
A

Exploring Single and Multi-Level JIT Compilation Policy for Modern
Machines1

MICHAEL R. JANTZ, PRASAD A. KULKARNI
University of Kansas, Lawrence, Kansas

Dynamic or Just-in-Time (JIT) compilation is essential to achieve high-performance emulation for programs written in
managedlanguages, such as Java and C#. It has been observed that a conservative JIT compilation policy is most effective
to obtain good runtime performance without impeding application progress on single-core machines. At the same time, itis
often suggested that a more aggressive dynamic compilationstrategy may perform best on modern machines that provide
abundant computing resources, especially with virtual machines (VM) that are also capable of spawning multiple concurrent
compiler threads. However, comprehensive research on the best JIT compilation policy for such modern processors and VMs
is currently lacking. The goal of this work is to explore the properties of single-tier and multi-tier JIT compilation policies
that can enable existing and future VMs to realize the best program performance on modern machines.

In this work, we design novel experiments and implement new VM configurations to effectively control the compiler
aggressiveness and optimization levels (if andwhenmethods are compiled) in the industry-standard Oracle HotSpot Java
VM to achieve this goal. We find that the best JIT compilation policy is determined by the nature of the application and
the speed and effectiveness of the dynamic compilers. We extend earlier results showing the suitability of conservative JIT
compilation on single-core machines for VMs with multiple concurrent compiler threads. We show that employing the free
compilation resources (compiler threads and hardware cores) to aggressively compilemoreprogram methods quickly reaches
a point of diminishing returns. At the same time, we also find that using the free resources to reduce compiler queue backup
(compile selected hot methodsearly) significantly benefits program performance, especially for slower (highly-optimizing)
JIT compilers. For such compilers, we observe that accurately prioritizing JIT method compiles is crucial to realize the most
performance benefit with the smallest hardware budget. Finally, we show that a tiered compilation policy, although complex
to implement, greatly alleviates the impact of more and early JIT compilation of programs on modern machines.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors–Optimizations, Run-time environments,
Compilers

General Terms: Languages, Performance

Additional Key Words and Phrases: virtual machines, dynamic compilation, multi-core, Java

ACM Reference Format:
Michael Jantz and Prasad Kulkarni, 2013. Exploring Single and Multi-Level JIT Compilation Policy for Modern Machines.
ACM Trans. Architec. Code Optim.V, N, Article A (January YYYY), 26 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1Extension of Conference Paper.This work extends our conference submission, titledJIT Compilation Policy for
Modern Machines, published in the ACM international conference on Object oriented programming systems languages and
applications (OOPSLA) [Kulkarni 2011]. We extend this earlier work by: (a) re-implementingall experiments in the latest
HotSpot JVM that provides a new state-of-the-art multi-tier compiler and supports improved optimizations in the server
compiler, (b) for the first time, investigating the effects of aggressive compilation and multiple compiler threads onmulti-
tieredJIT compilation strategies, (c) providing more comprehensive results, with differentiation on benchmark features, (d)
re-analyzing our observations and conclusions, and (e) exploring a different set of heuristic priority schemes.

This work is supported by the National Science Foundation, under NSF CAREER award CNS-0953268.
Author’s addresses: M. Jantz and P. Kulkarni, Department ofElectrical Engineering and Computer Science, University of
Kansas, Lawrence, KS 66045.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit orcommercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work inother works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM,Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1544-3566/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. Jantz and P. Kulkarni

1. INTRODUCTION

To achieve application portability, programs written inmanagedprogramming languages, such as
Java [Gosling et al. 2005] and C# [Microsoft 2001], are distributed as machine-independent inter-
mediate language binary codes for avirtual machine(VM) architecture. Since the program binary
format does not match the native architecture, VMs have to employ either interpretation or dynamic
compilation for executing the program. Additionally, the overheads inherent during program inter-
pretation make dynamic or Just-in-Time (JIT) compilation essential to achieve high-performance
emulation of such programs in a VM [Smith and Nair 2005].

Since it occurs at runtime, JIT compilation contributes to the overall execution time of the ap-
plication and can potentially impede application progressand further degrade itsresponsetime, if
performed injudiciously. Therefore, JIT compilation policies need to carefully tuneif, when, and
how to compile different program regions to achieve the best overall performance. Researchers
invented the technique ofselective compilationto address the issues ofif andwhento compile pro-
gram methods during dynamic compilation [Hölzle and Ungar1996; Paleczny et al. 2001; Krintz
et al. 2000; Arnold et al. 2005]. Additionally, several modern VMs provide multiple optimization
levels along with decision logic to control and decidehowto compile each method. While asingle-
tier compilation strategy always applies the same set of optimizations to each method, amulti-tier
policy may compile the same method multiple times at distinct optimization levels during the same
program run. The control logic in the VM determines each method’shotnesslevel (or how much of
the execution time is spent in a method) to decide its compilation level.
Motivation:Due to recent changes and emerging trends in hardware and VM architectures, there is
an urgent need for a fresh evaluation of JIT compilation strategies on modern machines. Research
on JIT compilation policies has primarily been conducted onsingle-processor machines and for
VMs with a single compiler thread. As a result, existing policies that attempt to improve program
efficiency while minimizing application pause times and interference are typically quite conserva-
tive. Recent years have witnessed a major paradigm shift in microprocessor design from high-clock
frequency single-core machines to processors that now integrate multiple cores on a single chip.
These modern architectures allow the possibility of running the compiler thread(s) on a separate
core(s) to minimize interference with the application thread. VM developers are also responding to
this change in their hardware environment by allowing the VMto simultaneously initiate multiple
concurrent compiler threads. Such evolution in the hardware and VM contexts may require radically
different JIT compilation policies to achieve the most effective overall program performance.
Objective:The objective of this research is to investigate and recommend JIT compilation strategies
to enable the VM to realize the best program performance on existing single/multi-core processors
and future many-core machines. We vary thecompilation threshold, the number of initiated com-
piler threads, and single and multi-tier compilation strategies to controlif, when, andhow to detect
and compile important program methods. The compilation threshold is a heuristic value that indi-
cates thehotnessof each method in the program. Thus, more aggressive policies employ a smaller
compilation threshold so that more methods becomehot sooner. We induce progressive increases
in the aggressiveness of JIT compilation strategies, and the number of concurrent compiler threads
and analyze their effect on program performance. While a single-tier compilation strategy uses a
single compiler (and fixed optimization set) for each hot method, a multi-tier compiler policy typi-
cally compiles a hot method with progressivelyadvanced(that apply more and better optimizations
to potentially produce higher-quality code), but slower, JIT compilers. Our experiments change the
different multi-tier hotness thresholds in lock-step to alsopartially control how (optimization level)
each method is compiled.2 Additionally, we design and construct a novel VM configuration to con-
duct experiments for many-core machines that are not commonly available as yet.

2In contrast to the two components of ‘if’ and ‘when’ to compile, the issue of how to compile program regions is much
broader and is not unique to dynamic compilation, as can be attested by the presence of multiple optimization levels in GCC,
and the wide body of research in profile-driven compilation [Graham et al. 1982; Chang et al. 1991; Arnold et al. 2002;
Hazelwood and Grove 2003] and optimization phase ordering/selection [Whitfield and Soffa 1997; Haneda et al. 2005;

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:3

Findings and Contributions:This is the first work to thoroughly explore and evaluate these various
compilation parameters and strategies 1) on multi-core andmany-core machines and 2) together.
We find that the most effective JIT compilation strategy depends on several factors, including: the
availability of free computing resources, program features (particularly the ratio of hot program
methods), and the compiling speed, quality of generated code, and the method prioritization algo-
rithm used by the compiler(s) employed. In sum, the major contributions of this research are:

(1) We design original experiments and VM configurations to investigate the most effective JIT com-
pilation policies for modern processors and VMs with singleand multi-level JIT compilation.

(2) We quantify the impact of altering ‘if’, ‘when’, and one aspect to ‘how’ methods are compiled on
application performance. Our experiments evaluate JVM performance with various settings for
compiler aggressiveness and the number of compilation threads, as well as different techniques
for prioritizing method compiles, with both single and multi-level JIT compilers.

(3) We explain the impact of different JIT compilation strategies on available single/multi-core and
future many-core machines.

The rest of the paper is organized as follows. In the next section, we present background infor-
mation and related work on existing JIT compilation policies. We describe our general experimental
setup in Section 3. Our experiments exploring different JITcompilation strategies for VMs with
multiple compiler threads on single-core machines are described in Section 4. In Section 5, we
present results that explore the most effective JIT compilation policies for multi-core machines. We
describe the results of our novel experimental configuration to study compilation policies for future
many-core machines in Section 6. We explain the impact of prioritizing method compiles, and effect
of multiple application threads in Sections 7 and 8. Finally, we present our conclusions and describe
avenues for future work in Sections 9 and 10 respectively.

2. BACKGROUND AND RELATED WORK

Several researchers have explored the effects of conducting compilation at runtime on overall pro-
gram performance and application pause times. The ParcPlace Smalltalk VM [Deutsch and Schiff-
man 1984] followed by the Self-93 VM [Hölzle and Ungar 1996]pioneered many of the adaptive
optimization techniques employed in current VMs, including selective compilation with multiple
compiler threads on single-core machines. Aggressive compilation on such machines has the po-
tential of degrading program performance by increasing thecompilation time. The technique of
selective compilation was invented to address this issue with dynamic compilation [Hölzle and Un-
gar 1996; Paleczny et al. 2001; Krintz et al. 2000; Arnold et al. 2005]. This technique is based on the
observation that most applications spend a large majority of their execution time in a small portion
of the code [Knuth 1971; Bruening and Duesterwald 2000; Arnold et al. 2005]. Selective compi-
lation uses online profiling to detect this subset ofhot methods to compile at program startup, and
thus limits the overhead of JIT compilation while still deriving the most performance benefit. Most
current VMs employ selective compilation with astagedemulation model [Hansen 1974]. With
this model, each method is interpreted or compiled with a fast non-optimizing compiler at program
start to improve application response time. Later, the VM determines and selectively compiles and
optimizes only the subset of hot methods to achieve better program performance.

