

9.12-bach [Blackburn et al. 2006]. We employ two inputs (b@ 400) for benchmarks in the
SPECjvm98 suite, two inputs (small and default) for the DaChenchmarks, and a single in-
put (startup) for benchmarks in the SPECjvm2008 suite Jtiagun 57 benchmark/input pairs. Two
benchmarks from the DaCapo benchmark stitelebeansndtradesoapdid not always run cor-
rectly with thedefaultversion of the HotSpot VM, so these benchmarks were exclfrdedour set.

In order to limit possible sources of variation in our expegnts, we set the number of application
threads to one whenever possible. Unfortunately, sevémlrdbenchmarks employ multiple appli-
cation threads due tmternal multithreadinghat cannot be controlled by the harness application.
Table Il lists the name, number of invoked methods (undectthemn labeled #7), and number of
application threads (under the column labeledd# for each benchmark in our suite.

All our experiments were performed on a cluster of dual goawk, 64-bit, x86 machines running
Red Hat Enterprise Linux 5 as the operating system. Thearlustludes three models of server ma-
chine: Dell M600 (two 2.83GHz Intel Xeon E5440 processo6&;B DDR2 SDRAM), Dell M605
(two 2.4GHz AMD Opteron 2378 processors, 16GB DDR2 SDRAMi #owerEdge SC1435
(two 2.5GHz AMD Opteron 2380 processors, 8GB DDR2 SDRAM).Nfeall of our experiments
on one of these three models, but experiments comparingofuthe same benchmark always use
the same model. There are no hyperthreading or frequentiggtachniques of any kind enabled
during our experiments.

We disable seven of the eight available cores to run oureingie experiments. Our multi-core
experiments utilize all available cores. More specifications made to the hardware configuration
are explained in the respective sections. Each benchmauhk i isolation to prevent interference
from other user programs. In order to account for inherenini variations during the benchmark
runs, all the performance results in this paper report tieezae over 10 runs for each benchmark-
configuration pair. All the experiments in this paper measteirtupperformance. Thus, any com-
pilation that occurs is performed concurrently with themng application.

Finally, we present a study to compare the program perfocean single-core and multi-core
machines. Figure 1 shows the multi-core performance of éacichmark relative to single-core
performance for both the default server and tiered compdafigurations. To estimate the degree of

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A7

Oserver Mtiered
1.2

0.8 i I T T

0.6 T
Il
0.4 B I r

02 HEHIH I

Time with multi-core config. /
Time with single-core config.

Benchmarks

Fig. 1. Ratio of multi-core performance to single-core perforgefor each compiler configuration.

variability in our run-time results, we compute 95% confidemtervals for the difference between
the means [Georges et al. 2007], and plot these intervals@sbars. Not surprisingly, we observe
that most benchmarks run much faster with the multi-cordigaration. Much of this difference
is simply due to increased parallelism, but other micrdidectural effects (such as cache affinity
and inter-core communication) may also impact performalegending on the workload. Another
significant factor, which we encounter in our experimentsuighout this work, is that additional
cores enablearlier compilation of hot methods. This effect accounts for theultethat the tiered
VM, with its much more aggressive compilation thresholdhibits a more pronounced performance
improvement, on average, than the server VM. The remairfdBisppaper explores and explains the
impact of different JIT compilation strategies on moderd &rture architectures using the HotSpot
server and tiered compiler configurations.

4. JIT COMPILATION ON SINGLE-CORE MACHINES

In this section we report the results of our experiments ootetl on single-core processors to un-
derstand the impact of aggressive JIT compilation and mangpder threads in a VM on program
performance. Our experimental setup controls the aggerssss of distinct JIT compilation poli-
cies by varying the selective compilation threshold. Cliag¢he compilation threshold can affect
program performance in two ways: (a) by compiling a lessagreater percentage of the program
code (f a method is compiled), and (b) by sending methods to compilg er late (vhenis each
method compiled). We first employ the HotSpot server VM wittiragle compiler thread to find the
selective compilation threshold that achieves the bestgesperformance with our set of bench-
mark programs.Next, we evaluate the impact of multiple compiler threadpragram performance
for machines with a single processor with both the serveltigneld compilers in the HotSpot JVM.

4.1. Compilation Threshold with Single Compiler Thread

By virtue of sharing the same computation resources, thécapipn and compiler threads share
a complex relationship in a VM running on a single-core maehiA highly selective compile
threshold may achieve poor overall program performancepeyding too much time executing
in non-optimized code resulting in poor overall program-tume. By contrast, a lower than ideal
compile threshold may also produce poor performance bydipgtoo long in the compiler thread.
Therefore, the compiler thresholds need to be carefullgdun achieve the most efficient average
program execution on single-core machines over severahoearks.

3The tiered compiler spawns a minimum of two compiler threaatsl, is therefore not used in this single compiler thread
configuration.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

A:8 M. Jantz and P. Kulkarni

14 12

0.8

0.6

0.4

" K/

250000 100000 50000 25000 10000 5000 1500 500 250000 100000 50000 25000 10000 5000 1500 500

Compilation threshold Compilation threshold

(@) (b)

Time at threshold (X) /
time at threshold 10,000

application thread time

f
!
Compilation thread time /

18 *‘ =0=app. time =O=comp. time Ii

16
1.4
12
0.8

Compilation queue delay for

. a

methods hot at threshold=10,000

Time at threshold (X) /
time at threshold 10,000
Delay time at threshold (X) /
delay time at threshold 10,000

oo AD/D,/ o /
0.4 e
0.2
0 0.01
250000 100000 50000 25000 10000 5000 1500 500 250000 100000 50000 25000 10000 5000 1500 500
Compilation threhsold Compilation threshold
() (d)

Fig. 2. Effect of different compilation thresholds on averagedtgnark performance on single-core processors.

We perform an experiment to determine the ideal compilatiweshold for the HotSpot server
VM with a single compiler thread on our set of benchmarks. These resultsraseipted in Fig-
ure 2(a). The figure compares the average overall prograforpeance at different compile thresh-
olds to the average program performance at the threshol@@0@, which is the default compilation
threshold for the HotSpot server compiler. We find that a féthe less aggressive thresholds are
slightly faster, on average, than the default for our setesfdnmark programs (although the differ-
ence is within the margin of error). The default HotSpot seiWM employs two compiler threads
and may have been tuned with applications that run longardhabenchmarks, which may explain
this result. The average benchmark performance worsemtahigh and low compile thresholds.

To better interpret these results, we collect individuat#td times during each experiment to es-
timate the amount of time spent doing compilation compawdtié amount of time spent executing
the application. Figure 2(b) shows the ratio of compilatmapplication thread times at each thresh-
old averaged over all the benchmarks. Thus, compilatiagstiwlds that achieve good performance
spend a significant portion of their overall runtime doingngilation. We can also see that reducing
the compilation threshold increases the relative amoutitraf spent doing compilation. However,
it is not clear how much of this trend is due to longer complathread times (from compiling
more methods) or reduced application thread times (fromwgikeg more native code).

Therefore, we also consider the effect of compilation aggjveness on each component sepa-
rately. Figure 2(c) shows the break-down of the overall pragexecution in terms of the application
and compiler thread times at different thresholds to thesipective times at the compile threshold of
10,000, averaged over all benchmark programs. We obseavdith thresholds> 10,000) com-
pile less and degrade performance by not providing an oppitytto the VM to compile several
important program methods. In contrast, the compiler thigaes increase with lower compilation
thresholds € 10,000) as more methods are sent for compilation. We exgélcigincreased com-
pilation to improve application thread performance. Hogrethe behavior of the application thread
times at low compile thresholds is less intuitive.

On further analysis we found that JIT compilation policieshwlower thresholds send more
methods to compile and contribute to compiler queue badkigphypothesize that the flood of less

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:9

13 18
~ x 250000 = 100000 ~r x 250000 = 100000
Q
G5 15 Il —e—25000 —a—10000 G g6 * ;gggo * 1282”
= 12 1 = —_— —_
25 —5-5000 —o—1500 /\0_0 B2 14 L/o/"/k
-] T <
S %11 5§12 ~———2— % x x
< o = =
e & 3
i / [r
2 e e
S 1 £8
EE x x 3 g1 0.8
g =06
g E 09 g 9
EF E Eoa
= =
0.8 0.2
1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
) (b)
14 2.25
~ Low comp. time / app. time * 250000 = 100000 =5 High comp. time / app. time x 250000 = 100000
=G e e I 2 4 F H
O o 13 Jllowest 11 (of 57) benchmarks 25000 10000 E - highest 11 (of 57) benchmarks 25000 10000
< —5—5000 —o—1500 < T L75 —0—5000 —o—1500 |
<912 =9 O
TG x x = x x x x x x TG 15
R R
< = 11 < £ 125 e
g s —_— g s g o —
L e L e
IR e —————3 £g ! ==
=8 ESoms | e S
a 309 (=1 0s L () '}] u o } o (]
g g g g -
£ Eos £ E o2
- =
0.7 0
1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
© (d)

Fig. 3. Effect of multiple compiler threads on single-core pragrnaerformance in the HotSpot VM with server compiler.
The discrete measured thread points are plotted equiatlistan the x-axis.

important program methods delays the compilation of thetragtcal methods, resulting in the
non-intuitive degradation in application performanceoatdr thresholds. To verify this hypothesis
we conduct a separate set of experimentsitinesdsure the average compilation queue delay (time
spent waiting in the compile queue) of hot methods in our leracks These experiments compute
the mean average compilation queue delay only for meth@dstie hot at the default threshold of
10,000 for each benchmark / compile threshold combination.

