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Choosing the most appropriate optimization phase ordering has been a long standing problem

in compiler optimizations. Exhaustive evaluation of all possible orderings of optimization phases

for each function is generally dismissed as infeasible for production-quality compilers targeting

accepted benchmarks. In this paper we show that it is possible to exhaustively evaluate the

optimization phase order space for each function in a reasonable amount of time for most of the

functions in our benchmark suite. To achieve this goal we used various techniques to significantly

prune the optimization phase order search space so that it can be inexpensively enumerated in most

cases, and to reduce the number of program simulations required to evaluate program performance

for each distinct phase ordering. The techniques described are applicable to other compilers in

which it is desirable to find the best phase ordering for most functions in a reasonable amount of

time. We also describe some interesting properties of the optimization phase order space, which

will prove useful for further studies of related problems in compilers.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers, optimization;
D.4.7 [Operating Systems]: Organization and Design—realtime systems and embedded systems, interactive
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The current work differs from both of these earlier papers inseveral aspects:

(1) We introduce a completely new search algorithm (Section 5) to more efficiently find the successive phase
order sequences to evaluate. We also note the trade-offs in choosing any one algorithm over the other.

(2) We have doubled our benchmark set from 6 to 12 benchmarks, and more than doubled the number of studied
functions, from 111 to 244. Many of the newer functions addedare significantly larger, making our switch
to the new search algorithm more critical.

(3) A new section (Section 8) presents interesting results from analyzing the exhaustive phase order space over
the entire set of functions. These results, which are shown in Figures 11 through 19, required a significant
amount of time to collect.
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1. INTRODUCTION

Current optimizing compilers typically contain several different optimizationphases. Each
phase attempts to apply a series oftransformations, each of which consists of a sequence
of changes that preserves the semantic behavior of the program while typically improving
its efficiency. Many of these optimization phases use and share resources (such as machine
registers), and also need specific conditions in the code to be applicable. As a result, opti-
mization phases interact with each other by enabling and disabling opportunities for other
phases to be applied. Such interactions between optimization phases have been widely
studied in the context of different compilers (with different sets of optimization phases)
and different architectures [Whitfield and Soffa 1997; Almagor et al. 2004; Kisuki et al.
1999; Kulkarni et al. 2006a]. Based on such studies it is now definitively known that phase
interaction often causes different orders of applying optimizations phases to produce dif-
ferent output code, with potentially significant performance variation. Therefore, finding
the best order of applying optimization phases is importantfor application areas where
developers are willing to wait for longer compilations, such as in high performance and
embedded domains, so that more efficient code can be generated for each application. This
challenge is commonly known as thephase ordering problemin compilers. Over four
decades of research on the phase ordering problem has shown that the problem is difficult
since a single order of optimization phases will not produceoptimal code for every appli-
cation [Vegdahl 1982; Whitfield and Soffa 1990; Cooper et al. 1999; Kulkarni et al. 2003;
Triantafyllis et al. 2003; Kisuki et al. 1999]. The best order depends on the program being
optimized, the manner in which the optimizations are implemented in the compiler, and
the characteristics of the target machine.

A naive solution to the phase ordering problem is to exhaustively evaluate the perfor-
mance of all possible orderings of optimization phases. This approach requires the res-
olution of two sub-problems, both of which have always been considered infeasible for
production-quality compilers. The first sub-problem is to exhaustivelyenumerateall pos-
sible orderings of optimization phases. This enumeration is difficult since the phase or-
dering space has a tendency to quickly become impractical tocompletely explore in the
face of several different optimization phases that are typically present in current compil-
ers, with few restrictions on the ordering of these phases. The second sub-problem is to
evaluatethe performance of all the enumerated orderings to find the best performance.
To achieve the desired accuracy, performance evaluation generally requires execution of
the application, which is typically much more expensive than simply compiling the code.
Many low-end embedded systems are unable to support a full-fledged compilation en-
vironment, which implies that the software development activity occurs external to the
embedded device [Barr and Massa 2006]. Development activity for such systems often
proceeds via simulation instead of native execution [Engblom 2007; Redhat 2004; Vir-
tutech 2008], which is typically orders of magnitude more expensive. Thus, it is hardly
surprising that exhaustive phase order space evaluation over all the optimization phases in

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,September 2008.



Exhaustive Phase Ordering · 3

a mature compiler has never been successfully accomplished.
In this paper we show that by using various pruning techniques it is possible to exhaus-

tively evaluate all possible orderings of optimization phases for our compiler targeting the
ARM processor, and determine the best oroptimalperforming phase orderings with a very
high degree of probability for most of the functions in our benchmark suite. Note that a
different compiler, with a different or greater set of optimization phases can possibly gen-
erate better code than theoptimal instance produced by our compiler. Thus,optimal in the
context of this work refers tothe best code that can be produced by any optimization
phase ordering in our compiler (VPO) that applies optimizations on a per-function
basis, using identical parameters for all applications of each phase, on the ARM pro-
cessor platform, and on the benchmark and input data set considered in our study,
and is not meant to imply a universally optimal solution. We describe the techniques we
used to prune the phase order search space to generate all possible distinct function in-
stancesthat can be produced by changing the optimization phase ordering in our compiler,
for the vast majority of the functions that we studied. This paper also explains our ap-
proach of using simple and fast estimation techniques to reduce the number of simulations
and yet determine the optimal performing function instancewith a high degree of accuracy.
We have used various correlation techniques to illustrate that our method of performance
estimation is highly accurate for our purposes. Finally, exhaustive evaluation of the phase
order space over a large number of functions has given us a large data set, which we have
analyzed to determine various properties of the optimization space. Some of these results
are presented in this paper.