Unfortunately, selecting the hot methods to compile requires future program execution infor-
mation, which is hard to accurately predict [Namjoshi and Kulkarni 2010]. In the absence of any
better strategy, most existing JIT compilers employ a simple prediction model that estimates that
frequently executedcurrent hot methods will also remain hot in the future [Grcevski et al. 2004;
Kotzmann et al. 2008; Arnold et al. 2000a]. Online profiling is used to detect these current hot meth-
ods. The most popular online profiling approaches are based on instrumentationcounters[Hansen
1974; Hölzle and Ungar 1996; Kotzmann et al. 2008], interrupt-timer-basedsampling[Arnold et al.

Cavazos and O’Boyle 2006; Sanchez et al. 2011; Jantz and Kulkarni 2013] for static and dynamic compilers. Consequently,
we only explore one aspect of ‘how’ to compile methods in thiswork.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Jantz and P. Kulkarni

2000a], or a combination of the two methods [Grcevski et al. 2004]. The method/loop is sent for
compilation if the respective method counters exceed a fixedthreshold.

Finding the correct threshold value is crucial to achieve good program startup performance in a
virtual machine. Setting a higher than ideal compilation threshold may cause the virtual machine to
be too conservative in sending methods for compilation, reducing program performance by denying
hot methods a chance for optimization. In contrast, a compiler with a very low compilation threshold
may compile too many methods, increasing compilation overhead. Therefore, most performance-
aware JIT compilers experiment with many different threshold values for each compiler stage to
determine the one that achieves the best performance over a large benchmark suite.

Resource constraints force JIT compilation policies to make several tradeoffs. Thus, selective
compilation limits the time spent by the compiler at the costof potentially lower application perfor-
mance. Additionally, the use of online profiling causes delays in making the compilation decisions
at program startup. The first component of this delay is caused by the VM waiting for the method
counters to reach the compilationthresholdbeforequeuingit for compilation. The second fac-
tor contributing to the compilation delay occurs as each compilation request waits in the compiler
queue to be serviced by a free compiler thread. Restricting method compiles and the delay in op-
timizing hot methods results in poor application startup performance as the program spends more
time executing in unoptimized code [Kulkarni et al. 2007; Krintz 2003; Gu and Verbrugge 2008].

Various strategies have been developed to address these delays in JIT compilation at program
startup. Researchers have explored the potential of offlineprofiling and classfile annotation [Krintz
and Calder 2001; Krintz 2003], early and accurate prediction of hot methods [Namjoshi and Kulka-
rni 2010], and online program phase detection [Gu and Verbrugge 2008] to alleviate the first delay
component caused by online profiling. Likewise, researchers have also studied techniques to address
the second component of the compilation delay caused by the backup and wait time in the method
compilation queue. These techniques include increasing the priority [Sundaresan et al. 2006] and
CPU utilization [Kulkarni et al. 2007; Harris 1998] of the compiler thread, and providing a priority-
queue implementation to reduce the delay for thehotterprogram methods [Arnold et al. 2000b].

However, most of the studies described above have only been targeted for single-core machines.
There exist few explorations of JIT compilation issues for multi-core machines. Krintz et al. in-
vestigated the impact of background compilation in a separate thread to reduce the overhead of
dynamic compilation [Krintz et al. 2000]. This technique uses a single compiler thread and employs
offline profiling to determine and prioritize hot methods to compile. Kulkarni et al. briefly discuss
performing parallel JIT compilation with multiple compiler threads on multi-core machines, but do
not provide any experimental results [Kulkarni et al. 2007]. Existing JVMs, such as Sun’s HotSpot
server VM [Paleczny et al. 2001] and the Azul VM (derived fromHotSpot), support multiple com-
piler threads, but do not present any discussions on ideal compilation strategies for multi-core ma-
chines. Prior work by Böhm et al. explores the issue of parallel JIT compilation with a priority queue
based dynamic work scheduling strategy in the context of their dynamic binary translator [Böhm
et al. 2011]. Esmaeilzadeh et al. study the scalability of various Java workloads and their power /
performance tradeoffs across several different architectures [Esmaeilzadeh et al. 2011]. Our earlier
publications explore some aspects of the impact of varying the aggressiveness of dynamic compi-
lation on modern machines for JVMs with multiple compiler threads [Kulkarni and Fuller 2011;
Kulkarni 2011]. This paper extends our earlier works by (a) providing more comprehensive results,
(b) re-implementing most of the experiments in the latest OpenJDK JVM that provides a state-of-
the-art multi-tier compiler and supports improved optimizations, (c) differentiating the results and
re-analyzing our observations based on benchmark characteristics, (d) exploring different heuristic
priority schemes, and (e) investigating the effects of aggressive compilation and multiple compiler
threads on the multi-tiered JIT compilation strategies. Several production-grade Java VMs, includ-
ing the Oracle HotSpot and IBM J9, now adopt a multi-tier compilation strategy, which make our
results with the multi-tiered compiler highly interestingand important.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:5

Table I. Threshold parameters in the tiered compiler

Parameter Description Client
Default

Server
Default

Invocation Threshold Compile method if invocation count exceeds this threshold 200 5000
Backedge Threshold OSR compile method if backedge count exceeds this threshold 7000 40000
Compile Threshold Compile method if invocation+ backedge count exceeds this

threshold (and invocation count> Minimum Invocation Threshold)
2000 15000

Minimum Invocation
Threshold

Minimum number of invocations required before method can be
considered for compilation

100 600

3. EXPERIMENTAL FRAMEWORK

The research presented in this paper is performed using Oracle’s OpenJDK/HotSpot Java virtual
machine (build 1.6.025-b06) [Paleczny et al. 2001]. The HotSpot VM uses interpretation at pro-
gram startup. It then employs a counter-based profiling mechanism, and uses the sum of a method’s
invocationand loopback-edgecounters to detect and promote hot methods for compilation.We call
the sum of these counters theexecution countof the method. Methods/loops are determined to be
hot if the corresponding method execution count exceeds a fixed threshold. The HotSpot VM allows
the creation of an arbitrary number of compiler threads, as specified on the command-line.

The HotSpot VM implements two distinct optimizing compilers to improve application perfor-
mance beyond interpretation. Theclient compilerprovides relatively fast compilation times with
smaller program performance gains to reduce application startup time (especially, on single-core
machines). Theserver compilerapplies an aggressive optimization strategy to maximize perfor-
mance benefits for longer running applications. We conducted experiments to compare the overhead
and effectiveness of HotSpot’s client and server compiler configurations. We found that the client
compiler is immensely fast, and onlyrequires about 2% of the time, on average, taken by the server
compilerto compile the same set of hot methods. At the same time, the simple and fastclient com-
piler is able to obtain most (95%) of the performance gain (relative to interpreted code) realized by
the server compiler.

In addition to the single-level client and server compilers, HotSpot provides atiered compiler
configuration that utilizes and combines the benefits of the client and server compilers. In the most
common path in the tiered compiler, each hot method is first compiled with the client compiler
(possibly with additional profiling code inserted), and later, if the method remains hot, is recompiled
with the server compiler. Each compiler thread in the HotSpot tiered compiler is dedicated to either
the client or server compiler, andeach compiler is allocated at least one thread. To account for the
longer compilation times needed by the server compiler, HotSpot automatically assigns the compiler
threads at a 2:1 ratio in favor of the server compiler. The property of the client compiler to quickly
produce high-quality optimized code greatly influences thebehavior of the tiered compiler under
varying compilation loads, as our later experiments in thispaper will reveal.

There is a singlecompiler queuedesignated to each (client and server) compiler in the tiered
configuration. These queues employ a simple execution countbased priority heuristic to ensure
the most active methods are compiled earlier. This heuristic computes the execution count of each
method in the appropriate queue since the last queue removalto find the most active method. As the
load on the compiler threads increases, HotSpot dynamically increases its compilation thresholds
to prevent either the client or server compiler queues from growing prohibitively long. In addition,
the HotSpot tiered compiler has logic to automatically removestalemethods that have stayed in the
queue for too long. For our present experiments, we disable the automatic throttling of compilation
thresholds and removal of stale methods to appropriately model the behavior of a generic tiered
compilation policy. The tiered compiler uses different thresholds that move in lockstep to tune the
aggressiveness of its component client and server compilers. Table I describes these compilation
thresholds and their default values for each compiler in thetiered configuration.

The experiments in this paper were conducted using all the benchmarks from three different
benchmark suites, SPECjvm98 [SPEC98 1998], SPECjvm2008 [SPEC2008 2008] and DaCapo-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Jantz and P. Kulkarni

Table II. Benchmarks used in our experiments.

SPECjvm98 SPECjvm2008 DaCapo-9.12-bach
Name #M #AT Name #M #AT Name #M #AT

201 compress100 517 1 compiler.compiler 3195 1 avroradefault 1849 6
201 compress10 514 1 compiler.sunflow 3082 1 avrorasmall 1844 3
202 jess100 778 1 compress 960 1 batik default 4366 1
202 jess10 759 1 crypto.aes 1186 1 batik small 3747 1
205 raytrace100 657 1 crypto.rsa 960 1 eclipsedefault 11145 5
205 raytrace10 639 1 crypto.signverify 1042 1 eclipsesmall 5461 3
209 db 100 512 1 derby 6579 1 fop default 4245 1
209 db 10 515 1 mpegaudio 959 1 fop small 4601 2
213 javac 100 1239 1 scimark.fft.small 859 1 h2 default 2154 3
213 javac 10 1211 1 scimark.lu.small 735 1 h2 small 2142 3
222 mpegaudio100 659 1 scimark.montecarlo 707 1 jython default 3547 1
222 mpegaudio10 674 1 scimark.sor.small 715 1 jython small 2070 2
227 mtrt 100 658 2 scimark.sparse.small 717 1 luindex default 1689 2
227 mtrt 10 666 2 serial 1121 1 luindex small 1425 1
228 jack 100 736 1 sunflow 2015 5 lusearchdefault 1192 1
228 jack 10 734 1 xml.transform 2592 1 lusearchsmall 1303 2

xml.validation 1794 1 pmd default 3881 8
pmd small 3058 3
sunflowdefault 1874 2
sunflowsmall 1826 2
tomcatdefault 9286 6
tomcatsmall 9189 6
xalan default 2296 1
xalan small 2277 1

9.12-bach [Blackburn et al. 2006]. We employ two inputs (10 and 100) for benchmarks in the
SPECjvm98 suite, two inputs (small and default) for the DaCapo benchmarks, and a single in-
put (startup) for benchmarks in the SPECjvm2008 suite, resulting in 57 benchmark/input pairs. Two
benchmarks from the DaCapo benchmark suite,tradebeansandtradesoap, did not always run cor-
rectly with thedefaultversion of the HotSpot VM, so these benchmarks were excludedfrom our set.
In order to limit possible sources of variation in our experiments, we set the number of application
threads to one whenever possible. Unfortunately, several of our benchmarks employ multiple appli-
cation threads due tointernal multithreadingthat cannot be controlled by the harness application.
Table II lists the name, number of invoked methods (under thecolumn labeled #M), and number of
application threads (under the column labeled #AT) for each benchmark in our suite.

