
Dynamic Compilation: The Benefits of Early Investing

Prasad Kulkarni
Florida State University

IBM T.J. Watson Research Center
kulkarni@cs.fsu.edu

Matthew Arnold Michael Hind
IBM T.J. Watson Research Center
{marnold,hindm}@us.ibm.com

Abstract
Dynamic compilation is typically performed in a separate thread,
asynchronously with the remaining application threads. This com-
pilation thread is often scheduled for execution in a simple round-
robin fashion either by the operating system or by the virtual ma-
chine itself. Despite the popularity of this approach in production
virtual machines, it has a number of shortcomings that can lead to
suboptimal performance.

This paper explores a number of issues surrounding asyn-
chronous dynamic compilation in a virtual machine. We begin by
describing the shortcomings of current approaches and demon-
strate their potential to perform poorly under certain conditions.
We describe the importance of enforcing a minimum level of uti-
lization for the compilation thread, and evaluate the performance
implications of varying the utilization that is enforced. We ob-
served surprisingly large speedups by increasing the priority of
the compilation thread, averaging 18.2% improvement over a large
benchmark suite. Finally, we discuss options for implementing
these techniques in a VM and address relevant issues when moving
from a single-processor to a multiprocessor machine.
Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization, Run-time environments, Com-
pilers
General Terms Languages, Performance
Keywords Virtual machines, Dynamic compilation, Java

1. Introduction
Because of the widespread use of the Java programming language,
language-level virtual machines (VMs) are widely deployed. Most
high-performing modern virtual machines employ an adaptive op-
timization system [3], whose task is to monitor the running appli-
cation to determine which portions should be further optimized to
improve performance [21, 2, 26, 9, 20, 5]. In such systems, meth-
ods are initially interpreted or compiled by a quick compiler that
produces unoptimized code, and then compiled, if appropriate, one
or more times with an optimizing compiler. Most VMs perform
this compilation by executing an optimizing compiler in a sepa-
rate thread [2, 26, 9, 20, 5] because it offers two distinct advan-
tages. First, it provides isolation between the compiler’s and ap-
plication’s runtime data, such as providing separate runtime stacks.

c© ACM, (2007). This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not
for Redistribution. The definitive version was published in Interna-
tional Conference on Virtual Execution Environments {(June 13-
15, 2007)}

Second, and more important, it allows the compiler to execute asyn-
chronously with the application threads. On a uniprocessor, this al-
lows the thread scheduler to interleave the compilation with the
application’s execution, ensuring that a long compilation will not
delay the application’s progress. On a multiprocessor, the com-
piler can execute in parallel with the application. The common per-
ception is that asynchronous compilation is highly effective, and
this perception is supported by its use in many production-quality
VMs [2, 26, 9, 20, 5].

The compilation thread is typically implemented in the same
manner as application threads. On most VMs these are operating
systems threads [26, 9, 20, 5], but in some cases they are threads
that the virtual machine multiplexes on top of operating systems
threads [2]. In many cases, the compilation thread is scheduled in
a round-robin manner with other VM threads; however, since the
compilation thread is an optional virtual machine-created thread,
it is not obvious that a round-robin approach is appropriate. Argu-
ments can be made that it should receive less utilization than the
application threads [19] (it is optional, so stealing cycles from the
application is not desirable) or more utilization than the application
threads (because it will improve the application’s performance, it
should happen as soon as possible).

This paper argues that traditional asynchronous compilation
implementations often do not achieve the highest performance.
Even for the most simple case of a single-processor machine, a
single-threaded application and a VM with one compilation thread,
the performance of the round robin scheduler may be suboptimal.
We observed an 18.2% average performance improvement over
a large benchmark suite by simply increasing the priority of the
compilation thread.

Even worse, the performance when using a round-robin sched-
uler is not robust and can degrade even further for certain types of
applications. For example, as the number of threads in the appli-
cation increases, the resources given to the compilation thread are
reduced and the performance approaches that of a system without
an optimizing compiler.

This paper describes the above mentioned problems in detail,
and proposes alternate solutions. The contributions of this work are

• we show the importance of ensuring a level of utilization for the
compilation thread and empirically validate this in a production
virtual machine on a large benchmark suite;

• we evaluate a range of compilation thread utilizations and quan-
tify the effect on both performance and pause times;

• we discuss issues when deploying a system on a multiprocessor
and provide empirical data that illustrates these issues; and

• we discuss how the findings above would impact a VM with
multiple compilation threads.

The results of this work will be applicable to the significant number
of virtual machines that use a compilation thread.

1



Suite Benchmark Methods Multi-
Executed Threaded

Dacapo 2006-10 [6]

antlr 2409 no
bloat 3473 no
eclipse 9104 yes
fop 4105 no
hsqldb 2816 yes
jython 4509 no
luindex 2302 no
lusearch 1731 yes
pmd 3410 no
xalan 1108 no

SPEC jvm98 [25]

compress 770 no
db 782 no
jack 746 no
javac 1467 no
jess 1140 no
mpegaudio 866 no
mtrt 853 yes

SPEC jbb2000 [24] psuedojbb 1197 yes

Others

daikon [12] 2108 no
kawa [18] 1855 no
ipsixql [11] 828 no
soot [23] 2061 no
xerces [27] 521 no

Table 1. Benchmarks used in our experiments

The rest of this paper is organized as follows. Section 2 de-
scribes the empirical methodology we use for this work. Section 3
discusses problems with relying on a round-robin thread scheduler
for asynchronous compilation on a single processor. Section 4 ad-
dresses these problems by ensuring the proper level of utilization
for asynchronous compilation. Section 5 explores issues that arise
when moving to a multiprocessor machine. Section 6 discusses how
these ideas could be altered for use with a VM that supports multi-
ple compilation threads. Section 7 discusses related work and Sec-
tion 8 draws conclusions.

2. Methodology
The implementation and results presented in this paper were per-
formed using a development version of IBM’s J9 VM and its high-
performance optimizing JIT compiler [14, 20]. The VM initially
interprets methods and uses counters and sampling to promote
methods to higher levels of optimization. Compilation is performed
asynchronously on a separate thread. On operating systems that
provide support for user-level thread priorities (such as AIX and
Windows) J9 uses thread priorities to increase the priority of the
compilation thread. As discussed in Section 4.5, Linux does not
provide the desired thread priority support.

