Florida State University Computer Science

Fast Searches for Effective
Optimization Phase Sequences

Prasad Kulkarnl Stephen Hlnes ® jason Hiser
David Whalley Jack Davidson , Douglas Jones "

& Computer Science Department, Florida State University, Tallahassee, Florida

€ Computer Science Department, University of Virginia, Charlottesville, Virginia

il Electrical and Computer Eng. Department, University of Illinois, Urbana, Illinois

@ ACM SIGPLAN 2004 Conference on Programming Language_ 1



Florida State University Computer Science

Phase Ordering Problem

@ A single ordering of optimization phases
will not always produce the best code
— different applications
— different compilers
— different target machines
® Example
— register allocation and instruction selection

@ ACM SIGPLAN 2004 Conference on Programming Language _ 2



Florida State University Computer Science

t'“Approaches to Addressing the

Phase Ordering Problem
® Framework for formally specifying compiler
optimizations.
@ Single intermediate language representation
— repeated applications of optimization phases
® Exhaustive search?
@® Our approach

— Intelligent search of the optimization space using
genetic algorithm

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 3




Florida State University Computer Scienc-

Genetic Algorithm

@ A biased sampling search method

— evolves solutions by merging parts of different
solutions

Create iqitial Evaluate fitness of | Output the
prplu|a..tIOIj1 > each sequence Termlnafge best

of optimization in the population cond. “ seguence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Lan— 4




Florida State University Computer Scienc-

Genetic Algorithm

@ A biased sampling search method

— evolves solutions by merging parts of different
solutions

Create iqitial Evaluate fithess of | Output the
pop.ulgtlor) > each sequence Terminate best

of optimization in the population cond. ? seguence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Lan— 5




Florida State University Computer Scienc-

Genetic Algorithm

@ A biased sampling search method

— evolves solutions by merging parts of different
solutions

Create iqitial Evaluate fitness of | Output the
prp.u|6.ltIOI:1 > each sequence Termlna;e best

of optimization in the population cond. ~ seguence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Lan— 6




Florida State University Computer Scienc-

Genetic Algorithm

@ A biased sampling search method

— evolves solutions by merging parts of different
solutions

Create iqitial Evaluate fitness of | Output the
prp.u|6.ltIOI:1 > each sequence Termlnafge best

of optimization in the population cond. “ seguence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Lan— 7




Florida State University Computer Scienc-

Genetic Algorithm

@ A biased sampling search method

— evolves solutions by merging parts of different
solutions

Create iqitial Evaluate fitness of | Output the
prp.u|6.ltIOI:1 > each sequence Termlnafge besr:

of optimization in the population cond. “ sequence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Lan— 8




=yt Florida State University Computer S_
Genetic Algorithm (cont...)

@ Crossover
— 20% sequences in each generation replaced

Population 1 Population 2

® Mutation
— phases in each sequence replaced with a low probability

@ ACM SIGPLAN 2004 Conference on Programming _ 9



Florida State University Computer S_
Genetic Algorithm (cont...)

C Source , Combiler Assembly
Function P Function
candidate best
phases sequence
Genetic
Algorithm

@ ACM SIGPLAN 2004 Conference on Programming _ 10



Florida State University Computer Science

Experiments

@ Performed on six mibench benchmarks, which
contained a total of 106 functions.

® Used 15 candidate optimization phases.
® Sequence length set to 1.25 times the number of
successful batch phases.

® Population size set to 20.
@ Performed 100 generations.
@ Fitness value was 50% speed and 50% size.

@ ACM SIGPLAN 2004 Conference on Programming Language _ 11



Genetic Algorithm — Results

bit count -——I
g .
& F

Ipeg # ] Size

sha ] B Speed

stringsearch ]

WEASC I |

0 S 10 15
percentage improvement compared to the batch compiler

@ ACM SIGPLAN 2004 Conference on Programming _ 12

|




Florida State University Computer Science

Our Earlier Work

@ Published in LCTES '03
— complete compiler framework
— detailed description of the genetic algorithm

— Improvements given by the genetic algorithm for
code-size, speed, and 50% of both factors

— optimization sequences found by the genetic
algorithm for each function

— Finding Effective Optimization Phase Sequences —
http://www.cs.fsu.edu/~whalley/papers/ictes03.ps

@ ACM SIGPLAN 2004 Conference on Programming Language _ 13



Florida State University Computer Science

Genetic Algorithm — Issues

@ Very long search times

— evaluating each sequence involves compiling,
assembling, linking, execution and verification

— simulation / execution on embedded processors is
generally slower than general-purpose processors

@® Reducing the search overhead
— avoiding redundant executions of the application.