The remainder of this paper is organized as follows. In the next section we review the
previous work related to this topic. In Section 3 we give an overview of our compilation
framework. In Section 4 we explain our techniques to exploitredundancy in the phase or-
der space, and to reduce the number of simulations required to determine the performance
of all distinct phase orderings. Our implementation of these techniques in the context of
our experimental framework is described in Section 5. Our experimental results are pre-
sented in Section 6. In Section 7 we use two methods to demonstrate the strong correlation
between our estimates of performance and actual simulationcycles. In Section 8 we con-
duct an analysis of the optimization phase order space and present some interesting results.
The final two sections present directions for future work andour conclusions respectively.

2. RELATED WORK

As mentioned earlier, optimization phase ordering is a longstanding problem in compil-
ers and as such there is a large body of existing research on this topic. An interesting
study investigating the decidability of the phase orderingproblem in optimizing compila-
tion proved that finding the optimal phase ordering isundecidablein the general schemes
of iterative compilation and library generation/optimization [Touati and Barthou 2006].
However, their hypothesis assumes that the set of all possible programs generated by dis-
tinct phase orderings is infinite. This hypothesis is rational since optimizations such as
loop unrolling, and strip mining [Hewlett-Packard 2000] can be applied an arbitrary num-
ber of times, and can generate as many distinct programs. In practice, however, compilers
typically impose a restriction on the number of times such phases can be repeated in a nor-
mal optimization sequence. Additionally, most other optimizations are targeted to remove
some program inefficiency, and/or exploit some architectural feature, which in turn limits
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the number of times such phases can be active for any application. We explain this point in
greater detail in Section 3, where we describe the experimental settings used for the results
in this paper. Thus, finding the best phase ordering is decidable in most current compilers,
albeit very hard.

Strategies to address the phase ordering problem generallypursue one of two paths: a
model-driven approach or an empirical approach. A model-driven or analytical approach
attempts to determine the properties of optimization phases, and then use some of these
properties at compile time to decide what phases to apply andhow to apply each phase.
Such approaches have minimal overhead since additional profile runs of the application
are generally not required. Whitfield and Soffa developed a framework based on axiomatic
specifications of optimizations [Whitfield and Soffa 1990; 1997]. This framework was
employed to theoretically list theenablinganddisabling interactions between optimiza-
tions, which were then used to derive an application order for the optimizations. The main
drawback was that in cases where the interactions were ambiguous, it was not possible to
automatically determine a good ordering without detailed information about the compiler.
Follow-up work on the same topic has seen the use of additional analytical models, in-
cluding code context and resource (such as cache) models, todetermine and predict other
properties of optimization phases such as theimpactof optimizations [Zhao et al. 2003],
and theprofitability of optimizations [Zhao et al. 2005]. Even after substantialprogress,
the fact remains that properties of optimization phases, aswell as the relations between
them are, as yet, poorly understood, and model-driven approaches find it hard to predict
the best phase ordering in most cases.

With the growth in computation power, researchers have commonly adoptedempirical
approaches that use multiple program runs to search for the best phase ordering. Exhaus-
tive evaluation of the entire optimization phase order space has generally been considered
infeasible, and has never been successfully attempted prior to our work. Enumerations
of search spaces over a small subset of available optimizations have, however, been at-
tempted [Almagor et al. 2004]. This work exhaustively enumerated a 10-of-5 subspace
(optimization sequences of length 10 from 5 distinct optimizations) for some small pro-
grams. Each of these enumerations typically required several processor months even for
small programs. The researchers found the search spaces to be neither smooth nor convex,
making it difficult to predict the best optimization sequence in most cases.

Researchers have also investigated the problem of finding aneffective optimization
phase sequence by aggressive pruning and/or evaluation of only a portion of the search
space. This area has seen the application of commonly employed artificial intelligence
search techniques to search the optimization space. Hill climbers [Almagor et al. 2004;
Kisuki et al. 2000], grid-based search algorithms [Bodin etal. 1998], as well as genetic
algorithms [Cooper et al. 1999; Kulkarni et al. 2003] have been used during iterative
searches to find optimization phase sequences better than the default one used in their
compilers. Most of the results report good performance improvements over their fixed
compiler sequence.

In order to tackle the huge optimization phase order search spaces it is important to
find ways to drastically prune these search spaces. A method called Optimization-Space
Exploration [Triantafyllis et al. 2003], uses static performance estimators to reduce the
search time. In order to prune the search space they limit thenumber of configurations
of optimization-parameter value pairs to those that are likely to contribute to performance
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improvements. In other attempts to reduce the cost of iterative optimizations, researchers
have used predictive modeling and code context informationto focus search on the most
fruitful areas of the phase order space for the program beingcompiled for static compil-
ers [Agakov et al. 2006] as well as for dynamic compilers [Cavazos and O’Boyle 2006].
In our past research, we used genetic algorithms with aggressive pruning of the search
space [Kulkarni et al. 2004; Kulkarni et al. 2005] to make searches for effective optimiza-
tion phase sequences faster and more efficient. During this work we realized that a sig-
nificant portion of typical phase order search spaces is redundant because many different
orderings of optimization phases produce the same code. This observation was the major
motivation for this research.