Table 1 lists our benchmark suite, which includes the complete
suites from SPECjvm98 [25] and DaCapo [6], a variant of the
SPECjbb2000 benchmark [24], and five other benchmarks for a to-
tal of 23 benchmarks. Each benchmark has a small and large input,
resulting in 46 benchmark/input pairs. For SPECjvm98 the small
and large inputs are the s10 and s100 inputs, respectively. For Da-
Capo, the “small” and “large” inputs provided by the benchmark
suite were used. pseudojbb is a variant of SPECjbb2000 that runs
for a fixed number of transactions, in contrast to SPECjbb2000,
which runs for a fixed amount of time. The small and large in-
puts for pseudojbb consist of executing 12,000 and 200,000 trans-
actions, respectively. The other five benchmarks do not come with
defined inputs, so we created an appropriate small and large input
for each.

Two benchmarks, jython and xalan, with their large input did
not execute correctly with our development version of the VM, so
these inputs were excluded from the suite.

In addition, we have included results for the IBM Trade Perfor-
mance Benchmark V6.1 (Trade 6.1) [17]. Trade is a large multi-
threaded server benchmark that runs on a J2EE Application server.
Trade stresses most components of the virtual machine by execut-
ing more than 40,000 methods. At the same time, the distribution
of runtime within the methods is relatively flat, so no single method
dominates execution. As a result, over 6,500 methods are compiled
by the JIT during a typical run.

All our experiments were conducted on Intel Xeon 2.8GHz
processors in three different machine configurations: (a) single-
processor, (b) single-processor with hyperthreading, and (c) two-
processor with hyperthreading. A pure single processor configu-
ration was achieved by using the BIOS settings to disable hyper-
threading. We used Red Hat Linux kernel 2.6.9 as our operating
system.

3. Limitations of Round-Robin Scheduling
Many Java VMs have a compilation thread that runs asynchronously
and is scheduled together with the application threads in a round-
robin fashion. This section describes the limitations of this ap-
proach and illustrates their impact on two benchmarks.

3.1 The Problem
Although round-robin scheduling appears to be a simple and fair
scheme for scheduling the compilation thread, the actual CPU
access given to the compilation thread can vary greatly, depending
on the application. In the most extreme cases, the CPU resources
given to either the compilation thread or the application thread(s)
can approach zero.

Reduced resources due to multithreading With round-robin
scheduling, when an application has N threads, the resources given
to the compilation thread are 1/(N + 1). Thus, resources given to
the compilation thread are reduced as the number of threads in the
application increases. This effect can produce poor startup perfor-
mance for multithreaded programs, because the compilation thread
is not given enough time to execute. As the number of threads be-
comes large, performance approaches that of a system without an
optimizing compiler.

Reduced resources due to yielding There are also more subtle
scenarios where the relative resources given to the compilation
thread can be reduced, or even increased, based on the application
and compilation behavior.

The thread scheduler in the OS has a minimum time quantum
at which context switches occur. If an executing thread yields on
its own before the end of the time slice, then it gives up the rest of
its slot and another thread begins executing. If the OS scheduling
time slice is large, and some of the threads are yielding frequently
(either the compilation thread or the application threads), then the
resources given to the compilation thread can vary significantly.
The version of Linux we are using has a thread scheduling time
quantum of 100 milliseconds, which is a significant amount of
execution time on a 4 GHz machine (400 million cycles per time
slice).

The application could yield frequently for a number of reasons,
such as I/O, or threads that are frequently passing work to each
other. After the application threads all yield once, the compilation
thread will be given a chance to execute for an entire time slot (or
until there is nothing to compile).

Similarly, the compilation thread can also see reduced utiliza-
tion if it yields for any reason. For example, printing or logging

2



1 2 4 8 16 32
# of threads

0

10

20

30

ap
pl

ic
at

io
n 

ru
n-

tim
e

Round-robin
50% compiler utilization

1 2 4 8 16 32
# of threads

0.0

0.2

0.4

0.6

O
bs

er
ve

d 
co

m
pi

le
r 

th
re

ad
 u

til
iz

at
io

n

Round-robin
50% compiler utilization

(a) Performance (b) Compilation Ratio

Figure 1. Effect of increasing the number of threads for mtrt

the name of the method being compiled can cause the compilation
thread to lose its time slot after each method name is printed, or
when the I/O buffer is flushed.

Additionally, the compilation thread yields when the compila-
tion queue becomes empty. It seems natural for the compilation
thread to sleep when it has nothing to do. However, if compilation
activity arrives in short bursts and the compilation thread forfeits its
time slot quickly, then it will wait an entire time quantum to regain
the CPU again. This is not a utilization issue, but one of latency;
however, our results in Section 4.1 show that this latency can have
a measurable impact on performance.

3.2 Minimum Compilation Thread Utilization
To evaluate the impact of compilation thread utilization in multi-
threaded applications we implemented a scheduler within a devel-
opment version of the J9 VM that enforces a resource utilization
ratio between the application and compilation threads. For a given
compilation thread utilization of X%, the scheduler will ensure the
compilation thread receives at least X% of the total CPU resources.

We prototyped such a scheduler by using thread priorities in
Linux. We defined our own VM-level time slice quantum (we chose
10ms). At the end of each time quantum, a high priority thread
(which we call the control thread) wakes up to adjust the priorities
of the other threads. The control thread lowers and raises the prior-
ity of the compilation thread to achieve an overall CPU utilization
of X%. For example, for 80% compilation thread utilization, the
compilation thread is run at high priority for 4 of 5 time slices, and
at low priority for 1 time slice.

Thread priorities are an effective implementation mechanism
for two reasons. First, it scales well to a multiprocessor machine
because the OS can schedule low-priority threads on processors
that are not busy running high-priority threads. Second, even on a
single processor machine, using priorities simplifies the implemen-
tation because it avoids deadlocks or accidentally leaving a pro-
cessor idle; if a high-priority thread yields for any reason, such as
there is nothing to compile or it is waiting for a lock that is held by
a low-priority thread, the low-priority threads will automatically
begin execution.

3.3 Experimental Evaluation
This section presents two experiments that demonstrate the short-
comings of round-robin scheduling. These two experiments are
hand-picked examples to show the kind of issues that can occur; a

more thorough evaluation using all of the benchmarks in our suite
is contained in Section 4.

mtrt The first benchmark we consider is mtrt from the SPECjvm98
benchmark suite. We run with a modified driver that allowed us to
vary the number of application threads. The total work performed
remains fixed regardless of the number of threads; when there are
N threads, each thread performs 1/N th of the workload. If the VM
were perfectly scalable in regard to threading, the program would
complete in the same amount of time regardless of the number of
threads.

Figure 1 shows the performance of our modified mtrt with
the number of threads varying from 1 to 32. The graph on the
left shows the absolute execution time of the program, so higher
is worse. One line represents performance when using a round-
robin scheduler for the compilation thread, while the other shows
performance when enforcing a compilation thread utilization of
50%, as described in Section 3.2. With the round-robin scheduler,
the program execution time increases as the number of threads
increases, taking 2.5 times as long to complete when the threads
are increased from 1 to 16. With 50% utilization, the performance
stays relatively constant regardless of the number of application
threads.

