
Novel Online Profiling for Virtual Machines

Manjiri A. Namjoshi Prasad A. Kulkarni
Department of Electrical Engineering and Computer Science, University of Kansas

{manjiri,prasadk}@ku.edu

Abstract
Application profiling is a popular technique to improve program
performance based on its behavior.Offlineprofiling, although ben-
eficial for several applications, fails in cases where prior program
runs may not be feasible, or if changes in input cause the profile
to not match the behavior of the actual program run. Managed lan-
guages, like Java and C#, provide a unique opportunity to overcome
the drawbacks of offline profiling by generating the profile informa-
tion onlineduring the current program run. Indeed, online profiling
is extensively used in current VMs, especially duringselective com-
pilation to improve programstartupperformance, as well as during
other feedback-directed optimizations.

In this paper we illustrate the drawbacks of the currentreac-
tive mechanism of online profiling during selective compilation.
Current VM profiling mechanisms are slow – thereby delaying as-
sociated transformations, and estimate future behavior based on the
program’s immediate past – leading to potential misspeculation that
limit the benefits of compilation. We show that these drawbacks
produce an average performance loss of over 14.5% on our set of
benchmark programs, over anideal offlineapproach that accurately
compiles the hot methods early. We then propose and evaluate the
potential of a novel strategy to achieve similar performance benefits
with an online profiling approach. Our new online profiling strategy
uses early determination of loop iteration bounds to predict future
method hotness. We explore and present promising results on the
potential, feasibility, and other issues involved for the successful
implementation of this approach.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization, Run-time environments, Com-
pilers

General Terms Languages, Performance

Keywords Virtual machines, Online profiling, Java

1. Introduction
Application profiling gathers information regarding program char-
acteristics during execution, and is a popular technique to under-
stand and reason about the dynamic behavior of a program [Gra-
ham et al. 1982, Chang et al. 1991]. Profile information is used to
identify important execution patterns that are further employed to
dispatch important methods for dynamic compilation, as well as

[Copyright notice will appear here once ’preprint’ option is removed.]

to tailor feedback-directed optimizations to improve program per-
formance. Profile information is collected using mostly one, or a
combination of two strategies: (1) additional prior runs of the same
program (offline strategy), or (2) dynamically, during the current
program run (online strategy). Profile-based compilation and op-
timization, when feasible and successful, can result in significant
performance benefits.

Offline profiling captures program behavior frompreviouspro-
gram runs to guide optimization decisions for future runs [Hwu
et al. 1993, Chang et al. 1991, Mock et al. 2000, Pettis and Hansen
1990]. Although, the resulting performance improvements are of-
ten significant, offline profiling fails in situations where, (1) it is
impractical to collect a profile prior to execution, or (2) a change
in the execution environment or the input causes the application’s
behavior to differ from its behavior during the profiling run(s).

Managed language runtimes (also called Virtual Machines
(VM)), such as those for Java and C#, offer a unique opportu-
nity to overcome the drawbacks of offline profiling by providing
an environment to adaptively perform application profiling online
[Arnold et al. 2002, Hazelwood and Grove 2003, Arnold et al.
2000]. Indeed, online profile-directed compilation is considered
critical to thestartupas well as the overall performance delivered
by current VMs. However, current online profiling mechanisms
only monitor thepastapplication behavior during the current run
to predict future behavior of the same run. Moreover, gathering
this profile information typically requires current approaches to
monitor program information over a substantial amount of time.
Accordingly, in spite of their success, in this paper we show that
present implementations of online profiling still need to address
several important challenges:

1. revise theirreactiveprogram monitoring strategy that causes
associated adaptive transformations to base their decisions on
partial and stale profile information, and

2. reduce the time spent waiting for sufficient profile information
to be collected thatdelayscritical compilation and optimization
decisions at program startup.

Arguably, the most prominent application of online profiling in
virtual machines is duringselective compilationto detect the subset
of hot methods to selectively compile at program startup [Hölzle
and Ungar 1996, Paleczny et al. 2001, Krintz et al. 2000, Arnold
et al. 2005]. A method is designated as hot if the application
spends a significant proportion of its runtime in the corresponding
section of code. Selective compilation is an extremely important
and universally adopted technique to limit the overhead of adap-
tive compilation, while deriving the most performance benefit at
runtime. The drawbacks of current online profiling implementa-
tions result in several important consequences for selective compi-
lation. First, adaptive profile-driven compiler transformations can,
counter-intuitively, lead to performance degradation (by spending
time in optimizing inconsequential sections of code) if the profile
does not correctly speculate future program behavior. At the same

1 2010/2/15

time, applications typically notice poor startup performance due to
execution in unoptimized code or via interpretation, while the adap-
tive optimization system is waiting for profile information to be
collected and associated transformations to be performed. In this
paper we demonstrate that the above consequences seriously im-
pact application performance for several benchmarks at startup.

To address these drawbacks we propose a new online profiling
mechanism for VMs that attempts to read the values ofloop iter-
ation boundsbefore every loop entry to predict the future hotness
status of all methods invoked in that loop, and prior to their first
invocation. The compilation and optimization of hot methods can
now be triggered early and be guided by the knowledge of their
future behavior. Such a technique can lead to reduced misspecula-
tions along with the benefits of early compilation. The goal of our
present work is to explore the potential, feasibility, and benefits of
this new profiling mechanism during selective compilation. Addi-
tionally, we also suggest a low-cost and completely online mecha-
nism for its implementation in process VMs.

Thus, the main contributions of this paper are:

1. explain the drawbacks of current implementations of online
profiling in virtual machines,

2. demonstrate their performance impact on program startup dur-
ing selective compilation,

3. propose a new online profiling strategy that can gather and
employ knowledge of future application behavior to guide dy-
namic compilation and optimization decisions,

4. evaluate the performance potential of complete as well as
practical knowledge of loop iteration bounds to predict future
method hotness, and

5. study issues regarding the feasibility and runtime cost of our
new profiling strategy for selective compilation.

The rest of this paper is organized as follows. We describe work
related to the areas of online profiling and selective compilation in
Section 2. We outline our experimental framework in Section 3.
We demonstrate the drawbacks of current implementations of on-
line profiling in Section 4. We present our simulation-based ex-
perimental framework, and evaluate the potential and feasibility of
our novel online profiling strategy for selective compilation in Sec-
tion 5. We outline our plan for the future maturation of this online
profiling framework in Section 6, and finally draw our conclusions
in Section 7.

2. Background and Related Work
The requirements of code portability and dynamic verifiability pre-
vent the application of powerful static optimizations for programs
written in managed languages. Therefore, such programs rely ex-
tensively on accurate online profiles and powerful runtime opti-
mizations for their performance needs. In this section we provide
background information and related work in the areas of online pro-
filing and selective compilation.

In most situations, executing native optimized code is several
orders of magnitude faster than interpretation. However, by per-
forming their compilations at run-time, managed environments can
potentially increase thetotal execution time of native execution
over interpretation if the compilations are performed injudiciously.
Consequently, most dynamic environments employ several mech-
anisms to reduce the overhead of dynamic compilation at runtime.
Selective compilation is a technique devised to reduce the compila-
tion overhead by exploiting the well-known fact that most programs
spend most of their time in a small part of the code [Knuth 1971,
Bruening and Duesterwald 2000, Arnold et al. 2005]. This observa-
tion allows selective compilation to focus resources on sections of
code that are frequently-executed orhot [Hansen 1974, Grcevski
et al. 2004, Team 2007, Detlefs and Agesen 1999]. Thus, virtual

machines employing selective compilation only optimize the hot
sections of code, and use interpretation [Grcevski et al. 2004, Kotz-
mann et al. 2008] or naive compilation [Cierniak et al. 2000, Arnold
et al. 2000] to execute the rest of the program.Profiling is used dur-
ing selective compilation to identify the candidate hot code regions
for compilation and promotion to higher levels of optimization.

