
© 2007 IBM Corporation

Dynamic Compilation:
The Benefits of Early Investing

Prasad Kulkarni, FSU, IBM
Matthew Arnold IBM
Michael Hind, IBM

2

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Introduction

Java Virtual Machine (JVM)
– load bytecodes as input
– initial execution by interpretation or quick

compilation
– method optimized, if hot

Adaptive optimization system
– monitor running application
– detect hot methods for further optimization

3

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

When to Compile ?

Separate thread for JIT compilation
– provides isolation between compiler & application
– compiler can execute asynchronously

Scheduling JIT compiler thread
– round-robin scheduling considered most fair

Processor utilization for the compiler thread
– low priority optional VM component
– background thread, no interference with application

Are traditional implementations of asynchronous JIT
compilations optimal ?

4

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

How to Exploit Free Cycles ?

Modern machines can have un-utilized
computational resources

– multi-core or multi-processor machines
Adapt compiler strategy

– compilation is free
– compile more aggressively

How to adapt compilation strategy to exploit
free cycles ?

5

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Outline

Experimental Setup
Compiler Scheduling and Utilization
Exploiting Free Processor Cycles
Conclusions

6

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Experimental Setup

Used IBM’s J9 VM
– includes a high-performance JIT compiler
– uses counters and sampling to promote methods for

compilation
– compilation performed on a single separate thread

Three configurations of Intel Xeon 2.8GHz processors,
Red Hat Linux kernel 2.6.9

– single-processor
– single-processor with hyperthreading
– two-processors with hyperthreading

7

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Benchmarks

Benchmark suite with 23 programs
– complete SPECjvm98 suite of 7 benchmarks
– complete DaCapo suite of 10 benchmarks
– SPECjbb2000 benchmark
– 5 other benchmarks

– daikon, kawa, ipsixql, soot, and xerces
IBM Trade Performance Benchmark V6.1

– over 40,000 methods, over 6,000 compilations

8

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Outline

Experimental Setup
Compiler Scheduling and Utilization
Exploiting Free Processor Cycles
Conclusions

9

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Limitations of Asynchronous Compilation
Implementations

Traditional asynchronous compilation
– execute compiler in a separate thread
– round-robin scheduling of threads
– large OS scheduling times to minimize overhead

– 100 msec time quantum, 400 million cycles/time-slice
Reduced resources due to multi-threading

– with N application threads, compilation thread resources are
1/(N+1)

Reduced resources due to yielding
– I/O, message passing, etc.
– compiles can be delayed for a long time

10

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Utilization-Based Scheduling

Construct a scheduler to enforce a specific
compiler thread utilization

– compiler thread receives exactly X% of CPU
resources

Used pthread priorities in the Linux OS
– scales well to multi-processor machines
– simplifies the scheduler implementation

Define a VM-level time-slice quantum of 10ms

11

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Effect of Round-Robin Scheduling

Effect of increasing number of app. threads for mtrt
from SPECjvm98

0

5

10

15

20

25

30

1 2 4 8 16 32
of threads

ap
pl

ic
at

io
n

ru
n-

tim
e

default configuration
50% compiler utilization

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32
of threads

co
m

pi
le

r u
til

iz
at

io
n

default configuration
50% compiler utilization

12

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Effect of Round-Robin Scheduling (cont…)

Effect on the rampup-time of Trade 6.1.

0

400

800

1200

1600

2000

0.0
8

0.4
2

0.7
5

1.0
8

1.4
2

1.7
5

2.0
8

2.4
2

2.7
5

3.0
8

3.4
2

3.7
5

4.0
8

4.4
2

4.7
5

minutes

th
ro

ug
hp

ut

50% utilization default scheduler

13

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Selecting Compiler Thread Utilization

Determine the best compiler utilization
Evaluate 2 controller policies

– aggressive controller
– first compile is at optimization level O1
– optimized for reaching steady-state quickly

– conservative controller
– first compiler is at optimization level O0
– optimized for better startup performance

14

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Compiler Thread Utilization –
Aggressive Controller

Compiler Thread Utilization
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Perf. Imp. (%) -85.8 -39.2 -17.0 -4.3 2.2 8.3 11.7 14.8 16.9 18.2 0.0

Time in queue (ms) 6500 3885 2408 1412 956 509 254 96 32 21 1465

Length of queue 157 112 90 61 46 27 14 5 2 1 60

Methods compiled 399 472 516 550 572 585 584 569 551 523 567

Default
Scheduler

18.2% performance gain at 100% utilization.
Small improvement at 50%, since most benchmarks are
single-threaded
Performance degrades as compiler utilization is
reduced