The graph on the right in Figure 1 confirms the expected com-
pilation activity for both systems. Compilation time was measured
using the PAPI library [7] to measure the cycles executed by each
thread. For the round-robin scheduler, the percentage of CPU cy-
cles given to the compilation thread degrades as the number of
application threads increases. With our scheduler, the compilation
thread utilization remains constant.

Trade 6.1 As described in Section 2, Trade 6.1 is a J2EE server
benchmark. Trade is inherently a multithreaded application so there
was no easy way to control the number of threads that execute.1

Instead, we varied the machine configuration, comparing two vari-
ations of the same machine. One is a multiprocessor machine with
two hyper-threaded processors. The second is a single processor
machine; it has one processor, and hyperthreading is disabled.
Other than the processor configuration, the machines are identical.

1 It is easy to control the load generation, which indirectly affects the
number of threads that execute simultaneously in the application server.
However, there are additional internal threads within the application server,
so the total number of threads cannot easily be controlled.

3



(A) Multiprocessor machine

0 1 2 3 4 5
Minutes

0

1000

2000

3000

Th
ro

ug
hp

ut

50% Utilization
Round-robin

(B)Single processor machine

0 1 2 3 4 5
Minutes

0

500

1000

1500

Th
ro

ug
hp

ut

50% Utilization
Round-robin

Figure 2. Websphere J2EE Application Server running Trade 6.1,
performance of a round-robin scheduler compared to 50% utiliza-
tion. The graphs show throughput over time, where higher is better.
Rampup time of the round-robin scheduler is significantly degraded
when CPU resources are constrained.

This machine configuration enables a performance evaluation
as CPU contention is increased. On the single processor machine,
threads are forced to contend for CPU resources in a round-robin
fashion. On the multiprocessor machine, the compilation thread can
run in parallel with the application threads and can potentially run
uninterrupted during any periods that the processor would other-
wise be idle.

Figure 2 compares the performance of a round-robin scheduler
to the 50% compilation thread utilization. Performance is reported
as throughput over time, where higher throughput is better. Both
schedulers eventually converge on the same peak throughput; thus,
the only varying factor is how long it takes to reach peak through-
put, which is referred to as rampup time. As described in Section 2,
Trade is a large application, so rampup time can be significant.

On the multiprocessor the round-robin scheduler and 50% uti-
lization are roughly equal, with a rampup time of about 1.5 minutes.
However, as the CPU resources are constrained, the rampup time
increases to around 4 minutes: an increase of more than a factor
of 2.5. With an enforced utilization of 50%, the rampup time stays
mostly constant across the processor configurations (approximately
1.5 minutes).

4. Selecting a Compilation Thread Utilization
The previous section motivated that some level of utilization is re-
quired to ensure reasonable performance for multithreaded appli-
cations. This section addresses what level of utilization should be
used. We argue that if the controller (the component of the adap-
tive optimization system that decides what should be compiled) is
making good compilation decisions, then 100% compilation thread
utilization will, on average, outperform lower utilizations.

Figure 3 helps illustrate this point by comparing the behavior of
50% and 100% utilization. For simplicity of explanation, assume

that the application consists of only a single method; generalizing
to multiple methods is straightforward. The horizontal lines repre-
sent the application thread running over time. This line becomes
thick when the optimized code is executing. The gray box(es) rep-
resent a method being compiled by the compilation thread. With
50% utilization, the compilation is interleaved with the application.
The vertical dotted lines align points in absolute time where the
application has made equal forward progress, assuming optimized
code runs faster than unoptimized code.

If the program runs long enough (past point B in the figure),
then 100% utilization produces faster overall performance. The
total amount of time spent compiling is the same in both cases,
but 100% utilization finishes compiling sooner. Thus, more of the
application execution occurs in optimized code.

The only scenario in which 50% utilization is faster is if the
program completes at some point between time A and time B in the
figure. In this case, 50% outperforms 100% because the program
can complete without waiting for the whole compilation to finish.

However, having the program complete between A and B is
precisely what the adaptive optimization system tries to avoid; that
is, wasting time compiling methods right before the program is
about to complete. The goal of the controller component in an
adaptive optimization system is to predict when a method is likely
to continue running long enough to justify the cost of optimizing
it. Thus, if a controller is tuned to achieve good performance, the
number of occurrences where methods stop executing shortly after
being compiled will be small, and as a result, 100% utilization is
likely to outperform lower utilizations.

4.1 Experimental Evaluation
This section evaluates the impact of various compilation thread
utilizations on our benchmark suite, using our utilization-based
scheduler described previously in Section 3.2. The recompilation
strategy of the VM partly determines which utilization performs
best, so we evaluate our scheduler using two different controllers,
which we refer to as aggressive and conservative.

Both controllers use the same basic recompilation framework;
all methods begin executing in the interpreter, and a combination
of method invocation counts and timer-based sampling is used
to determine when methods are recompiled. The only difference
between the two controllers is how methods progress through the
optimization levels.

1. Aggressive controller: The lowest level of optimization (level
O0) is not used. The first time a method is selected for optimiza-
tion it is optimized at a moderate level of optimization (level
O1). If the method remains hot, it may be recompiled again
at higher levels. This strategy is optimized for reaching steady
state quickly, but is not optimal for startup (i.e., first run) per-
formance.

2. Conservative controller The lowest level of optimization (O0)
is used for the first compilation of a method, and further opti-
mization levels (O1 and higher) are used if the method remains
hot. This strategy provides improved startup performance, but
takes longer to converge on steady state performance (where
compilation stabilizes and peak performance is reached).

Both controllers have their counter thresholds tuned on a large
benchmark suite, so both can be considered “good” controllers,
given the set of optimization levels that they utilize.

Aggressive controller results We begin by measuring the perfor-
mance impact of varying the compiler utilizations when using the
aggressive controller. We measure the performance of a single ex-
ecution for all benchmark/input pairs described previously in Sec-
tion 2 (each program has two inputs). All timings reported were col-

4



Figure 3. Comparing compilation thread utilizations 100% and 50%

lected 10 times on an idle machine and averaged to reduce noise.
Likewise, other metrics are computed as the average of these 10
runs.

Table 2 presents the result for the aggressive controller on our
benchmark suite. Each compiler utilization from 10% to 100% is
represented by the middle columns labeled “Compilation Thread
Utilization” and the rightmost column labeled “Round Robin” rep-
resents the round-robin OS scheduler, i.e., no compilation thread
utilization is enforced.