Figure 2(d) plots the average compilation queue delay at eampile threshold relative to the
average compilation queue delay at the default threshal@® @00 averaged over the benchmaks.
As we can see, the average compilation queue delay for hdtadgincreases dramatically as the
compilation threshold is reduced. Thus, we conclude thaeimsing compiler aggressiveness is not
likely to improve VM performance running with a single congpithread on single-core machines.

4.2. Effect of Multiple Compiler Threads on Single-Core Machines

In this section we analyze the effect of multiple compileretids on program performance on a
single-core machine with the server and tiered compilefigarations of the HotSpot VM.

4.2.1. Single-Core Compilation Policy with the HotSpot Server Compiler. For each compilation
threshold, a separate plot in Figure 3(a) compares the gwengerall program performance with
multiple compiler threads to the average performance wisingle compiler thread at that same
threshold. Intuitively, a greater number of compiler tldeahould be able to reduce the method
compilation queue delay. Indeed, we notice program perdoga improvements for one or two
extra compiler threads, but the benefits do not hold withdasing number of such threads3).

We further analyzed the performance degradation with morepiler threads and noticed an in-
crease in the overatompiler threadimes in these cases. This increase suggests that sevehal me

4\We cannot compute a meaningful ratio for benchmarks witb pewery close to zero average compilation queue delay at
the baseline threshold. Thus, these results do not inclddefl57) benchmarks with an average compilation queue delay
less than 1msec (the precision of our timer) at the defatéstiold.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

A:10 M. Jantz and P. Kulkarni

ods that were queued for compilation, but never got comgikefdre program termination with a
single compiler thread are now compiled as we provide more dd¥hpiler resources. While the
increased compiler activity increases compilation ovadhenany of these methods contribute little
to improving program performance. Consequently, the giatimprovement in application perfor-
mance achieved by more compilations seems unable to rettewadditional compiler overhead,
resulting in a net loss in overall program performance.

Figure 3(b) compares the average overall program perfocmiareach case to the average perfor-
mance of a baseline configuration with a single compileratirat a threshold of 10,000. These re-
sults reveal the best compiler policy on single-core mashimith multiple compiler threads. Thus,
we can see that, on average, the more aggressive threslkeoldeypquite poorly, while moderately
conservative thresholds fare the best (with any number ofpiler threads). Our analysis finds
higher compiler aggressiveness to send more program nmefloodcompilation, which includes
methods that may not make substantial contributions tampsidnce improvement¢ld methods).
Additionally, the default server compiler in HotSpot usesraple FIFO (first-in first-out) compila-
tion queue, and compiles methods in the same order in whashate sent. Consequently, the cold
methods delay the compilation of the really important hothrods relative to the application thread,
producing the resultant loss in performance.

To further evaluate the configurations with varying comlaresources and aggressiveness (in
these and later experiments), we desigmptimalscenario that measures the performance of each
benchmarkvith all of its methods pre-compile@hus, the ‘optimal’ configuration reveals the best-
case benefit of JIT compilation. The dashed line in Figurd Sfows the optimal run-time on the
single-core machine configuration relative to the samelipasstartup performance (single bench-
mark iteration with one compiler thread and a threshold @0Q0), averaged over all the bench-
marks. Thus, the “optimal” steady-state configuration @ss much better performance compared
to the “startup” runs that compile methods concurrentihwiite running application on single-core
machines. On average, the optimal performance is about G484rfthan the baseline configuration
and about 54% faster than the fastest compilation threadnpite threshold configuration (with
two compilation threads and a compile threshold of 25,000).

Figure 3(c) shows the same plots as in Figure 3(b) but onlthid. 1 (20%) benchmarks with the
lowest compilation to application time ratio. Thus, for &pgtions that spend relatively little time
compiling, only the very aggressive compilation threskatduse some compilation queue delay
and may produce small performance improvements in soms.dagesuch benchmarks, all the hot
methods are always compiled before program terminations€guently, the small performance im-
provements with the more aggressive thresholds are duanpittog hot methods earlier (reduced
queue delay). Furthermore, there is only a small performatiiference between the startup and
optimal runs. By contrast, Figure 3(d) only includes the 20%) benchmarks with a relatively high
compilation to application time ratio. For programs witltkthigh compilation activity, the effect
of compilation queue delay is more pronounced. We find thatahs aggressive compiler policies
produce better efficiency gains for these programs, buétisestill much room for improvement as
evidenced by optimal performance results.

These observations suggest that a VM that can adapt its tatiopithreshold based on the com-
piler load may achieve the best performance for all programsngle-core machines. Additionally,
implementing a priority-queue to order compilations maoanable the more aggressive compila-
tion thresholds to achieve better performance. We explareffect of prioritized method compiles
on program performance in further detail in Section 7. Fjnha small increase in the number of
compiler threads can also improve performance by redubi@agompilation queue delay.

4.2.2. Single-Core Compilation Policy with the HotSpot Tiered Compiler. In this section we ex-
plore the effect on program performance of changing the demgggressiveness and the number
of compiler threads with a tiered compiler configuration argke-core machines. For our exper-
iments with the tiered compiler, we vary the client and sepampiler thresholds in lock-step to

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A1l

22 24
~ . x 100000 ® 20000 —e—4000 ~u» 5, * 100000 = 20000
e 2 56 —e—4000 —+—2000 __—
26 —4+—2000 —0—1000 —o—500 o~ 2 —0—1000 —0—500
£ 23 o _o—=
-3 18 — | S 218
T3 2 216
2% 16 — 2% 1.
w O W = L
g8 e ££) o —
sC 4 57
S i £ Posoxox &
& =12 2 Ros
; 2 = = = ;o
£E . s ¢ * oz % o % ggosp
E £ F o4
0.8 0.2
2 3 4 7 10 25 50 100 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
@) (b)
115 45
E E x 100000 = 20000 Low comp. time / app. time E é 4 4| x 100000 = 20000 | High comp.time /app.time
o 1| —*4000 ——2000 lowest 11 (of 57) benchmarks =~ 35 || 4000 —s—2000 [highest 11 (of 57) benchmarks
X3 —o—1000 —o—500 g™ 1000 00
5 9 105 e —o— P —]
- = L
2% o 3 mg —5 — 2% s /
c 2 s 2 ——o————0
R I e—-———— e £5 2
o o
= S 095 £g1s
£§ Sl —
o 2 o 2 H i (1 & & (3 & ¥
EE E £ os
(=N = L
0.85 0
2 3 4 7 10 25 50 100 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
(©) (d)

Fig. 4. Effect of multiple compiler threads on single-core pragraerformance in the HotSpot VM with tiered compiler.
The discrete measured thread points are plotted equiatlistan the x-axis.

adjust the aggressiveness of the tiered compiler and ussthesponding first-level (client) com-
piler threshold in the graph legends.

Each line-plot in Figure 4(a) compares the average overafjnam performance in the tiered
compiler with multiple compiler threads to the average perfance with only one client and one
server compiler thread at that same threshold. In conatet server compiler configuration, in-
creasing the number of compiler threads does not yield arfpimeance benefit and, for larger
increases, significantly degrades performance at eveegtibid. This effect is likely due to the
combination of two factors: (a) a very fast first-level cotapthat prevents significant backup in its
compiler queue even with a single compiler thread while@dghg most of the performance benefits
of later re-compilations, and (b) the priority heuristiedsy the tiered compiler that may be able to
find and compile the most important methods first. Thus, anytiatial compilations performed by
more compiler threads only increase the compilation owahveithout commensurately contribut-
ing to program performance. In Section 7.2, we compare tfeuttdiered compiler to one which
employs FIFO (first-in first-out) compilation queues to exaé the effect of prioritized compilation
gueues on program performance.

Figure 4(b) compares the average program performanceslincaae to the average performance
of the baseline tiered configuration with one client and omeer compiler thread and the de-
fault threshold parameters (with a client compiler thrédlud 2,000). The default tiered compiler
employs significantly more aggressive compilation thrédhoompared to the default stand-alone
server compiler, and, on average, queues up more than threg &s many methods for compi-
lation. Consequently, relatively conservative compileesiinolds achieve the best performance on
single-core machines. The dashed line in Figure 4(b) ph&tsuntime of the optimal configuration
(measured as described in the previous section) relatitleetountime of the baseline tiered con-
figuration. Thus, with the tiered VM on single-core machirtee optimal run-time is still much
faster than any other start-up configuration. However, duéé fast client compiler and effective
priority heuristic, the performance of the tiered VM is sfggantly closer (10% in the best case) to
the optimal runtime than the server VM configurations préseg:in the previous section.