Studies of using static performance estimations to avoid program executions have also
been done previously [Knijnenburg et al. 2000; Wagner et al.1994; Cooper et al. 2005].
Wagner et al. presented a number of static performance estimation techniques to deter-
mine the relative execution frequency of program regions, and measured their accuracy by
comparing them to profiling [Wagner et al. 1994]. They found that in most cases static es-
timators provided sufficient accuracy for their tasks. Knijnenburg et al. [2000] used static
models to reduce the number of program executions needed by iterative compilation. Our
approach of static performance estimation is most similar to the approach ofvirtual exe-
cution used by Cooper et al. [Cooper et al. 2005] in their ACME systemof compilation.
In the ACME system, Cooper et al. strived to execute the application only once (for the
un-optimized code) and then based on the execution counts ofthe basic blocks in that func-
tion instance, and careful analysis of transformations applied by their compiler, determine
the dynamic instruction counts for other events, such as function instances. With this ap-
proach, ACME has to maintain detailed state, which introduces some amount of additional
complexity in the compiler. In spite of detailed analysis, in a few cases ACME is not able
to accurately determine the dynamic instruction count due to the types of optimizations
been applied, occasionally resulting in small errors in their computation.

3. EXPERIMENTAL FRAMEWORK

The research in this paper uses the Very Portable Optimizer (VPO) [Benitez and Davidson
1988], which was a part of the DARPA and NSF co-sponsored National Compiler Infras-
tructure project. VPO is a compiler back end that performs all its optimizations on a single
low-level intermediate representation called RTLs (Register Transfer Lists). Since VPO
uses a single representation, it can apply most analysis andoptimization phases repeat-
edly and in an arbitrary order. VPO compiles and optimizes one function at a time. This
is important for the current study since restricting the phase ordering problem to a single
function, instead of the entire file, helps to make the optimization phase order space more
manageable. VPO has been targeted to produce code for a variety of different architec-
tures. For this study we used the compiler to generate code for the StrongARM SA-100
processor using Linux as its operating system.

Even though native execution of the benchmarks on the ARM system to measure dy-
namic runtime performance would be ideal, we were not able todo so due to resource
constraints. Mainly, we did not have access to an ARM machinethat runs Linux, and
which also supports our compilation framework. Secondly, ARM machines are consider-
ably slower than state-of-the-art x86 machines, so performing hundreds of long-running
experiments will require a significant number of custom ARM machines, which was infea-
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sible for us to arrange. Therefore, we used the SimpleScalarset of functional and cycle-
accurate simulators [Burger and Austin 1997] for the ARM to get dynamic performance
measures.

Table I describes each of the 15optionalcode-improving phases that we used during our
exhaustive exploration of the optimization phase order search space. In addition, VPO also
employs two compulsory phases,register assignmentandfix entry-exit, that must be per-
formed.Register assignmentassigns pseudo registers to hardware registers.1 In our exper-
iments VPO implicitly performs register assignment beforethe first code-improving phase
in a sequence that requires it.Fix entry-exitcalculates required stack space, local/argument
offsets, and generates instructions to manage the activation record of the runtime stack. The
compiler appliesfix entry-exitafter performing the last optional code-improving phase in
a sequence.

Two other optimizations,merge basic blocksandeliminate empty blocks, were removed
from the optional optimization list used for the exhaustivesearch since these optimiza-
tions only change the internal control-flow representationas seen by the compiler, do not
touch any instructions, and, thus, do not directly affect the final generated code. These
optimizations are now implicitly performed after any transformation that has the potential
of enabling them. Finally, after applyingfix entry-exit, the compiler also performs predi-
cation and instruction scheduling before the final assemblycode is produced. These last
two optimizations should be performed late in VPO’s compilation process, and so are not
included in the set of phases used for exhaustive optimization space enumeration.

A few dependences between some optimization phases in VPO makes it illegal for them
to be performed at certain points in the optimization sequence. The first restriction is that
evaluation order determinationcan only be performed beforeregister assignment. Eval-
uation order determinationis meant to reduce the number of temporaries thatregister
assignmentlater allocates to registers. VPO also restricts some optimizations that ana-
lyze values in registers, such asloop unrolling, loop strength reduction, induction variable
eliminationandrecurrence elimination, to be performed afterregister allocation. Many of
these phases depend on the detection of basic induction variables and VPO requires these
to be in registers before they are detected. These phases canbe performed in any order
after register allocationis applied. Register allocationitself can only be effective after
instruction selectionso that candidate load and store instructions can contain the addresses
of arguments or local scalars. Finally, there are a set of phases that require the allocation
of registers and must be performed afterregister assignment.