The rows represent the following four quantities:

1. Performance improvement: Performance improvement rela-
tive to the round-robin OS scheduler.

2. Time in queue: The average time that a method spends waiting
in the compilation queue, i.e., waiting to be compiled by the
compilation thread. The time is observed when the method is
removed from the queue. The average time is computed first
for each benchmark (while the benchmark runs), then averaged
across benchmarks.

3. Length of queue: The average number of methods in the com-
pilation queue, measured when a method is removed from the
queue. Averaging is first performed within each benchmark,
then across all benchmarks.

4. Methods compiled: The number of methods compiled during
the application’s execution.

The most important observation in the table is the significant
impact that thread utilization has on performance. At 100% uti-
lization, performance is improved over the round-robin scheduler
by 18.2% on average. 50% utilization roughly matches the round-
robin scheduler, yielding an average speedup of 2.2%. This is ex-
pected because the majority of the applications are single-threaded.
Utilizations 10%–30% reduce performance because not enough re-
sources are given to the compilation thread.

The rows “Time in queue” and “Length of queue” help explain
why compilation thread utilization has such a large impact on per-
formance. For the round-robin scheduler, the average queue length
and time in queue are quite large (60 methods and 1465 millisec-
onds, respectively). This large queue delay is a result of the large
amount of compilation performed by the aggressive controller. As
the compilation thread priority increases, the average compilation
queue length and the average time that a method spends in the
queue both decrease. At 80% utilization, average queue length is
2 methods, and the average delay is 32ms, which are both reduced
by a factor of 30 or more over the round-robin scheduler.

At first it was surprising to see that 100% utilization was so
effective given the amount of compilation that is taking place.
Conventional wisdom might suggest that if the queue of methods
to compile is getting too long, it might be beneficial to use a

lower utilization to avoid over-compiling. However, recall that the
thresholds for the aggressive controller were tuned well (using the
round-robin scheduler) so it is not the case that the controller is
performing unnecessary compilations; these methods are important
to be compiled for good performance. Higher utilizations allow
these compilations to finish sooner, minimizing the time spent in
the unoptimized versions.

Given the long compilation queue delays, we experimented with
different sorting criteria for removing methods from the queue.
The hypothesis was that maybe higher utilization would not be
as beneficial if compilations in the queue were properly ordered.
We implemented a “continuously sorted” compilation queue that
moved a method forward in the queue if it became hot while in
the queue. However, this approach did not yield any performance
improvements over the original system.

Also surprising was that 100% utilization actually reduced the
average number of methods complied. The controller logic for
triggering compilations was not changed, and it was expected that
more compilations would complete at higher utilization levels;
however, the number of compilations actually decreased at high
utilizations. We believe this was because the program’s execution
time was significantly shorter. The round-robin system runs longer
and has more time for compiles to be triggered by the timer-based
profiler.

Figure 4 shows a breakdown of the 100% utilization perfor-
mance relative to the round-robin OS scheduler. Each benchmark
is represented by its own bar, and higher represents better perfor-
mance. Four of the benchmarks have speedups of more than 50%,
meaning that the benchmark completed in less than half the time
of the round-robin scheduler. 100% utillization degraded perfor-
mance for 3 of 46 benchmark/input pairs. The largest slowdown
was -24% for pmd-small. This benchmark has a large number of
methods that run for a relatively short amount of time, so the de-
cision to compile them did not pay off. As a result, 50% utilzation
beats 100% for this benchmark. This is expected to occur for some
benchmarks because the compilation heuristics are tuned for aver-
age performance; in fact, we were surprised that more benchmarks
were not degraded with 100% utilization.
Conservative controller results We repeated the same experi-
ment using the conservative controller; the results are presented in
Table 3 in the same format as the previous table.

For the conservative controller, enforcing utilization again re-
sulted in significant speedups, but with a number of differences
from the aggressive controller results. 100% utilization yields an
average speedup of 9.3%, which is a smaller improvement than
was seen with the aggressive controller. The conservative controller
compiles more methods than the aggressive controller, but since
methods are compiled at a lower optimization level (O0 rather than
O1) the compilations complete much faster so there is very little

5



Compilation Thread Utilization Round
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Robin

Performance improvement (%) -85.8 -39.2 -17.0 -4.3 2.2 8.3 11.7 14.8 16.9 18.2 0.0
Time in queue (ms) 6500 3885 2408 1412 956 509 254 96 32 21 1465
Length of queue (# methods) 157 112 90 61 46 27 14 5 2 1 60
Methods compiled (# methods) 399 472 516 550 572 585 584 569 551 523 567

Table 2. Effect of changing compilation thread utilization with the aggressive controller

Compilation Thread Utilization Round
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Robin

Performance improvement (%) -45.7 -10.7 0.2 7.0 9.7 10.2 10.1 9.9 9.5 9.3 0.0
Time in queue (ms) 862 301 142 54 30 16 9 3 1 1 130
Length of queue (# methods) 83 41 21 12 7 4 3 2 1 1 25
Methods compiled (# methods) 632 682 688 696 702 694 690 684 678 672 705

Table 3. Effect of changing compilation thread utilization with the conservative controller

benchmarks

-20

0

20

40

60

%
 im

pr
ov

em
en

t

_2
01

_c
om

pr
es

s-
s1

0

_2
01

_c
om

pr
es

s-
s1

00

_2
02

_j
es

s-
s1

0

_2
02

_j
es

s-
s1

00

_2
09

_d
b-

s1
0

_2
09

_d
b-

s1
00

_2
13

_j
av

ac
-s

10

_2
13

_j
av

ac
-s

10
0

_2
22

_m
pe

ga
ud

io
-s

10

_2
22

_m
pe

ga
ud

io
-s

10
0

_2
27

_m
trt

-s
10

_2
27

_m
trt

-s
10

0

_2
28

_j
ac

k-
s1

0

_2
28

_j
ac

k-
s1

00

da
ca

po
_a

nt
lr_

la
rg

e

da
ca

po
_a

nt
lr_

sm
al

l

da
ca

po
_b

lo
at

_l
ar

ge

da
ca

po
_b

lo
at

_s
m

al
l

da
ca

po
_e

cl
ip

se
_l

ar
ge

da
ca

po
_e

cl
ip

se
_s

m
al

l

da
ca

po
_f

op
_l

ar
ge

da
ca

po
_f

op
_s

m
al

l

da
ca

po
_h

sq
ld

b_
la

rg
e

da
ca

po
_h

sq
ld

b_
sm

al
l

da
ca

po
_j

yt
ho

n_
sm

al
l

da
ca

po
_l

ui
nd

ex
_l

ar
ge

da
ca

po
_l

ui
nd

ex
_s

m
al

l

da
ca

po
_l

us
ea

rc
h_

la
rg

e

da
ca

po
_l

us
ea

rc
h_

sm
al

l

da
ca

po
_p

m
d_

la
rg

e

da
ca

po
_p

m
d_

sm
al

l

da
ca

po
_x

al
an

_s
m

al
l

da
ik

on
-la

rg
e

da
ik

on
-s

m
al

l

ip
six

ql
-la

rg
e

ip
six

ql
-s

m
al

l

ka
w

a-
la

rg
e

ka
w

a-
sm

al
l

ps
eu

do
jb

b-
la

rg
e

ps
eu

do
jb

b-
sm

al
l

so
ot

2-
la

rg
e

so
ot

2-
sm

al
l

xe
rc

es
-la

rg
e

xe
rc

es
-s

m
al

l

av
er

ag
e

Figure 4. Performance improvement of 100% compilation thread utilization over the round-robin thread scheduler for the aggressive
controller