Current approaches to dynamically select hot methods for com-
pilation use profiling techniques that are typically based oncoun-
ters [Hansen 1974, Ḧolzle and Ungar 1996, Kotzmann et al. 2008]
andsampling[Arnold et al. 2000, Grcevski et al. 2004]. The ap-
proach based on counters increments a counter on each method
invocation and, optionally, on each loop iteration. The other mech-
anism uses sampling to periodically interrupt the system and up-
date a counter for the method(s) on top of the stack. If the counter
reaches a pre-determined threshold, then the method is queued for
compilation. Researchers have also explored the use of hardware
performance monitors to reduce the overhead of collecting profile
information [Adl-Tabatabai et al. 2004, Buytaert et al. 2007]. How-
ever, it is generally hard to associate the very low-level information
obtained via hardware monitors with the higher-level program ele-
ments that actually influence the counters.

All these popular profiling mechanisms are typically reactive
and speculate their compilation and optimization decisions based
on profiles of past application behavior, which may be inaccu-
rate [Duesterwald et al. 2003]. Accordingly, compilation in most
current runtime systems may even result in a performance loss
if their speculation goes wrong. Performance degradations due to
incorrect speculations are commonly seen, especially for short-
running applications and for program startup performance. More-
over, a virtual machine employing current profiling approaches to
detect hot methods needs to postpone its compilation decisions
until sufficient profile information has been collected to deter-
mine method hotness. Sampling using an external clock trigger
distributes the profiling overhead over a longer time interval than
corresponding counter-based schemes, thereby, potentially delay-
ing the compilation decisions even more. In contrast, our proposed
counter-based profiling mechanism is an attempt to make optimiza-
tion decisions early and based on guarantees regarding the future
application behavior.

Static analysis of the source code has been employed in earlier
works to send hints to the JIT compiler to reduce its compilation
overhead, and enable powerful and time-consuming optimizations
at runtime [Hummel et al. 1997, Azevedo et al. 1999, Krintz and
Calder 2001, Pominville et al. 2001]. Krintz combined offline and
online profiling to overcome some of the drawbacks in both profil-
ing approaches [Krintz 2003]. All these techniques are dependent
on some combination of prior offline profiling runs, classfile an-
notation, and annotation compression. Instead, we propose a com-
pletely online profiling approach in this paper. Other researchers
have also demonstrated that delaying important compilations can
be harmful to application startup performance [Kulkarni et al. 2007,
Harris 1998]. However, their work only focused on reducing the de-
lay between the detection and compilation of hot methods, or the
time spent waiting in thecompilation queue. Instead, our work pre-
sented in this paper attempts to enable earlier and more accurate
detection of hot sections of code.

3. Experimental Framework
The experiments in this paper are conducted using the SPECjvm98
suite of benchmarks [SPEC98]. Table 1 lists the name and relevant
features for each of our eight SPECjvm98 benchmarks. All bench-
marks come with a small(10) and a large(100) input size, providing
us with 16 distinct benchmark-input pairs. This size is indicated
along with the benchmark name in the first column of Table 1. The
other columns list the total number of methods executed, number

2 2010/2/15

Name Methods Hot Methods App
Executed Total App. Loops

201 compress10 1410 21 17
26

201 compress100 1410 22 18
202 jess10 1741 41 22

171
202 jess100 1757 80 47
205 raytrace10 1515 75 49

43
205 raytrace100 1516 104 77
209 db 10 1415 36 11

21
209 db 100 1418 39 9
213 javac10 2135 89 42

237
213 javac100 2173 409 308
222 mpegaudio10 1574 55 50

77
222 mpegaudio100 1576 99 77
227 mtrt 10 1524 78 52

43
227 mtrt 100 1531 106 79
228 jack 10 1652 107 20

89
228 jack 100 1656 172 70

Table 1. Benchmarks used in our experiments

of total (application+library) and just application methods that are
detected hot, and the number of static application loops for each
benchmark-input pair.

We employ the OpenJDK Java Virtual Machine (JVM) and
the associated high-performance optimizingHotSpotJIT compiler
(build 1.7.0-ea-b24) [Kotzmann et al. 2008] to conduct our experi-
ments for this paper. By default, the JVM is configured to operate
in two modes. The JVM initially starts in the interpretation mode
to minimize the program response time at application startup. The
HotSpot VM uses a counter-based profiling mechanism, and uses
the sum of a method’sinvocationand loopbackedgecounters to
detect and promote hot methods for compilation. Methods are de-
termined to be hot if the sum of the method invocation and loop
backedge counts exceeds a fixed threshold. The tasks of detecting
hot methods and dispatching them for compilation are performed
at every method call.1

Choosing the right hotness threshold is very critical to the
startup performance of the JVM. A high threshold may result in
the VM missing opportunities to detect and compile hot methods,
while a low threshold may send even the unimportant methods
for compilation, thereby unnecessarily increasing the compilation
overhead. Total application performance is negatively impacted in
both cases. To find the correct threshold values to use for our re-
sults, we experimented with several different thresholds to find the
one that achieves the best performance for our experimental condi-
tions and benchmark set. Please note that this approach is also the
current state-of-the-art method for detecting hotness thresholds to
use in production JVMs. The results of our experiment for a subset
of the tested thresholds (.15X, 0.5X, X, 1.5X, 2.5X) are presented
in Figure 1 (Here, the best threshold, and the one we selected for
our experiments, is indicated byX). In this figure, each bench-

1 HotSpot also uses the expensive and complicatedon stack replacement
(OSR)strategy to promote methods with long-running loops to compilation
at much larger loop backedge counts. Due to the complexity of the OSR
process [Ḧolzle et al. 1992, Gal et al. 2007], OSR compilation, in most
cases, is only supported in commercial VMs and some other extensive
research projects such as Jikes RVM [Arnold et al. 2000]. Additionally,
a fair comparison between the default HotSpot compilation policy (with
OSR) and our early compilation strategy will require substantial updates
to enable the HotSpot VM to employ the generated native code during
the same method invocation or loop iteration as when the method is first
detected hot and compiled. Currently, the compiled code is only employed
in the invocation/iteration after the hotness detection. For this paper, we
disable the OSR compiles in HotSpot to keep our study simple andto allow
more straight-forward analysis of our results.

Figure 1. Comparison of benchmark performances at different
hotness thresholds with the threshold of X

mark’s performance at the threshold of X is used as the base to
compare its performance at the remaining thresholds. We used the
results of this experiment to determine the threshold achieving the
best average performance for our set of benchmarks, and selected
that as our baseline compilation threshold.

Some of the studies presented in this paper require a static
analysis pass over the java classfile, or require annotating methods
in the classfile to convey static or profile information to the JVM.
We conduct the static analysis and annotation of the application
classfiles by extending the Java bytecode analysis and annotation
framework, Soot [Valĺee-Rai et al. 1999]. All our experiments are
performed on a single core Intel(R) Xeon(TM) 2.4GHz processor
using Fedora Linux version 7 as the operating system. Finally, to
account for inherent timing variations during the benchmark runs,
all the performance results in this paper report the median over 10
runs for each benchmark-configuration pair.