15

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Compiler Thread Utilization –
Aggressive Controller

Compiler Thread Utilization
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Perf. Imp. (%) -85.8 -39.2 -17.0 -4.3 2.2 8.3 11.7 14.8 16.9 18.2 0.0

Time in queue (ms) 6500 3885 2408 1412 956 509 254 96 32 21 1465

Length of queue 157 112 90 61 46 27 14 5 2 1 60

Methods compiled 399 472 516 550 572 585 584 569 551 523 567

Default
Scheduler

Time between scheduling and compilation of
each method
Queue delay progressively reduced as
utilization is increased

16

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Compiler Thread Utilization –
Aggressive Controller

Compiler Thread Utilization
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Perf. Imp. (%) -85.8 -39.2 -17.0 -4.3 2.2 8.3 11.7 14.8 16.9 18.2 0.0

Time in queue (ms) 6500 3885 2408 1412 956 509 254 96 32 21 1465

Length of queue 157 112 90 61 46 27 14 5 2 1 60

Methods compiled 399 472 516 550 572 585 584 569 551 523 567

Default
Scheduler

Average number of methods in the compilation
queue
Reduces with increase in compiler utilization

17

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Compiler Thread Utilization –
Aggressive Controller

Compiler Thread Utilization
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Perf. Imp. (%) -85.8 -39.2 -17.0 -4.3 2.2 8.3 11.7 14.8 16.9 18.2 0.0

Time in queue (ms) 6500 3885 2408 1412 956 509 254 96 32 21 1465

Length of queue 157 112 90 61 46 27 14 5 2 1 60

Methods compiled 399 472 516 550 572 585 584 569 551 523 567

Default
Scheduler

Number of methods compiled during the
application’s execution
Compilations decrease at high utilizations
because of reduced execution time

18

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Performance Improvement at
100% Utilization

-30

-10

10

30

50

70

benchmarks

%
 im

pr
ov

em
en

t

19

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

High Compiler Thread Utilization

If the controller is making good compilation decisions,
then high compiler thread utilization should be better.

20

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Compiler Thread Utilization –
Conservative Controller

Compiler Thread Utilization
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Perf. Imp. (%) -45.7 -10.7 0.2 7.0 9.7 10.2 10.1 9.9 9.5 9.3 0.0

Time in queue (ms) 862 301 142 54 30 16 9 3 1 1 130

Length of queue 83 41 21 12 7 4 3 2 1 1 25

Methods compiled 632 682 688 696 702 694 690 684 678 672 705

Default
Scheduler

More methods compiled
Smaller performance improvements
Insignificant backup of methods in queue

21

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Compiler Thread Utilization –
Conservative Controller

Compiler Thread Utilization
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Perf. Imp. (%) -45.7 -10.7 0.2 7.0 9.7 10.2 10.1 9.9 9.5 9.3 0.0

Time in queue (ms) 862 301 142 54 30 16 9 3 1 1 130

Length of queue 83 41 21 12 7 4 3 2 1 1 25

Methods compiled 632 682 688 696 702 694 690 684 678 672 705

Default
Scheduler

50%-90% utilizations slightly better than
100% utilization
Improvements here seem to be guided more by
latency than utilization

22

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Impact on Pause Times

Pause time considerations
– insignificant for batch applications
– important for applications with real-time

constraints
100% utilization cannot provide strong pause
time guarantees
60-80% utilization can provide higher
performance and better pause time guarantees
than round-robin scheduler

23

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Outline

Experimental Setup
Compiler Scheduling and Utilization
Exploiting Free Processor Cycles
Conclusions

24

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Issues for Multiprocessor Machines

Higher chances of unused processor resources
– spread of multi-core machines
– unable to exploit more parallelism

Adapt controller policy to exploit free cycles ?
– compile more aggressively

Simple motivating experiment
– tune compilation aggression on different machines
– demonstrate that no single strategy works on all machines

– more aggressive strategy needed to exploit free processor

25

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Changing Compiler Aggressiveness

1

1.5

2

2.5

3

3.5

0.1 0.2 0.5 0.6
7 0.8 1

1.3
3 2 5 20

compiler aggressiveness

no
rm

al
iz

ed
 ti

m
e

1-proc
1-proc (hyperthreading)
2-proc (hyperthreading)

26

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Analyzing Aggressive Compilation

On a multiprocessor
machine with 1 application
and 1 compiler thread

– both threads are making
equal progress relative to
each other

– similar to doubling
frequency of single
processor machine

Single Core Processor

Double Frequency
Single Core Processor

Double Core Processor

Unopt. Application thread

Compilation thread

Opt. Application thread

27

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Analyzing Aggressive Compilation (cont…)

Compiling more aggressively
– introduces additional secondary compiles
– increases length of compilation queue
– delays primary compiles

If ratio of application to compiler threads is
unchanged, then compiler strategy should not
be changed.