All our experiments were performed on a cluster of dual quad-core, 64-bit, x86 machines running
Red Hat Enterprise Linux 5 as the operating system. The cluster includes three models of server ma-
chine: Dell M600 (two 2.83GHz Intel Xeon E5440 processors, 16GB DDR2 SDRAM), Dell M605
(two 2.4GHz AMD Opteron 2378 processors, 16GB DDR2 SDRAM), and PowerEdge SC1435
(two 2.5GHz AMD Opteron 2380 processors, 8GB DDR2 SDRAM). Werun all of our experiments
on one of these three models, but experiments comparing runsof the same benchmark always use
the same model. There are no hyperthreading or frequency scaling techniques of any kind enabled
during our experiments.

We disable seven of the eight available cores to run our single-core experiments. Our multi-core
experiments utilize all available cores. More specific variations made to the hardware configuration
are explained in the respective sections. Each benchmark isrun in isolation to prevent interference
from other user programs. In order to account for inherent timing variations during the benchmark
runs, all the performance results in this paper report the average over 10 runs for each benchmark-
configuration pair. All the experiments in this paper measure startupperformance. Thus, any com-
pilation that occurs is performed concurrently with the running application.

Finally, we present a study to compare the program performance on single-core and multi-core
machines. Figure 1 shows the multi-core performance of eachbenchmark relative to single-core
performance for both the default server and tiered compilerconfigurations. To estimate the degree of

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:7

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e
 w

it
h

 m
u

lt
i-

co
re

 c
o

n
fi

g
.

/

T
im

e
 w

it
h

 s
in

g
le

-c
o

re
 c

o
n

fi
g

.

Benchmarks

server tiered

Fig. 1. Ratio of multi-core performance to single-core performance for each compiler configuration.

variability in our run-time results, we compute 95% confidence intervals for the difference between
the means [Georges et al. 2007], and plot these intervals as error bars. Not surprisingly, we observe
that most benchmarks run much faster with the multi-core configuration. Much of this difference
is simply due to increased parallelism, but other micro-architectural effects (such as cache affinity
and inter-core communication) may also impact performancedepending on the workload. Another
significant factor, which we encounter in our experiments throughout this work, is that additional
cores enableearlier compilation of hot methods. This effect accounts for the result that the tiered
VM, with its much more aggressive compilation threshold, exhibits a more pronounced performance
improvement, on average, than the server VM. The remainder of this paper explores and explains the
impact of different JIT compilation strategies on modern and future architectures using the HotSpot
server and tiered compiler configurations.

4. JIT COMPILATION ON SINGLE-CORE MACHINES

In this section we report the results of our experiments conducted on single-core processors to un-
derstand the impact of aggressive JIT compilation and more compiler threads in a VM on program
performance. Our experimental setup controls the aggressiveness of distinct JIT compilation poli-
cies by varying the selective compilation threshold. Changing the compilation threshold can affect
program performance in two ways: (a) by compiling a lesser orgreater percentage of the program
code (if a method is compiled), and (b) by sending methods to compile early or late (whenis each
method compiled). We first employ the HotSpot server VM with asingle compiler thread to find the
selective compilation threshold that achieves the best average performance with our set of bench-
mark programs.3 Next, we evaluate the impact of multiple compiler threads onprogram performance
for machines with a single processor with both the server andtiered compilers in the HotSpot JVM.

4.1. Compilation Threshold with Single Compiler Thread

By virtue of sharing the same computation resources, the application and compiler threads share
a complex relationship in a VM running on a single-core machine. A highly selective compile
threshold may achieve poor overall program performance by spending too much time executing
in non-optimized code resulting in poor overall program run-time. By contrast, a lower than ideal
compile threshold may also produce poor performance by spending too long in the compiler thread.
Therefore, the compiler thresholds need to be carefully tuned to achieve the most efficient average
program execution on single-core machines over several benchmarks.

3The tiered compiler spawns a minimum of two compiler threads, and, is therefore not used in this single compiler thread
configuration.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Jantz and P. Kulkarni

0.8

0.9

1

1.1

1.2

1.3

1.4

250000 100000 50000 25000 10000 5000 1500 500

T
im

e
 a

t
th

re
sh

o
ld

 (
X

)
/

ti
m

e
 a

t
th

re
sh

o
ld

 1
0

,0
0

0

Compilation threshold

0

0.2

0.4

0.6

0.8

1

1.2

250000 100000 50000 25000 10000 5000 1500 500

C
o

m
p

il
a

ti
o

n
 t

h
re

a
d

 t
im

e
 /

a
p

p
li

ca
ti

o
n

 t
h

re
a

d
 t

im
e

Compilation threshold

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

250000 100000 50000 25000 10000 5000 1500 500

T
im

e
 a

t
th

re
sh

o
ld

 (
X

)
/

ti
m

e
 a

t
th

re
sh

o
ld

 1
0

,0
0

0

Compilation threhsold

app. time comp. time

0.01

0.1

1

10

100

250000 100000 50000 25000 10000 5000 1500 500

D
e

la
y

 t
im

e
 a

t
th

re
sh

o
ld

 (
X

)
/

d
e

la
y

 t
im

e
 a

t
th

re
sh

o
ld

 1
0

,0
0

0

Compilation threshold

Compilation queue delay for

methods hot at threshold=10,000

(c) (d)

Fig. 2. Effect of different compilation thresholds on average benchmark performance on single-core processors.

We perform an experiment to determine the ideal compilationthreshold for the HotSpot server
VM with a singlecompiler thread on our set of benchmarks. These results are presented in Fig-
ure 2(a). The figure compares the average overall program performance at different compile thresh-
olds to the average program performance at the threshold of 10,000, which is the default compilation
threshold for the HotSpot server compiler. We find that a few of the less aggressive thresholds are
slightly faster, on average, than the default for our set of benchmark programs (although the differ-
ence is within the margin of error). The default HotSpot server VM employs two compiler threads
and may have been tuned with applications that run longer than our benchmarks, which may explain
this result. The average benchmark performance worsens at both high and low compile thresholds.

To better interpret these results, we collect individual thread times during each experiment to es-
timate the amount of time spent doing compilation compared to the amount of time spent executing
the application. Figure 2(b) shows the ratio of compilationto application thread times at each thresh-
old averaged over all the benchmarks. Thus, compilation thresholds that achieve good performance
spend a significant portion of their overall runtime doing compilation. We can also see that reducing
the compilation threshold increases the relative amount oftime spent doing compilation. However,
it is not clear how much of this trend is due to longer compilation thread times (from compiling
more methods) or reduced application thread times (from executing more native code).

Therefore, we also consider the effect of compilation aggressiveness on each component sepa-
rately. Figure 2(c) shows the break-down of the overall program execution in terms of the application
and compiler thread times at different thresholds to their respective times at the compile threshold of
10,000, averaged over all benchmark programs. We observe that high thresholds (> 10,000) com-
pile less and degrade performance by not providing an opportunity to the VM to compile several
important program methods. In contrast, the compiler thread times increase with lower compilation
thresholds (< 10,000) as more methods are sent for compilation. We expected this increased com-
pilation to improve application thread performance. However, the behavior of the application thread
times at low compile thresholds is less intuitive.

On further analysis we found that JIT compilation policies with lower thresholds send more
methods to compile and contribute to compiler queue backup.We hypothesize that the flood of less

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:9

0.8

0.9

1

1.1

1.2

1.3

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

250000 100000

25000 10000

5000 1500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

250000 100000

25000 10000

5000 1500

(a) (b)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

250000 100000

25000 10000

5000 1500

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

250000 100000

25000 10000

5000 1500

(c) (d)

Fig. 3. Effect of multiple compiler threads on single-core program performance in the HotSpot VM with server compiler.
The discrete measured thread points are plotted equi-distantly on the x-axis.

important program methods delays the compilation of the most critical methods, resulting in the
non-intuitive degradation in application performance at lower thresholds. To verify this hypothesis
we conduct a separate set of experiments thatmeasure the average compilation queue delay (time
spent waiting in the compile queue) of hot methods in our benchmarks.These experiments compute
the mean average compilation queue delay only for methods that are hot at the default threshold of
10,000 for each benchmark / compile threshold combination.

Figure 2(d) plots the average compilation queue delay at each compile threshold relative to the
average compilation queue delay at the default threshold of10,000 averaged over the benchmarks.4

As we can see, the average compilation queue delay for hot methods increases dramatically as the
compilation threshold is reduced. Thus, we conclude that increasing compiler aggressiveness is not
likely to improve VM performance running with a single compiler thread on single-core machines.

4.2. Effect of Multiple Compiler Threads on Single-Core Machines

In this section we analyze the effect of multiple compiler threads on program performance on a
single-core machine with the server and tiered compiler configurations of the HotSpot VM.

4.2.1. Single-Core Compilation Policy with the HotSpot Server Compiler. For each compilation
threshold, a separate plot in Figure 3(a) compares the average overall program performance with
multiple compiler threads to the average performance with asingle compiler thread at that same
threshold. Intuitively, a greater number of compiler threads should be able to reduce the method
compilation queue delay. Indeed, we notice program performance improvements for one or two
extra compiler threads, but the benefits do not hold with increasing number of such threads (>3).
We further analyzed the performance degradation with more compiler threads and noticed an in-
crease in the overallcompiler threadtimes in these cases. This increase suggests that several meth-

4We cannot compute a meaningful ratio for benchmarks with zero or very close to zero average compilation queue delay at
the baseline threshold. Thus, these results do not include 14 (of 57) benchmarks with an average compilation queue delay
less than 1msec (the precision of our timer) at the default threshold.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Jantz and P. Kulkarni

ods that were queued for compilation, but never got compiledbefore program termination with a
single compiler thread are now compiled as we provide more VMcompiler resources. While the
increased compiler activity increases compilation overhead, many of these methods contribute little
to improving program performance. Consequently, the potential improvement in application perfor-
mance achieved by more compilations seems unable to recoverthe additional compiler overhead,
resulting in a net loss in overall program performance.

