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• Optimizing compilers apply several 
optimization phases to improve the 
performance of applications.

• Optimization phases interact with each other.
• Determining the order of applying optimization 

phases to obtain the best performance has been 
a long standing problem in compilers.
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Evaluation
• Determine the performance of all possible 

orderings of optimization phases.
• Exhaustive phase order evaluation involves

• generating all distinct function instances that 
can be produced by changing optimization 
phase orderings (CGO ’06)

• determining the dynamic performance of each 
distinct function instance for each function
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• Experimental framework
• Exhaustive phase order space enumeration
• Accurately determining dynamic performance
• Correlation between dynamic frequency 

measures and processor cycles
• Genetic algorithm performance results
• Future work and conclusions
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• We used the VPO compilation system

• established compiler framework, started development 
in 1988

• comparable performance to gcc –O2
• VPO performs all transformations on a single 

representation (RTLs), so it is possible to perform 
most phases in an arbitrary order.

• Experiments use all the 15 available optimization 
phases in VPO.

• Target architecture was the StrongARM SA-100 
processor.
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• Instruction scheduling and predication not included.
• VPO does not contain optimization phases normally 

associated with compiler front ends
• no memory hierarchy optimizations
• no inlining or other interprocedural optimizations

• Did not vary how phases are applied.
• Did not include optimizations that require profile 

data.
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• Used one program from each of the six 

MiBench categories.
• Total of 111 functions.

searches for given words in phrasesstringsearchoffice
secure hash algorithmshasecurity
image compression / decompressionjpegconsumer
fast fourier transformffttelecomm
Dijkstra’s shortest path algorithmdijkstranetwork
test processor bit manipulation abilitiesbitcountauto
DescriptionProgramCategory
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Enumeration
• Exhaustive enumeration is difficult

• compilers typically contain many different 
optimization phases

• optimizations may be successful multiple times 
for each function / program

• On average, we would need to evaluate 1512 

different phase orders per function.
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Space 

a
b c

d

a b c d a d a d a db c b c b c

• All combinations of optimization phase 
sequences are attempted.

L2

L1

L0
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• Get feedback from the compiler indicating 
if any transformations were successfully 
applied in a phase.

L2

L1

L0

a
b c

d

b c d a d a dc b
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Instances
• Some optimization phases are independent

• example: branch chaining and register allocation
• Different phase sequences can produce the 

same code.
• Two function instances can be identical 

except for register numbers or basic block 
numbers used. 
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• Merging equivalent function instances 
transforms the tree to a DAG.

L2

L1

L0

a
b c

c d a d a
d
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Function Instance
• On average, there were over 25,000 distinct 

function instances for each studied function.
• Executing all distinct function instances would be 

too time consuming.
• Many embedded development environments use 

simulation instead of direct execution.
• Use data obtained from a few executions to 

estimate the performance of all remaining function 
instances.
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Frequency Measures
• Two different instances of the same 

function having identical control-flow 
graphs will execute each block the same 
number of times.

• Statically estimate the number of cycles 
required to execute each basic block.

• dynamic frequency measure = 
Σ (static cycles * block frequency)
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WorstBatch

47.644.60182.827.525362.6average         

….….................
75.324.29143308566main(d) 
4.490.20940570enqueue(d) 

51.120.0411684486370dijkstra(d) 
12.000.001459102dequeue(d) 
4.684.0983348ntbl_bit…(b) 

18.6918.692050253ntbl_bitcnt(b) 
233.318.331714592834main(b) 

4.332.40106386bitcount(b) 
3.960.00382147bit_shifter(b) 
1.401.40472155bit_count.(b) 
4.000.00419856BW_btbl...(b) 
4.550.0028840AR_btbl...(b) 

% from optimalLeafCFInsts.Function
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• SimpleScalar toolset includes several 
different simulators
• sim-uop - functional simulator, relatively fast, 

provides only dynamic instruction counts
• sim-outorder – cycle accurate simulator, much 

slower, also model microarchitecture
• Extended sim-outorder to switch to a 

functional mode when not in the function of 
interest.
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• Leaf function instances are generated from 
optimization sequences when no additional phases 
can be successfully applied.

• On average there are only about 183 leaf function 
instances, as compared to over 25,000 total 
instances.

• Leaf function instances represent possible code 
that can be generated from an iterative compiler 
when the phase order is varied.
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Statistics
• Pearson’s correlation coefficient

•

•

Σxy – (ΣxΣy)/n

sqrt( (Σx2 – (Σx)2/n) * (Σy2 - (Σy)2/n) )Pcorr = 

Lcorr = cycle count for best leaf
cy. cnt for leaf with best dynamic freq count
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Leaf Function Correlation 
Statistics (cont…)

4.38

….
4
2
4
6
2
2
6
1
2
2
2
1

Leaves

0.98

….
1.00
1.00
0.97
1.00
1.00
0.95
1.00
0.92
1.00
1.00
1.00
1.00

Ratio
Lcorr 0%

LeavesRatio

210.9960.96average         

….….….....
41.000.98main(d) 
41.001.00enqueue(d) 