VPO is a compiler back end. Many other optimizations not performed by VPO, such
as loop tiling/interchange, inlining, and some other interprocedural optimizations, are typ-
ically performed in a compiler frontend, and so are not present in VPO. We also do not
perform ILP (frequent path) optimizations since the ARM architecture, our target for this
study, is typically implemented as a single-issue processor and ILP transformations would
be less beneficial. In addition, frequent path optimizations require a profile-driven compi-
lation process that would complicate this study. In this study we are investigating only the
phase ordering problem and do not vary parameters for how phases should be applied. For
instance, we do not attempt different configurations of loopunrolling, but always apply it
with a loop unroll factor of two since we are generating code for an embedded processor

1In VPO, pseudo registers only represent temporary values andnot variables. Before register allocation, all
program variables are assigned space on the stack.
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Optimization Phase Gene Description

branch chaining b Replaces a branch/jump target with the target of the last jump in the chain.
common subexpres-
sion elimination

c Performs global analysis to eliminate fully redundant calculations, which
also includes global constant and copy propagation.

unreachable code
elimination

d Removes basic blocks that cannot be reached from the functionentry block.

loop unrolling g To potentially reduce the number of comparisons and branches at run time
and to aid scheduling at the cost of code size increase.

dead assignment elim-
ination

h Uses global analysis to remove assignments when the assigned value is never
used.

block reordering i Removes a jump by reordering blocks when the target of the jump has only
a single predecessor.

loop jump minimiza-
tion

j Removes a jump associated with a loop by duplicating a portion of the loop.

register allocation k Uses graph coloring to replace references to a variable within a live range
with a register.

loop transformations l Performs loop-invariant code motion, recurrence elimination, loop strength
reduction, and induction variable elimination on each loop ordered by loop
nesting level.

code abstraction n Performs cross-jumping and code-hoisting to move identical instructions
from basic blocks to their common predecessor or successor.

evaluation order de-
termination

o Reorders instructions within a single basic block in an attempt to use fewer
registers.

strength reduction q Replaces an expensive instruction with one or more cheaper ones. For this
version of the compiler, this means changing a multiply by a constant into a
series of shift, adds, and subtracts.

branch reversal r Removes an unconditional jump by reversing a conditional branch when it
branches over the jump.

instruction selection s Combines pairs or triples of instructions that are are linkedby set/use de-
pendencies. Also performs constant folding.

useless jump removal u Removes jumps and branches whose target is the following positional block.

Table I. Candidate Optimization Phases Along with their Designations

where code size can be a significant issue.
It is important to realize that all optimization phases in VPO, exceptloop unrollingcan

be successfullyapplied only a limited number of times. Successful application of each
phase depends on the presence of both the program inefficiency targeted by that phase,
as well as the presence of architectural features required by the phase. Thus, (1)register
allocation is limited (in the number of times it can be successfully applied) by the number
of live ranges in each function. (2)Loop invariant code motionis limited by the number of
instructions within loops. (3)Loop strength reductionconverts regular induction variables
to basic induction variables, and there are a limited numberof regular induction variables.
(4) There are a set of phases that eliminate jumps (branch chaining, block reordering, loop
jump minimization, branch reversal, useless jump removal), and these are limited by the
number of jumps in each function. (5)Common subexpression eliminationis limited by
the number of calculations in a function. (6)Dead assignment eliminationis limited by
the number of assignments. (7)Instruction selectioncombines instructions together and
is limited by the number of instructions in a function. (8)Induction variable elimination
is limited by the number of induction variables in a function. (9) Recurrence elimination
removes unnecessary loads across loop iterations and is limited by the number of loads in
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a function. (10)Code abstractionis limited by the number of instructions in a function.
Loop unrollingis an optimization that can be attempted an arbitrary numberof times, and

can produce a new function instance every time. We restrict loop unrolling to be attempted
only once for each loop. This is similar to the restriction placed on loop unrolling in most
compilers. Additionally, optimizations in VPO never undo the changes made by another
phase. Even if they did, our approach could handle this sincethe function instance graph
(explained in Section 4) would no longer be a DAG, and would contain cycles. Thus, for
any function, the number of distinct function instances that can be produced by any possible
phase ordering of any (unbounded) length is finite, and exhaustive search to enumerate all
function instances should terminate in every case.

Note that some phases in VPO represent multiple optimizations in many compilers.
However, there exist compilers, such as GCC, that have a greater number of distinct op-
timization phases. Unlike VPO, most compilers are much morerestrictive regarding the
order in which optimizations phases are performed. In addition, the more obscure a phase
is, the less likely that it will be successfully applied and affect the search space. For ex-
ample, it has been reported that only 15 out of 60 possible optimization phases in GCC
were included in an earlier work determining Pareto optimization levels in GCC [Hoste
and khout 2008]. While one can always claim that additional phases can be added to a
compiler or that some phases can be applied with different parameters (e.g., different un-
roll factors for loop unrolling), completely enumerating the optimization phase order space
for the number of phases applied in our compiler has never before been accomplished to
the best of our knowledge.