Figure 3(b) compares the average overall program performance in each case to the average perfor-
mance of a baseline configuration with a single compiler thread at a threshold of 10,000. These re-
sults reveal the best compiler policy on single-core machines with multiple compiler threads. Thus,
we can see that, on average, the more aggressive thresholds perform quite poorly, while moderately
conservative thresholds fare the best (with any number of compiler threads). Our analysis finds
higher compiler aggressiveness to send more program methods for compilation, which includes
methods that may not make substantial contributions to performance improvement (cold methods).
Additionally, the default server compiler in HotSpot uses asimple FIFO (first-in first-out) compila-
tion queue, and compiles methods in the same order in which they are sent. Consequently, the cold
methods delay the compilation of the really important hot methods relative to the application thread,
producing the resultant loss in performance.

To further evaluate the configurations with varying compilation resources and aggressiveness (in
these and later experiments), we design anoptimalscenario that measures the performance of each
benchmarkwith all of its methods pre-compiled. Thus, the ‘optimal’ configuration reveals the best-
case benefit of JIT compilation. The dashed line in Figure 3(b) shows the optimal run-time on the
single-core machine configuration relative to the same baseline startup performance (single bench-
mark iteration with one compiler thread and a threshold of 10,000), averaged over all the bench-
marks. Thus, the “optimal” steady-state configuration achieves much better performance compared
to the “startup” runs that compile methods concurrently with the running application on single-core
machines. On average, the optimal performance is about 64% faster than the baseline configuration
and about 54% faster than the fastest compilation thread / compile threshold configuration (with
two compilation threads and a compile threshold of 25,000).

Figure 3(c) shows the same plots as in Figure 3(b) but only forthe 11 (20%) benchmarks with the
lowest compilation to application time ratio. Thus, for applications that spend relatively little time
compiling, only the very aggressive compilation thresholds cause some compilation queue delay
and may produce small performance improvements in some cases. For such benchmarks, all the hot
methods are always compiled before program termination. Consequently, the small performance im-
provements with the more aggressive thresholds are due to compiling hot methods earlier (reduced
queue delay). Furthermore, there is only a small performance difference between the startup and
optimal runs. By contrast, Figure 3(d) only includes the 11 (20%) benchmarks with a relatively high
compilation to application time ratio. For programs with such high compilation activity, the effect
of compilation queue delay is more pronounced. We find that the less aggressive compiler policies
produce better efficiency gains for these programs, but there is still much room for improvement as
evidenced by optimal performance results.

These observations suggest that a VM that can adapt its compilation threshold based on the com-
piler load may achieve the best performance for all programson single-core machines. Additionally,
implementing a priority-queue to order compilations may also enable the more aggressive compila-
tion thresholds to achieve better performance. We explore the effect of prioritized method compiles
on program performance in further detail in Section 7. Finally, a small increase in the number of
compiler threads can also improve performance by reducing the compilation queue delay.

4.2.2. Single-Core Compilation Policy with the HotSpot Tiered Compiler. In this section we ex-
plore the effect on program performance of changing the compiler aggressiveness and the number
of compiler threads with a tiered compiler configuration on single-core machines. For our exper-
iments with the tiered compiler, we vary the client and server compiler thresholds in lock-step to

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:11

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 2
 C

T
's

Number of compiler threads (CT's)

100000 20000 4000

2000 1000 500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

100000 20000

4000 2000

1000 500

(a) (b)

0.85

0.9

0.95

1

1.05

1.1

1.15

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

100000 20000

4000 2000

1000 500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

100000 20000

4000 2000

1000 500

(c) (d)

Fig. 4. Effect of multiple compiler threads on single-core program performance in the HotSpot VM with tiered compiler.
The discrete measured thread points are plotted equi-distantly on the x-axis.

adjust the aggressiveness of the tiered compiler and use thecorresponding first-level (client) com-
piler threshold in the graph legends.

Each line-plot in Figure 4(a) compares the average overall program performance in the tiered
compiler with multiple compiler threads to the average performance with only one client and one
server compiler thread at that same threshold. In contrast to the server compiler configuration, in-
creasing the number of compiler threads does not yield any performance benefit and, for larger
increases, significantly degrades performance at every threshold. This effect is likely due to the
combination of two factors: (a) a very fast first-level compiler that prevents significant backup in its
compiler queue even with a single compiler thread while achieving most of the performance benefits
of later re-compilations, and (b) the priority heuristic used by the tiered compiler that may be able to
find and compile the most important methods first. Thus, any additional compilations performed by
more compiler threads only increase the compilation overhead without commensurately contribut-
ing to program performance. In Section 7.2, we compare the default tiered compiler to one which
employs FIFO (first-in first-out) compilation queues to evaluate the effect of prioritized compilation
queues on program performance.

Figure 4(b) compares the average program performances in each case to the average performance
of the baseline tiered configuration with one client and one server compiler thread and the de-
fault threshold parameters (with a client compiler threshold of 2,000). The default tiered compiler
employs significantly more aggressive compilation thresholds compared to the default stand-alone
server compiler, and, on average, queues up more than three times as many methods for compi-
lation. Consequently, relatively conservative compile thresholds achieve the best performance on
single-core machines. The dashed line in Figure 4(b) plots the runtime of the optimal configuration
(measured as described in the previous section) relative tothe runtime of the baseline tiered con-
figuration. Thus, with the tiered VM on single-core machines, the optimal run-time is still much
faster than any other start-up configuration. However, due to the fast client compiler and effective
priority heuristic, the performance of the tiered VM is significantly closer (10% in the best case) to
the optimal runtime than the server VM configurations presented in the previous section.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Jantz and P. Kulkarni

We again observe that applications with extreme (very low orvery high) compilation activity
show different performance trends than the average over thecomplete set of benchmarks. Figure 4(c)
plots the average performance of the HotSpot tiered compiler VM at different threshold and com-
piler thread configurations for the 20% benchmarks with the lowest compilation to application time
ratio. As expected, compile threshold aggressiveness and the amount of compilation resources have
much less of a performance impact on these applications. Additionally, the performance achieved
is much closer to the optimal runtime for this set of benchmarks. However, in contrast to the server
compiler results in Figure 3(c), some less aggressive thresholds aremarginallymore effective in the
tiered compiler, which again indicates that the compilation queue delay is much less of a factor in
the presence of a fast compiler and a good heuristic for prioritizing method compiles. Alternatively,
in Figure 4(d), we study benchmarks with relatively high compilation activity, and find that less
aggressive compile thresholds yield very significant performance gains, due to a very aggressive
default threshold used by the tiered compiler.

In summary, for single-core machines it is crucial to selectthe compiler threshold such that only
the most dominant program methods are sent to compilation. With such an ideal compiler threshold,
only two compiler threads (one client and one server) are able to service all compilation requests
prior to program termination. An ideal threshold combined with a very fast client compiler and
a good priority heuristic negates any benefit of additional compiler threads reducing the queue
delay. A less aggressive threshold lowers program performance by not allowing the tiered VM
to compile all hot methods. In contrast, with more aggressive thresholds, a minimum number of
compiler threads are not able to service all queued methods,producing performance degradations
due to the overhead of increased compiler activity with morecompiler threads.

5. JIT COMPILATION ON MULTI-CORE MACHINES

Dynamic JIT compilation on single-processor machines has to be conservative to manage the compi-
lation overhead at runtime. Modern multi-core machines provide the opportunity to spawn multiple
compiler threads and run them concurrently on separate (free) processor cores, while not interrupt-
ing the application thread(s). As such, it is a common perception that a more aggressive compilation
policy is likely to achieve better application thread and overall program performance on multi-core
machines for VMs with multiple compiler threads. Aggressiveness, in this context, can imply com-
piling early or compiling more methods by lowering the compile threshold. In this section, we
report the impact of varying JIT compilation aggressiveness and the number of compiler threads on
the performance of the server and tiered VM on multi-core machines.

5.1. Multi-Core Compilation Policy with the HotSpot Server Compiler

Figure 5 illustrates the results of our experiments with theHotSpot server compiler on multi-core
machines. For each indicated compile threshold, a corresponding line-plot in Figure 5(a) shows the
ratio of the program performance with different number of compiler threads to the program perfor-
mance with a single compiler thread at that same threshold, averaged over our 57 benchmark-input
pairs. Thus, we can see that increasing the number of compiler threads up to seven threads improves
application performance at all compile thresholds. However, larger increases in the number of com-
piler threads (> 7) derive no performance benefits and actually degrade performance with the more
aggressive compilation thresholds.

As mentioned earlier, additional compiler threads can improve performance by reducing compila-
tion queue delay, allowing the important program methods tobe compiled earlier. Early compilation
allows a greater fraction of the program execution to occur in optimized native code (rather than be-
ing interpreted), which produces significant gains in program performance. The additional compiler
threads impose minimal impediment to the application threads as long as that computation can be
off-loaded onto free (separate) cores. Our existing hardware setup only provides eight distinct pro-
cessing cores. Consequently, larger increases in the number of compiler threads cause application
and compilation threads to compete for machine resources. Moreover, configurations with aggres-
sive compilation thresholds frequently compile methods that derive little performance benefit. This

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:13

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

25000 10000 5000

1500 50

0.25

0.4

0.55

0.7

0.85

1

1.15

1.3

1.45

1.6

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

25000 10000 5000

1500 50

(a) (b)

0.85

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

25000 10000

5000 1500

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

25000 10000

5000 1500

50

(c) (d)

Fig. 5. Effect of multiple compiler threads on multi-core application performance with the HotSpot Server VM

additional (but incommensurate) compilation overhead canonly be sustained as long as compilation
is free, and results in significant performance losses in theabsence of free computational resources.

Figure 5(b) compares all the program performances (with different thresholds and different num-
ber of compiler threads) to a single baseline program performance. The selected baseline is the
program performance with a single compiler thread at the default HotSpot server compiler thresh-
old of 10,000. We can see that while the optimal performance (again indicated by the dashed line)
is much faster than the performance of the baseline configuration, increasing compilation activity
on otherwise free compute cores enables the server VM to makeup much of this difference. In the
best case (configuration with threshold 5,000 and 7 compilerthreads) the combination of increased
compiler aggressiveness with more compiler threads improves performance by 34.6%, on average,
over the baseline. However, most of that improvement (roughly 33%) is obtained by simply re-
ducing the compilation queue delay that is realized by increasing the number of compiler threads
at the default HotSpot (10,000) threshold. Thus, the highercompiler aggressiveness achieved by
lowering the selective compilation threshold seems to offer relatively small benefits over the more
conservative compiler policies.