ACM Transactions on Architecture and Code Optimizatiorl, VoNo. N, Article A, Publication date: January YYYY.

A:12 M. Jantz and P. Kulkarni

We again observe that applications with extreme (very lowery high) compilation activity
show different performance trends than the average oventinglete set of benchmarks. Figure 4(c)
plots the average performance of the HotSpot tiered comghé at different threshold and com-
piler thread configurations for the 20% benchmarks with threelst compilation to application time
ratio. As expected, compile threshold aggressivenesswnaihtount of compilation resources have
much less of a performance impact on these applicationsitidddlly, the performance achieved
is much closer to the optimal runtime for this set of benctkeatowever, in contrast to the server
compiler results in Figure 3(c), some less aggressiveltitds arenarginallymore effective in the
tiered compiler, which again indicates that the compitatipeue delay is much less of a factor in
the presence of a fast compiler and a good heuristic forifizimg method compiles. Alternatively,
in Figure 4(d), we study benchmarks with relatively high gilation activity, and find that less
aggressive compile thresholds yield very significant penénce gains, due to a very aggressive
default threshold used by the tiered compiler.

In summary, for single-core machines it is crucial to selbetcompiler threshold such that only
the most dominant program methods are sent to compilati@th.&/ch an ideal compiler threshold,
only two compiler threads (one client and one server) are tbbkervice all compilation requests
prior to program termination. An ideal threshold combineithva very fast client compiler and
a good priority heuristic negates any benefit of additiormhpiler threads reducing the queue
delay. A less aggressive threshold lowers program perfocady not allowing the tiered VM
to compile all hot methods. In contrast, with more aggressiivesholds, a minimum number of
compiler threads are not able to service all queued methprdducing performance degradations
due to the overhead of increased compiler activity with noam@piler threads.

5. JIT COMPILATION ON MULTI-CORE MACHINES

Dynamic JIT compilation on single-processor machinestag tonservative to manage the compi-
lation overhead at runtime. Modern multi-core machinewioi®the opportunity to spawn multiple
compiler threads and run them concurrently on separate)(fr@cessor cores, while not interrupt-
ing the application thread(s). As such, it is a common pdigephat a more aggressive compilation
policy is likely to achieve better application thread an@mll program performance on multi-core
machines for VMs with multiple compiler threads. Aggressigss, in this context, can imply com-
piling early or compiling more methods by lowering the colaghreshold. In this section, we
report the impact of varying JIT compilation aggressiveraasd the number of compiler threads on
the performance of the server and tiered VM on multi-corehiraes.

5.1. Multi-Core Compilation Policy with the HotSpot Server Compiler

Figure 5 illustrates the results of our experiments withioéSpot server compiler on multi-core
machines. For each indicated compile threshold, a cornepg line-plot in Figure 5(a) shows the
ratio of the program performance with different number ahpder threads to the program perfor-
mance with a single compiler thread at that same thresheddlaged over our 57 benchmark-input
pairs. Thus, we can see that increasing the number of contipitsads up to seven threads improves
application performance at all compile thresholds. Howgdaeger increases in the number of com-
piler threads £ 7) derive no performance benefits and actually degrade imeafoce with the more
aggressive compilation thresholds.

As mentioned earlier, additional compiler threads can aapperformance by reducing compila-
tion queue delay, allowing the important program methodietoompiled earlier. Early compilation
allows a greater fraction of the program execution to ocewptimized native code (rather than be-
ing interpreted), which produces significant gains in pangperformance. The additional compiler
threads impose minimal impediment to the application tiisesgs long as that computation can be
off-loaded onto free (separate) cores. Our existing harewatup only provides eight distinct pro-
cessing cores. Consequently, larger increases in the muhlbempiler threads cause application
and compilation threads to compete for machine resourcesed®fer, configurations with aggres-
sive compilation thresholds frequently compile methodsd trerive little performance benefit. This

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:13

=

o

@
-
o

-
g
P
&

.\ x 25000 ——10000 —4—5000 | x 25000 —e—10000 —4—5000 }»

| —o—1500 —o—50

a \ P —
N N
\'&DL\D\ x

o

=)
o R R)
@ @

\ —0—1500 —o—50
\\ _———o

1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100

Number of compiler threads (CT's) Number of compiler threads (CT's)

(a) (b)

Low comp. time / app. time x 25000 —e—10000 | High comp. time / app. time || * 25000 —e—10000
11 lowest 11 (of 57) benchmarks —4—5000 —0—1500 q_|highest 11 (of 57) benchmarks —+—5000 —5—1500
N\

w

©

[

-
@

o
@

-

%

N

o
&

Time, (P)T threshold, (X) CT /
Time, (P)T threshold 1 CT

Time, (P)T threshold, (X) CT /

Time, 10000T threshold 1 CT

o o
S n ©
a0 9 &

Y

o
&
o
N
g

=
o
@
.

e
S U S Y

o5 [N = \g\;\ ;/
~—

-

o

o o
Y

o
=
x

Time, (P)T threshold, (X) CT /
Time, 10000T threshold 1 CT
I

V
Time, (P)T threshold, (X) CT /

Time, 10000T threshold 1 CT

o
N

o

o

&
o

1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)

() (d)

Fig. 5. Effect of multiple compiler threads on multi-core apptioa performance with the HotSpot Server VM

additional (butincommensurate) compilation overheadxdy be sustained as long as compilation
is free, and results in significant performance losses imbisence of free computational resources.

Figure 5(b) compares all the program performances (wifleidint thresholds and different num-
ber of compiler threads) to a single baseline program perdoice. The selected baseline is the
program performance with a single compiler thread at thaweHotSpot server compiler thresh-
old of 10,000. We can see that while the optimal performaageif indicated by the dashed line)
is much faster than the performance of the baseline configurancreasing compilation activity
on otherwise free compute cores enables the server VM to mpakeuch of this difference. In the
best case (configuration with threshold 5,000 and 7 comihiteads) the combination of increased
compiler aggressiveness with more compiler threads imggperformance by 34.6%, on average,
over the baseline. However, most of that improvement (rfu8B%) is obtained by simply re-
ducing the compilation queue delay that is realized by iasireg the number of compiler threads
at the default HotSpot (10,000) threshold. Thus, the higloenpiler aggressiveness achieved by
lowering the selective compilation threshold seems tora#atively small benefits over the more
conservative compiler policies.

Another interesting observation that can be made from tbis joh Figure 5(b) is that aggressive
compilation policies require more compiler threads (inpdygreater computational resources) to
achieveggoodprogram performance. Indeed, our most aggressive thieeehb0 performs extremely
poorly compared to the default threshold with only one cdenghread (over 60% worse), and
requires seven compiler threads to surpass the baselifezrpance.

As the compiler thresholds get more aggressive, we witriess Figure 5(a)) successively larger
performance losses with increasing the number of comgiterads beyond seven. These losses are
due to increasing application interference caused by demgctivity at aggressive thresholds and
are a result of the computational limitations in the avdédiardware. In Section 6 we construct a
simulation configuration to study the behavior of aggressivmpilation policies with large number
of compiler threads on (many-core) machines with virtuatjimited computation resources.

Similar to our single-core configurations, we find that thessailts change dramatically depend-
ing on the compilation characteristics of individual bemeitk applications. Figures 5(c) and 5(d)

ACM Transactions on Architecture and Code Optimizatiorl, VoNo. N, Article A, Publication date: January YYYY.

A:l14 M. Jantz and P. Kulkarni

plot the average performance at each multi-core compildticeshold and compiler thread config-
urations for 20% of the benchmarks with the lowest and higbespilation to application time
ratios in our baseline configuration respectively. Varytognpilation thresholds and resources has
much less of a performance effect on benchmarks that spéati/edy little time doing compila-
tion. The best configuration for these benchmarks (with apifation threshold of 5000 and two
compiler threads) yields less than a 2% improvement oveb#seline configuration. Also, for
these benchmarks, the baseline configuration achievesrpexrhce that is much closer to optimal
(again, indicated by the dashed line) compared to the dwaratage in Figure 5(b). Alternatively,
for benchmarks that spend relatively more time doing coatipih, as shown in Figure 5(d), there
is even more room for improvement compared to the averageadvbenchmarks. As expected,
exploiting the free processor resources to spawn addltammapiler threads results in a more sub-
stantial performance benefit (an average efficiency gaivei 60%) for these 11 benchmarks.