For these experiments we used a subset of the benchmarks fromtheMiBenchbenchmark
suite, which are C applications targeting specific areas of the embedded market [Guthaus
et al. 2001]. We selected two benchmarks from each of the six categories of applications
in MiBench. Table II contains descriptions of these programs. The first two columns in
Figure II show the benchmarks we selected from each application category in MiBench.
The next column displays the number of lines of C source code per program, and the last
column in Figure II provides a short description of each selected benchmark. VPO com-
piles and optimizes individual functions at a time. The 12 benchmarks selected contained
a total of 244 functions, out of which 88 were executed with the input data provided with
each benchmark.

Category Program #Lines Description

auto bitcount 584 test processor bit manipulation abilities
qsort 45 sort strings using the quicksort sorting algorithm

network dijkstra 172 Dijkstra’s shortest path algorithm
patricia 538 construct patricia trie for IP traffic

telecomm fft 331 fast fourier transform
adpcm 281 compress 16-bit linear PCM samples to 4-bit samples

consumer jpeg 3575 image compression and decompression
tiff2bw 401 convert colortiff image to b&w image

security sha 241 secure hash algorithm
blowfish 97 symmetric block cipher with variable length key

office string-search 3037 searches for given words in phrases
ispell 8088 fast spelling checker

Table II. MiBench Benchmarks Used in the Experiments
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4. APPROACH FOR EXHAUSTIVE EVALUATION OF THE PHASE ORDER SPACE

Complete phase order space evaluation to find the optimal phase ordering for each function
would require enumeration and performance measurement of the application code gener-
ated by the compiler after applying each possible combination of optimization phases.
Both of these tasks,enumerationandperformance evaluation, have been generally con-
sidered infeasible over the complete phase order space. In the following sections we will
explain our approach which makes these tasks possible in a reasonable amount of time for
most of the functions that we studied.

4.1 Exploiting Redundancy in the Phase Order Space

In order to achieve high performance current compilers typically employ several different
optimization phases, with few restrictions on the order of applying these phases. Fur-
thermore, interactions between optimization phases causesome phases to be successful
multiple times in the same optimization sequence. The conventional approach for exhaus-
tive phase order enumeration attempts to fix the optimization sequence length, and then
compile the program with all possible combinations of optimization phases of the selected
length. The complexity of this approach is exponential and clearly intractable for any rea-
sonable sequence length. It is also important to note that any such attempt to enumerate all
combinations of optimizations is, in principle, limited byour lack of a priori knowledge of
the best sequence length for each function.

Interestingly, another method of viewing the phase ordering problem is to enumerate
all possiblefunction instancesthat can be produced by any combination of optimization
phases for any possible sequence length. This approach to the same problem clearly makes
the solution much more practical because there are far fewerdistinct function instances
than there are optimization phase orderings, since different orderings can generate the same
code. Thus, the challenge now is to find accurate and efficientmethods to detect identical
function instances produced by distinct phase orderings.

Figure 1 illustrates the phase order space for four distinctoptimization phases. At the
root (level 0) we start with the unoptimized function instance. For level 1, we generate
the function instances produced by an optimization sequence length of 1, by applying each
optimization phase individually to the base unoptimized function instance. For all other
higher levels, optimization phase sequences are generatedby appending each optimization
phase to all the sequences at the preceding level. Thus, for each leveln, we in effect gener-
ate all combinations of optimizations of lengthn. As can be seen from Figure 1, this space
grows exponentially and would very quickly become infeasible to traverse. This exponen-
tially growing search space can often be made tractable without losing any information by
using three pruning techniques which we describe in the nextthree sections.

4.1.1 Detecting Dormant Phases.The first pruning technique exploits the property
that not all optimization phases are successful at all levels and in all positions. We call ap-
plied phasesactivewhen they produce changes to the program representation. A phase is
said to bedormantif it could not find any opportunities to be successful when applied. De-
tecting dormant phases eliminates entire branches of the tree in Figure 1. The search space
taking this factor into account can be envisioned as shown inFigure 2. The optimization
phases found to be inactive are shown by dotted lines.
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Fig. 1. Naive Optimization Phase Order Space for Four Distinct Optimizations
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Fig. 2. Effect of Detecting Dormant Phases on the Search Spacein Figure 1

original code segmentoriginal code segment
r[2]=1; r[2]=1;

r[3]=r[4]+r[2];r[3]=r[4]+r[2];

after dead assignment elimination
r[3]=r[4]+1;

after constant propagation
r[2]=1;

r[3]=r[4]+1;

after instruction selection
r[3]=r[4]+1;