backup of the compilation queue. If the compilation thread has
enough time to finish compiling all methods in the queue, then it
simply sleeps; there is no advantage to higher utilizations if there is
nothing to compile.

More surprising is that all utilizations from 50% – 90% per-
formed as well as, or slightly better than, 100% utilization, and
all were significantly better than the round-robin scheduler. 18 of
the 23 benchmarks are single threaded, so we were not expecting
large improvements from 50% utilization. Our current hypothesis
is that this is more of a latency issue than utilization. With the com-
piles completing quickly and having very little delay in compilation
queue, the compilation thread yields on its own more frequently.
Once it yields, methods that enter the queue will not be compiled
until the compilation thread runs again in 100ms. The average time
in queue supports this hypothesis, being reduced from 130ms in
the round-robin system to 30ms at 50% utilization. The latency is
reduced with 50% utilization because, during the periods of higher

priority, the compilation thread will wake and immediately preempt
the executing application threads when methods arrive in the queue.

4.2 Impact on Pause Times
This section discusses the impact higher compilation utilization can
have on application pause times. For many applications, such as
batch applications, an increase in application pause times may not
be significant, particularly if it results in a corresponding increase
in performance, such as those described in the previous section.

However, minimizing application pauses is important for appli-
cations with hard or soft real-time constraints, as well as for inter-
active applications. While measuring pause times, it is important
to cluster nearby pauses together because they can appear as a sin-
gle pause to a user [16]. A more general metric used by the real
time garbage collection community is minimum mutator2 utiliza-
tion (MMU) [8], which attempts to quantify the minimum amount

2 Mutator is another term for application threads.

6



Specified Compilation Thread Utilization Round
Window (ms) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Robin
100 77 56 51 45 46 31 24 14 6 0 1
200 82 67 57 53 48 35 27 18 8 1 24
300 84 72 62 55 49 37 28 19 10 1 29
400 85 75 64 57 49 38 28 19 12 7 36
500 86 76 66 57 49 39 29 21 14 10 37
600 87 77 66 58 49 39 30 22 16 13 40
700 88 78 67 59 49 40 31 24 18 15 41
800 88 78 67 59 50 40 32 24 19 16 43
900 88 78 68 59 50 40 32 24 20 17 44
1000 88 79 68 59 50 41 33 26 22 20 45

Table 4. Observed MMU (Minimum Mutator Utilization) for a range of time windows, for the aggressive controller

of utilization given to the application during some parameterized
time window. For example, MMU(100 ms) is the minimum muta-
tor utilization that occurs during any 100ms window of execution.
A single pause of 100ms results in an MMU(100ms) of zero.

Table 4 reports the MMU for time windows ranging from 100ms
to 1000ms (1 second). The overall MMU is calculated by taking the
minimum MMU across the benchmark suite. Thus, the benchmark
with the worst MMU determines the value reported.3

As expected, using a high compilation thread utilization lowers
the MMU for short windows (100–300). Clearly, a VM with sup-
port for 100% compilation thread utilization cannot provide strong
MMU guarantees. If pause times are relevant, then a lower uti-
lization should be considered. In this work, we were mainly con-
cerned with illustrating the performance impact of higher compila-
tion thread utilization.

For soft real-time applications, choosing a lower utilization
provides performance guarantees that cannot be provided by
the round-robin scheduler. For example, enforcing a compilation
thread utilization of 70% (or lower) achieves a better MMU than
the round-robin scheduler for windows sizes 100–300. Thus, this
technology could be applicable to a real-time virtual machine [4].

4.3 Trade
Figure 2 from Section 3 reported rampup performance of the Trade
benchmark for 50% utilization and the round-robin scheduler. Fig-
ure 5 repeats this experiment with four additional utilization values:
10%, 20%, 70%, 100% on a single processor machine. These four
utilizations best convey the performance trend while allowing the
lines to be discernible; the missing utilizations fit within the trend
and can be interpolated.

The results are as expected. With 10% compilation thread uti-
lization, rampup time (the time to get to peak throughput) is poor,
and is slightly worse than the round-robin scheduler, which was
previously shown in Figure 2. Increasing the utilization slightly to
20% makes a surprisingly large improvement in rampup time. At
the other extreme, 100% utilization maximized rampup time, but
minimized throughput for the first 30 seconds of execution. A uti-
lization of 70% provided near optimal rampup time, while also pro-
viding reasonable performance during the first 30 seconds.

3 Four benchmarks (pmd, antlr, luindex, and eclipse) are excluded
from the data presented in Table 4. These benchmarks incur application
thread pauses independent of the compilation thread-scheduling mecha-
nism, i.e., they are present with the round-robin scheduler, as well as any
level of compilation thread utilization. These pauses could be caused by
garbage collection, application I/O, or other system activity unrelated to the
compilation thread. Because we report MMU by taking the minimum over
all benchmarks, including these benchmarks causes several rows in the ta-
ble to become zero, or near zero. A detailed pause time analysis of the VM
is beyond the scope of this paper.

0 1 2 3 4 5
Minutes

0

500

1000

1500

Th
ro

ug
hp

ut

10% Utilization
20% Utilization
70% Utilization
100% Utilization

Figure 5. Trade for various utilizations on a single processor ma-
chine.

4.4 Hybrid Utilization Approaches
It is not required that the same utilization be used for all compila-
tions. In fact, higher optimization levels are more likely to benefit
from reduced utilization (50%, etc.) due to the higher cost and di-
minishing returns of higher opt-levels. For example, if a method is
hot, it is important to perform the initial compilation quickly; there
is a large performance difference between the interpreter and the
level O0, so getting delayed in the interpreter is costly. In addition,
compilations at O0 are quick, so it is more difficult to hurt perfor-
mance by over-compiling. As a result, for low compilation levels,
high utilization offers big rewards with low risk.