4. Drawbacks of Current Approaches to Online
Profiling and Compilation

Most performance-aware JVMs employ selective compilation to
dynamically compile hot methods to improve application perfor-
mance at minimal compilation overhead. In most VMs, the deter-
mination of hot methods is performed entirely at run-time in order
to take advantage of the execution profile of the program. In this
section we evaluate the performance impact due to the drawbacks
of current reactive online profiling strategy used to select methods
for compilation. We explore drawbacks from the following issues:

1. the past method hotness behavior may not be representative of
future method execution behavior, and

2. the time spent in profiling the application to detect hot methods
delays their compilation, and thus reduces program start-up
performance.

Selective compilation currently employs profiling to find the
subset of methods that were hot in the current run so far, and sends
them for compilation based on a speculation that they will continue
to remain hot in the future. Thus, the methods that are compiled
are those that were hot in the past, with no guaranty of their future
hotness. It is currently believed that this speculation turns out to be
correct in most of the cases. However, we find this to not be the
case.

In order to find the number of incorrectly speculated methods
during the execution of our benchmark programs we turn to the the-
ory behind the technique of choosing a compile threshold for selec-
tive compilation. The theory entails that in the absence of informa-

3 2010/2/15

Figure 2. Performance improvement after removing incorrectly
speculated methods from the list of hot methods compiled at run-
time

tion regarding the future execution behavior of a method, a selec-
tion policy that minimizes the worst-case damage of online compi-
lation (in case the speculation goes wrong) will achieve the best
performance (sometimes called theski-renting principle) [Goe-
mans 1994, Karp 1992]. According to this principle, to minimize
the worst-case damage, a method should only be compiled after it
has been interpreted a sufficient number of times so as to already
offset the compilation overhead. In the absence of a guaranty re-
garding the number of future method executions, this approach re-
sults in aworst-caseoverhead of twice the amount of time spent in
compilation. The worst-case is reached if the compiled method is
never executed after being compiled. Any other selection strategy
will result in a greater worst-case damage. Thus, mathematically,
if the time required to execute the compiled method is P, the time
required to interpret the same method is Q, and the method is ex-
ecutedn times, then, the only requirement for compiling a method
should be,

nP+compilation overhead< nQ (1)
However, since current approaches are unable to a priori determine
n, VMs use the ski-renting principle to compile a method after it
has already been interpretedm times, and the following equation is
estimated to be true:

mP+compilation overhead= mQ (2)

It is expected that the empirical procedure typically followed to
determine the best average threshold in Figure 1 over a range of
benchmarks will approximate this theory to yield the best selection
policy for each compiler in a VM.

We employ the ski-renting principle and Equation 2 to reason
that a compilation decision is an instance of incorrect speculation
if a method that is interpretedI number of times before compilation
executes forC number of times after compilation, andC < I. Thus,
in our case, if a method that is detected hot and compiled at a hot-
ness threshold of X has an overall (invocation+ backedge) count
of less than 2X, then we consider the detection as a case of incor-
rect speculation. These results, presented in Figure 2, show that us-
ing past hotness behavior to guide future compilation decisions can
turn out to be incorrect in a significant percentage of cases. More
than 23% of methods, on average, are incorrectly sent for compi-
lation, and the incorrect speculation is as high as 53% for some
benchmarks. Incorrect speculation of hot methods implies that for
these methods the performance gain due to execution in optimized
native code may not be able to offset the compilation overhead. In-

Figure 3. Idealbenefits of early compilation of hot methods

deed, preventing the wrongly speculated methods from being com-
piled results in a 3.79% increase in average performance.

The other drawback of current profiling approaches is the de-
lay they introduce in making the compilation decisions due to the
time spent in collecting the necessary profiling information. Cur-
rently, the VM is required to interpret each method and collect pro-
file information for at least the firstm method invocations (from
Equation 2). Depending on the compiler configuration thismcan be
quite large. Not surprisingly, interpreting hot methods for so long
is very detrimental to the startup performance of the application.

We devised experiments to quantify the performance loss
caused by this profiling delay in compiling the hot methods. Our
strategy uses offline profiling to determine the set of hot methods,
and then annotates the classfiles using Soot to indicate them to
the VM. Our modified VM recognizes and compiles the annotated
methods at the indicated counts. Figure 3 compares the perfor-
mance results when compiling only the hot application methods
(app) 2 as well asall (application+library) hot methods early at a
hotness count of 1, to compiling them as normal at their default
hotness threshold (X). Thus, we found early compilation ofall
the hot methods to result in a performance benefit of over 14.5%,
on average, over the default technique. Note that early compila-
tion using this offline strategy also eliminates incorrect method
speculations. Note also that since we are only impacting the startup
performance, the benefits for smaller (input size of 10) benchmarks
(17.7%) are much better than those for longer-running (input size
of 100) benchmarks (11.4%).

Thus, our results in this section clearly indicate that the cur-
rent approach of online profiling for selective compilation results
in sub-optimal performance. One approach to overcome the issues
identified here is to useoffline profiling to pre-determine the set
of hot methods, annotate the classfiles statically, and modify the
VM to recognize the annotations and compile the indicated meth-
ods early [Krintz and Calder 2001] (as done in the experimental
strategy for Figure 3). However, this approach suffers from the is-
sues with offline profiling mentioned earlier, is not transparent to
the developer/user, and is consequently not popular, as witnessed
by the lack of offline profiling support in most mainstream VMs. In
the following sections, we propose and evaluate the potential and
feasibility of a newonlineprofiling approach that is based on mon-
itoring the values of key program variables in the VM to determine
the future method hotness behavior. Methods can then be sent to
compilation early and more accurately to achieve the performance

2 We use this number as the baseline for some of our later experiments.

4 2010/2/15

 hot_func1();
}

 hot_func2();

 cold_func();
 cold_func();
}

}

main()
{

hot_func1()
{

cold_func()
{

}

hot_func2()
{

 for(i=0 ; i<100000 ; i++)

Figure 4. Simple partial program flowgraph

gains close to the ideal offline benefits demonstrated in this sec-
tion, but without incurring any of the associated offline profiling
drawbacks.

5. Loop Iteration Counts for Early Prediction of
Method Hotness

The experiments presented in the last section show that correct de-
tection of future method hotness and early compilation of hot meth-
ods can significantly benefit the startup performance of managed
language applications. Our proposed technique to achieve these
benefits at runtime seeks to read the loop iteration bounds before
the loop is entered to determine the future execution frequency of
all methods early.

Figure 4 shows a hypothetical program call-graph consisting of
four functions to demonstrate our intuition regarding how infor-
mation of all loop iteration bounds can accurately determine the
method hotness status early. The methodmain is only called once
and contains no loops. Consequently, execution will not stay in this
region of the program for very long, and hencemain is not a hot
method. Methodhot func1 is hot since it contains an important
loop in its function body. Methodhot func2 is hot because it is
invoked from a hot loop. In contrast, although methodcold func
is called from a hot method it is not itself hot since it is not called
from any loop, and does not contain a loop in its body. Thus, ex-
haustive loop bound information may be sufficient to predict the
future method hotness. However, even with complete loop bound
information, detection accuracy might be affected in some cases
due to, for example, dependence on conditional program control-
flow or values of program input.