Fig. 3. Diff. Opts. Having the Same Effect

4.1.2 Detecting Identical Function Instances.The second pruning technique relies on
the assertion that many different optimizations at variouslevels produce function instances
that are identical to those already encountered at previouslevels or those generated by pre-
vious sequences at the same level. There are a couple of reasons why different optimization
sequences would produce the same code. The first reason is that some optimization phases
are inherently independent. For example, the order in whichbranch chainingandregis-
ter allocationare performed does not typically affect the final code. Theseoptimizations
do not share resources, are mutually complementary, and work on different aspects of the
code. Secondly, different optimization phases may producethe same code. One example is
illustrated in Figure 3.Instruction selectionmerges the effects of instructions and checks
to see if the resulting instruction is valid. In this case, the same effect can be produced
by constant propagation(part ofcommon subexpression eliminationin VPO) followed by
dead assignment elimination. Thus, if the current function instance is detected to be iden-
tical to some earlier function instance, then it can be safely eliminated from the space of
distinct function instances.
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4.1.3 Detecting Equivalent Function Instances.From previous studies we have real-
ized that it is possible for different function instances tobe identical except for register
numbers used in the instructions [Kulkarni et al. 2004; Kulkarni et al. 2005]. This situation
can occur since different optimization phases compete for registers. It is also possible that
a difference in the order of optimizations may create and/ordelete basic blocks in different
orders causing them to have different labels. For example, consider the source code in Fig-
ure 4(a). Figures 4(b) and 4(c) show two possible translations given two different orderings
of optimization phases that consume registers and modify the control flow. To detect this
situation we perform a remapping of hardware registers for each function instance, and
again compare the current instance with all previous instances for a match. Thus, after
remapping, code in Figures 4(b) and 4(c) are both transformed to the code in Figure 4(d).
On most machines, which have identical access time for all registers, these two code se-
quences would have identical performance, and hence the function instances are termed
equivalent. We only need to maintain one instance from each group of equivalent function
instances, and the rest can be eliminated from the search space.

The effect of different optimization sequences producing identical or equivalent code
is to transform the tree structure of the search space, as seen in Figures 1 and 2, to a
directed acyclic graph (DAG) structure, as shown in Figure 5. By comparing Figures 1,
2 and 5, it is apparent how these three characteristics of theoptimization search space
help to make exhaustive search feasible. Note that the optimization phase order space for
functions processed by our compiler is acyclic since no phase in VPO undoes the effect of
another. However, a cyclic phase order space could also be exhaustively enumerated using
our approach since identical function instances are detected.

(a) Source Code
   sum += a[i];
for (i = 0; i < 1000; i++)
sum = 0;

(b) Register Allocation
before Code Motion

IC=r[1]?r[9];

Register Allocation
(c) Code Motion before

IC=r[1]?r[9];

r[1]=r[1]+4;

r[8]=M[r[1]];

(d) After Mapping
Registers

r[1]=r[1]+4;

r[1]=     ;

r[8]=M[r[1]];

r[12]

     =     +r[8];r[10] r[10]

     =0;

     =HI[a];

     =     +LO[a];

r[1]=     ;

r[9]=4000+     ;

     =     +r[8];

r[11]

r[10]

r[10] r[10]

     r[10]

          r[10]

r[11] r[11]

L3: L5: L01:

PC=IC<0,  ; PC=IC<0,  ; PC=IC<0,   ;

r[1]

r[2]

r[5]=M[r[3]];

r[3]=r[3]+4;

IC=r[3]?r[4];

     r[2]

r[4]=4000+    ;          r[2]

r[1] r[1]

     =     +LO[a];

          r[12]r[9]=4000+     ;

r[10]

      r[12]

     =0;

r[12] r[12]

     =HI[a];

    =0;

    =HI[a];

r[2] r[2]    =    +LO[a];

r[3]=    ;

        L3         L5         L01

    =    +r[5];

Fig. 4. Different Functions with Equivalent Code

4.2 Performance Estimation of Each Distinct Function Instance

Finding the dynamic performance of a function instance requires execution or simulation of
the application. Executing the program typically takes considerably longer than it takes the
compiler to generate each function instance. Moreover, simulation can be orders of mag-
nitude more expensive than native execution, and is often the only resort for evaluating the
performance of applications on embedded processors. Thus,in most cases, the enumerated
distinct function instances for each function are still substantial enough to make executing
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a
b c

c
a d d

Level 0

Level 1

Level 2

a
d c

Fig. 5. Detecting Identical Code Transforms the Tree in Figure 2 to a DAG

the program for each function instance prohibitively expensive. Thus, in order to find the
optimal function instance it is necessary to reduce the number of program executions, but
still be able to accurately estimate dynamic performance for all function instances. In this
section, we describe our approach to obtain accurate performance estimates.

In order to reduce the number of executions we use a techniquethat is based on the
premise that two different function instances with identical control-flow graphs will ex-
ecute the same basic blocks the same number of times. Our technique is related to the
method used by Cooper et al. in their ACME system of adaptive compilation [Cooper
et al. 2005]. However, our adaptations have made the method simpler to implement and
more accurate for our tasks. During the exhaustive enumerations we observed that for any
function the compiler only generates a very small number of distinct control-flow paths,
i.e., multiple distinct function instances have the same basic block control-flow structure.
For each such set of function instances having the same control flow, we execute/simulate
the application only once to determine the basic block execution counts for that control-
flow structure. For each distinct function instance we then calculate the number of cycles
required to execute each basic block. The dynamic performance of each function instance
can then be calculated as the sum of the products of basic block cycles times the block
execution frequency over all basic blocks. We call this performance estimate ourdynamic
frequency measure. For the current study, the basic block cycle count is a static count
that takes into account stalls due to pipeline data hazards and resource conflicts, but does
not consider order dependent events, such as branch misprediction and memory hierar-
chy effects. Additionally, we reset all computation resources to be idle at the start of the
static cycles calculation for each basic block. Other more advanced measures of static
performance, using detailed cache and resource models, canbe considered at the cost of
increased estimation time. As we will show later in this paper, we found our simple esti-
mation method to be sufficiently accurate for our needs on thein-order ARM processor.