Another interesting observation that can be made from the plots in Figure 5(b) is that aggressive
compilation policies require more compiler threads (implying greater computational resources) to
achievegoodprogram performance. Indeed, our most aggressive threshold of 50 performs extremely
poorly compared to the default threshold with only one compiler thread (over 60% worse), and
requires seven compiler threads to surpass the baseline performance.

As the compiler thresholds get more aggressive, we witness (from Figure 5(a)) successively larger
performance losses with increasing the number of compiler threads beyond seven. These losses are
due to increasing application interference caused by compiler activity at aggressive thresholds and
are a result of the computational limitations in the available hardware. In Section 6 we construct a
simulation configuration to study the behavior of aggressive compilation policies with large number
of compiler threads on (many-core) machines with virtuallyunlimited computation resources.

Similar to our single-core configurations, we find that theseresults change dramatically depend-
ing on the compilation characteristics of individual benchmark applications. Figures 5(c) and 5(d)

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Jantz and P. Kulkarni

plot the average performance at each multi-core compilation threshold and compiler thread config-
urations for 20% of the benchmarks with the lowest and highest compilation to application time
ratios in our baseline configuration respectively. Varyingcompilation thresholds and resources has
much less of a performance effect on benchmarks that spend relatively little time doing compila-
tion. The best configuration for these benchmarks (with a compilation threshold of 5000 and two
compiler threads) yields less than a 2% improvement over thebaseline configuration. Also, for
these benchmarks, the baseline configuration achieves performance that is much closer to optimal
(again, indicated by the dashed line) compared to the overall average in Figure 5(b). Alternatively,
for benchmarks that spend relatively more time doing compilation, as shown in Figure 5(d), there
is even more room for improvement compared to the average over all benchmarks. As expected,
exploiting the free processor resources to spawn additional compiler threads results in a more sub-
stantial performance benefit (an average efficiency gain of over 60%) for these 11 benchmarks.

5.2. Multi-Core Compilation Policy with the HotSpot Tiered Compiler

In this section we evaluate the effect of varying compiler aggressiveness on the overall program
performance delivered by the VM with its tiered compilationpolicy. The compilation thresholds
for the two compilers in our tiered experimental configurations are varied in lock-step so that they
always maintain the same ratio. For each compilation threshold setting with the tiered compiler,
a separate plot in Figure 6(a) compares the average overall program performance with multiple
compiler threads to the average performance with two (one client and one server) compiler threads
at that same compilation threshold. In stark contrast to ourresults in Section 5.1 with the server
compiler, increasing the number of compiler threads for thetiered compiler only marginally im-
proves performance at any compile threshold. This result isdue to the speed and effectiveness of the
HotSpot client compiler. As mentioned earlier in Section 3,the HotSpot client compiler imposes a
very small compilation delay, and yet generates code of onlya slightly lower quality as compared
to the much slower server compiler. Consequently, althoughthe hot methods promoted to level-2
(server compiler) compilation may face delays in the compiler queue, its performance impact is
much reduced since the program can still execute in level-1 (client compiler) optimized code. The
small improvement in program performance with more compiler threads (up to seven) is again the
result of reduction in the server compiler queue delay. However, overall we found that the compiler
queue delay is much less of a factor with the tiered compilation policy.

Our results also show large and progressively more severe performance losses with increasing
compilation threshold aggressiveness as we increase the number of compiler threads past the num-
ber of (free) available processing cores. In order to explain these performance losses, we extend
our framework to report additional measurements of compilation activity. Figures 7(a) and 7(b)
respectively show compilation thread times and the number of methods compiled with the server
and tiered VMs with their respective default compile thresholds and with increasing numbers of
compiler threads, averaged over all the benchmarks. We find that, due to its extremely fast client
compiler, the tiered VM employs a much more aggressive compile threshold, which enables it to
compile more methods more quickly, and often finish the benchmark run faster, than the server VM.
However, with its multi-level compilation strategy, this often results in a situation with many meth-
ods remaining in the level-2 (server) compilation queues atthe end of the program run. Increasing
the number of compilation threads enables more of these methods to be (re-)compiled during the
application run. This additional compilation (with lower program speed benefit returns) obstruct
application progress as the number of threads is raised beyond the limits of available hardware.
Therefore, we conclude thatthe number of compiler threads in the tiered VM should be set within
the limits of available hardware in order to prevent sharp performance losses.

Figure 6(b) presents the ratio of average program performance delivered by the VM with varying
tiered compilation thresholds and compiler threads when compared to a singlebaselineperformance
(client compiler threshold of 2,000) with two (one client and one server) compiler threads. Thus,
employing a small number of compilation threads (< 10) typically achieves the best performance.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:15

0.8

1

1.2

1.4

1.6

1.8

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 2
 C

T
's

Number of compiler threads (CT's)

20000 4000

2000 1000

500 20

0.5

0.75

1

1.25

1.5

1.75

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

20000 4000

2000 1000

500 20

(a) (b)

0.9

0.95

1

1.05

1.1

1.15

1.2

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

20000 4000

2000 1000

500 20

0.2

0.6

1

1.4

1.8

2.2

2.6

3

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

High comp. time / app. time

highest 11(of 57) benchmarks

20000 4000

2000 1000

500 20

(c) (d)

Fig. 6. Effect of multiple compiler threads on multi-core application performance with the HotSpot Tiered VM

0

200

400

600

800

1000

1200

1 2 3 4 7 10 25 50 100

C
o

m
p

il
a

ti
o

n
 t

im
e

 (
in

 j
if

fi
e

s)

w
it

h
 d

e
fa

u
lt

 t
h

re
sh

o
ld

Number of compilation threads

server tiered

0

200

400

600

800

1000

1 2 3 4 7 10 25 50 100N
u

m
b

e
r

o
f

m
e

th
o

d
s

co
m

p
il

e
d

w
it

h
 d

e
fa

u
lt

 t
h

re
sh

o
ld

Number of compilation threads

server tiered

(a) (b)

Fig. 7. Effect of multiple compiler threads on multi-core compilation activity with the Server and Tiered VM

This performance is much closer to optimal than the baselineperformance with the server VM,
although the server VM shows greater improvements as the number of compiler threads is increased.

Other trends in the graph in Figure 6(b) are similar to those presented with Figure 6(a) with
the additional recommendation against employing overly conservative compiler policies on multi-
core machines. Although conservative policies do a good jobof reducing compilation overhead
for single-core machines (Figure 4(b)), they can lower performance for multi-core machines due
to a combination of two factors: (a) not compiling all the important program methods, and (b)
causing a large delay in compiling the important methods. However, we also find that a wide range
of compiler policies (from the client compiler thresholds of 4,000 to 20) achieve almost identical
performance as long as compilation is free. This observation indicates that (a) not compiling the
important methods (rather than the compiler queue delay) seems to be the dominant factor that can
limit performance with the tiered compiler, and (b) compiling the less important program methods
does not substantially benefit performance.

The plots in Figures 6(c) and 6(d) only employ the results of benchmarks that show very low or
very high compilation activity respectively, and are constructed similar to the graph in Figure 6(b) in

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Jantz and P. Kulkarni

Core1

Core1

Core2

Core3

Core4

(b) Single−core simulation of multi−core execution

(a) Multi−core execution

Application
Thread

Compiler
Thread

A C

A C1 A C1

A A A A A A A A A

C1C1

C2 C3 A C1 C2 A A A C1 C2 A A C1 A

C1

C2C2C2

C3

C1C1

Fig. 8. Simulation of multi-core VM execution on single-core processor

all other aspects. These graphs reiterate the earlier observation that program characteristics greatly
influence its performance at different compiler aggressiveness. For benchmarks with only a few very
hot methods (Figure 6(c)), varying compiler thresholds haslittle to no effect on overall performance.
And Figure 6(d) shows that the average trends noticed acrossall of our benchmarks in Figure 6(b)
are exaggerated when considered only over the programs displaying high compilation activity. This
graph again indicates that the delay in compiling the hot methods does not seem to be a major factor
affecting program run-time when using tiered compilation with a fast and good Level-1 compiler.

6. JIT COMPILATION ON MANY-CORE MACHINES

Our observations regarding aggressive JIT compilation policies on modern multi-core machines in
the last section were limited by our existing 8-core processor based hardware. In future years, archi-
tects and chip developers are expecting and planning a continuously increasing number of cores in
modern microprocessors. It is possible that our conclusions regarding JIT compilation policies may
change with the availability of more abundant hardware resources. However, processors with a large
number of cores (ormany-cores) are not easily available just yet. Therefore, in this section, we con-
struct a unique experimental configuration to conduct experiments that investigate JIT compilation
strategies for such future many-core machines.

Our experimental setupestimatesmany-core VM behavior using a single processor/core. To con-
struct this setup, we first update our HotSpot VM to report thecategoryof each operating system
thread that it creates (such as, application, compiler, garbage-collector, etc.), and to also report the
creation or deletion of any VM/program thread at runtime. Next, we modify theharnessof all our
benchmark suites to not only report the overall program execution time, but to also provide a break-
down of the time consumed by each individual VM thread. We usethe/proc file-system interface
provided by the Linux operating system to obtain individualthread times, and employ the JNI inter-
face to access this platform-specific OS feature from withina Java program. Finally, we also use the
thread-processor-affinity interface methods provided by the Linux OS to enable our VM tochoose
the set of processor cores that are eligible to run each VM thread. Thus, on each new thread creation,
the VM is now able to assign the processor affinity of the new VMthread (based on its category) to
the set of processors specified by the user on the command-line. We use this facility to constrain all
application and compiler threads in a VM to run on a single processor core.

