
Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty

Languages, Compilers, and Tools for Embedded Systems

In Search of Near-Optimal
Optimization Phase Orderings

Prasad A. Kulkarni
David B. Whalley

Gary S. Tyson
Jack W. Davidson

Languages, Compilers, and Tools for Embedded Systems 2

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Optimization Phase Ordering

• Optimizing compilers apply several
optimization phases to improve the
performance of applications.

• Optimization phases interact with each other.
• Determining the order of applying optimization

phases to obtain the best performance has been
a long standing problem in compilers.

Languages, Compilers, and Tools for Embedded Systems 3

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Exhaustive Phase Order
Evaluation
• Determine the performance of all possible

orderings of optimization phases.
• Exhaustive phase order evaluation involves

• generating all distinct function instances that
can be produced by changing optimization
phase orderings (CGO ’06)

• determining the dynamic performance of each
distinct function instance for each function

Languages, Compilers, and Tools for Embedded Systems 4

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Outline

• Experimental framework
• Exhaustive phase order space enumeration
• Accurately determining dynamic performance
• Correlation between dynamic frequency

measures and processor cycles
• Genetic algorithm performance results
• Future work and conclusions

Languages, Compilers, and Tools for Embedded Systems 5

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Outline

• Experimental framework
• Exhaustive phase order space enumeration
• Accurately determining dynamic performance
• Correlation between dynamic frequency

measures and processor cycles
• Genetic algorithm performance results
• Future work and conclusions

Languages, Compilers, and Tools for Embedded Systems 6

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Experimental Framework
• We used the VPO compilation system

• established compiler framework, started development
in 1988

• comparable performance to gcc –O2
• VPO performs all transformations on a single

representation (RTLs), so it is possible to perform
most phases in an arbitrary order.

• Experiments use all the 15 available optimization
phases in VPO.

• Target architecture was the StrongARM SA-100
processor.

Languages, Compilers, and Tools for Embedded Systems 7

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Disclaimers

• Instruction scheduling and predication not included.
• VPO does not contain optimization phases normally

associated with compiler front ends
• no memory hierarchy optimizations
• no inlining or other interprocedural optimizations

• Did not vary how phases are applied.
• Did not include optimizations that require profile

data.

Languages, Compilers, and Tools for Embedded Systems 8

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Benchmarks
• Used one program from each of the six

MiBench categories.
• Total of 111 functions.

searches for given words in phrasesstringsearchoffice
secure hash algorithmshasecurity
image compression / decompressionjpegconsumer
fast fourier transformffttelecomm
Dijkstra’s shortest path algorithmdijkstranetwork
test processor bit manipulation abilitiesbitcountauto
DescriptionProgramCategory

Languages, Compilers, and Tools for Embedded Systems 9

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Outline

• Experimental framework
• Exhaustive phase order space enumeration
• Accurately determining dynamic performance
• Correlation between dynamic frequency

measures and processor cycles
• Genetic algorithm performance results
• Future work and conclusions

Languages, Compilers, and Tools for Embedded Systems 10

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Exhaustive Phase Order
Enumeration
• Exhaustive enumeration is difficult

• compilers typically contain many different
optimization phases

• optimizations may be successful multiple times
for each function / program

• On average, we would need to evaluate 1512

different phase orders per function.

Languages, Compilers, and Tools for Embedded Systems 11

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Naive Optimization Phase Order
Space

a
b c

d

a b c d a d a d a db c b c b c

• All combinations of optimization phase
sequences are attempted.

L2

L1

L0

Languages, Compilers, and Tools for Embedded Systems 12

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Eliminating Dormant Phases

• Get feedback from the compiler indicating
if any transformations were successfully
applied in a phase.

L2

L1

L0

a
b c

d

b c d a d a dc b

Languages, Compilers, and Tools for Embedded Systems 13

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Identical / Equivalent Function
Instances
• Some optimization phases are independent

• example: branch chaining and register allocation
• Different phase sequences can produce the

same code.
• Two function instances can be identical

except for register numbers or basic block
numbers used.

Languages, Compilers, and Tools for Embedded Systems 14

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Resulting Search Space

• Merging equivalent function instances
transforms the tree to a DAG.

L2

L1

L0

a
b c

c d a d a
d

Languages, Compilers, and Tools for Embedded Systems 15

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Outline

• Experimental framework
• Exhaustive phase order space enumeration
• Accurately determining dynamic performance
• Correlation between dynamic frequency

measures and processor cycles
• Genetic algorithm performance results
• Future work and conclusions

Languages, Compilers, and Tools for Embedded Systems 16

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Finding the Best Dynamic
Function Instance
• On average, there were over 25,000 distinct

function instances for each studied function.
• Executing all distinct function instances would be

too time consuming.
• Many embedded development environments use

simulation instead of direct execution.
• Use data obtained from a few executions to

estimate the performance of all remaining function
instances.