— modifying the search to obtain comparable results in
fewer generations.

@ ACM SIGPLAN 2004 Conference on Programming Language _ 14



Florida State University Computer Science

Methods for Avoiding Redundant Executions

@® Detect sequences that have already been
attempted.

@ Detect sequences of phases that have been
successfully applied.

® Check If an instance of this function has
already been generated.

® Check If an equivalent function has already
been generated.

@ ACM SIGPLAN 2004 Conference on Programming Language _ 15




Florida State University Computer Scz_

Reducing the Search Overhead

@ Avoiding redundant executions.

@ ODbtaining similar results In fewer
generations.

@ ACM SIGPLAN 2004 Conference on Programming L_ 16



Florida State University Computer Science

Overview of Avoiding Redundant

candidate
phases

Executions

best
sequence

@ ACM SIGPLAN 2004 Conference on Programming Language _ 17

Genetic
Algorithm

]JI'ETiﬂllS measure

Execute

Application

new measuare

found found
Check Check
next apply .
Attempted Active
sequence phases
Sequences Sequences
calculate unmapped checksum
Check for Check for
generate . calculate .
Equivalent Identical
executable . map ped .
Function checksum | Function
found found




Florida State University Computer Science

h '@Finding Redundant Attempted
Sequences

® Same optimization phase sequence may
be reattempted

— Crossover operation producing a previously
attempted sequence

— Mutation not occurring on any of the phases
In the sequence

— Mutation changing phases, but producing a
previously attempted sequence

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 18



Florida State University Computer Science-

L' 'Finding Redundant Attempted
Sequences (cont...)

Before mutation After mutation
seqi: |d|jaje|d|c|f seqi: |d|ja|e|d|c|f
seqj: | flalc|b]c]|d seqj: |flajclalc]|d
seqgk: | flelc|b]b]d seqk: | flalc|b]c]d

@) ACM SIGPLAN 2004 Conference on Programming Lan_ 19



N ? Florida State University Computer Science

Finding Redundant Active Sequences

@ An active optimization phase is one that is
able to complete one or more transformations.

® Dormant phases do not affect the compilation.
@ Compiler must indicate If phase was active.

Attempted : seqgi: |dlbleld]c]f seqj: |dlajle|b]|c]f

Active : seqi: dlelc]|f seqj: dlje|c|f

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 20



Florida State University Computer Science

Detecting Identical Code

® Sometimes identical code for a function
can be generated from different active
sequences.

® Some phases are essentially independent
— branch chaining and register allocation

@ Sometimes more than one way to produce
the same code.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 21



Florida State University Computer Science -

Detecting ldentical Code (cont...)

@ Example:
2] = 1; 2] = 1;
r[3] = r[4] + r[2]; r[3] = r[4] + r[2];
=vinstruction selection —>constant propagation
r[3] = r[4] + 1; 2] = 1;

3] =r[4] + 1;

—=dead assignment elimination
r[3] = r[4] + 1;

Instances.

@) ACM SIGPLAN 2004 Conference on Programming Lang_ 22



Florida State University Computer Science

Detecting Equivalent Code

® Code generated by different optimization
seguences may be equivalent, but not
identical.

® Some optimization phases consume
registers.