Our proposed online profiling technique is based on the hypoth-
esis that determination of loop iteration bounds before entering the
loop is feasible for most program loops, and allows early detection
of hot methods. In this section, we conduct a systematic evaluation
of this hypothesis. To limit the complexity of this evaluation, we
restrict the scope of this study to only the hot methods and loops
present in the application classfiles (ignore hot library methods) and
compare our results with the ideal offlineappperformance results
in Figure 3. Our evaluation consists of the following steps:

1. In section 5.1, we employ anoffline trace-based simulation
study to determine the potential ofexhaustive, accurate, and
early loop iteration bound information to detect future method
hotness.

2. In section 5.2, we analyze why even the most accurate loop
bound information may be insufficient in some cases to achieve
early compilation benefits, and evaluate a new heuristic to ad-
dress the identified issues.

3. In section 5.3, we study the feasibility of determining loop
iteration bounds early at runtime.

4. Finally, in section 5.4, we describe an implementation approach
to perform all the profiling steps at runtime, while minimizing
the overhead to the main application thread, to result in an
entirelyonlineprofiling strategy.

5.1 Trace-Based Simulation Study

In this section we describe the results of our offline study to test
the hypothesis that early knowledge ofall loop iteration bounds is
sufficient to detect hot methods early. This study is conducted in
two stages. The first stage uses a modified VM to generate a trace
file that records each loop iteration and method invocation, and
makes the loop iteration bound available before each corresponding
loop entry. This trace file is analyzed in the next stage to predict the
hot methods early. These stages are described in the following two
sub-sections.

5.1.1 Simulation Setup

Offline generation of the trace file consists of the following steps:
(1) We employ the Soot bytecode analysis and annotation

framework [Valĺee-Rai et al. 1999] to identify the loops in every ap-
plication method, and annotate their corresponding loop entry and
exit instructions usingattributesin the Java classfiles. For example,
for the Java source program shown in Figure 5(a), Soot analyzes
the three methods,main, methodA, andmethodB, and inserts an-
notations to the Java classfile to indicate the offsets for eachloop
entry, andloop exitinstruction to the VM.3

(2) We then use a modified version of the HotSpot Java virtual
machine to recognize our new classfile annotations. On executing
the annotated classfiles, our modified JVM prints outeventmarkers
to identify method entry, loop entry, all later iterations of a loop,
loop exit, and the number of iterations for each loop. Figure 5 (b)
illustrates the trace file that would be produced after the execution
of the annotated bytecode program produced by Soot in the earlier
step. We will discuss the individual events in more detail in the next
section.

(3) Finally, the trace file is post-processed to shift the loop
iteration bound, originally printed at the end of the loop, to the start
of the loop, so as to make it available to our offline analysis program
on the first iteration of each loop. The trace file from Figure 5 (b)
after post-processing appears as shown in Figure 5 (c). The shifted
loop iteration bound is indicated in a bold font. Thus, this stage
simulates the generation ofeventsthat could be produced by an
appropriately configured VM interpreter at runtime.

5.1.2 Analyzing Trace Events for Early Method Hotness
Detection

The second stage in our simulation study is ananalyzerthat inter-
prets each trace event, updates relevant data structures, and outputs
the earliest invocation count at which a method is detected to be hot.
The analyzer maintains two data structures to facilitate the simula-
tion process:
loop stack: A single structure to hold information regarding the
loop identifier, iteration bound, and the current iteration count for
every active loop during program execution. The structure is dy-
namically updated by pushing a new record onto the loopstack on
loop entry, and popping a record on loop exit.
method info: A method-specific data structure to record the dy-

3 The classfile generated by Soot is not shown here to conserve space.

5 2010/2/15

class TestProgram {
// MethodID = 1

 public static void main(String args[]) {

 for(int i=0 ; i<2 ; i++) {

 }
 }

 static void methodB() {

 // LoopID = 0

 // MethodID = 3

// MethodID = 2
 static void methodA(int len) {
 int i;

 if(i%2 != 0)
 methodB();
 i++;
 }
 }

 // LoopID = 1

 System.out.print(" ");
 }

(a) Java Source Program

 while(i < len) {

f1 $0 f2 $1 , f3 , , f3 , , f3 , , f3 , , f3 , %1 ,
 f2 $1 , f3 , , f3 , , f3 , , f3 , , f3 , %1 ,

f1 $0 f2 $1 , f3 , , f3 , , f3 , , f3 , , f3 , %1 10 ,
 f2 $1 , f3 , , f3 , , f3 , , f3 , , f3 , %1 10 ,
 %0 2

 %0

10
10

2

(b) Trace File Generated by the HotSpot JVM

(c) Post−Processed Trace File

 methodA(10);

Figure 5. Process of generation of the trace file containing comprehensive information of all loop iteration bounds and method invocations
for each benchmark

namic number of method invocations for eachloop context. A loop
context is defined by all the loops in the loop stack when that
method is reached.

The trace file generated in Stage 1 contains indicators for four
unique events. The example trace file from Figure 5(c) is repro-
duced in Figure 6(a), and shows each unique event. On occurrence
of each of these four events, the analyzer takes the following steps:

Loop Entry: The pattern$<loop id> <bound> indicates entry
into a loop. The analyzer pushes a new record on top of the
loop stack, along with its loop bound.

Loop Backedge:A ‘,’ in the trace file indicates the occurrence
of a backedge to start the next iteration of the innermost loop
(loop on top of the stack). The simulator increments the corre-
spondingcurrent loop iteration count.

Loop Exit: The record on top of the loop stack is popped on
occurrence of the pattern‘%’ in the trace file.

Method Entry: The symbolf<method id> indicates an invoca-
tion of the method denoted by its methodid. The method’s in-
vocation count in all relevant loop contexts in the methodinfo
structure is incremented. For the first update of a method’s in-
formation structure in every new loop context, the simulator es-
timates the method’s total count using the formula:

predict cnt = (inv cnt+back cnt)∗
bound

cur iter
(3)

where,
inv cnt is the current method invocation count,
backcnt is the current method backedge count,
boundis the loop iteration bound, and
cur iter is the iter. count for the current loop context.

Equation 3 consists of two components. First,(inv cnt+back cnt)
provides the historical information of the total (invocation +
backedge) count registered for the method in the firstcur iter it-
erations of the current loop. Next, multiplying this factor by the
loopboundallows calculation of the estimated future count for the
same method. Thus, this equation attempts to answer the following

question: If a method has recorded (inv cnt + backcnt) number
of counts incur iter iterations of the current loop, then how many
counts (past+ future) is the method expected to register inbound
number of loop iterations. Ifpredict cnt > hotness threshold, then
this method will be sent for compilation.

Figures 6(b)–(g) show the states of the simulator data structures,
loop stack and methodinfo, along with the counts at which the
methods are detected hot for six snapshots marked in Figure 6(a).
Assume for this example that thehotness threshold is 10. These
events are described below:

Event 1, Figure 6(b): The analyzer pushes a new record, consist-
ing of theloop id, the loop iterationbound, and the current
loop count (cur iter), on the loop stack.

Event 2, Figure 6(c): The fieldsinv cnt and back cnt in the
methodinfo array, correspond to the number of invocations and
backedges already known for each method, and are vectors with
an entry for each loop level. Thus, if a method invocation or
backedge is seen in an inner loop, then it is recorded as seen
in all outer loop levels as well. These fields are set to 1 and
0 respectively at the loop level 0 on reading symbolf2. The
analyzer then employs Equation 3 to predict the method’s total
count for each current loop context. Methodf2 presently has
only one loop context defined by the loop $0. Methodf2’s
predicted count in this loop context is:(1+ 0) ∗ 2/1 = 2, and
is indicated in the fieldpredict cnt. The method is detected
to not be hot.