For high levels of optimization, the opposite is true: high uti-
lization has higher risks and lower rewards. Compiler optimizations
generally provide diminishing returns at higher optimization levels,
so the penalty of delaying a compilation is smaller. They also have
high compilation costs, so the penalty of a bad compilation decision
is much more severe.

However, a simple scheme that assigns utilizations based on
optimization level may still not be assessing risk properly. Consider
a simple program that spends all of its time in a single, small
method. Using a low utilization for higher levels (O1 and O2) will
likely degrade performance for this program. Compiling the small
method has relatively low cost, even at high optimization levels, so
optimizing it will have a relatively large impact because all of the
program execution occurs in this method.

A successful hybrid scheme needs to estimate the ratio of the
following two quantities: 1) the cost of delaying the compilation,
and 2) the cost of performing the compilation. If the first quantity
is large relative to the second, then having a high compilation
thread utilization is critical. If the reverse is true, high utilization
is still likely to improve performance on average (assuming the
controller is making good compilation decisions, as discussed in

7



Section 4.1), but the risk of high utilization increases, and using
lower utilizations may improve performance, in practice.

An important concern when using multiple utilizations is a
scenario where a low-utilization compilation in progress may delay
future high-utilization compilations from starting. To avoid this
problem, the system needs to either have multiple compilation
threads (one for each priority) or employ some sort of preemption
mechanism.

4.5 Implementing Utilization Without OS Support
As discussed in Section 3, thread priorities can provide a key build-
ing block for implementing a utilization-based scheduler. For a VM
to rely on thread priorities, the priorities need to be accessible with-
out special permissions, such as root access, and using the prior-
ities in one process should not adversely impact other executing
processes. Unfortunately, some operating systems, such as many
versions of Linux, do not provide this functionality. As a result, re-
lying on a priority-based scheduler to obtain an appropriate level of
utilization is not a viable solution for these systems.

An alternate approach is for the VM to monitor how much CPU
time each thread is receiving, and periodically yield any thread that
is receiving more than its share. The only operating system require-
ment for this approach is to monitor CPU cycles consumed on a
per-thread basis. Unfortunately, operating systems do not always
support this functionality. For Linux there are kernel patches avail-
able [7] that provide access to thread-specific execution timings,
but the functionality is not available in a standard version.

If attaining a precise utilization is not required, it is possible to
boost the priority of the compilation thread by using heuristics to
occasionally yield the application threads if the compilation queue
is not empty (which implies that the compilation thread is either
running, or is waiting to run). We implemented such an approach
and observed speedups very similar to those measured with the
priority-based scheduler (Tables 2 and 3). This heuristic approach
cannot provide the strict utilization guarantees that can be achieved
by using either priorities, or accurate thread-local timings, but it
may be effective in practice for non-realtime applications.

5. Issues for Multiprocessor Machines
The preceding sections explained the necessity of enforcing a
certain compiler utilization to ensure consistent performance for
multithreaded applications, and maximum performance for single-
threaded applications. Those experiments were conducted on a
single-processor machine to best assess the performance tradeoffs
caused by varying compiler utilizations. On a machine with more
processors than application threads, all application threads and the
compilation thread can run uninterrupted on different processors.
The problems caused by reduced compiler utilization are no longer
present because the threads are not preventing each other from ex-
ecuting. However, such multiprocessor environments raise a new
issue of searching for the best compilation strategy to take advan-
tage of the additional cycles that are available to the compiler to
improve performance. The proliferation of multicore processors,
and the inability of current applications to make use of all avail-
able computing resources, will only compound this problem in the
future. This section explores this problem by evaluating the per-
formance of controller policies on varying machine configurations,
and show if (and how) the current policy should be changed to
exploit free cycles.

5.1 Effect of Changing Compiler Aggressiveness on
Performance

To the best of our knowledge, there has not been any formal study
evaluating the changes needed in a controller policy tuned on

compiler aggressiveness

2

3

no
rm

al
iz

ed
 ti

m
e

1-proc
1-proc (hyperthreading)
2-proc (hyperthreading)

0.1 0.2 0.5 0.67 0.8 1 1.33 2 5 20

Figure 6. Effect of varying compiler aggressiveness on perfor-
mance for different architectures.

single-processor machines to optimize performance on multipro-
cessor platforms. At the same time, it is a common perception that
the controller could (and should) make more aggressive optimiza-
tion decisions to make use of the available free cycles. Aggressive-
ness, in this context, can imply compiling early, or compiling at
higher optimization levels.

To test this intuition, we evaluated the impact of controller ag-
gressiveness on performance for three different processor config-
urations: single processor, single processor with hyperthreading,
and two processors with hyperthreading. We modified the recom-
pilation thresholds (i.e., the value that must be met before recom-
pilation occurs) for the aggressive controller strategy described in
Section 4.1 to make it more or less aggressive. Lower thresholds
make the controller more aggressive because compilations occur
earlier during the execution; higher thresholds make the controller
less aggressive. Prevailing intuition suggests that different levels
of controller aggressiveness will be optimal on different machine
configurations because multiprocessor machines will benefit from
more aggressive controllers.

Figure 6 shows the result of varying the controller aggressive-
ness for the three machines described above. The x-axis plots dif-
ferent controller aggressiveness factors, relative to the default con-
troller; higher values indicate higher controller aggressiveness. Av-
erage performance over our benchmark suite is plotted on the y-
axis. All performance numbers are normalized relative to the best
average performance reached over all controller configurations.
The figure shows that performance is improved slightly by enabling
hyperthreading (compare 1 processor to 1 processor with hyper-
threading), and performance is improved significantly by moving
to a multiprocessor because compilation and application execution
can now execute in parallel. However, all three plots show the same
exact performance trend: the optimal recompilation threshold re-
maining constant regardless of the processor configuration. Thus,
contrary to common intuition, our results suggest that a controller
policy tuned for single processor architectures is likely to work un-
changed on a multiprocessor.

This unintuitive result can be explained by recalling the discus-
sion from Section 4 about the length of the compilation queue,
and the delays that can occur. When a program starts executing
there is often a steady stream of compilation activity. During this
time period, the compiler cannot be treated as a “free” resource be-
cause it is busy compiling important methods. We call these com-

8



pilations primary compilations because they would have been per-
formed by a controller tuned for a single processor. Scheduling ad-
ditional compilations during this period only increases the length of
the compilation queue, and creates additional delay for the primary
compilations, thus reducing performance.4

While the compilation thread has primary compilations to per-
form, running on a 2-processor machine is not much different than
doubling the clock rate of the 1-processor machine. On the 2-
processor machine the application and compilation thread are run-
ning on different processors, but they are still both making equal
progress relative to each other. Doubling the performance of the 1-
processor machine and performing round-robin scheduling would
achieve the same result. There is no need to modify the compilation
thresholds in either case.