Our experimental setup to evaluate the behavior of many-core (unlimited cores) application ex-
ecution on a single-core machine is illustrated in Figure 8.Figure 8(a) shows a snapshot of one
possible VM execution order with multiple compiler threads, with each thread running on a distinct
core of a many-core machine. Our experimental setup employsthe OS thread affinity interface to

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:17

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

25000 10000 5000

1500 50

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

25000 10000

5000 1500

50

(a) (b)

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

25000 10000

5000 1500

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

25000 10000

5000 1500

50

(c) (d)

Fig. 9. Effect of multiple compiler threads on many-core application performance with the HotSpot Server VM

force all application and compiler threads to run on a singlecore, and relies on the OS round-robin
thread scheduling to achieve a corresponding thread execution order that is shown in Figure 8(b).
It is important to note that JIT compilations in our simulation of many-core VM execution (on
single-core machine) occur at about the same time relative to the application thread as on a physical
many-core machine. Now, on a many-core machine, where each compiler thread runs on its own
distinct core concurrently with the application thread, the total program run-time is equal to the ap-
plication thread run-time alone, as understood from Figure8(a). Therefore, our ability to precisely
measure individual application thread times in our single-core simulation enables us to realistically
emulate an environment where each thread has access to its own core. Note that, while this con-
figuration is not by itself new, its application to measure “many-core” performance is novel. This
framework, for the first time, allows us to study the behaviorof different JIT compilation strategies
with any number of compiler threads running on separate cores on future many-core hardware.

6.1. Many-Core Compilation Policy with the HotSpot Server Compiler

We now employ our many-core experimental setup to conduct similar experiments to those done
in Section 5.1. Figure 9 shows the results of these experiments and plots the average application
thread times with varying number of compiler threads and compiler aggressiveness for all of our
benchmark applications. These plots correspond with the graphs illustrated in Figure 5. In order to
assess the accuracy of our simulation, we plot Figure 10(a),which shows a side-by-side comparison
of a subset of the results for the multi and many-core configurations with 1-7 compiler threads. From
these plots, we can see that the trends in these results are mostly consistent with our observations
from the last section for a small (≤ 7) number of compiler threads. This similarity validates the
ability of our simple simulation model to estimate the effect of JIT compilation policies on many-
core machines, in spite of the potential differences between inter-core communication, cache models
and other low-level microarchitectural effects.

Figure 9(a) shows that, unlike the multi-core plots in Figure 5(a), given unlimited computing
resources, application thread performance for aggressivecompiler thresholds continues gaining im-
provements beyond a small number of compiler threads. Thus,the performance degradation for the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Jantz and P. Kulkarni

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 7

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

Server VM 25000-multi 25000-many

10000-multi 10000-many

50-multi 50-many

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

2 3 4 7

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

Tiered VM
20000-multi 20000-many

2000-multi 2000-many

20-multi 20-many

(a) (b)

Fig. 10. Comparison of multi- and many-core performance results for the server and tiered VM.

more aggressive thresholds beyond about 7-10 compiler threads in the last section is, in fact, caused
due to the limitations of the underlying 8-core hardware. This result shows the utility of our novel
setup to investigate VM properties for future many-core machines. From the results plotted in Fig-
ure 9(b), we observe that the more aggressive compilation policies eventually (with> 10 compiler
threads) yield performance gains over the baseline server compiler threshold of 10,000 with one
compiler thread. Additionally, we note that the differencebetween the baseline configuration and
the optimal performance (indicated by the dashed line in Figure 9(b)) with our many-core simulation
is similar to our results with multi-core machines.

We also find that isolating and plotting the performance of benchmarks with relatively small
or relatively large amounts of compilation activity in our many-core configuration shows different
trends than our complete set of benchmarks. As shown in Figure 9(c), increasing the number of
compiler threads for benchmarks that spend relatively little time compiling does not have a signif-
icant impact on performance at any threshold. At the same time, early compilation of the (small
number of) hot methods reduces the benchmark run-times at aggressive compilation thresholds.
Alternatively, as seen from Figure 9(d), benchmarks with more compilation activity tend to show
even starker performance improvements with increasing number of compiler threads. This result
makes intuitive sense, as applications that require more compilation yield better performance when
we allocate additional compilation resources. Comparing the optimal performance over each set of
benchmarks, we find that our many-core experiments show trends that are similar to our previous
results – benchmarks with relatively little compilation activity achieve performance that is much
closer to optimal, while benchmarks with relatively high compilation activity have more room for
performance improvement.

6.2. Many-Core Compilation Policy with the HotSpot Tiered Compiler

In this section we analyze the results of experiments that employ our many-core framework to esti-
mate the average run-time behavior of programs for the tiered compiler strategy with the availability
of unlimited free compilation resources. The results in this section enable us to extend our observa-
tions from Section 5.2 to many-core machines. The results inFigures 11(a) and 11(b) again reveal
that, in a wide range of compilation thresholds, changing compiler aggressiveness has a smaller
effect on performance as compared to the single-level server compiler. As we expect, a side-by-side
comparison of the multi and many-core results in Figure 10(b) shows that the trends in these results
are mostly consistent with the results in Section 5.2 for a small number of compiler threads. The
most distinctive observation that can be made from our many-core experiments is that, given suffi-
cient computing resources, there is no significant performance loss with larger numbers of compiler
threads since all compilation activity is considered free.Unfortunately, as noticed with the multi-
core results, increasing the number of compiler threads is likely to only produce a modest impact
on program run-time with the tiered compiler. This observation again indicates that techniques to
reduce the delay in compiling hot methods are not as effective to improve run-time performance
with the tiered compiler.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:19

0.85

0.9

0.95

1

1.05

1.1

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 2
 C

T
's

Number of compiler threads (CT's)

20000 4000 2000

1000 500 20

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

20000 4000 2000

1000 500 20

(a) (b)

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

20000 4000

2000 1000

500 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

20000 4000

2000 1000

500 20

(c) (d)

Fig. 11. Effect of multiple compiler threads on many-core application performance with the HotSpot Tiered VM

Figures 11(c) and 11(d) plot the same program run-time ratioas Figure 11(b), but only for bench-
marks that have a very low or very high compilation activity.As observed in all similar plots earlier,
benchmarks with low compilation activity have only a small number of very active methods, and all
compiler aggressiveness levels produce similar performances. Benchmarks with a high compilation
load mostly exaggerate the trends noticed over all benchmarks (Figure 11(b)). Very conservative
compiler thresholds cause large performance losses for such benchmarks. Additionally, with free
compiler resources, higher compiler aggressiveness can produce marginally better results than the
default threshold for such benchmarks by compiling and optimizing a larger portion of the program.

7. EFFECT OF PRIORITY-BASED COMPILER QUEUES

Aggressive compilation policies can send a lot of methods tocompile, which may back-up the com-
pile queue. Poor method ordering in the compiler queue may result in further delaying the compila-
tion of the most important methods, as the VM spends its time compiling the less critical program
methods. Delaying the generation of optimized code for the hottest methods will likely degrade
application performance. An algorithm to effectively prioritize methods compiles may be able to
nullify the harmful effects of back-up in the compiler queue. In this section, we study the effect of
different compiler queue prioritization schemes on the server and tiered compiler configurations.

We present results of experiments with three different priority queue implementations. The first-
in-first-out (FIFO) queue implementation is the default strategy employed by the HotSpot server
compiler that compiles all methods in the order they are sentfor compilation by the application
threads. By default, the HotSpottiered compiler uses a heuristic priority queue technique for or-
dering method compiles. When selecting a method for compilation with this heuristic, the tiered
compiler computes anevent ratefor every eligible method and selects the method with the maxi-
mum event rate. The event rate is simply the sum of invocationand backedge counts per millisecond
since the last dequeue operation. We modified the HotSpot VM to make theFIFO andtieredqueue
implementations available to the multi-stage tiered and single-stage server compilers respectively.

Both the FIFO and tiered techniques for ordering method compiles use a completely online strat-
egy that only uses past program behavior to detect hot methods to compile to speed-up the remaining

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. Jantz and P. Kulkarni

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

T
ie

re
d

 P
Q

,
(P

)
T

H
,

(X
)

C
T

 /

T
im

e
,

F
IF

O
 P

Q
,

1
0

0
0

0
 T

H
,

1
 C

T

Number of compiler threads (CT's)

25000 10000

5000 1500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

Id
e

a
l

P
Q

,
(P

)
T

H
,

(X
)

C
T

 /

T
im

e
,

F
IF

O
 P

Q
,

1
0

0
0

0
 T

H
,

1
 C

T

Number of compiler threads (CT's)

25000 10000

5000 1500

(a) (b)

Fig. 12. Performance of the tiered and ideal compiler priority algorithms over FIFO for HotSpot server compiler on single-
core machines

program run. Additionally, the more aggressive JIT compilation policies make their hotness deci-
sions earlier, giving any online strategy an even reduced opportunity to accurately assess method
priorities. Therefore, to set a suitable goal for the onlinecompiler priority queue implementations,
we attempt to construct anideal strategy for ordering method compilations. An ideal compilation
strategy should be able to precisely determine the actual hotness level of all methods sent to compile,
and always compile them in that order. Unfortunately, such an ideal strategy requires knowledge of
future program behavior.

In lieu of future program information, we devise a compilation strategy that prioritizes method
compiles based on their total execution counts over an earlier profile run. With this strategy, the
compiler thread always selects and compiles the method withthe highest profiled execution counts
from the available candidates in the compiler queue. Thus, our ideal priority-queue strategy requires
a profile-run of every benchmark to determine its method hotness counts. We collect these total
method hotness counts during this previous program run, andmake them available to the ideal
priority algorithm in the measured run. We do note that even our ideal profile-driven strategy may
not achieve theactualbest results because the candidate method with the highest hotness level may
still not be the best method to compile atthat point during program execution.

7.1. Priority-Based Compiler Queues in the HotSpot Server Compiler

Our results in the earlier sections suggest that the relatively poor performance achieved by aggres-
sive JIT compilation policies in the server compiler may be an artifact of the FIFO compiler queue
that cannot adequately prioritize the compilations byactualhotness levels of application methods.
Therefore, in this section, we explore and measure the potential of different priority queue imple-
mentations to improve the performance obtained by different JIT compilation strategies.

7.1.1. Single-Core Machine Configuration. Figures 12(a) and 12(b) show the performance bene-
fit of the tiered and ideal compiler priority queue implementations, respectively. Each line in these
graphs is plotted relative to the default FIFO priority queue implementation with a single compiler
thread at the default threshold of 10,000 on single-core machines. These graphs reveal that the online
tiered prioritization technique is not able to improve performance over the simple FIFO technique
and actually results in a performance loss for a few benchmarks. In contrast, the VM performance
with the ideal prioritization scheme shows that accurate assignment of method priorities is impor-
tant, and allows the smaller compile thresholds to also achieve relatively good average program
performance for small number of compiler threads.