Event 3, Figure 6(d): A new loop record corresponding toloop id=1
is pushed onto the loopstack. Since this loop exists in the
methodf2, itsback cnt is updated to the loop’s iteration count
of 10. Equation 3 is again used to calculatef2’s predicted count,
given by: (1+ 10) ∗ 2/1 = 22. Sincef2’s predicted count is
greater than the compile threshold (assumed as 10 in this exam-
ple),f2 will be sent for compilation at this stage. Thus, method
f2 is compiled during its first invocation, and the compiled ver-
sion will be available before its next invocation. The invocation

6 2010/2/15

f1 $0 2 f2 $1 10 , f3 , , f3 , , f3 , , f3 , , f3 , %1 ,
 f2 $1 10 , f3 , , f3 , , f3 , , f3 , , f3 , %1 ,
 %0

(6)
(a) Example Trace File

loop_id = 0
bound = 2
cur_iter = 1

top

1

2

3

(c) Method_info table(b) Loop_stack

loop_id = 0
bound = 2
cur_iter = 1

top
loop_id = 1

bound = 10
cur_iter = 2

loop_id = 1

loop_id = 0

top

(f) Loop_stack (g) Loop_stack

(1)

inv_cnt = {1}

predict_cnt = {2}
loop_id = 0
bound = 2
cur_iter = 1

top
loop_id = 1

bound = 10
cur_iter = 1

predict_cnt = {22,−}

1

2

3
predict_cnt = {2,10}

inv_cnt = {1,−}

predict_cnt = {22,−}

1

2

3

inv_cnt = {1,−}
back_cnt = {10,−}

inv_cnt = {1,1}
back_cnt = {0,0}

(d) Detection of method f2

(e) Detection of method f3

back_cnt = {10,−}

back_cnt = {0}

(4)(3)(2) (5)

loop_id = 0
bound = 2
cur_iter = 1

loop_id = 1

bound = 10

top
cur_iter = 11

bound = 2
cur_iter = 3

bound = 10
cur_iter = 11

at event 1 at event 2 hot at event 3

hot at event 4 at event 5 at event 6

Figure 6. Demonstration of the simulation algorithm on an example trace file (for hotness threshold of 10)

count at whichf2 is first predicted to be hot is output as1 by
the analyzer.

Event 4, Figure 6(e):At this point, the analyzer has already seen
the first ‘,’ symbol in the trace file, and accordingly updated the
cur iter field for the loop on top of the loopstack. Method
f3 is present in two loop contexts, one defined by the loop nest
formed by loops $0 and $1, and the other defined by the loop $0.
f3’s predict cnt is calculated as(1+ 0) ∗ (10∗2)/(2∗1) =
10 and(1+0)∗2/1 = 2 for the loop contexts ($1$0) and ($0)
respectively. Since predicted count at context ($1$0) is equal
to the compile threshold,f3 can be sent for compilation at this
stage. Thus,f3’s first predicted hotness count is also output as
1.

Event 5, Figure 6(f): The loop record from loopid=1 is popped
off the loopstack. Note that thecur iter is equal to one more
than theboundfor loop id=1 at this stage.

Event 6, Figure 6(g): The loop record for loopid=0 is popped off
the loopstack.

The analysis of each per-benchmark trace file outputs all de-
tected hot methods along with the invocation counts when they are
first detected hot. We again employ the framework used to achieve
early compilation in Section 4, but instead of compiling the hot
methods on their first invocation, all methods detected to be hot by
the analyzer are sent to compile at the indicated counts. Our present
simulation framework only supports single-threaded programs, and
so we had to leave out the multi-threaded benchmark227 mtrt

from the results in this and future sections. However, please note
that this is not a limitation for the profiling approach, but only of
the current simulation framework.

The analysis results are presented in Table 2 and Figures 7 and
8. The first column in Table 2 lists the benchmark name. The next
column, labeledActual shows the actual number of hot methods
compiled by the default VM for each benchmark and for both the
10/100 input sizes. Our aim is to predict the hotness characteristic
of only these methods early. However, the number ofpredicted
hot methods (shown in column three of Table 2) may be greater
than their actual number due tofalse positivesdetected during our
trace-file analysis (shown in the column labeledFalse Positives
in Table 2). The predicted hot methods is the sum of the actual
hot methods and false positives. False positives arecold methods
that are wrongly predicted hot by our algorithm, and indicate the
inability of loop iteration bounds to provide accurate results by
themselves. Our current implementation calculates the sum of the
(past + future) method counts in Equation 3 to determine hot
methods. Therefore, our current implementation does not miss true
hot methods. If theactualhot methods are not predicted to be hot
early, then they will be sent for compilation at the method threshold
count of X (although this happens very rarely in practice).

Even for the correct detections, methods may be predicted hot
at total counts greater than 1. This unintentional delay seems to be
most commonly caused due to inadequate future information avail-
able from loops with small iteration bounds. For example, in Fig-
ure 9 and for a compile threshold of 10,000, information available

7 2010/2/15

Benchmark Hot Methods False
Actual Predicted Positives

201 compress 17/18 19/22 2/4
202 jess 22/47 25/51 3/4
205 raytrace 49/71 67/78 18/7
209 db 11/9 12/14 1/5
213 javac 42/309 100/527 58/218
222 mpegaudio 50/77 159/169 109/92
228 jack 20/69 63/120 43/51

Table 2. Results of trace file simulation to predict hot methods for
both input sizes 10/100

Figure 7. Lower the average ratio, the earlier a method was com-
piled, on average, compared to the default VM

in Loop1 regarding the future invocation of methodfuncA is in-
sufficient to predictfuncA hot ((1+0)∗8000/1 = 8,000 by Equa-
tion 3 is less than 10,000). However,funcA will be detected hot in
Loop2, although, after it has already been invoked for 80 times.

Figure 7 ignores the false positives and plots the average ratio of
the total counts at which theactualhot methods are first predicted
to be hot with our technique as compared to the hotness counts of
the default VM profiling strategy. Thus, small ratios for most of the
benchmarks indicate that knowledge of loop iteration bounds does
allow hot methods in most benchmarks to be detected much earlier
than with the default strategy. The presence of mostly recursive
methods coupled with very few big loops explains the particularly
poor numbers for the benchmark202 jess.

Figure 8 plots the percent fraction of theidealearly compilation
benefit (from theapp field in Figure 3) that is obtained for each
benchmark when using the analysis results to compile the detected
methods early. The results show that the large number of false pos-
itives actually produce a significant performance degradation for
many of our benchmarks (-0.9%, on average). The inability of our
analysis framework to detect hot methods early also results in sig-
nificantly reducing the gains compared to ideal early compilation,
particularly for 202 jessand 205 raytrace. Finally, benchmarks
with good prediction accuracies and early prediction counts, such
as 201 compressand 209 db, are able to get most of the perfor-
mance benefit of early compilation.