However, when there are no primary compilations being per-
formed, and there are idle processor cycles, it is feasible that per-
forming additional compilations may improve performance, as is
discussed in the next section.

5.2 Exploiting Free Cycles
We have seen that the controller policy regarding the primary com-
pilations should not be changed when migrating from a single pro-
cessor to a multiprocessor machine. However, there may be free
cycles on the multiprocessor machines when there are no primary
compilations scheduled. It is an interesting research problem to de-
termine how these free cycles can be exploited to improve appli-
cation performance. For this section, we assume the VM has only
a single compilation thread; multiple compilation threads are dis-
cussed in Section 6.

We propose modifying the controller to perform secondary
compilations, which are not scheduled unless a) there are no pri-
mary compilations to perform, and b) there are idle processor cy-
cles available. A controller could implement secondary compilation
by employing a second compilation queue, which we will refer to
as the secondary queue. There can be several ways that methods
could be selected to be placed in the secondary queue, but we have
experimented only with one approach for this paper. In our ap-
proach, we put all methods removed from the primary queue by
the compilation thread into the secondary queue to be compiled at
higher optimization levels. Methods from the secondary queue are
sorted based on profile information, and scheduled for compilation
only if the primary queue is empty. If a primary compile is sched-
uled midway between a currently executing secondary compile,
then we provide an option to preempt the secondary compile, so as
to not affect the normal progress of primary compilations.

Surprisingly, on our system, secondary compiles were not able
to achieve any significant performance benefit on average for both
the aggressive and conservative controllers described in Section 4.
We observed that the important methods that are needed for high
performance are detected quickly by the profiling mechanisms and
compiled at a higher optimization level, even without performing
secondary compilations. Using the secondary queue causes a larger
number of (less important) methods to be upgraded, but has a small
overall impact on performance.

Thus, for multiprocessor machines, there seems to be little in-
centive to change the aggressiveness of the controller if the VM has
only one compilation thread.

4 To avoid these delays, we tried using more sophisticated sorting heuris-
tics for the compilation queue. This slightly reduced the degradation that
occurs as the controller becomes more aggressive, but did not improve the
performance at, or near, the optimal tuning point.

5.3 Identifying Free Cycles
As explained earlier, we propose to use secondary compilations
only if there are free cycles available, and there are no primary
methods to compile. However, detecting the availability of free
cycles is a nontrivial task. The presence of a free processor may
seem obvious if the number of processors exceeds the number of
application threads, but on many hyperthreaded architectures the
OS reports multiple logical processors as distinct CPUs. Using
a hyperthreaded core to execute secondary compiles may in fact
degrade overall performance by impeding the normal progress of
the primary application and compilation threads.

An instruction, such as the cpuid instruction on x86 processors
[1], can be used in certain cases to distinguish between logical
and actual multiprocessors. This type of support from the hardware
and OS is valuable in certain instances for helping the VM make
informed decisions, but even with this support, partial sharing of
resources makes it difficult to speculate whether one processor
can be used without reducing performance of the other processor.
Even with multicore processors there is generally some sharing of
resources between cores, such as the sharing of higher levels of
memory hierarchy. Such resource sharing is likely to increase in
the future, making the problem of identifying free cycles even more
difficult.

6. Multiple Compilation Threads
Previous sections considered virtual machines with support for only
a single compilation thread, which is common in most JVMs avail-
able today. Some VMs, such as the Azul VM, implement multiple
compilation threads to allow compilation to be performed in paral-
lel. The Azul VM is targeted for highly parallel architectures and
spawns on the order of 50 compilation threads during the rampup
period of large programs, such as application servers [10].

Using multiple compilation threads is clearly an effective solu-
tion, and is the only way to exploit the additional resources avail-
able on multicore architectures. If the number of processors is large
relative to the number of application threads, then no thread is ever
waiting on other threads, so the utilization issues discussed earlier
are no longer relevant.

However, as long as there are more application threads than
processors, all of the same basic concepts from the previous sec-
tion still apply. Achieving peak performance requires devoting the
proper amount of resources to compilation threads. Utilization can
now be controlled by creating (or destroying) compilation threads,
but only to a certain degree. For example, consider a program with
16 application threads running on a 4-processor machine. Even if
4 compilation threads are created, only 20% of the total CPU re-
sources are dedicated to compilation (executing round-robin with
4 other application threads on a processor). It is unclear whether a
sufficient compiler utilization can be attained in practice by creat-
ing additional compilation threads, or whether there will remain a
need to enforce a utilization for each processor.

7. Related Work
The Self-93 VM [16] pioneered many of the adaptive optimization
techniques employed in today’s virtual machines. Self focused par-
ticularly on keeping application pause times to a minimum. It ini-
tially compiled each method with a fast nonoptimizing compiler,
and identified hot methods using method invocation counts, which
decayed over time. Compilation appears to have occurred in the
application’s thread, so none of the issues examined in this paper
were explored.

Harris [15] describes a technique for controlling the worst-
case pauses of a Java runtime compiler on the Nemesis operation
system [22]. Compilation occurs on a separate compilation thread,

9



and its CPU allocation can be varied by using features of the
Nemesis operating system. Harris shows the results running the
CaffeineMark benchmark with compiler utilization levels of 5,
30 and 50%, where the JVM as a whole is given 70% of the
CPU. Our work differs from this work in that we provide a more
comprehensive study of utilization in a production JVM over a
large benchmark suite on a standard operating system.

Krintz et al. [19] explore background compilation on a separate
Java thread in the Jalapeño VM, an earlier name for Jikes RVM,
with the goal of reducing the overhead of dynamic compilation.
The compilation thread is provided with a list of methods to com-
pile from a previous run of the application. The work is motivated
by using an extra processor for this compilation. They do not ex-
plore issues of utilization for the compilation thread nor issues of
single processor vs. multiple processors.

The rest of this section summarizes other popular VMs. No
publications describing these systems have discussed the issue of
compilation thread utilization.

Sun’s HotSpot VM [21] interprets methods initially and uses
method entry and back edge counters to find methods to optimize.
No published information is available on whether it performs re-
compilation on a separate thread or simply suspends the application
thread to perform a recompilation. However, most of its design was
inspired by the Self-93 VM [16].