@ Different ordering of such phases may

result in equivalent instructions, but

different registers being used.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 23




Florida State University Computer Science

Detecting Equivalent Code (cont...)

sum = 0;
for (i = 0; 1 < 1000; i++ )
sum +=a [ 1 ];

Source Code
r[11]=0;

r[10]=HIl[a];
r[10]=r[10]+LO[a];

r[10]=0;
ri12]=HI[a];
ri12]=r[12]+LO[a];
ri1]=r[12]; r[1]=r[10];
r[9]=4000+r[12]; r[9]=4000+r[10];
L3 L3 L3
rE81=MLr[1]1; r[81=MLr[1]1;
r[10]=r[10]+r[8]; ril1l]=r[11]+r[8];
ri1]=r[1]+4; ril]=r[1]+4;
IC=r[1]?r[9]; IC=r[1]7?r[9];
PC=1C<0,L3; PC=1C<0,L3;

r[32]=0;
r[33]=HI[a];
r[33]=r[33]+L0O[a];
r[34]=r[33];
r[35]=4000+r[33];

r[36]=M[r[34]];
r[32]=r[32]+r[36];
r[34]=r[34]+4;
1IC=r[34]?r[35];
PC=1C<0,L3;

Register Allocation
before Code Motion

Code Motion before
Register Allocation

After Mapping
Registers

@ ACM SIGPLAN 2004 Conference on Programming Languag_ 24




Florida State University Computer Science

Number of Avoided Executions

bit count

dijkstra

fft

jpeg

sha

stringsearch

average

@ ACM SIGPLAN 2004 Conference on Programming Language_ 25

B Equivalent
[ ] Identical

[ ] Active

[ ] Attempted

0

200 400 600 800 1000 1200 1400 1600 1800 2000




Florida State University Computer _

Relative Total Search Time
bit count_ 3.3D hours to 0.42 hours

dijkstra _ 2.50 hours to 0.63 hours

jped _ 20.45 hours to 9.29 hours

sha _ 1.73 hours to 0.35 hours

stringsearch | NI 2 6 hovs to 115 hours

average |

0 0.2 0.4 0.6 0.8 1

@ ACM SIGPLAN 2004 Conference on Programming_ 26



Reducing the Search Overhead

@ Avoiding redundant executions.

@ Obtaining similar results in fewer
generations.

@ ACM SIGPLAN 2004 Conference on Programming _ 27



Sl

IE 7
£ by @ . 1 - .
. Florida State University Computer Science

?l -
I8 @

Producing Similar Results In
Fewer Generations

® Can reduce search time by running the
genetic algorithm for fewer generations.

@ Can obtain better results in the same
number of generations.

®We evaluate four methods for reducing the

number of required generations to find the

best sequence In the search.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 28



Florida State University Computer Science

Using the Batch Sequence

@ Capture the active sequence of phases
applied by the batch compller.

@ Place this sequence In the Initial
population.

® May allow the genetic algorithm to
converge faster to the best sequence it can
find.

@ ACM SIGPLAN 2004 Conference on Programming Language _ 29



the Batch Sequence

bit count

dijkstra |

i [ | Baseline
fft
E [ ] Using the Batch

| Sequence

jpeg |

sha |

stringsearch |

average |

0 10 20 30 40 50 60
number of generations

@) ACM SIGPLAN 2004 Conference on Programming Lan_ 30



Florida State University Computer Science

Prohibiting Specific Phases

® Perform static analysis on the function.
— No loops, then no loop optimizations.
— No scalar variables, then no register allocation.

— Only one basic block, then no unreachable code
elimination and no branch optimizations.

— Etc.

® Such phases are prohibited from being
attempted for the entire search for that function.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ sl



Number of Generations When
Prohibiting Specific Phases

alteaunt i
dijkstra -—4
fft_ | ] Baseline
# [ Prohibiting Specif-
. ic Phases
Iped
sha
stringsearch
S¥eleds _—‘
(I] 1 IO 2I0 BIO 4I0 5IO 60

number of generations



denp. Florida State University Computer Science

Prohibiting Prior Dormant Phases

@ Some phases will be found to be dormant given a
specific prefix of active phases.

@ If encounter the same prefix, then do not allow
these prior dormant phases to be reattempted.

@ Keep a tree of active prefixes and store the
dormant phases with each node in the tree.