Languages, Compilers, and Tools for Embedded Systems 17

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Quickly Obtaining Dynamic
Frequency Measures
• Two different instances of the same

function having identical control-flow
graphs will execute each block the same
number of times.

• Statically estimate the number of cycles
required to execute each basic block.

• dynamic frequency measure =
Σ (static cycles * block frequency)

Languages, Compilers, and Tools for Embedded Systems 18

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Dynamic Frequency Statistics

WorstBatch

47.644.60182.827.525362.6average

….….................
75.324.29143308566main(d)
4.490.20940570enqueue(d)

51.120.0411684486370dijkstra(d)
12.000.001459102dequeue(d)
4.684.0983348ntbl_bit…(b)

18.6918.692050253ntbl_bitcnt(b)
233.318.331714592834main(b)

4.332.40106386bitcount(b)
3.960.00382147bit_shifter(b)
1.401.40472155bit_count.(b)
4.000.00419856BW_btbl...(b)
4.550.0028840AR_btbl...(b)

% from optimalLeafCFInsts.Function

Languages, Compilers, and Tools for Embedded Systems 19

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Outline

• Experimental framework
• Exhaustive phase order space enumeration
• Accurately determining dynamic performance
• Correlation between dynamic frequency

measures and processor cycles
• Genetic algorithm performance results
• Future work and conclusions

Languages, Compilers, and Tools for Embedded Systems 20

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Cycle level Simulation

• SimpleScalar toolset includes several
different simulators
• sim-uop - functional simulator, relatively fast,

provides only dynamic instruction counts
• sim-outorder – cycle accurate simulator, much

slower, also model microarchitecture
• Extended sim-outorder to switch to a

functional mode when not in the function of
interest.

Languages, Compilers, and Tools for Embedded Systems 21

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Complete Function Correlation

Languages, Compilers, and Tools for Embedded Systems 22

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Complete Function Correlation

Languages, Compilers, and Tools for Embedded Systems 23

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Leaf Function Correlation

• Leaf function instances are generated from
optimization sequences when no additional phases
can be successfully applied.

• On average there are only about 183 leaf function
instances, as compared to over 25,000 total
instances.

• Leaf function instances represent possible code
that can be generated from an iterative compiler
when the phase order is varied.

Languages, Compilers, and Tools for Embedded Systems 24

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Leaf versus Nonleaf Performance

Languages, Compilers, and Tools for Embedded Systems 25

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Leaf Function Correlation
Statistics
• Pearson’s correlation coefficient

•

•

Σxy – (ΣxΣy)/n

sqrt((Σx2 – (Σx)2/n) * (Σy2 - (Σy)2/n))Pcorr =

Lcorr = cycle count for best leaf
cy. cnt for leaf with best dynamic freq count

Languages, Compilers, and Tools for Embedded Systems 26

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty
Leaf Function Correlation
Statistics (cont…)

4.38

….
4
2
4
6
2
2
6
1
2
2
2
1

Leaves

0.98

….
1.00
1.00
0.97
1.00
1.00
0.95
1.00
0.92
1.00
1.00
1.00
1.00

Ratio
Lcorr 0%

LeavesRatio

210.9960.96average

….….….....
41.000.98main(d)
41.001.00enqueue(d)

2691.001.00dijkstra(d)
61.000.99dequeue(d)
21.000.99ntbl_bit…(b)
20.951.00ntbl_bitcnt(b)

231.001.00main(b)
10.920.89bitcount(b)
21.001.00bit_shifter(b)
21.001.00bit_count.(b)
21.001.00BW_btbl...(b)
11.001.00AR_btbl...(b)

Lcorr 1%
PcorrFunction

Languages, Compilers, and Tools for Embedded Systems 27

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Outline

• Experimental framework
• Exhaustive phase order space enumeration
• Accurately determining dynamic performance
• Correlation between dynamic frequency

measures and processor cycles
• Genetic algorithm performance evaluation
• Future work and conclusions

Languages, Compilers, and Tools for Embedded Systems 28

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Genetic Algorithm Properties

• Genes are phases, chromosomes are sequences.
• There are 20 chromosomes per generation.
• Crossover is used to replace 4 poorly performing

chromosomes per generation.
• All, except the best sequence and the 4 newly

generated sequences are subject to mutation.
• We modified our GA to use phase enabling and

disabling relationships during the mutation phase
of the GA.

Languages, Compilers, and Tools for Embedded Systems 29

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty GA Evaluation Results
Modified GA

0.51

….
3.96
0.00
0.00
0.00
0.00
6.55
0.00
0.00
0.00
0.00
0.00
0.00
Diff

0.87

….
N
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y

Opt
Original GA

0.02

….
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Difff

0.97

….
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Opt

average

....
main(d)
enqueue(d)
dijkstra(d)
dequeue(d)
ntbl_bit…(b)
ntbl_bitcnt(b)
main(b)
bitcount(b)
bit_shifter(b)
bit_count.(b)
BW_btbl...(b)
AR_btbl...(b)

Function

Languages, Compilers, and Tools for Embedded Systems 30

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Outline

• Experimental framework
• Exhaustive phase order space enumeration
• Accurately determining dynamic performance
• Correlation between dynamic frequency

measures and processor cycles
• Genetic algorithm performance evaluation
• Future work and conclusions

Languages, Compilers, and Tools for Embedded Systems 31

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Future Work

• Find more equivalent performing function
instances to further reduce the phase order
space.