5.2. Multi-Core Compilation Policy with the HotSpot Tiered Compiler

In this section we evaluate the effect of varying compilegragsiveness on the overall program
performance delivered by the VM with its tiered compilatipolicy. The compilation thresholds
for the two compilers in our tiered experimental configuras are varied in lock-step so that they
always maintain the same ratio. For each compilation tlulesbetting with the tiered compiler,
a separate plot in Figure 6(a) compares the average oveagtgm performance with multiple
compiler threads to the average performance with two (aeatchnd one server) compiler threads
at that same compilation threshold. In stark contrast toresults in Section 5.1 with the server
compiler, increasing the number of compiler threads forttbeed compiler only marginally im-
proves performance at any compile threshold. This resdliésto the speed and effectiveness of the
HotSpot client compiler. As mentioned earlier in Sectioth®, HotSpot client compiler imposes a
very small compilation delay, and yet generates code of ardlyghtly lower quality as compared
to the much slower server compiler. Consequently, althahghtot methods promoted to level-2
(server compiler) compilation may face delays in the coerpijueue, its performance impact is
much reduced since the program can still execute in levelidnt compiler) optimized code. The
small improvement in program performance with more connpiieecads (up to seven) is again the
result of reduction in the server compiler queue delay. Hereverall we found that the compiler
queue delay is much less of a factor with the tiered compitggiolicy.

Our results also show large and progressively more seveferpgnce losses with increasing
compilation threshold aggressiveness as we increase thberwof compiler threads past the num-
ber of (free) available processing cores. In order to erpilaése performance losses, we extend
our framework to report additional measurements of cortipiaactivity. Figures 7(a) and 7(b)
respectively show compilation thread times and the numbenaihods compiled with the server
and tiered VMs with their respective default compile thiddl and with increasing numbers of
compiler threads, averaged over all the benchmarks. We liiaigl due to its extremely fast client
compiler, the tiered VM employs a much more aggressive ctentpieshold, which enables it to
compile more methods more quickly, and often finish the barark run faster, than the server VM.
However, with its multi-level compilation strategy, thiften results in a situation with many meth-
ods remaining in the level-2 (server) compilation queugb@end of the program run. Increasing
the number of compilation threads enables more of theseaustto be (re-)compiled during the
application run. This additional compilation (with loweroggram speed benefit returns) obstruct
application progress as the number of threads is raisednideye limits of available hardware.
Therefore, we conclude th#ie number of compiler threads in the tiered VM should be #&irw
the limits of available hardware in order to prevent shargfpemance losses

Figure 6(b) presents the ratio of average program perfocmdalivered by the VM with varying
tiered compilation thresholds and compiler threads whemgaoed to a singlbaselingperformance
(client compiler threshold of 2,000) with two (one clientdaone server) compiler threads. Thus,
employing a small number of compilation threagsX0) typically achieves the best performance.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:15
18 175
E_m x 20000 = 4000 P EE x 20000 ® 4000 e
26 16 —e-2000 —4—1000 =« 15 —e—2000 —+—1000
0 o
T3 —o-500 —o—20 T2 o500 20 /Df__;:—a
S £ 14 S G 125
£ G £ 9
w O n =
e LE]
£ //k__‘ £ v & x x x " *
S e 12 £5 14
Iy =3
= . = - =R
g g 1 x x x| g @ 075
EF EE
- [l
0.8 0.5
2 3 4 7 10 25 50 100 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
@) (b)
12 3
~. . ti . ti x 20000 = 4000 ~ . High comp. time / app. time
= Low comp. time / app. time 2000 1000 L 26 Ul gl P / app S
O O 115 lowest 11 (of 57) benchmarks * — o 3 highest 11(of 57) benchmark5|
=9 —o—500 —o—20 TN /
v} <322 4| x 20000 = 4000
g2 22 —e—2000 —+—1000 //:‘/D—_—q
.:: 2 x < . o2 x i x * 2% 18 —
@ £ 1.05 F —0—500 —o—20
o £ 14
= -]
=S 1 =9 X X x L3 2
&R 2R 1 :
L T B — g g
£ £°% E E 06
i L e
0.9 0.2
2 3 4 7 10 25 50 100 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
(© (d)

Fig. 6. Effect of multiple compiler threads on multi-core apptioa performance with the HotSpot Tiered VM

1200

—e—server —a—tiered

1000

600

Number of methods compiled

1000

%
<}
S}

@
3
S

—e—server —a—tiered

/

e

3z

= T -}

£3 °

% s

I} £

£L < =

=3 a0 5 400

£ - k]

& T T 200

=< 200 <

2% E

S 0 0

1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100
Number of compilation threads Number of compilation threads
(@) (b)

Fig. 7. Effect of multiple compiler threads on multi-core compida activity with the Server and Tiered VM

This performance is much closer to optimal than the basgleréormance with the server VM,

although the server VM shows greater improvements as théauoficompiler threads is increased.

Other trends in the graph in Figure 6(b) are similar to thossented with Figure 6(a) with
the additional recommendation against employing overlyseovative compiler policies on multi-
core machines. Although conservative policies do a goodojoteducing compilation overhead

for single-core machines (Figure 4(b)), they can lower guenfance for multi-core machines due
to a combination of two factors: (a) not compiling all the ion@ant program methods, and (b)
causing a large delay in compiling the important methodsvéi@r, we also find that a wide range
of compiler policies (from the client compiler thresholds4g000 to 20) achieve almost identical

performance as long as compilation is free. This obsematidicates that (a) not compiling the

important methods (rather than the compiler queue delajseo be the dominant factor that can
limit performance with the tiered compiler, and (b) compglithe less important program methods
does not substantially benefit performance.

The plots in Figures 6(c) and 6(d) only employ the resultsesfdhmarks that show very low or
very high compilation activity respectively, and are consted similar to the graph in Figure 6(b) in

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

A:16 M. Jantz and P. Kulkarni

Application Compiler
Thread Thread
(a) Multi-core execution

Corel‘A‘A‘A‘A‘A ‘A ‘A ‘A ‘A ‘

corf i 1] 1

e
Core4

(b) Single-core simulation of multi-core execution
Corel‘ A‘Cl‘ A‘Cl‘CZ‘C3‘ A‘Cl‘ cz‘ A‘ A‘ A‘Cl‘CZ‘ A‘ A‘Cl‘ A‘

Fig. 8. Simulation of multi-core VM execution on single-core pessor

all other aspects. These graphs reiterate the earlierdiger that program characteristics greatly
influence its performance at different compiler aggressigs. For benchmarks with only a few very
hot methods (Figure 6(c)), varying compiler thresholdslitides to no effect on overall performance.
And Figure 6(d) shows that the average trends noticed aatbsour benchmarks in Figure 6(b)
are exaggerated when considered only over the programaylisg high compilation activity. This
graph again indicates that the delay in compiling the hotimes does not seem to be a major factor
affecting program run-time when using tiered compilatiagthva fast and good Level-1 compiler.

6. JIT COMPILATION ON MANY-CORE MACHINES

Our observations regarding aggressive JIT compilatioitigsl on modern multi-core machines in
the last section were limited by our existing 8-core prooebased hardware. In future years, archi-
tects and chip developers are expecting and planning ancamitsly increasing number of cores in
modern microprocessors. It is possible that our conclgsiegarding JIT compilation policies may
change with the availability of more abundant hardwareusses. However, processors with a large
number of cores (amany-corepare not easily available just yet. Therefore, in this segtive con-
struct a unique experimental configuration to conduct erpants that investigate JIT compilation
strategies for such future many-core machines.

Our experimental setugstimatesnany-core VM behavior using a single processor/core. Te con
struct this setup, we first update our HotSpot VM to reportdhgegoryof each operating system
thread that it creates (such as, application, compilebage-collector, etc.), and to also report the
creation or deletion of any VM/program thread at runtimexf\eie modify theharnessof all our
benchmark suites to not only report the overall program e time, but to also provide a break-
down of the time consumed by each individual VM thread. Wetheé pr oc file-system interface
provided by the Linux operating system to obtain individinakad times, and employ the JNI inter-
face to access this platform-specific OS feature from wighilava program. Finally, we also use the
thread-processaffinity interface methods provided by the Linux OS to enable our VMHhoose
the set of processor cores that are eligible to run each V&athrThus, on each new thread creation,
the VM is now able to assign the processor affinity of the new ttikéad (based on its category) to
the set of processors specified by the user on the commagadAlim use this facility to constrain all
application and compiler threads in a VM to run on a singleepssor core.