5. IMPLEMENTATION DETAILS

In this section, we describe some of our implementation details for the techniques de-
scribed in the previous section to find the optimal function instance by our measure of
dynamic performance, and with respect to the possible phaseorderings in our compiler.

The phase order space can be generated/traversed in either abreadth-first or a depth-first
order. Each traversal algorithm has different advantages and drawbacks for our experi-
ments. In both cases we start with the unoptimized function instance representing the root
node of the DAG. Using breadth first search, nodes in Figure 5 would be generated in the
order shown in Figure 6(a), while depth-first search would generate the nodes in the order
shown in Figure 6(b).
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(a) Breadth−first Traversal
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(b) Depth−first Traversal
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6 7

8

9

Fig. 6. Breadth-First and Depth-First DAG Traversal algorithms

During the search process we have to compile the same function with thousands of dif-
ferent optimization phase sequences. Generating the function instance for every new op-
timization sequence involves discarding the previous compiler state (which was produced
by the preceding sequence), reading the unoptimized function back from disk, and then
applying all the optimizations in the current sequence. We made a simple enhancement to
keep a copy of the unoptimized function instance in memory toavoid disk accesses for all
optimization sequence evaluations, except the first. Another enhancement we implemented
to make the searches faster uses the observation that many different optimization sequences
share common prefixes. Thus, for the evaluation of each phasesequence, instead of rolling
back to the unoptimized function instance every time, we determine the common prefix be-
tween the current sequence and the previous sequence, and only roll back until after the last
phase in the common prefix. This technique saves the time thatwould otherwise have been
required to re-perform the analysis and optimizations in the common prefix. The number
of intermediate function instances we need to store is limited by the depth of the DAG, so
this technique does not cause any significant space overheadin practice, but proves to be
very time efficient.

Table III shows the successful sequences during the generation of the DAG in Figure
5 during both breadth-first and depth-first traversals. Since phases in the common prefix
do not need to be reapplied, the highlighted phases in Table III are the only ones which
are actually attempted. Depth-first search keeps a stack of previous phase orderings, and
is typically able to exploit greater redundancy among successive optimization sequences
than breadth-first search. Therefore, to reduce the search time during our experiments we
used the depth-first approach to enumerate the optimizationphase order search space.

1. a 1. a
2. b 2. a c
3. c 3. a d
4. a c 4. b
5. a d 5. b a
6. b a 6. b c
7. b c 7. b d
8. b d 8. c
9. c a 9. c a
10. c d 10. c d
Breadth-First Depth-First

Traversal Traversal

Table III. Applied Phases during Space Traversal
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There is, however, a drawback to the depth-first traversal approach. Although a large
majority of the functions that we encountered can be exhaustively evaluated in a reasonable
amount of time, there are a few functions, with extremely large search spaces, which are
intractable even after applying all our pruning methods. Itwould be beneficial if we could
identify such cases before starting the search or early on inthe search process so that we
do not spend time and resources unnecessarily. This identification is easier to accomplish
during the breadth-first traversal as we can see the growth inthe search space at each level
(refer Figure 5). If the growth in the first few levels is highly exponential, and difficult
to tame, then we can stop the search on that function and designate that function as too
large to exhaustively evaluate. In an earlier study, we usedbreadth-first search and stopped
the search whenever the number of sequences to evaluate at any level grew to more than
a million [Kulkarni et al. 2006a]. It is hard to find such a cut-off point during a depth-
first traversal. For this study, we stop the exhaustive search on any function if the time
required exceeded an approximate limit of 2 weeks. Please note that exhaustive phase
order evaluation for most of the functions requires a few minutes or a few hours, with only
the largest enumerated functions requiring a few days.

Figure 7 illustrates the steps followed during the exhaustive phase order evaluation for
each function. We will now briefly describe the implementation details for each step.

active ?

identical
function
instance?

equivalent
function 

control flow
seensimulate

application

instance?

structure?

calculate 
function

performance

approach
depth−first

using 
sequence

optimization
next

generate

last phase

N Y Y

Y N N

Y

N

Fig. 7. Steps followed during an exhaustive evaluation of the phase order space for each function

5.1 Detecting Dormant Phases

There is no phase in our compiler that can be successfully applied more than once consec-
utively. Therefore, an active phase at one level is not even attempted at the next level. For
all other attempted phases, we get feedback from the compiler reporting if the phase was
active or dormant. Since dormant phases keep the function unchanged, we do not need to
further generate that branch of the search space.

5.2 Detecting Identical Function Instances

A naive comparison of each newly generated function instance with all previous func-
tion instances will be slow and require prohibitive memory space. Therefore, to make the
comparisons efficient, we calculate multiple hash values for each function instance and
compare the hash values for a match. For each function instance we store three numbers:
a count of the number of instructions, byte-sum of all instructions, and the CRC (cyclic-
redundancy code) checksum on the bytes of the RTLs in that function. This approach was
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also used in our previous studies to detect redundant sequences when applying a genetic al-
gorithm to search for effective phase sequences [Kulkarni et al. 2004; Kulkarni et al. 2005].
CRCs are commonly used to check the validity of data transmitted over a network and have
an advantage over conventional checksums in that the order of the bytes of data does affect
the result [Peterson and Brown 1961]. CRCs are useful in our case since function instances
that are identical except for different order of instructions will be detected to be distinct.
We have verified that when using all the three checks in combination it is extremely rare
(we have never encountered an instance) that distinct function instances would be detected
as identical.