5.2 Delaying Early Prediction to Improve Its Quality

Thus, early compilation based only on the knowledge of loop
iteration bounds can produce significant number of false positives
causing unnecessary compilation overhead, and a resulting loss in
performance for several benchmarks. In this section, we analyze the

Figure 8. Benchmark performance when compiling methods as
predicted by our analysis algorithm compared to the ideal offline
performance from theappfield in Figure 3

for(i=0 ; i<100 ; i++) {
LOOP1: for(j=0 ; j<80 ; j++)

funcA();
LOOP2: for(j=0 ; j<100 ; j++)

funcA();
}

Figure 9. Small loop bounds delay the prediction of hot methods
(for hotness threshold of 10,000)

%7

$7 11 ... $18 1395 f100 , f100 , ... , %18
 $18 1 f100 , %18
 $18 1 f100 , %18
 .
 .
 .
 $18 1 f100 , %18

%3

$3 503 ... $4 2048 f100 , , , , ... , %4
 $4 2048 f100 , , , , ... , %4
 $4 2048 f100 , , , , ... , %4
 .
 .
 .
 $4 2048 f100 , , , , ... , %4

(b) Example 2 (_222_mpegaudio): Impact of Conditional Statements

(a) Example 1 (_205_raytrace): Impact of Variable Loop Bounds

Figure 10. Impact of runtime variables on method hotness predic-
tion (for hotness threshold 10,000)

most common causes for the large number of false positives (cold
methods predicted as hot) encountered during our analysis in the
last section, and present and evaluate a technique to improve the
quality of our predictions.

The examples (from real benchmarks) presented in Figure 10
indicate the main causes of false predictions. Both the examples in
Figure 10 show trace file fragments that are derived from actual
benchmark programs. The first fragment explains the effect of
variable inner loop iteration bounds on method hotness detection.
The loop nest consists of an outer loop (loopid = 7) with an
iteration bound of 11, and an inner loop (loopid = 18) with a
variable iteration bound. The inner loop iterates for 1395 times
during the outer loop’s first iteration, but only iterates once for all

8 2010/2/15

Benchmark False Positives at Delay Factors (% of baseline threshold)
0% 1% 3% 7% 10% 20% 30% 40% 50% 70% 90%

201 compress 2/4 2/2 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/0 0/0
202 jess 3/4 3/4 3/2 3/2 3/2 3/2 3/2 3/1 3/1 3/0 0/0
205 raytrace 18/7 5/5 4/4 4/4 4/4 4/4 2/2 2/2 2/2 0/0 0/0
209 db 1/5 1/4 1/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
213 javac 58/218 57/132 53/105 38/84 38/71 37/16 31/1 24/1 15/1 6/0 0/0
222 mpegaudio 109/92 14/4 8/2 5/0 4/0 1/0 1/0 1/0 0/0 0/0 0/0
228 jack 43/51 41/43 36/14 25/0 10/0 2/0 1/0 1/0 0/0 0/0 0/0

Table 3. False positives at different delay factors (for both input sizes 10/100)

Figure 11. Averageperformance results of delaying compilation
to improve prediction accuracy, as a percentage of ideal early com-
pilation benefit at selected delay factors

future outer loop iterations. The method with id=100 is invoked
once during every iteration of the inner loop. The total invocation
count of method f100 calculated during its first invocation ((1+
0) ∗ (11∗1395)/(1∗1) = 15,345) exceeds the threshold count of
10,000, and hence the method is sent for compilation during its
first invocation itself. However, this prediction for f100 proves too
optimistic due to loop $18’s smaller future iteration counts.

The second example fragment presented in Figure 10 explains
the impact of conditional control-flow statements on the predicted
future method invocation counts. The loop nest consists of two
loops (id=3 and id=4) with fixed iteration counts of 503 and 2048
respectively. The conditional control-flow statements surrounding
method f100 (not captured in the trace file) only allow its invo-
cation during the first iteration of loop $4. However, method f100
is predicted hot during its first invocation itself ((1+ 0) ∗ (503∗
2048)/(1∗ 1) = 24,144), which ultimately proves incorrect. For
each false positive, the cumulative gain due to faster execution of
the native code fails to eclipse its compilation overhead, resulting
in a net loss of application performance.

To reduce the number of false positives, we propose a heuris-
tic that avoids making a hotness prediction the first time a method
is seen in anyloop context, but delays the decision until sufficient
history of the method counts is available for that method. The ideal
delay factorvaries for different methods. For example, although a
delay factor of 1% (of default hotness threshold) is able to elimi-
nate detection of the false positive for the example in Figure 10, a
higher delay factor will be necessary to eliminate the false positive
in Figure 10(a). Table 3 shows the number of false positives at vari-
ous delay factors for our benchmarks (for both sizes 10/100). While
extremely small delay factors suffice to purge all the false positives
for some benchmarks, such as201 compressand 209 db, some
very large delay factors are required for others, such as213 javac

and 202 jess. Unfortunately, a higher delay factor also suspends
the early detection ofactual hot methods longer, resulting in an
erosion of the desired benefits due to early compilation. Thus, find-
ing the ideal delay factor is important for achieving the maximum
gains from early compilation.

Figure 11 plots the ratio of the average performance improve-
ment seen at various delay factors to the average ideal early compi-
lation benefit available from Figure 3. Thebestdelay factor is the
benchmark-specific delay at which that benchmark achieves its best
improvement. Thebestdelay factor for each benchmark is indi-
cated in Table 3 by expressing the appropriate false positive number
in bold fonts. Figure 11 shows that, for constant delay factors, the
performance improves rapidly with initial increases in delay factors
and fluctuates (or decreases slightly) as prediction delays start af-
fecting the benefit due to early compilation of actual hot methods.
The best performance (8.5%, on average, over default VM com-
piling only appmethods) is achieved for benchmark-specific delay
factors, indicating that there is some potential for tuning the delay
factors as well.

Figure 12 shows the percentage of ideal early compilation im-
provement that is achieved for each benchmark at selected delay
factors. Thus, small delay factors seem to do well for most bench-
marks. At the same time, elimination of false positives also seems
to be very important to achieve close to ideal performance gains.

5.3 Feasibility of Early Determination of Loop Iteration
Counts

The success of our proposed online profiling technique depends
on the ability of the VM to automatically determine the iteration
bounds of loops. In this section, we explore the feasibility of deter-
mining the loop bounds (for the application classes) during execu-
tion, and the impact of non-analyzable loops on the early detection
of method hotness, and the overall performance improvement.

Figure 13 presents an instance of each of the three categories
of loops that we currently label asanalyzable, since the iteration
bounds of such loops can be deciphered at runtime before entry
into the loop. We modified thebranchroutine in the VM interpreter
to confirm that the bounds of loops in categoriesA and B can
indeed be determined prior to the first entry into the loop. Loops
belonging to categoryC are simple loops that iterate over standard
library data structures, and will most probably require additional
static/dynamic analysis to be analyzable. We still categorize such
loops as analyzable since we believe that capability to prepare
such loops for our prediction tasks, such as by adding additional
instructions to indicate the loop bound to the VM (shown by the
comment in bold for Loop C), is feasible. In future work, we plan to
study static/dynamic transformations to prepare Category C loops
for automatic analysis during our profiling scheme.