Our experimental setup to evaluate the behavior of mang-@arlimited cores) application ex-
ecution on a single-core machine is illustrated in Figur&igure 8(a) shows a snapshot of one
possible VM execution order with multiple compiler threagih each thread running on a distinct
core of a many-core machine. Our experimental setup emphey®S thread affinity interface to

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:17

x 25000 ——10000 —+—5000 x 25000 —e—10000

—4—5000 —0—1500
\\o\ 5o

11 16 \\
1 14

—0—1500 —o—50

-
N
»o

o
©

o
N

4
3

o
EY

o
o

Time, (P)T threshold, (X) CT /
Time, (P)T threshold 1 CT
&

Time, (P)T threshold, (X) CT/

Time, 10000T threshold 1 CT
=

o
@
o
IS

1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100

Number of compiler threads (CT's) Number of compiler threads (CT's)
@) (b)

14 18
=5 Low comp. time / app. time X 25000 —e—10000 =51 \ [High comp. time / app. time
E ~ 13 | |lowest 11 (of 57) benchmarks —4—5000 —o—1500 | Ow 14 5 \ ‘highest 11 (of 57) benchmarks
] 3 L
=3 o—— —o—50 5:] \ \ X 25000 —e—10000
T2 \ T \ b——o —+—-5000 —o—-1500 ||
< = £ = 1 H
G < G < $ —o—50
[e o8 \ \\ R
£8 58 %‘3:& x \ x x
=8 1 — X : X X X x X = 8 06 x
g g9 o @ 04
EE™ L. EEo
(== = = E e

0.8 0

1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
(© (d)

Fig. 9. Effect of multiple compiler threads on many-core applaatperformance with the HotSpot Server VM

force all application and compiler threads to run on a sigle, and relies on the OS round-robin
thread scheduling to achieve a corresponding thread ésaacutder that is shown in Figure 8(b).
It is important to note that JIT compilations in our simutetiof many-core VM execution (on
single-core machine) occur at about the same time relatitrestapplication thread as on a physical
many-core machine. Now, on a many-core machine, where eaubiter thread runs on its own
distinct core concurrently with the application thread thtal program run-time is equal to the ap-
plication thread run-time alone, as understood from Fi§i{ed. Therefore, our ability to precisely
measure individual application thread times in our sirgies simulation enables us to realistically
emulate an environment where each thread has access toritsae. Note that, while this con-
figuration is not by itself new, its application to measureafm-core” performance is novel. This
framework, for the first time, allows us to study the behawibdifferent JIT compilation strategies
with any number of compiler threads running on separatesaomefuture many-core hardware.

6.1. Many-Core Compilation Policy with the HotSpot Server Compiler

We now employ our many-core experimental setup to conduutasi experiments to those done
in Section 5.1. Figure 9 shows the results of these expetsrard plots the average application
thread times with varying number of compiler threads and mitenaggressiveness for all of our
benchmark applications. These plots correspond with taphrillustrated in Figure 5. In order to
assess the accuracy of our simulation, we plot Figure 1@¢@gh shows a side-by-side comparison
of a subset of the results for the multi and many-core corditioms with 1-7 compiler threads. From
these plots, we can see that the trends in these results atly monsistent with our observations
from the last section for a smalk(7) number of compiler threads. This similarity validates th
ability of our simple simulation model to estimate the effetJIT compilation policies on many-
core machines, in spite of the potential differences betvirger-core communication, cache models
and other low-level microarchitectural effects.

Figure 9(a) shows that, unlike the multi-core plots in Fg a), given unlimited computing
resources, application thread performance for aggressivgiler thresholds continues gaining im-
provements beyond a small number of compiler threads. Thegerformance degradation for the

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

A:18 M. Jantz and P. Kulkarni

—e—25000-multi _ —&— 25000-many
18 | N IServer VMI —0—10000-multi —8— 10000-many
—o—50-multi —o—50-many

N —e—20000-multi ~ —=—20000-many
Tiered VM | —0—2000-multi —s—2000-many ||
—o—20-multi —o—20-many

11 —e—

Time, 2000T threshold 2 CT's

Time, (P)T threshold, (X) CT /

Time, 10000T threshold 1 CT
o

Time, (P)T threshold, (X) CT/

Number of compiler threads (CT's) Number of compiler threads (CT's)

(a) (b)

Fig. 10. Comparison of multi- and many-core performance result¢hfe server and tiered VM.

more aggressive thresholds beyond about 7-10 compileadkria the last section is, in fact, caused
due to the limitations of the underlying 8-core hardwareisThsult shows the utility of our novel
setup to investigate VM properties for future many-core hiaes. From the results plotted in Fig-
ure 9(b), we observe that the more aggressive compilatiboig®eventually (with> 10 compiler
threads) yield performance gains over the baseline seorapiter threshold of 10,000 with one
compiler thread. Additionally, we note that the differermween the baseline configuration and
the optimal performance (indicated by the dashed line infe@@(b)) with our many-core simulation
is similar to our results with multi-core machines.

We also find that isolating and plotting the performance afdmnarks with relatively small
or relatively large amounts of compilation activity in ouany-core configuration shows different
trends than our complete set of benchmarks. As shown in &i§(t), increasing the number of
compiler threads for benchmarks that spend relativelg litme compiling does not have a signif-
icant impact on performance at any threshold. At the same, tearly compilation of the (small
number of) hot methods reduces the benchmark run-timesgaesgjve compilation thresholds.
Alternatively, as seen from Figure 9(d), benchmarks wittrenmompilation activity tend to show
even starker performance improvements with increasingbeuraf compiler threads. This result
makes intuitive sense, as applications that require margdation yield better performance when
we allocate additional compilation resources. Compatiegaptimal performance over each set of
benchmarks, we find that our many-core experiments showldrtrat are similar to our previous
results — benchmarks with relatively little compilatiortiaity achieve performance that is much
closer to optimal, while benchmarks with relatively highhuailation activity have more room for
performance improvement.

6.2. Many-Core Compilation Policy with the HotSpot Tiered Compiler

In this section we analyze the results of experiments thal@nour many-core framework to esti-
mate the average run-time behavior of programs for thedieoenpiler strategy with the availability
of unlimited free compilation resources. The results is g@ction enable us to extend our observa-
tions from Section 5.2 to many-core machines. The resulisgares 11(a) and 11(b) again reveal
that, in a wide range of compilation thresholds, changinguiter aggressiveness has a smaller
effect on performance as compared to the single-level seorapiler. As we expect, a side-by-side
comparison of the multi and many-core results in Figure 18ifows that the trends in these results
are mostly consistent with the results in Section 5.2 for alsnumber of compiler threads. The
most distinctive observation that can be made from our nw@mg-experiments is that, given suffi-
cient computing resources, there is no significant perfogadoss with larger numbers of compiler
threads since all compilation activity is considered fidafortunately, as noticed with the multi-
core results, increasing the number of compiler threadgedylto only produce a modest impact
on program run-time with the tiered compiler. This obsdporatgain indicates that techniques to
reduce the delay in compiling hot methods are not as effe¢tvimprove run-time performance
with the tiered compiler.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:19

-
N
g
IS

x 20000 = 4000 —e—2000 X 20000 = 4000 —e—2000

—4—1000 —o—500 —0—20

=
o
@

—4—1000 —0—500 —0—20

-
3

*

%

Time, (P)T threshold, (X) CT /
Time, (P)T threshold 2 CT's
2
&
X
" x
L]
-
Time, (P)T threshold, (X) CT/

2
1 x oxox x|
e

i, S . =
9

§

Time, 2000T threshold 2 CT's

S
o
@
o
EY

2 3 4 7 10 25 50 100 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)

(a) (b)

I
1S

2 108 j Low comp. time / app. time t: * 20000 =-4000

| High comp. time / app. time x 20000 = 4000
lowest 11 (of 57) benchmarks ——2000 —+—1000

highest 11 (of 57) benchmarks —e—2000 —4+—1000

—5—500 ——20 —5—500 ——20

|
o o o
IS~

o
3

3

Time, 2000T threshold 2 CT's

g

Time, (P)T threshold, (X) CT /
Time, 2000T threshold 2 CT's
-
L
: }
Time, (P)T threshold, (X) CT /

e o o
o

o
©
~

2 3 4 7 10 25 50 100 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)

(© (d)

Fig. 11. Effect of multiple compiler threads on many-core applmaiperformance with the HotSpot Tiered VM

Figures 11(c) and 11(d) plot the same program run-time eatigigure 11(b), but only for bench-
marks that have a very low or very high compilation activitg.observed in all similar plots earlier,
benchmarks with low compilation activity have only a smaihmber of very active methods, and all
compiler aggressiveness levels produce similar perfocearBenchmarks with a high compilation
load mostly exaggerate the trends noticed over all bendksr{&igure 11(b)). Very conservative
compiler thresholds cause large performance losses for lseiecchmarks. Additionally, with free
compiler resources, higher compiler aggressiveness aatupe marginally better results than the
default threshold for such benchmarks by compiling andhoigtng a larger portion of the program.