28

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Exploiting Free Cycles

Schedule secondary compiles when
– no primary compiles left
– idle processor cycles available
– can preempt secondary compiles for primary compile

Strategy did not result in significant performance
benefit on our system.

Little incentive to change compilation strategy for
single compiler thread VM.

29

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Multiple Compilation Threads

Seem to be the right approach for
multiprocessor machines

– can effectively exploit free cycles
– compiling early has been shown to benefit

performance
Processor utilization for compilation can be
controlled

– imposing a utilization for each processor
– spawning variable number of compiler threads

30

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Outline

Experimental Setup
Compiler Scheduling and Utilization
Exploiting Free Processor Cycles
Conclusions

31

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Conclusions
It is necessary to guaranty a certain level of
utilization for the compiler thread.
Higher compiler utilization result in good
performance for tuned controllers

– 18% speedup for aggressive controller
– 9% speedup for conservative controller

Controller policy for single compiler thread
does not need to change for multiprocessor
machines.

32

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Effect of Round-Robin Scheduling (cont…)

Effect on the
rampup-time
of Trade 6.1.

multi-processor

single-processor

33

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Background Compilation

Compiler is executed in a separate thread
Advantages

– provides isolation between the run-time states of
the compiler and application

– compiler can execute asynchronously with
application threads

Implementation
– OS threads with round-robin scheduling
– VM threads multiplexed over OS threads

34

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Impact on Pause Times

MMU: minimum application utilization during some
time-parameterized window
Benchmark with the worst MMU determined the value
reported

Specified Compilation Thread UtilizationWindow
(ms) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 77 56 51 45 46 31 24 14 6 0 1

300 84 72 62 55 49 37 28 19 10 1 24

600 87 77 66 58 49 39 30 22 16 13 40

1000 88 79 68 59 50 41 33 26 22 20 45

RR

35

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Impact on Pause Times

100% utilization cannot provide strong MMU guarantees

Specified Compilation Thread UtilizationWindow
(ms) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 77 56 51 45 46 31 24 14 6 0 1

300 84 72 62 55 49 37 28 19 10 1 24

600 87 77 66 58 49 39 30 22 16 13 40

1000 88 79 68 59 50 41 33 26 22 20 45

RR

36

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Impact on Pause Times

100% utilization cannot provide strong MMU guarantees
Lower utilization provides better performance and MMU
guarantees than round-robin scheduler

Specified Compilation Thread UtilizationWindow
(ms) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 77 56 51 45 46 31 24 14 6 0 1

300 84 72 62 55 49 37 28 19 10 1 24

600 87 77 66 58 49 39 30 22 16 13 40

1000 88 79 68 59 50 41 33 26 22 20 45

RR

37

IBM Research

Prasad Kulkarni | Dynamic Compilation: the Benefits of Early Investing | VEE’07 | June 14, 2007 © 2007 IBM Corporation

Compiler Thread Utilization – Trade

	Dynamic Compilation:�The Benefits of Early Investing �
	Introduction
	When to Compile ?
	How to Exploit Free Cycles ?
	Outline
	Experimental Setup
	Benchmarks
	Outline
	Limitations of Asynchronous Compilation Implementations
	Utilization-Based Scheduling
	Effect of Round-Robin Scheduling
	Effect of Round-Robin Scheduling (cont…)
	Selecting Compiler Thread Utilization
	Compiler Thread Utilization – �Aggressive Controller
	Compiler Thread Utilization – �Aggressive Controller
	Compiler Thread Utilization – �Aggressive Controller
	Compiler Thread Utilization – �Aggressive Controller
	Performance Improvement at �100% Utilization
	High Compiler Thread Utilization
	Compiler Thread Utilization – �Conservative Controller
	Compiler Thread Utilization – �Conservative Controller
	Impact on Pause Times
	Outline
	Issues for Multiprocessor Machines
	Changing Compiler Aggressiveness
	Analyzing Aggressive Compilation
	Analyzing Aggressive Compilation (cont…)
	Exploiting Free Cycles
	Multiple Compilation Threads
	Outline
	Conclusions
	Effect of Round-Robin Scheduling (cont…)
	Background Compilation
	Impact on Pause Times
	Impact on Pause Times
	Impact on Pause Times
	Compiler Thread Utilization – Trade