We had also discovered (and reported in Section 4.2) that initiating a greater number of compiler
threads on single-core machines results in compiling methods that are otherwise left uncompiled
(in the compiler queue) upon program termination with fewercompiler threads. The resulting in-
crease in the compilation overhead is not sufficiently compensated by the improved application
efficiency, resulting in a net overall performance loss. We find that this effect persists regardless of
the method priority algorithm employed. We do see that accurately ordering the method compiles

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:21

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 7 10 25 50 100

T
im

e
,

T
ie

re
d

 P
Q

,
(P

)
T

H
,

(X
)

C
T

 /

T
im

e
,

F
IF

O
 P

Q
,

1
0

0
0

0
 T

H
,

1
 C

T

Number of compiler threads (CT's)

25000 10000

5000 1500

50

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 3 4 7 10 25 50 100

P
e

rf
.

Id
e

a
l

P
Q

,
(P

)
T

H
,

(X
)

C
T

 /

P
e

rf
.,

 F
IF

O
 P

Q
,

1
0

0
0

0
 T

H
,

1
 C

T

Number of compiler threads (CT's)

25000 10000 5000

1500 50

(a) (b)

Fig. 13. Performance of the tiered and ideal compiler priority algorithms over FIFO for HotSpot server compiler on many-
core machines

enables the VM with our ideal priority queue implementationto obtain better performance than the
best achieved with the FIFO queue.

7.1.2. Many-Core Machine Configuration. Figures 13(a) and 13(b) compare the performance re-
sults of using our tiered and ideal compiler priority queue,respectively, with a baseline VM that
uses the simple FIFO-based compiler queue implementation with the compile threshold of 10,000
for many-core machines. The results with the ideal priorityqueue implementation show that appro-
priately sorting method compiles significantly benefits program performance at all threshold levels.
At the same time, the performance benefits are more prominentfor aggressive compile thresholds.
This behavior is logical since more aggressive thresholds are more likely to flood the queue with
low-priority compiles that delay the compilation of thehottermethods with the FIFO queue.

We also find that the best average benchmark performance withour ideal priority queue for every
threshold plot is achieved with a smaller number of compilerthreads, especially for the more ag-
gressive compiler thresholds. This result shows that our ideal priority queue does realize its goal of
compiling the hotter methods before the cold methods. The later lower priority method compilations
seem to not make a major impact on program performance.

Finally, we can also conclude that using a good priority compiler queue allows more aggressive
compilation policies (that compile a greater fraction of the program early) to improve performance
over a less aggressive strategy on multi/many-core machines. Moreover, a small number of compiler
threads is generally sufficient to achieve the best average application thread performance. Over-
all, the best aggressive compilation policy improves performance by about 30% over the baseline
configuration, and by about 9% over the best performance achieved by the server VM’s default
compilation threshold of 10,000 with any number of compilerthreads. Unfortunately, the online
tiered prioritization heuristic is again not able to match the performance of the ideal priority queue.
Thus, more research may be needed to devise better online priority algorithms to achieve the most
effective overall program performance on modern machines.

7.2. Priority-Based Compiler Queues in the HotSpot Tiered Compiler

As explained earlier, the HotSpot tiered configuration usesa simple and fast priority heuristic to
order methods in the queue. In this section, we describe the impact of FIFO, tiered (default), and
ideal prioritization algorithms for all the compiler queues in the tiered configuration.

We find that prioritizing method compiles has no significant effect on program performance at
any compiler aggressiveness for the tiered compiler on all machines configurations. These results
suggest that the program performance behavior with the tiered compilers is dominated by the very
fast HotSpot client compiler that generates good code quality without causing a significant compiler
queue backup. The very hot methods that are promoted to be further optimized by the server com-
piler do take time and cause queue back-up. The larger servercompiler overhead increases program
runtime on single-core machines, but not on the many-core machines where compilation is free.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. Jantz and P. Kulkarni

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

2 3 4 7 10 25 50 100T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s,

 (
X

)
C

T
 /

T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s

1
 C

T

Number of compilation threads (CT's)

Threshold = 20,000 1 2

4 7

10

0.5

1

1.5

2

2.5

3

3.5

2 3 4 7 10 25 50 100T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s,

 (
X

)
C

T
 /

T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s

1
 C

T

Number of compilation threads (CT's)

Threshold = 20 1 2

4 7

10

(a) (b)

Fig. 14. Effect of different numbers of application threads on single-core performance with the HotSpot Tiered VM

0.8

0.85

0.9

0.95

1

1.05

1.1

2 3 4 7 10 25 50 100T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s,

 (
X

)
C

T
 /

T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s

1
 C

T

Number of compilation threads (CT's)

Threshold = 20,000 1 2

4 7

10

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 7 10 25 50 100T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s,

 (
X

)
C

T
 /

T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s

1
 C

T
Number of compilation threads (CT's)

Threshold = 20
1 2

4 7

10

(a) (b)

Fig. 15. Effect of different numbers of application threads on multi-core performance with the HotSpot Tiered VM

8. EFFECT OF MULTIPLE APPLICATION THREADS

All our earlier experiments were primarily conducted with single-threaded benchmarks. However,
real-world applications widely vary in the number and workload of concurrent application threads.
In this section, we explore the effect of compiler aggressiveness and resources on the performance
of benchmarks with different numbers of application threads.

Experiments in this section were conducted using 16 SPECjvm2008 benchmarks (all except
derby).5 Our other benchmark suites do not allow an easy mechanism to uniformly and precisely
control the number of spawned application threads. While SPECjvm98 only permits runs with a
fixed number of application threads, many of the DaCapo programs spawn a variable numbers of
internal threads that cannot be controlled by the harness (see Table II). For each VM configuration,
we selected three compilation thresholds (least aggressive, most aggressive, and default) and ran the
benchmarks with a different number of compiler and application threads to understand their interac-
tions. Results with the server and tiered VMs show similar application–compiler thread interaction
trends, and therefore, we only report results with the tiered VM in this section.

Figures 14(a) and 14(b) show the results of these experiments with the tiered VM on our single-
core configuration for the least (CT=20,000) and most aggressive (CT=20) compile thresholds, re-
spectively. Each line in the figures (plotted for a specific number of application threads as indicated
in the legend) shows the ratio of program speed with a different number of compiler threads to the
performance with a single compiler threadand that same number of application threads. A separate
baseline for each application thread configuration is necessitated because SPECjvm2008 employs a
different workload size for each such setting. As explainedpreviously in Section 4.2.2 (Figure 4),
Figure 14 again shows that a fast and high-quality level-1 compiler that doesn’t cause much queue
delay is responsible for the loss in program performance with one (or few) application threads as

5SPECjvm2008 automatically scales the benchmark workload in proportion to the number of application threads. This causes
thederbybenchmark with a greater number of application threads to often fail with an out-of-memory error.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:23

the number of compiler threads are increased. However, we now observe that the magnitude of this
loss diminishes as the number of application threads is increased. We believe this effect is caused
by the change in relative application thread interference that is due to the compiler threads servicing
less important program methods with limited hardware resources. In other words, the likelihood of
the OS scheduler selecting an application thread is smallerwhen there are fewer application threads
in the run queue. Thus, adding application threads diminishes the relative loss in performance by
increasing the likelihood that an application thread runs.

Another interesting trend we noticed in both the server and tiered VMs can be see from the
multi-core experiments displayed in Figure 15. We find that (especially at less aggressive compile
thresholds) configurations with larger numbers of application threads tend to show slightly larger
improvements as the number of compiler threads is increased. In programs with multiple application
threads, the output of a compilation may be used simultaneously in threads executing in parallel.
Thus, early compilations may benefit more of the application’s computation in comparison to single-
threaded applications.

We found that our many-core experiments also demonstrate very similar trends. However, in
the absence of interference to the application threads withunlimited computation resources, we do
not find any significant performance losses with larger numbers of compiler threads. These results
also support the observation that configurations with more application threads tend to show more
pronounced performance improvements from early compilation.

9. CONCLUSIONS

Many virtual machines now allow the concurrent execution ofmultiple compiler threads to ex-
ploit the abundant computing resources available in modernprocessors to improve overall program
performance. It is expected that more aggressive JIT compilation strategies may be able to lower
program run-time by compiling and optimizing more program methods early. The goal of this work
is to explore the potential performance benefit of more aggressive JIT compilation policies for mod-
ern multi/many-core machines and VMs that support multiplesimultaneous compiler threads. We
explore the properties of two VM compiler configurations: a single-level highly optimizing (but
slow) servercompiler, and a multi-leveltiered compiler. The HotSpot tiered compiler uses a very
fast (but lightly optimizing)client compiler at the first stage, and a powerful SSA-based (server)
compiler for re-compiling the very hot methods. Due to its re-compilations, the tiered compiler in-
duces a higher compilation load compared to the single-level server compiler. Our experiments vary
the hotness thresholds to control compiler aggressiveness, and employ different number of concur-
rent compiler threads to exploit free computation resources. We also develop a novel experimental
framework to evaluate our goal for future many-core processors.

Results from our experiments allow us to make several interesting observations:

(1) Properties of the tiered compiler are largely influencedby the fast client compiler that is able to
obtain most of the performance benefits of the slower server compiler at a small fraction of the
compilation cost.

(2) Program features, in particular the ratio of hot programmethods, impact their performance be-
havior at different compiler aggressiveness levels. We found that programs with a low compila-
tion to application time ratio are not significantly affected by varying compiler aggressiveness
levels or by spawning additional compiler threads.

(3) On single-core machines, compilation can impede application progress. The best compilation
policy for such machines seems to be an aggressiveness levelthat only sends as many methods to
compile as can be completely serviced by the VM in 1-2 compiler threads for most benchmarks.

(4) For machines with multiple cores, methods compiled by a moderately aggressive compile thresh-
old are typically sufficient to obtain the best possible performance. Compiling any more methods
quickly results in diminishing returns and very minor performance gains.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 M. Jantz and P. Kulkarni

(5) Reducing the compiler queue delay and compiling early ismore important to program perfor-
mance than compiling all program methods. Spawning more compiler threads (at a given com-
pilation aggressiveness) is an effective technique to reduce the compiler queue delay.

(6) On single-core and multi-core machines, an excessive amount of compiler activity and threads
may impede program progress by denying the application threads time to run on the CPU. This
effect is reduced as the ratio of application to compiler threads increase. We also saw evidence
that benchmarks with more application threads tend to show slightly sharper improvements from
early compilation.