7. EFFECT OF PRIORITY-BASED COMPILER QUEUES

Aggressive compilation policies can send a lot of method®topile, which may back-up the com-
pile queue. Poor method ordering in the compiler queue mayitri] further delaying the compila-
tion of the most important methods, as the VM spends its tiomepiling the less critical program
methods. Delaying the generation of optimized code for thitelst methods will likely degrade
application performance. An algorithm to effectively piiize methods compiles may be able to
nullify the harmful effects of back-up in the compiler quelrethis section, we study the effect of
different compiler queue prioritization schemes on the@eseand tiered compiler configurations.
We present results of experiments with three differentrfiyigqqueue implementations. The first-
in-first-out (FIFO) queue implementation is the defaulatgy employed by the HotSpot server
compiler that compiles all methods in the order they are fmntompilation by the application
threads. By default, the HotSptiéred compiler uses a heuristic priority queue technique for or-
dering method compiles. When selecting a method for cortipilavith this heuristic, the tiered
compiler computes aavent ratefor every eligible method and selects the method with theimax
mum event rate. The event rate is simply the sum of invocatimhbackedge counts per millisecond
since the last dequeue operation. We modified the HotSpotd/iake the=IFO andtiered queue
implementations available to the multi-stage tiered andlsistage server compilers respectively.
Both the FIFO and tiered techniques for ordering method dl@spse a completely online strat-
egy that only uses past program behavior to detect hot metambmpile to speed-up the remaining

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

>
)
o

M. Jantz and P. Kulkarni

1.8 1.8
= 5 x 25000 —e—10000 =5 x 25000 —e—10000
G Y6 G o 16
=z —+—5000 —o—1500 - — = —+—5000 —o—1500
S T1a O ZE s
= W e /O/D—‘D\g
T o
:§ 12 ES12
= O z o
:J: CE *;\ — = 1

S > S —%—
g X X X X X x £3 g x
i & 08 % ; 0.8
@0
8 o6 S I o6
Se g¢
g 04 Lo e e e e e e E E [
FFo2 " 02
1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
(@) (b)

Fig. 12. Performance of the tiered and ideal compiler priority altpons over FIFO for HotSpot server compiler on single-
core machines

program run. Additionally, the more aggressive JIT contfulapolicies make their hotness deci-
sions earlier, giving any online strategy an even reducgubdpnity to accurately assess method
priorities. Therefore, to set a suitable goal for the ontinenpiler priority queue implementations,
we attempt to construct adeal strategy for ordering method compilations. An ideal comupiin
strategy should be able to precisely determine the actwiaéks level of all methods sent to compile,
and always compile them in that order. Unfortunately, suttdeal strategy requires knowledge of
future program behavior.

In lieu of future program information, we devise a compdatistrategy that prioritizes method
compiles based on their total execution counts over aneggitofile run. With this strategy, the
compiler thread always selects and compiles the methodthétinighest profiled execution counts
from the available candidates in the compiler queue. Thusdeal priority-queue strategy requires
a profile-run of every benchmark to determine its method ésgrcounts. We collect these total
method hotness counts during this previous program run,naake them available to the ideal
priority algorithm in the measured run. We do note that ewaenideal profile-driven strategy may
not achieve thactualbest results because the candidate method with the higbesds level may
still not be the best method to compilethat point during program execution.

7.1. Priority-Based Compiler Queues in the HotSpot Server Compiler

Our results in the earlier sections suggest that the relstpoor performance achieved by aggres-
sive JIT compilation policies in the server compiler may heagtifact of the FIFO compiler queue
that cannot adequately prioritize the compilationsaleyualhotness levels of application methods.
Therefore, in this section, we explore and measure the pater different priority queue imple-
mentations to improve the performance obtained by diffiefehcompilation strategies.

7.1.1. Single-Core Machine Configuration. Figures 12(a) and 12(b) show the performance bene-
fit of the tiered and ideal compiler priority queue implenaitns, respectively. Each line in these
graphs is plotted relative to the default FIFO priority gaémplementation with a single compiler
thread at the default threshold of 10,000 on single-corénnas. These graphs reveal that the online
tiered prioritization technique is not able to improve peniance over the simple FIFO technique
and actually results in a performance loss for a few bencksném contrast, the VM performance
with the ideal prioritization scheme shows that accurasggasnent of method priorities is impor-
tant, and allows the smaller compile thresholds to alsoexehielatively good average program
performance for small number of compiler threads.

We had also discovered (and reported in Section 4.2) thiting a greater number of compiler
threads on single-core machines results in compiling nithioat are otherwise left uncompiled
(in the compiler queue) upon program termination with fea@mpiler threads. The resulting in-
crease in the compilation overhead is not sufficiently camspeed by the improved application
efficiency, resulting in a net overall performance loss. W that this effect persists regardless of
the method priority algorithm employed. We do see that aately ordering the method compiles

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:21

16 12
:c 15 1N x 25000 —e—10000 || ~5 ‘\ x 25000 —e—10000 —4—5000
=1 —a—5000 —o—1500 5o 1t I
z oL N O \ —5-1500 —o—50
ST3 o—50 =L 1
= \ o f-r=
£g12 £8 4 x x x x x x x x
=811l o AN £8
5] =S
G o thxbn\ N S5a % ==
& Joo X x x x dggd
s & S & & 07
808 =g 50
g =07 oL o6
gz s X
7 0.6)
;Y w
@ ‘t 05
£ 5t 9 FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Ef0S po==s================-=-==-=-===-=-=5 e
L 0.4 0.4
1 2 3 4 7 10 25 50 100 1 2 3 4 7 10 25 50 100
Number of compiler threads (CT's) Number of compiler threads (CT's)
@) (b)

Fig. 13. Performance of the tiered and ideal compiler priority altpons over FIFO for HotSpot server compiler on many-
core machines

enables the VM with our ideal priority queue implementatioobtain better performance than the
best achieved with the FIFO queue.

7.1.2. Many-Core Machine Configuration. Figures 13(a) and 13(b) compare the performance re-
sults of using our tiered and ideal compiler priority quetgspectively, with a baseline VM that
uses the simple FIFO-based compiler queue implementatidntiae compile threshold of 10,000
for many-core machines. The results with the ideal priagitgue implementation show that appro-
priately sorting method compiles significantly benefitsgyeon performance at all threshold levels.
At the same time, the performance benefits are more promioeaggressive compile thresholds.
This behavior is logical since more aggressive threshalesrare likely to flood the queue with
low-priority compiles that delay the compilation of thetter methods with the FIFO queue.

We also find that the best average benchmark performanceuwitideal priority queue for every
threshold plot is achieved with a smaller number of compteeads, especially for the more ag-
gressive compiler thresholds. This result shows that cealigriority queue does realize its goal of
compiling the hotter methods before the cold methods. Tiee lawer priority method compilations
seem to not make a major impact on program performance.

Finally, we can also conclude that using a good priority ciengueue allows more aggressive
compilation policies (that compile a greater fraction af frogram early) to improve performance
over a less aggressive strategy on multi/many-core masHhit@eover, a small number of compiler
threads is generally sufficient to achieve the best averppkcation thread performance. Over-
all, the best aggressive compilation policy improves penénce by about 30% over the baseline
configuration, and by about 9% over the best performanceseetiiby the server VM’s default
compilation threshold of 10,000 with any number of compiteeads. Unfortunately, the online
tiered prioritization heuristic is again not able to matieb performance of the ideal priority queue.
Thus, more research may be needed to devise better onlor@yelgorithms to achieve the most
effective overall program performance on modern machines.

7.2. Priority-Based Compiler Queues in the HotSpot Tiered Compiler

As explained earlier, the HotSpot tiered configuration wseimple and fast priority heuristic to
order methods in the queue. In this section, we describentpadt of FIFO, tiered (default), and
ideal prioritization algorithms for all the compiler quesia the tiered configuration.