On the other hand, loops in Figure 14 belong to categories that
can make it highly improbable or very expensive to a priori de-
termine their bounds. Loops in categoryD iterate over program-

9 2010/2/15

Figure 12. Individual benchmark performance results of delaying compilation to improve prediction accuracy, as a percentage of ideal early
compilation benefit at selected delay factors

 static_hot();
}

{
for(i=0 ; i<2500 ; i++)

 dynamic_hot();
}

n = data.length;
for(i=0 ; i<n ; i++)
{

Category A Category B

void method(List list){
 Iterator it = list.iterator();

 while(it.hasNext()){
 el = (Element) it.next();
 }
}

 // n = list.size();

Category C

Figure 13. Iteration bounds of some categories of loops can be accurately predicted early

do{
 diff_func(myStack.pop());
} while(!myStack.isEmpty());

tok = getToken();
i=0;
while(arr[i] != tok){
 ...
}

Category D

Category E

Figure 14. Iteration bounds of some categories of loops are diffi-
cult to predict

specific data structures, and categoryE loops are non-linearly de-
pendent on input values. We term such loops asnon-analyzablein
this paper.

We performed a manual study using the Soot framework to find
the percentage of analyzable loops in the SPECjvm98 benchmark
programs. Table 4 lists the results of this study. For each bench-
mark, columns three, four, and five present the number of loops in
categoriesA, B, andC, while the last column lists the percentage of
total analyzable loops. Thus, a large majority of the loops in most
benchmarks can be easily targeted by our approach.

Table 5 and Figure 15 show the results of discarding the non-
analyzable loops from the simulation runs, and correspond to the
numbers presented earlier in Table 3 and Figure 11 respectively.
Not surprisingly, discarding non-analyzable loops delays the early
detection of hot methods in some cases. However, we found that
eliminating the non-analyzable loops also has the unexpected side-
effect of reducing the number of false positives. The combination
of reduced false positives and delayed detection ofactualhot meth-
ods, improves performance over the all-loops configuration of fig-

Benchmark
Total Analyzable Loops

Loops Category % of
A B C Total

201 compress 26 1 15 2 69.23
202 jess 171 1 140 4 84.79
205 raytrace 43 9 21 2 74.42
209 db 21 2 12 1 71.42
213 javac 237 3 108 41 64.13
222 mpegaudio 77 23 43 2 88.31
228 jack 89 2 29 37 76.40

Table 4. Statistics for Analyzable Loops

ure 12(a) for the lowest delay factor, but results in some degrada-
tion for the remaining factors. The most prominent reduction in the
performance gain is witnessed for the201 compressbenchmarks,
in which case the improvement over the default VM performance
drops to about half. Overall, we measured an average improvement
of 66% of ideal offline early compilation benefit considering the
bestdelay factor for each benchmark.

5.4 Implementation Cost

In order to remain completely transparent to the user, the online
profiling approach described in this paper should be implemented
entirely at runtime. At the same time, for dynamic compilation to
improve performance, it is critical that the profiling and decision
mechanisms incur low overhead so as to not subsume the benefits
of early compilation. To minimize execution-time overhead while
maintaining complete user transparency, we suggest the following
implementation strategy for our new profiling mechanism: (1) Dur-
ing classfile loading, a simple analysis pass will scan the input byte-
codes to identify and mark loop entry/exit instructions for the VM
to generate appropriate traceeventsduring interpretation. Thus, this

10 2010/2/15

Benchmark False Positives at Delay Factors (% of baseline threshold)
0% 1% 3% 7% 10% 20% 30% 40% 50% 70% 90%

201 compress 2/3 2/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
202 jess 3/25 3/17 3/13 3/11 1/9 0/6 0/6 0/4 0/4 0/4 0/0
205 raytrace 18/7 5/5 4/4 4/4 4/4 4/4 2/2 2/2 2/2 0/0 0/0
209 db 1/3 1/3 1/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
213 javac 55/207 54/126 51/105 36/84 36/71 35/15 30/0 23/0 13/0 5/0 0/0
222 mpegaudio 20/44 13/9 7/5 4/1 2/1 1/1 1/1 1/1 0/1 0/1 0/0
228 jack 9/14 7/10 0/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Table 5. False positives at different delay factors (for both input sizes 10/100) after removing non-analyzable loops

Figure 15. Performance benefit with analyzable loops only

pass will replace the static analysis and classfile annotation phase
currently performed by Soot during our trace-file simulation (Step 1
of Section 5.1.1). If needed, this dynamic analysis pass can be per-
formed in a separate thread (on a free core) to minimize overhead
in the primary application thread. (2) The next stage of the profiling
mechanism (described in Steps 2-3 of Section 5.1.1), which gener-
ates the trace information, should require extremely low overhead
and can be performed inline during the interpretation of the main
application. The events generated by this stage will be inserted into
a trace queue. (3) The last stage of our profiling mechanism (de-
scribed in Section 5.1.2) is the higher overhead decision making
component that reads (and removes) events from the trace queue
and determines method hotness. This component should, ideally,
be implemented in a separate thread and run on a free core to min-
imize interference with the main application execution.

Thus, by minimizing overhead in the main application thread,
the above implementation strategy should be able to hide any addi-
tional overhead imposed by our new profiling mechanism on mod-
ern machines. Implementation strategies for online profiling that
employ a distinct profiling thread have already been successfully at-
tempted in other VMs [Arnold et al. 2000]. At the same time we are
also exploring heuristics to further reduce the profiling overhead,
such as only generating events for loops withlarge loop bounds to
reduce the number of events generated without significantly affect-
ing the profiler’s view of future behavior. For example, focusing on
loops with an iteration bound greater than 10 reduces the number
of dynamic loops entered by almost 80%, but only drops the best
average performance in Figure 15 by 3.4%.

6. Future Work
There are a variety of enhancements that we plan to make in the fu-
ture. First, we are currently implementing our profiling technique
along with the best heuristics found during our current analysis in
a real VM using the implementation strategy suggested in Sec-

tion 5.4. Second, we are also working to expand our benchmark
set to include newer and greater number of programs. In fact, pre-
liminary results on the SPECjvm2008 startup benchmarks show an
ideal performance improvement of over 10% due to early compi-
lation of hot methods. Third, the success of our approach depends
on the ability to determine loop iteration bounds early and accu-
rately. Therefore, we plan to evaluate various static and dynamic
techniques, along with program transformations to dynamically an-
alyze Category C loops, as well as expand our existing set of ana-
lyzable loops, and investigate other approaches of detecting future
method hotness behavior. Fourth, we plan to explore the area of au-
tomatically finding the best delay factor to use on a per-benchmark
or even per-method basis to achieve the most performance benefit.
We plan to explore using different confidence measures for differ-
ent categories of loops (A, B or C), or use other machine learning
techniques to predict the best delay factors in individual cases. Fi-
nally, we believe that the concept of employing a managed runtime
environment toseefuture program execution behavior dynamically
is the most significant contribution of this work. Consequently, we
plan to apply this technique to other areas, including garbage col-
lection, security, and other aspects of performance improvement.

7. Conclusions
In conclusion, we can say that our exploration into this novel ap-
proach of online profiling shows mixed, but promising, results for
selective compilation. We showed that the currentreactivemech-
anisms to online profiling suffer from major drawbacks, including
incorrect hot method speculation and delays in making the asso-
ciated compilation decisions. These drawbacks result in consider-
able performance losses during program startup on our benchmark
programs. Our novel profiling strategy, based on the hypothesis
that early knowledge of loop iteration bound information can al-
low an online profiler to determine future program behavior, pro-
ducing early and accurate compilation decisions, allows early hot-
ness detection for most benchmarks, but with several false positives
in many cases. Interestingly, simple heuristics are able to elimi-
nate almost all false positives for most benchmarks without much
degradation in performance. Although further studies show that our
new online profiling approach is feasible for current benchmarks,
the VM may need to add capabilities of analyzing more loops for
maximum benefit. We believe that our suggested plan for online
implementation of our new profiling strategy is practical and cost-
effective for current VMs and architectures. Additionally, we also
believe that the core concept of employing the virtual machine to
understand and exploit future program behavior shows promise,
and can also be applied to several other areas of computer science.