(7) The tiered VM, with its extremely fast client compiler, is able to compile methods more quickly
with fewer compilation resources, and typically outperforms the server VM on single-core ma-
chines or when the number of compiler threads is kept at a minimum. Alternatively, when there
are additional computing resources available, increasingthe number of compiler threads can
sharply improve performance with the server VM.

(8) Effective prioritization of method compiles is important to find and compile the most important
methods early, especially for the slow, powerful, highly-optimizing compilers. However, addi-
tional research is necessary to find goodonlineprioritization algorithms.

(9) Initiating more compiler threads than available computing resources typically hurts performance.

Based on these observations we make the following recommendations regarding a good compila-
tion policy for modern machines: (a) JIT compilers should use an adaptive compiler aggressiveness
based on availability of free computing resources. At the very least VMs should employ two (sets of)
compiler thresholds, a conservative (large) threshold when running on single-core processors, and
moderately aggressive (small) threshold on multi/many-core machines. (b) Spawn as many com-
piler threads as available free compute cores (and as constrained by the specific power budget). (c)
Employ an effective priority queue implementation to reduce the compilation queue delay for the
slower compilers. (d) The more complex tiered compilation strategies used in some of the existing
state-of-the-art JVMs can achieve the most effective startup program performance with minimal
compiler threads and little need for effective prioritization of method compiles. We believe that
our comprehensive research will guide future VM developersin making informed decisions regard-
ing how to design and implement the most effective JIT compilation policies to achieve the best
application performance.

10. FUTURE WORK

This work presents several interesting avenues for future research. First, this work shows that the
availability of abundant computation resources in future machines will allow the possibility of pro-
gram performance improvement by early compilation of a greater fraction of the program. With
the development of profile-driven optimization phases, future work will have to consider the ef-
fect of early compilation on the amount of collected profile information and resulting impact on
generated code. Additionally, researchers may also need toexplore the interaction of increased
compiler activity with garbage collection. More native code produced by aggressive JIT compila-
tion can raise memory pressure and garbage collection overheads, which may then affect program
non-determinism due to the increased pause times associated with garbage collections. Second, in
this paper we explored some priority queue implementationsthat may be more suitable for aggres-
sive compilation policies, especially with a slow, highly optimizing compiler. We plan to continue
our search for better method prioritization schemes in the future. Third, this work shows that the
optimal settings for compilation threshold and the number of compiling threads depend on factors,
such as application characteristics, that cannot be determined statically. Thus, we plan to conduct
experiments to study the performance potential of adaptively scaling these parameters at runtime.
Fourth, this work primarily focuses on exploringif andwhento compile program methods to max-
imize overall program performance for modern machines. We do consider some aspects ofhow to
compile with the tiered HotSpot configuration. However, howto compile program regions is a much
broader research topic that includes issues such as betterselectionandorderingof optimizations at

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

JIT Compilation Policy for Modern Machines A:25

different compilation levels. We have begun to conduct research to address some of these issues in
the HotSpot VM [Jantz and Kulkarni 2013]. We plan to exploit the observations from this work to
focus on optimizations (and methods) with the greatest impact on program performance and build
new and more effective online models. Finally, we are currently also conducting similar experiments
in other virtual machines (JikesRVM) to see if our conclusions from this work hold across different
VMs. Later, we plan to also validate our results for different processor architectures.

REFERENCES

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. 2000a. Adaptive optimization in the Jalapeno JVM. InProceed-
ings of the 15th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications.
47–65.

Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. 2000b. Adaptive optimization in the
Jalapeo JVM: The controller’s analytical model. In Proceedings of the 3rd ACM Workshop on Feedback Directed and
Dynamic Optimization (FDDO ’00). (December 2000).

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. 2005.A Survey of Adaptive Optimization in Virtual Machines.
Proc. IEEE92, 2 (February 2005), 449–466.

M. Arnold, M. Hind, and B. G. Ryder. 2002. Online feedback-directed optimization of Java.SIGPLAN Not.37, 11 (2002),
111–129.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo benchmarks: Java benchmarking development and analysis. InProceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications (OOPSLA
’06). 169–190.

Igor Böhm, Tobias J.K. Edler von Koch, Stephen C. Kyle, Björn Franke, and Nigel Topham. 2011. Generalized just-in-time
trace compilation using a parallel task farm in a dynamic binary translator. InProceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation (PLDI ’11). 74–85.

D. Bruening and E. Duesterwald. 2000. Exploring optimal compilation unit shapes for an embedded just-in-time compiler.
In 3rd ACM Workshop on Feedback-Directed and Dynamic Optimization. 13–20.

John Cavazos and Michael F. P. O’Boyle. 2006. Method-specific dynamic compilation using logistic regression. InOOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications. ACM, New York, NY, USA, 229–240.

Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. 1991. Using profile information to assist classic code optimizations.
Software Prac. Experience21 (1991), 1301–1321.

L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient implementation of the smalltalk-80 system. InPOPL ’84: Pro-
ceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming languages. ACM, New York,
NY, USA, 297–302.

Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn,and Kathryn S. McKinley. 2011. Looking back on the
language and hardware revolutions: measured power, performance, and scaling. InProceedings of the sixteenth inter-
national conference on Architectural support for programming languages and operating systems (ASPLOS XVI). ACM,
New York, NY, USA, 319–332.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous java performance evaluation. InProceed-
ings of the conference on Object-oriented programming systems and applications (OOPSLA ’07). 57–76.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2005.The Java(TM) Language Specification (3rd Edition)(third
ed.). Prentice Hall.

Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick.1982. Gprof: A call graph execution profiler.SIGPLAN
Notices17, 6 (1982), 120–126.

N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundaresan. 2004. Java just-in-time compiler and virtual machine
improvements for server and middleware applications. InProceedings of the conference on Virtual Machine Research
And Technology Symposium. 12.

Dayong Gu and Clark Verbrugge. 2008. Phase-based adaptive recompilation in a JVM. InProceedings of the 6th IEEE/ACM
symposium on Code generation and optimization (CGO ’08). 24–34.

M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. 2005. Generating new general compiler optimization settings. In
ICS ’05: Proceedings of the 19th Annual International Conference on Supercomputing. 161–168.

G. J. Hansen. 1974.Adaptive systems for the dynamic run-time optimization of programs. Ph.D. Dissertation. Carnegie-
Mellon Univ., Pittsburgh, PA.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 M. Jantz and P. Kulkarni

Tim Harris. 1998. Controlling run-time compilation. InIEEE Workshop on Programming Languages for Real-Time Industrial
Applications. 75–84.

Kim Hazelwood and David Grove. 2003. Adaptive online context-sensitive inlining. InCGO ’03: Proceedings of the inter-
national symposium on Code generation and optimization. IEEE Computer Society, Washington, DC, USA, 253–264.

U. Hölzle and D. Ungar. 1996. Reconciling responsiveness with performance in pure object-oriented languages.ACM Trans-
actions on Programming Language Systems18, 4 (1996), 355–400.

Michael R. Jantz and Prasad A. Kulkarni. 2013. Performance potential of optimization phase selection during dynamic JIT
compilation. InVEE ’13: Proceedings of the 9th ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments.

D. E. Knuth. 1971. An empirical study of FORTRAN programs.Software: Practice and Experience1, 2 (1971), 105–133.
T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox. 2008. Design of the Java HotSpotTM client

compiler for Java 6.ACM Trans. Archit. Code Optim.5, 1 (2008), 1–32.
C. Krintz. 2003. Coupling on-line and off-line profile information to improve program performance. InCGO ’03: Proceed-

ings of the international symposium on Code generation and optimization. Washington, DC, USA, 69–78.
C. Krintz and B. Calder. 2001. Using annotations to reduce dynamic optimization time. InProceedings of the ACM SIGPLAN

2001 conference on Programming language design and implementation. 156–167.
C. Krintz, D. Grove, V. Sarkar, and B. Calder. 2000. Reducingthe Overhead of Dynamic Compilation.Software: Practice

and Experience31, 8 (December 2000), 717–738.
P. Kulkarni, M. Arnold, and M. Hind. 2007. Dynamic compilation: the benefits of early investing. InVEE ’07: Proceedings

of the 3rd international conference on Virtual execution environments. 94–104.
Prasad A. Kulkarni. 2011. JIT compilation policy for modernmachines. InProceedings of the 2011 ACM international

conference on Object oriented programming systems languages and applications (OOPSLA ’11). 773–788.
Prasad A. Kulkarni and Jay Fuller. 2011. JIT Compilation Policy on Single-Core and Multi-core Machines. InInteraction

between Compilers and Computer Architectures (INTERACT),2011 15th Workshop on. 54–62.
Microsoft. 2001.Microsoft C# Language Specifications(first ed.). Microsoft Press.
Manjiri A. Namjoshi and Prasad A. Kulkarni. 2010. Novel online profiling for virtual machines. InVEE ’10: Proceedings of

the 6th ACM SIGPLAN/SIGOPS international conference on Virtual execution environments. 133–144.
Michael Paleczny, Christopher Vick, and Cliff Click. 2001.The Java hotspotTM server compiler. InJVM’01: Proceed-

ings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium. USENIX Association,
Berkeley, CA, USA, 1–12.

R.N. Sanchez, J.N. Amaral, D. Szafron, M. Pirvu, and M. Stoodley. 2011. Using machines to learn method-specific compi-
lation strategies. InCode Generation and Optimization (CGO), 2011 9th Annual IEEE/ACM International Symposium
on. 257 –266.

Jim Smith and Ravi Nair. 2005.Virtual Machines: Versatile Platforms for Systems and Processes (The Morgan Kaufmann
Series in Computer Architecture and Design). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

SPEC2008. 2008. SPECjvm2008 Benchmarks. http://www.spec.org/jvm2008/. (2008).
SPEC98. 1998. SPECjvm98 Benchmarks. http://www.spec.org/jvm98/. (1998).
Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Mark Stoodley. 2006. Experiences with Multi-threading and Dynamic

Class Loading in a Java Just-In-Time Compiler. InProceedings of the International Symposium on Code Generation
and Optimization (CGO ’06). 87–97.

Deborah L. Whitfield and Mary Lou Soffa. 1997. An approach forexploring code improving transformations.ACM Trans-
actions on Programming Languages and Systems19, 6 (1997), 1053–1084.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