@ Changed the genetic algorithm by forcing a prior
dormant phase to mutate until finding a phase
that has been active or not yet attempted with the
prefix.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 33




Florida State University Computer Science -

t‘mPI’OthI'[Ing Prior Dormant Phases

(cont...)

------ ® a and f are dormant phases given the
actlve prefix of bac in the tree.

@) ACM SIGPLAN 2004 Conference on Programming Lang_ 34



Number of Generations When
Prohibiting Prior Dormant Phases

bit count

dijkstra

[ ] Baseline

[ Prohibiting Prior
Dormant Phases

fft

ped

sha

stringsearch

|

average

! I JH

0 10 20 30 40 50 60
number of generations

@ ACM SIGPLAN 2004 Conference on Programming _ 35



Florida State University Computer Science

L?I l
1851 %

Prohibiting Un-enabled Phases

@ Most optimization phases when performed
cannot be applied again until enabled.

— ex: Register allocation will not be enabled by
most branch optimizations

c enables a b and d do not enable a

...|ab clal... ...|abd a

@ ACM SIGPLAN 2004 Conference on Programming Language _ 36



Florida State University Computer Science

Prohlbltlng Unenabled Phases (cont.)

@ Assume b can be enabled by a, but cannot be
enabled by c. Given the prefix bac, then b
cannot be active at this point.

b

alb | f
{ d| o f

@ ACM SIGPLAN 2004 Conference on Programming Languag_ 37




Florida State University Computer Science-

Number of Generations When
Prohibiting Unenabled Phases

bit count__ | |
dijkstra __ |
i Baseline
fft_Fl E Prohibiting Un-
g ] enabled Phases
sha _- |
stringsearch *
average _ |

0 10 20 30 40 50 60
number of generations

@) ACM SIGPLAN 2004 Conference on Programming Lan_ 38



Florida State University Computer Science

Number of Generations When
Applying All Technigues

bit count = |
dijkstra __
fﬁ_lil E ilallseline
ipeo. pm—
sha _- |
stringsearch —
average _ |

10 20 30 40 50 &0
number of generations

@ ACM SIGPLAN 2004 Conference on Programming Language_ 39

e



Florida State University Computer Science

Number of Avoided Executions When
Reducing the Number of Generations

bit count | | | | [
5 | | | | | | | |
dijkstra | |
| | || | | | | | !
fft | | 7
| | | | | | | | -
jpeg | | |
| | | I Equivalent
sha | | | | | | | | | | I [ ] Identical
| | | | | | | | | [ [ ] Active
stringsearch | | | # i [ ] Attempted
| | | |
average | | I
| | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

@ ACM SIGPLAN 2004 Conference on Programming Language _ 40



the Best Sequence

bit count

dijkstra 19.26 min|to 12.00 min

hto0.13 min

fft

jpeg 190.05 min to 163.82 min
sha .26 min

stringsearch 6.99 min

average

0 0.2 0.4 0.6 0.8 1



Florida State University Computer Science

Related Work

® Superoptimizers
— Instruction selection: Massalin
— branch elimination: Granlund, Kenner
@ lterative complilation techniques using performance
feedback information.
— loop unrolling, software pipelining, blocking
@ Using genetic algorithms to improve compiler
optimizations
— Parallelizing loop nests: Nisbet
— Improving compiler heuristics: Stephenson et al.
— Optimization sequences: Cooper et al.

@ ACM SIGPLAN 2004 Conference on Programming Language _ 42




Florida State University Computer Science

Future Work

@ Detecting likely active phases given active
phases that precede lIt.

@ Varying the characteristics of the search.
@ Parallelize the genetic algorithm.

@ ACM SIGPLAN 2004 Conference on Programming Languag_ 43



Florida State University Computer Science

Conclusions

@ Avoiding executions:

— Important for genetic algorithm to know if attempted
phases were active or dormant to avoid redundant active
seguences.

— Same code Is often generated by different active
sequences.
@ Reducing the number of generations required to
find the best sequence In the search:

— Inserting the batch compilation active sequence is simple
and effective.

— Can use static analysis and empirical data to often detect
when phases cannot be active.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 44