• Study effect of limiting scope of phases so
that the most deeply nested loops of a
function are optimized first.

• Improve conventional compilation speed
and performance.

Languages, Compilers, and Tools for Embedded Systems 32

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Conclusions

• We demonstrated how a near-optimal phase
ordering can be obtained in a short period of time.

• We showed that our measure of dynamic
frequency counts correlate extremely well to
simulator cycles.

• We also showed how the enumerated space can be
used to evaluate the effectiveness of heuristic
phase order search algorithms.

Languages, Compilers, and Tools for Embedded Systems 33

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Optimization Space Properties

• Phase ordering problem can be made more
manageable by exploiting certain properties
of the optimization search space
• optimization phases might not apply any

transformations
• many optimization phases are independent

• Thus, many different orderings of
optimization phases produce the same code.

Languages, Compilers, and Tools for Embedded Systems 34

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Re-stating the Phase Ordering
Problem
• Rather than considering all attempted phase

sequences, the phase ordering problem can
be addressed by enumerating all distinct
function instances that can be produced by
combination of optimization phases.

• We were able to exhaustively enumerate
109 out of 111 functions, in a few minutes
for most.

Languages, Compilers, and Tools for Embedded Systems 35

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty
Detecting Identical Function
Instances
• Some optimization phases are independent

• example: branch chaining & register allocation
• Different phase sequences can produce the

same code
r[2] = 1;r[2] = 1;
r[3] = r[4] + r[2];r[3] = r[4] + r[2];

⇒⇒instruction selectioninstruction selection
r[3] = r[4] + 1;r[3] = r[4] + 1;

r[2] = 1;r[2] = 1;
r[3] = r[4] + r[2];r[3] = r[4] + r[2];

⇒⇒constant propagationconstant propagation
r[2] = 1;r[2] = 1;
r[3] = r[4] + 1;r[3] = r[4] + 1;

⇒⇒dead assignment eliminationdead assignment elimination
r[3] = r[4] + 1;r[3] = r[4] + 1;

Languages, Compilers, and Tools for Embedded Systems 36

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty VPO Optimization Phases

• Register assignment (assigning pseudo registers to
hardware registers) is implicitly performed before
the first phase that requires it.

• Some phases are applied after the sequence
• fixing the entry and exit of the function to manage the

run-time stack
• exploiting predication on the ARM
• performing instruction scheduling

Languages, Compilers, and Tools for Embedded Systems 37

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty VPO Optimization Phases

register allocationk
remv. useless jumpsuminimize loop jumpsj
instruction selectionsblock reorderingi
reverse branchesrdead assignment elim.h
strength reductionqloop unrollingg
eval. order determin.oremv. unreachable coded
code abstractionncommon subexpr. elim.c
loop transformationslbranch chainingb
Optimization PhaseIDOptimization PhaseID

Languages, Compilers, and Tools for Embedded Systems 38

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Eliminating Consecutively
Applied Phases
• A phase just applied in our compiler cannot

be immediately active again.

a
b c

d

b c d a d a d ac b b c

L2

L1

L0

Languages, Compilers, and Tools for Embedded Systems 39

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Detecting Equivalent Function
Instances

sum = 0;
for (i = 0; i < 1000; i++)

sum += a [i];

Source Code

r[10]=0;
r[12]=HI[a];
r[12]=r[12]+LO[a];
r[1]=r[12];
r[9]=4000+r[12];

L3
r[8]=M[r[1]];
r[10]=r[10]+r[8];
r[1]=r[1]+4;
IC=r[1]?r[9];
PC=IC<0,L3;

Register Allocation
before Code Motion

r[11]=0;
r[10]=HI[a];
r[10]=r[10]+LO[a];
r[1]=r[10];
r[9]=4000+r[10];

L5
r[8]=M[r[1]];
r[11]=r[11]+r[8];
r[1]=r[1]+4;
IC=r[1]?r[9];
PC=IC<0,L5;

Code Motion before
Register Allocation

r[32]=0;
r[33]=HI[a];
r[33]=r[33]+LO[a];
r[34]=r[33];
r[35]=4000+r[33];

L01
r[36]=M[r[34]];
r[32]=r[32]+r[36];
r[34]=r[34]+4;
IC=r[34]?r[35];
PC=IC<0,L01;

After Mapping
Registers

Languages, Compilers, and Tools for Embedded Systems 40

Fl
o
ri
d
a

S
ta

te
 U

n
iv

er
si

ty Case when No Leaf is Optimal