Acknowledgments
We thank the anonymous reviewers for their constructive comments
and suggestions.

11 2010/2/15

References
A. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subramoney.

Prefetch injection based on hardware monitoring and object metadata. In
PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on Pro-
gramming language design and implementation, pages 267–276, 2004.

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive opti-
mization in the jalapeno jvm. InProceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, pages 47–65, 2000.

M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed optimiza-
tion of java.SIGPLAN Not., 37(11):111–129, 2002.

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey of
adaptive optimization in virtual machines.Proceedings of the IEEE, 92
(2):449–466, February 2005.

Ana Azevedo, Alex Nicolau, and Joe Hummel. Java annotation-
aware just-in-time (ajit) complilation system. InJAVA ’99: Proceed-
ings of the ACM 1999 conference on Java Grande, pages 142–151,
New York, NY, USA, 1999. ACM. ISBN 1-58113-161-5. doi:
http://doi.acm.org/10.1145/304065.304115.

D. Bruening and E. Duesterwald. Exploring optimal compilation unit
shapes for an embedded just-in-time compiler. In3rd ACM Workshop
on Feedback-Directed and Dynamic Optimization, pages 13–20, 2000.

D. Buytaert, A. Georges, M. Hind, M. Arnold, L. Eeckhout, andK. De
Bosschere. Using hpm-sampling to drive dynamic compilation. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object
oriented programming systems and applications, pages 553–568, 2007.

P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile information to
assist classic code optimizations.Software Practice and Experience, 21:
1301–1321, 1991.

MichałCierniak, Guei-Yuan Lueh, and James M. Stichnoth. Practicing judo:
Java under dynamic optimizations. InPLDI ’00: Proceedings of the
ACM SIGPLAN 2000 conference on Programming language designand
implementation, pages 13–26, New York, NY, USA, 2000. ACM. ISBN
1-58113-199-2.

D. Detlefs and O. Agesen. The case for multiple compilers. InOOPSLA’99
Workshop on Peformance Portability, and Simplicity in Virtual Machine
Design, pages 180–194, November 1999.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and pre-
dicting program behavior and its variability. InPACT ’03: Proceedings
of the 12th International Conference on Parallel Architectures and Com-
pilation Techniques, page 220, 2003.

A. Gal, M. Bebenita, and M. Franz. One method at a time is quite a waste
of time. InProceedings of the Second ECOOP Workshop on Implemen-
tation, Compilation, Optimization of Object-Oriented Languages, Pro-
grams and Systems, 2007.

M. X. Goemans. Advanced algorithms. Tech-
nical Report MIT/LCS/RSS-27, 1994. URL
citeseer.ist.psu.edu/article/goemans94advanced.html.

S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler.SIGPLAN Not., 17(6):120–126, 1982.

N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundaresan. Ja-
vatm just-in-time compiler and virtual machine improvements forserver
and middleware applications. InProceedings of the conference on Vir-
tual Machine Research And Technology Symposium, pages 12–12, 2004.

G. J. Hansen.Adaptive systems for the dynamic run-time optimization of
programs. PhD thesis, Carnegie-Mellon Univ., Pittsburgh, PA, 1974.

Tim Harris. Controlling run-time compilation. InIEEE Workshop on
Programming Languages for Real-Time Industrial Applications, pages
75–84, December 1998.

Kim Hazelwood and David Grove. Adaptive online context-sensitive inlin-
ing. In CGO ’03: Proceedings of the international symposium on Code
generation and optimization, pages 253–264, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-1913-X.

U. Hölzle and D. Ungar. Reconciling responsiveness with performance in
pure object-oriented languages.ACM Trans. Program. Lang. Syst., 18
(4):355–400, 1996. ISSN 0164-0925.

U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dy-
namic deoptimization. InPLDI ’92: Proceedings of the ACM SIGPLAN
1992 conference on Programming language design and implementation,
pages 32–43, 1992.

Joseph Hummel, Ana Azevedo, David Kolson, and Alexandru Nicolau.
Annotating the java bytecodes in support of optimization.Concurrency:
Practice and Experience, 9(11):1003–1016, November 1997.

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. W., R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.
Holm, and D. M. Lavery. The superblock: an effective technique for vliw
and superscalar compilation.J. Supercomput., 7(1-2):229–248, 1993.

R. M. Karp. On-line algorithms versus off-line algorithms: How much
is it worth to know the future? InProceedings of the IFIP World
Computer Congress on Algorithms, Software, Architecture -Information
Processing, Vol 1, pages 416–429, 1992.

D. E. Knuth. An empirical study of fortran programs.Software: Practice
and Experience, 1(2):105–133, 1971.

T. Kotzmann, C. Wimmer, H. M̈ossenb̈ock, T. Rodriguez, K. Russell, and
D. Cox. Design of the java hotspotTMclient compiler for java 6.ACM
Trans. Archit. Code Optim., 5(1):1–32, 2008.

C. Krintz. Coupling on-line and off-line profile informationto improve
program performance. InCGO ’03: Proceedings of the international
symposium on Code generation and optimization, pages 69–78, Wash-
ington, DC, USA, 2003.

C. Krintz and B. Calder. Using annotations to reduce dynamic optimization
time. In Proceedings of the ACM SIGPLAN 2001 conference on Pro-
gramming language design and implementation, pages 156–167, 2001.

C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead of
dynamic compilation.Software: Practice and Experience, 31(8):717–
738, December 2000.

P. Kulkarni, M. Arnold, and M. Hind. Dynamic compilation: the benefits
of early investing. InVEE ’07: Proceedings of the 3rd international
conference on Virtual execution environments, pages 94–104, 2007.

M. Mock, C. Chambers, and S. J. Eggers. Calpa: a tool for automating selec-
tive dynamic compilation. InMICRO 33: Proceedings of the 33rd an-
nual ACM/IEEE international symposium on Microarchitecture, pages
291–302, 2000.

Michael Paleczny, Christopher Vick, and Cliff Click. The java hotspottm
server compiler. InJVM’01: Proceedings of the 2001 Symposium on
JavaTM Virtual Machine Research and Technology Symposium, pages
1–12, Berkeley, CA, USA, 2001. USENIX Association.

Karl Pettis and Robert C. Hansen. Profile guided code positioning. SIG-
PLAN Not., 25(6):16–27, 1990. ISSN 0362-1340.

Patrice Pominville, Feng Qian, Raja Vallée-Rai, Laurie J. Hendren, and
Clark Verbrugge. A framework for optimizing java using attributes.
In CC ’01: Proceedings of the 10th International Conference onCom-
piler Construction, pages 334–354, London, UK, 2001. Springer-Verlag.
ISBN 3-540-41861-X.

SPEC98. Specjvm98 benchmarks. http://www.spec.org/jvm98/.

Kaffe Developer Team. Kaffe java virtual machine. http://www.kaffe.org/,
September 19 2007.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot - a java bytecode optimization framework. InCASCON ’99:
Proceedings of the 1999 conference of the Centre for Advanced Studies
on Collaborative research, page 13, 1999.

12 2010/2/15