BEA’s JRockit [5] VM uses a compile-only approach to pro-
gram execution. In such systems, the code produced by a fast
nonoptimizing compiler is used for the method’s initial executions.
This compilation occurs in the application’s thread. Recompilation
is driven by a sampler thread that finds methods to optimize. This
thread suspends the applications threads and takes a sample at reg-
ular intervals. Although full details are not publicly available, re-
compilation appears to be performed on a separate thread from the
application [13].

The IBM DK for Java [26] initially interprets methods and uses
method entry and back edge counters to find interpreted methods to
optimize. A sampling-based profiler is used to potentially compile
methods at higher levels of optimizations. All compiled occurs in a
separate compilation thread.

IBM’s J9 VM [20] is similar to the IBM DK for Java in that
it is also interpreter-based with multiple optimization levels. It
uses counters and a sampling thread to periodically sample the
application. Compilation is performed on a separate thread. As
described in Section 2, J9 uses thread priorities on some platforms
to increase the priority of the compilation thread.

Jikes RVM [2] uses a compile-only approach with multiple
recompilation levels. It uses a cost/benefit model to determine
which methods should be recompiled and at what optimization
level. Initial compilation is performed on the application’s thread.
Three separate Java threads are used for profiling, decision-making,
and recompilation.

Intel’s ORP VM [9] employs a compile-only strategy with one
level of recompilation. A method is recompiled when its counter
passes a threshold or when a separate thread finds a method with a
counter value that suggests compiling it in the background.

The Azul VM is derived from the HotSpot VM to run on Azul’s
multicore hardware. It uses multiple compilation threads for com-
pilation [10].

8. Conclusion
Most modern virtual machines perform compilation on separate
threads with the goal of not interfering with the application thread’s
progress. This paper demonstrated that the conventional wisdom of
treating the compilation as a background, low-priority activity can
lead to suboptimal performance. We showed that guaranteeing a
certain level of utilization for the compilation thread is necessary

for robust performance of multithreaded applications, and evalu-
ated the performance over a range of utilizations. Higher utiliza-
tions resulted in average speedups of 9% and 18% for two different
compilation strategies over the default thread scheduler. In addi-
tion, we showed that no real changes are necessary to the compila-
tion strategies when moving to a multiprocessor machine.

This work has demonstrated that significant performance gains
can be achieved on a production virtual machine without adding
any optimizations to the compiler. This illustrates that in a dynamic
compilation setting, making good decisions about when and what
to compile (decisions the controller makes) can be as important as
how the code is compiled (decisions the dynamic compiler makes).

Acknowledgments
The authors thank the J9 JIT team for their assistance with this
work, Martin Hirzel for his help with PAPI, and Laureen Treacy
for proofreading earlier drafts of this work.

References
[1] J. Andrews. Detecting hyper-threading technology and dual cores.

http://www.developers.net/intelisnshowcase/view/579.
[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.

Adaptive optimization in the Jalapeño JVM. ACM SIGPLAN
Notices, 35(10):47–65, Oct. 2000. In Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA).

[3] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A
survey of adaptive optimization in virtual machines. Proceedings
of the IEEE, 93(2), 2005. Special issue on Program Generation,
Optimization, and Adaptation.

[4] D. F. Bacon, P. Cheng, D. Grove, M. Hind, V. T. Rajan, E. Yahav,
M. Hauswirth, C. M. Kirsch, D. Spoonhower, and M. T. Vechev. High-
level real-time programming in Java. In EMSOFT ’05: Proceedings of
the 5th ACM international conference on Embedded software, pages
68–78, New York, NY, USA, 2005. ACM Press.

[5] BEA. BEA JRockit: Java for the enterprise technical white paper.
http://www.bea.com, Jan. 2006.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. Eliot, B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-Oriented Programming
Languages, Systems, and Applications, pages 169–190, New York,
NY, USA, 2006. ACM Press.

[7] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A
scalable cross-platform infrastructure for application performance
tuning using hardware counters. In Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, Dallas, TX, Nov. 2000.

[8] P. Cheng and G. E. Blelloch. A parallel, real-time garbage collector.
ACM SIGPLAN Notices, 36(5):125–136, May 2001. In Conference
on Programming Language Design and Implementation (PLDI).

[9] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. The open
runtime platform: A flexible high-performance managed runtime
environment. Intel Technology Journal, 7(1):5–18, 2003.

[10] C. Click. The Azul VM, Azul systems. personal communication.
[11] http://www-plan.cs.colorado.edu/henkel/projects/colorado bench.
[12] The Daikon dynamic invariant detector. http://pag.csail.mit.edu/daikon.
[13] S. Friberg. Dynamic profile guided optimization in a VEE on IA-

64. Master’s thesis, KTH - Royal Institute of Technology, 2004.
IMIT/LECS-2004-69.

[14] N. Grcevski, A. Kilstra, K. Stoodley, M. Stoodley, and V. Sundaresan.
Java just-in-time compiler and virtual machine improvements for

10



server and middleware applications. In 3rd Virtual Machine Research
and Technology Symposium (VM), May 2004.

[15] T. Harris. Controlling run-time compilation. In IEEE Workshop
on Programming Languages for Real-Time Industrial Applications,
pages 75–84, Dec. 1998.

[16] U. Hölzle and D. Ungar. Reconciling responsiveness with perfor-
mance in pure object-oriented languages. ACM Transactions on
Programming Languages and Systems, 18(4):355–400, July 1996.

[17] https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=trade6.
[18] Kawa, the Java-based Scheme system. http://www.gnu.org/software/kawa.
[19] C. J. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing

the overhead of dynamic compilation. Software—Practice and
Experience, 31(8):717–738, July 2001.

[20] D. Maier, P. Ramarao, M. Stoodley, and V. Sundaresan. Experiences
with multithreading and dynamic class loading in a Java just-in-time
compiler. In The International Symposium on Code Generation and
Optimization, Mar. 2006.

[21] M. Paleczny, C. Vick, and C. Click. The Java Hotspot server compiler.
In Java Virtual Machine Research and Technology Symposium (JVM),
pages 1–12, Apr. 2001.

[22] T. Roscoe. The Structure of a Multi-Service Operating System. PhD
thesis, University of Cambridge Computer Laboratory, April 1995.
Available as Technical Report No. 376.

[23] http://www.sable.mcgill.ca/software/#soot.
[24] Standard Performance Evaluation Corporation. SPECjbb2000 Java

Business Benchmark. http://www.spec.org/jbb2000.
[25] Standard Performance Evaluation Corporation. SPECjvm98 Bench-

marks. http://www.spec.org/jvm98.
[26] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani.

Design and evaluation of dynamic optimizations for a Java just-in-
time compiler. ACM Transactions on Programming Languages and
Systems, 27(4):732–785, July 2005.

[27] http://xml.apache.org/xerces2-j/index.html.

11