We find that prioritizing method compiles has no significaffé& on program performance at
any compiler aggressiveness for the tiered compiler on atthimes configurations. These results
suggest that the program performance behavior with thedieompilers is dominated by the very
fast HotSpot client compiler that generates good code tyuaiihout causing a significant compiler
queue backup. The very hot methods that are promoted to theefioptimized by the server com-
piler do take time and cause queue back-up. The larger seouggiler overhead increases program
runtime on single-core machines, but not on the many-cohinas where compilation is free.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

A:22 M. Jantz and P. Kulkarni

14 35
= 138 {Threshold=zo oook x 1 a2 = = x 1 a2
55 ..)/ e o7 55 Threshold = 20 s o . X
T —o—10 = —o—10
= w125 S8 25
£3 12 8% ° x
§E ., e . g
9 £ 115 oL 2
< 7, £ .
“ g 11 “ g E3
28 105 ﬁ g8 15 X
© : © :
cx 1 Ea 1
& g 095 e o
H E 0.9 g E 0.5
IS 2 3 4 7 10 25 50 100 IS 2 3 4 7 10 25 50 100
Number of compilation threads (CT's) Number of compilation threads (CT's)
(@) (b)
Fig. 14. Effect of different numbers of application threads on Ergpre performance with the HotSpot Tiered VM
11 18
- x 1 -2 _ x 1 ——2
SE s |Threshold =20,000] [X 1 —*-2 Sp v - [Threshold =20 { * T 2 =
=3 —o-10 sa —o0—10 X
2. S 15
] 85 14
o 2 X s X x o 2
Q£ 095 x X -;='_’ £ 13 %
4 s d 12 2
&8 09 28 1
i S || B
E& o8 E&
T g & g 09
g E 0.8 g E 0.8
= 2 3 4 7 10 25 50 100 = 2 3 4 7 10 25 50 100
Number of compilation threads (CT's) Number of compilation threads (CT's)
(@) (b)

Fig. 15. Effect of different numbers of application threads on rredtre performance with the HotSpot Tiered VM

8. EFFECT OF MULTIPLE APPLICATION THREADS

All our earlier experiments were primarily conducted withgde-threaded benchmarks. However,
real-world applications widely vary in the number and wodd of concurrent application threads.
In this section, we explore the effect of compiler aggre=ms@ss and resources on the performance
of benchmarks with different numbers of application thiead

Experiments in this section were conducted using 16 SPEZPa& benchmarks (all except
derby).® Our other benchmark suites do not allow an easy mechanismifioronly and precisely
control the number of spawned application threads. WhilEGPm98 only permits runs with a
fixed number of application threads, many of the DaCapo progrspawn a variable numbers of
internalthreads that cannot be controlled by the harness (see Taliet each VM configuration,
we selected three compilation thresholds (least aggeessiest aggressive, and default) and ran the
benchmarks with a different number of compiler and applicethreads to understand their interac-
tions. Results with the server and tiered VMs show similgliaption—compiler thread interaction
trends, and therefore, we only report results with the di&f®! in this section.

Figures 14(a) and 14(b) show the results of these expergwéttt the tiered VM on our single-
core configuration for the least (CT=20,000) and most aggre¢CT=20) compile thresholds, re-
spectively. Each line in the figures (plotted for a specifimber of application threads as indicated
in the legend) shows the ratio of program speed with a diffenember of compiler threads to the
performance with a single compiler threadd that same number of application threadsseparate
baseline for each application thread configuration is retded because SPECjvm2008 employs a
different workload size for each such setting. As explaipeeViously in Section 4.2.2 (Figure 4),
Figure 14 again shows that a fast and high-quality level+hmiter that doesn’t cause much queue
delay is responsible for the loss in program performanch wite (or few) application threads as

5SPECjvm2008 automatically scales the benchmark worklo@ddportion to the number of application threads. This eaus
thederbybenchmark with a greater number of application threadstemdil with an out-of-memory error.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:23

the number of compiler threads are increased. However, weohserve that the magnitude of this
loss diminishes as the number of application threads i®asad. We believe this effect is caused
by the change in relative application thread interferehagis due to the compiler threads servicing
less important program methods with limited hardware resgsi In other words, the likelihood of
the OS scheduler selecting an application thread is snvaliilen there are fewer application threads
in the run queue. Thus, adding application threads dim@sighe relative loss in performance by
increasing the likelihood that an application thread runs.

Another interesting trend we noticed in both the server amd VMs can be see from the
multi-core experiments displayed in Figure 15. We find tlegpgécially at less aggressive compile
thresholds) configurations with larger numbers of applicathreads tend to show slightly larger
improvements as the number of compiler threads is incre&spdograms with multiple application
threads, the output of a compilation may be used simultasigdni threads executing in parallel.
Thus, early compilations may benefit more of the applicagioomputation in comparison to single-
threaded applications.

We found that our many-core experiments also demonstratesmnilar trends. However, in
the absence of interference to the application threadsuwmilimited computation resources, we do
not find any significant performance losses with larger nusbé&compiler threads. These results
also support the observation that configurations with mpggieation threads tend to show more
pronounced performance improvements from early compitati

9. CONCLUSIONS

Many virtual machines now allow the concurrent executiomufitiple compiler threads to ex-
ploit the abundant computing resources available in mogercessors to improve overall program
performance. It is expected that more aggressive JIT ceuigil strategies may be able to lower
program run-time by compiling and optimizing more prograethods early. The goal of this work
is to explore the potential performance benefit of more aggive JIT compilation policies for mod-
ern multi/many-core machines and VMs that support multiieultaneous compiler threads. We
explore the properties of two VM compiler configurations:irgge-level highly optimizing (but
slow) servercompiler, and a multi-leveiered compiler. The HotSpot tiered compiler uses a very
fast (but lightly optimizing)client compiler at the first stage, and a powerful SSA-baseive)
compiler for re-compiling the very hot methods. Due to itsoenpilations, the tiered compiler in-
duces a higher compilation load compared to the single-&rger compiler. Our experiments vary
the hotness thresholds to control compiler aggressiveaadsemploy different number of concur-
rent compiler threads to exploit free computation resaairéée also develop a novel experimental
framework to evaluate our goal for future many-core process

Results from our experiments allow us to make several istiexgobservations:

(1) Properties of the tiered compiler are largely influeniogdhe fast client compiler that is able to
obtain most of the performance benefits of the slower serwepder at a small fraction of the
compilation cost.

(2) Program features, in particular the ratio of hot progragthods, impact their performance be-
havior at different compiler aggressiveness levels. Wadiahat programs with a low compila-
tion to application time ratio are not significantly affettiey varying compiler aggressiveness
levels or by spawning additional compiler threads.

(3) On single-core machines, compilation can impede aatdtin progress. The best compilation
policy for such machines seems to be an aggressivenesgiavehly sends as many methods to
compile as can be completely serviced by the VM in 1-2 comileeads for most benchmarks.

(4) For machines with multiple cores, methods compiled bydenately aggressive compile thresh-
old are typically sufficient to obtain the best possible perfance. Compiling any more methods
quickly results in diminishing returns and very minor penm@nce gains.

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

A:24 M. Jantz and P. Kulkarni

(5) Reducing the compiler queue delay and compiling earimase important to program perfor-
mance than compiling all program methods. Spawning morepdenthreads (at a given com-
pilation aggressiveness) is an effective technique toaedhe compiler queue delay.

(6) On single-core and multi-core machines, an excessivaiatof compiler activity and threads
may impede program progress by denying the applicatiomttséme to run on the CPU. This
effect is reduced as the ratio of application to compileeduls increase. We also saw evidence
that benchmarks with more application threads tend to sligitly sharper improvements from
early compilation.

(7) The tiered VM, with its extremely fast client compiles,able to compile methods more quickly
with fewer compilation resources, and typically outpemigrthe server VM on single-core ma-
chines or when the number of compiler threads is kept at anmim. Alternatively, when there
are additional computing resources available, increasieghumber of compiler threads can
sharply improve performance with the server VM.

(8) Effective prioritization of method compiles is impantao find and compile the most important
methods early, especially for the slow, powerful, highptimizing compilers. However, addi-
tional research is necessary to find gaodine prioritization algorithms.

(9) Initiating more compiler threads than available conmmitesources typically hurts performance.

Based on these observations we make the following recomatiend regarding a good compila-
tion policy for modern machines: (a) JIT compilers should as adaptive compiler aggressiveness
based on availability of free computing resources. At thg least VMs should employ two (sets of)
compiler thresholds, a conservative (large) thresholdnvia@ning on single-core processors, and
moderately aggressive (small) threshold on multi/mamgcoachines. (b) Spawn as many com-
piler threads as available free compute cores (and as earetrby the specific power budget). (c)
Employ an effective priority queue implementation to regltivte compilation queue delay for the
slower compilers. (d) The more complex tiered compilativategies used in some of the existing
state-of-the-art JVMs can achieve the most effective igbaprogram performance with minimal
compiler threads and little need for effective prioritinat of method compiles. We believe that
our comprehensive research will guide future VM developensaking informed decisions regard-
ing how to design and implement the most effective JIT coatigih policies to achieve the best
application performance.

10. FUTURE WORK

This work presents several interesting avenues for futesearch. First, this work shows that the
availability of abundant computation resources in futusehines will allow the possibility of pro-
gram performance improvement by early compilation of a grefaction of the program. With
the development of profile-driven optimization phasesyreitwork will have to consider the ef-
fect of early compilation on the amount of collected profitéormation and resulting impact on
generated code. Additionally, researchers may also needtlore the interaction of increased
compiler activity with garbage collection. More native eogroduced by aggressive JIT compila-
tion can raise memory pressure and garbage collection eadd) which may then affect program
non-determinism due to the increased pause times assbwiategarbage collections. Second, in
this paper we explored some priority queue implementatioasmay be more suitable for aggres-
sive compilation policies, especially with a slow, highlgtimizing compiler. We plan to continue
our search for better method prioritization schemes in theré. Third, this work shows that the
optimal settings for compilation threshold and the numbermpiling threads depend on factors,
such as application characteristics, that cannot be detedhstatically. Thus, we plan to conduct
experiments to study the performance potential of addgta@aling these parameters at runtime.
Fourth, this work primarily focuses on exploriifgandwhento compile program methods to max-
imize overall program performance for modern machines. Weahsider some aspectstuwto
compile with the tiered HotSpot configuration. However, towompile program regions is a much
broader research topic that includes issues such as beldetionandorderingof optimizations at

ACM Transactions on Architecture and Code Optimizatior, VoNo. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:25

different compilation levels. We have begun to conductasdeto address some of these issues in
the HotSpot VM [Jantz and Kulkarni 2013]. We plan to explbi bbservations from this work to
focus on optimizations (and methods) with the greatest anpa program performance and build
new and more effective online models. Finally, we are culyetiso conducting similar experiments
in other virtual machines (JikesRVM) to see if our conclasiérom this work hold across different
VMs. Later, we plan to also validate our results for différnprocessor architectures.