2691.001.00dijkstra(d) 
61.000.99dequeue(d) 
21.000.99ntbl_bit…(b) 
20.951.00ntbl_bitcnt(b) 

231.001.00main(b) 
10.920.89bitcount(b) 
21.001.00bit_shifter(b) 
21.001.00bit_count.(b) 
21.001.00BW_btbl...(b) 
11.001.00AR_btbl...(b) 

Lcorr 1%
PcorrFunction
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• Genes are phases, chromosomes are sequences.
• There are 20 chromosomes per generation.
• Crossover is used to replace 4 poorly performing 

chromosomes per generation.
• All, except the best sequence and the 4 newly 

generated sequences are subject to mutation. 
• We modified our GA to use phase enabling and 

disabling relationships during the mutation phase 
of the GA.
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ty GA Evaluation Results
Modified GA

0.51

….
3.96
0.00
0.00
0.00
0.00
6.55
0.00
0.00
0.00
0.00
0.00
0.00
Diff

0.87

….
N
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y

Opt
Original GA

0.02

….
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Difff

0.97

….
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Opt

average         

....
main(d) 
enqueue(d) 
dijkstra(d) 
dequeue(d) 
ntbl_bit…(b) 
ntbl_bitcnt(b) 
main(b) 
bitcount(b) 
bit_shifter(b) 
bit_count.(b) 
BW_btbl...(b) 
AR_btbl...(b) 

Function
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• Find more equivalent performing function 
instances to further reduce the phase order 
space.

• Study effect of limiting scope of phases so 
that the most deeply nested loops of a 
function are optimized first.

• Improve conventional compilation speed 
and performance.
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• We demonstrated how a near-optimal phase 
ordering can be obtained in a short period of time.

• We showed that our measure of dynamic 
frequency counts correlate extremely well to 
simulator cycles.

• We also showed how the enumerated space can be 
used to evaluate the effectiveness of heuristic 
phase order search algorithms.
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• Phase ordering problem can be made more 
manageable by exploiting certain properties 
of the optimization search space
• optimization phases might not apply any 

transformations
• many optimization phases are independent

• Thus, many different orderings of 
optimization phases produce the same code.
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Problem
• Rather than considering all attempted phase 

sequences, the phase ordering problem can 
be addressed by enumerating all distinct 
function instances that can be produced by 
combination of optimization phases.

• We were able to exhaustively enumerate 
109 out of 111 functions, in a few minutes 
for most.
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Detecting Identical Function 
Instances
• Some optimization phases are independent

• example: branch chaining & register allocation
• Different phase sequences can produce the 

same code
r[2] = 1;r[2] = 1;
r[3] = r[4] + r[2];r[3] = r[4] + r[2];

⇒⇒instruction selectioninstruction selection
r[3] = r[4] + 1;r[3] = r[4] + 1;

r[2] = 1;r[2] = 1;
r[3] = r[4] + r[2];r[3] = r[4] + r[2];

⇒⇒constant propagationconstant propagation
r[2] = 1;r[2] = 1;
r[3] = r[4] + 1;r[3] = r[4] + 1;

⇒⇒dead assignment eliminationdead assignment elimination
r[3] = r[4] + 1;r[3] = r[4] + 1;
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• Register assignment (assigning pseudo registers to 
hardware registers) is implicitly performed before 
the first phase that requires it.

• Some phases are applied after the sequence
• fixing the entry and exit of the function to manage the 

run-time stack
• exploiting predication on the ARM
• performing instruction scheduling
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ty VPO Optimization Phases

register allocationk
remv. useless jumpsuminimize loop jumpsj
instruction selectionsblock reorderingi
reverse branchesrdead assignment elim.h
strength reductionqloop unrollingg
eval. order determin.oremv. unreachable coded
code abstractionncommon subexpr. elim.c
loop transformationslbranch chainingb
Optimization PhaseIDOptimization PhaseID
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Applied Phases
• A phase just applied in our compiler cannot 

be immediately active again.

a
b c

d

b c d a d a d ac b b c

L2

L1

L0
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ty Detecting Equivalent Function 
Instances

sum = 0;
for (i = 0; i < 1000; i++ )

sum += a [ i ];

Source Code

r[10]=0;
r[12]=HI[a];
r[12]=r[12]+LO[a];
r[1]=r[12];
r[9]=4000+r[12];

L3
r[8]=M[r[1]];
r[10]=r[10]+r[8];
r[1]=r[1]+4;
IC=r[1]?r[9];
PC=IC<0,L3;

Register Allocation 
before Code Motion

r[11]=0;
r[10]=HI[a];
r[10]=r[10]+LO[a];
r[1]=r[10];
r[9]=4000+r[10];

L5
r[8]=M[r[1]];
r[11]=r[11]+r[8];
r[1]=r[1]+4;
IC=r[1]?r[9];
PC=IC<0,L5;

Code Motion before
Register Allocation

r[32]=0;
r[33]=HI[a];
r[33]=r[33]+LO[a];
r[34]=r[33];
r[35]=4000+r[33];

L01
r[36]=M[r[34]];
r[32]=r[32]+r[36];
r[34]=r[34]+4;
IC=r[34]?r[35];
PC=IC<0,L01;

After Mapping 
Registers     
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