REFERENCES

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. 2000daptive optimization in the Jalapeno JVM.Rmoceed-
ings of the 15th ACM SIGPLAN conference on Object-orientegramming, systems, languages, and applications
47-65.

Matthew Arnold, Stephen Fink, David Grove, Michael HindddPeter F. Sweeney. 2000b. Adaptive optimization in the
Jalapeo JVM: The controller's analytical model. In Prodegsl of the 3rd ACM Workshop on Feedback Directed and
Dynamic Optimization (FDDO '00). (December 2000).

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. 2085urvey of Adaptive Optimization in Virtual Machines.
Proc. IEEE92, 2 (February 2005), 449-466.

M. Arnold, M. Hind, and B. G. Ryder. 2002. Online feedbackedied optimization of Jav&IGPLAN Not37, 11 (2002),
111-129.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjadi¥ang, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyeati Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko Stef@ndhomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo benchmarks: Java benchmadwelopment and analysis.Pnoceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented progrargrmystems, languages, and applications (OOPSLA
'06). 169-190.

Igor Bohm, Tobias J.K. Edler von Koch, Stephen C. Kyle,rBjéranke, and Nigel Topham. 2011. Generalized just-iretim
trace compilation using a parallel task farm in a dynami@abjrtranslator. IrProceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implenienté®LDI '11). 74-85.

D. Bruening and E. Duesterwald. 2000. Exploring optimal pdation unit shapes for an embedded just-in-time compiler
In 3rd ACM Workshop on Feedback-Directed and Dynamic Optitiozal3—20.

John Cavazos and Michael F. P. O'Boyle. 2006. Method-sjpedyfnamic compilation using logistic regressionQ®PSLA
'06: Proceedings of the 21st annual ACM SIGPLAN conferemc®Dbject-oriented programming systems, languages,
and applicationsACM, New York, NY, USA, 229-240.

Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. 1991.dJsiafile information to assist classic code optimizations.
Software Prac. Experienc&l (1991), 1301-1321.

L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient ieypentation of the smalltalk-80 system.R®OPL '84: Pro-
ceedings of the 11th ACM SIGACT-SIGPLAN symposium on phascof programming languageACM, New York,

NY, USA, 297-302.

Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackbamg Kathryn S. McKinley. 2011. Looking back on the
language and hardware revolutions: measured power, pafare, and scaling. IRroceedings of the sixteenth inter-
national conference on Architectural support for programgilanguages and operating systems (ASPLOS. AOM,
New York, NY, USA, 319-332.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 200&tisHitally rigorous java performance evaluation Proceed-
ings of the conference on Object-oriented programmingesystand applications (OOPSLA '0B7-76.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2068. Java(TM) Language Specification (3rd Editidthird
ed.). Prentice Hall.

Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusi®82. Gprof: A call graph execution profilesIGPLAN
Notices17, 6 (1982), 120-126.

N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and Vr8laresan. 2004. Java just-in-time compiler and virtualhimec
improvements for server and middleware application®roceedings of the conference on Virtual Machine Research
And Technology Symposiut®.

Dayong Gu and Clark Verbrugge. 2008. Phase-based adaptioepilation in a JVM. IfProceedings of the 6th IEEE/ACM
symposium on Code generation and optimization (CGO. '28)34.

M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. 200%r&rating new general compiler optimization settings. In
ICS '05: Proceedings of the 19th Annual International Coafice on Supercomputing61-168.

G. J. Hansen. 197/4Adaptive systems for the dynamic run-time optimizationroffams Ph.D. Dissertation. Carnegie-
Mellon Univ., Pittsburgh, PA.

ACM Transactions on Architecture and Code Optimization, VoNo. N, Article A, Publication date: January YYYY.

A:26 M. Jantz and P. Kulkarni

Tim Harris. 1998. Controlling run-time compilation. IEBEE Workshop on Programming Languages for Real-Time lnidiis
Applications 75-84.

Kim Hazelwood and David Grove. 2003. Adaptive online cotigeansitive inlining. INCGO '03: Proceedings of the inter-
national symposium on Code generation and optimizatiBEE Computer Society, Washington, DC, USA, 253-264.

U. Holzle and D. Ungar. 1996. Reconciling responsivenea#is performance in pure object-oriented languagesM Trans-
actions on Programming Language Systelis4 (1996), 355-400.

Michael R. Jantz and Prasad A. Kulkarni. 2013. Performamterpial of optimization phase selection during dynamic Ji
compilation. INVEE "13: Proceedings of the 9th ACM SIGPLAN/SIGOPS intéonat conference on Virtual execution
environments

D. E. Knuth. 1971. An empirical study of FORTRAN prograrBeftware: Practice and Experiende 2 (1971), 105-133.

T. Kotzmann, C. Wimmer, H. Mdssenbock, T. Rodriguez, Ks&ell, and D. Cox. 2008. Design of the Java HotS¥ctient
compiler for Java 6ACM Trans. Archit. Code Opting, 1 (2008), 1-32.

C. Krintz. 2003. Coupling on-line and off-line profile infoation to improve program performance.@&O '03: Proceed-
ings of the international symposium on Code generation goiiimzation Washington, DC, USA, 69-78.

C. Krintz and B. Calder. 2001. Using annotations to reducedyic optimization time. lProceedings of the ACM SIGPLAN
2001 conference on Programming language design and impietien 156—167.

C. Krintz, D. Grove, V. Sarkar, and B. Calder. 2000. Redudtmg Overhead of Dynamic CompilatioBoftware: Practice
and Experienc&1, 8 (December 2000), 717-738.

P. Kulkarni, M. Arnold, and M. Hind. 2007. Dynamic compilaii: the benefits of early investing. WEE '07: Proceedings
of the 3rd international conference on Virtual executioriemments 94—-104.

Prasad A. Kulkarni. 2011. JIT compilation policy for modemachines. InProceedings of the 2011 ACM international
conference on Object oriented programming systems lareguagd applications (OOPSLA '11j73-788.

Prasad A. Kulkarni and Jay Fuller. 2011. JIT Compilationidyobn Single-Core and Multi-core Machines. limteraction
between Compilers and Computer Architectures (INTERAZOID1 15th Workshop 054—-62.

Microsoft. 2001 Microsoft C# Language Specificatiofirst ed.). Microsoft Press.

Manijiri A. Namjoshi and Prasad A. Kulkarni. 2010. Novel adiprofiling for virtual machines. IWEE '10: Proceedings of
the 6th ACM SIGPLAN/SIGOPS international conference ofu&irexecution environment$33—-144.

Michael Paleczny, Christopher Vick, and CIiff Click. 200The Java hotspotTM server compiler. IWM'01: Proceed-
ings of the 2001 Symposium on JavaTM Virtual Machine Researd Technology SymposiulSENIX Association,
Berkeley, CA, USA, 1-12.

R.N. Sanchez, J.N. Amaral, D. Szafron, M. Pirvu, and M. Slep®011. Using machines to learn method-specific compi-
lation strategies. lIiCode Generation and Optimization (CGO), 2011 9th AnnualBE_M International Symposium
on. 257 —266.

Jim Smith and Ravi Nair. 200%/rtual Machines: Versatile Platforms for Systems and Rsses (The Morgan Kaufmann
Series in Computer Architecture and DesigiMporgan Kaufmann Publishers Inc., San Francisco, CA, USA.

SPEC2008. 2008. SPECjvm2008 Benchmarks. http://www.s#vm2008/. (2008).

SPEC98. 1998. SPECjvm98 Benchmarks. http://www.speparg§8/. (1998).

Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Maradity. 2006. Experiences with Multi-threading and Dynamic
Class Loading in a Java Just-In-Time CompilerPimceedings of the International Symposium on Code Generat
and Optimization (CGO '06)87-97.

Deborah L. Whitfield and Mary Lou Soffa. 1997. An approachédwploring code improving transformationr&CM Trans-
actions on Programming Languages and Systéi$ (1997), 1053-1084.

ACM Transactions on Architecture and Code Optimizatior, VONo. N, Article A, Publication date: January YYYY.