5.3 Detecting Equivalent Function Instances

To detect equivalent function instances we map each register and block label-number to a
different number depending on when it is encountered in the control flow. Note that this
mapping is only performed for the checksum calculation and is not used when additional
phases are applied. We start scanning the function from the top basic block. Each time a
register is first encountered we map it to a distinct number starting from 1. This register
would keep the same mapping throughout the function. For instance, if registerr[10] is
mapped tor[1], then each timer[10] is encountered it would be changed tor[1]. If
r[1] is later found in some RTL, then it would be mapped to the remapnumber exist-
ing at that position during the scan. Note that this is different from register remapping of
live ranges [Kulkarni et al. 2004; Kulkarni et al. 2005], andis in fact much more naive.
Although a complete live range register remapping might detect more instances as being
equivalent, we recognize that a live range remapping at intermediate points in an optimiza-
tion phase sequence would be unsafe as it changes the register pressure which might affect
other optimizations applied later. During this function traversal we simultaneously remap
block labels as well, which also involves mapping the labelsused in the actual RTLs. The
algorithm for detecting equivalent function instances then proceeds similarly to the earlier
approach of detecting identical function instances.

5.4 Obtaining Dynamic Performance Measures

As explained in Section 4.2, to determine dynamic performance we only need to simulate
the application for new control flows. Thus, after generating each new function instance
we compare its control-flow structure with all previously encountered control flows. This
check compares the number of basic blocks, the position of the blocks in the control-flow
graph, the positions of the predecessors and successors of each block, and the relational
operator and arguments of each conditional branch instruction. Loop unrollingpresents a
complication when dealing with loops of single basic blocks. It is possible for loop un-
rolling to unroll such a loop and change the loop exit condition. Later if some optimization
coalesces the unrolled blocks, then the control flow looks identical to that before unrolling,
but due to different loop exit conditions, the block frequencies are actually different. We
handle such cases by verifying the loop exit conditions and marking unrolled blocks differ-
ently from non-unrolled code. We are unaware of any other control flow changes caused
by our set of optimization phases that would be incorrectly detected by our algorithm.

If the check reveals that the control flow of the new function instance has not as yet been
encountered, then before producing assembly code, the compiler instruments the function
with additional instructions using EASE [Davidson and Whalley 1991]. Upon simulation,
these added instructions count the number of times each basic block is executed. The
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functional simulatorsim-uop, present in the SimpleScalar simulator toolset [Burger and
Austin 1997] is used for the simulations. The dynamic performance for each function
instance is estimated by multiplying the number of static cycles calculated for each block
with the corresponding block execution counts.

6. EXPERIMENTAL RESULTS

In this study we have been able to exhaustively evaluate the phase order space for 234
out of a total of 244 functions over 12 applications selectedfrom the MiBench benchmark
suite [Guthaus et al. 2001]. Only 88 out of the 244 total functions were executed when
using the input data sets provided with the MiBench benchmarks. Out of the 88 executed
functions, we were able to evaluate 79 functions exhaustively. For space reasons, we only
present the results for the executed functions in this submission version of the paper. Ta-
ble IV presents the results for the executed enumerated functions. The functions in the table
are sorted in descending order by the number of instructionsin the un-optimized function
instance. The table presents the results only for the top 50 functions in each category, along
with the average numbers for the remaining functions.

The first three columns in Table IV, namely the number of instructions (Inst), branches
(Br), and loops (Lp) in the unoptimized function instance, present some of the static char-
acteristics for each function. These numbers provide a measure of the complexity of each
function. As expected, more complex functions tend to have larger search spaces. The
next two columns, number of distinct function instances (Fn inst) and the maximum ac-
tive sequence length (Len), reveal the sizes of theactualandattemptedphase order spaces
for each function. A maximum optimization sequence length of n gives us an attempted
search space of 15n, where 15 is the number of optimizations present in VPO. The num-
bers indicate that the median function has an optimization phase order search space of
1516. Moreover, the search space can grow to 1544 (for the functionpfx list chk in ispell)
in the worst case for the compiler and benchmarks used in thisstudy. Thus, we can see
that although the attempted search space is extremely large, the number of distinct func-
tion instances is only a tiny fraction of this number. A more important observation is that
unlike the attempted space, the number of distinct functioninstances does not typically
increase exponentially as the sequence length increases. This is precisely the redundancy
that we are able to exploit in order to make our approach of exhaustive phase order space
enumeration feasible.

The number of distinct control flows, presented in the columnlabeledCF, is more sig-
nificant for the performance evaluation of the executed functions in our benchmarks. We
only need to simulate the application once for each distinctcontrol flow. The relatively
small number of distinct control flows as compared to the total number of unique function
instances makes it possible to obtain the dynamic performance of the entire search space
with only a relatively insignificant compile time overhead.The column labeledCT in Ta-
ble IV gives an estimate of the compile time required for the exhaustive evaluation of each
function on a 64-bit Intel Pentium-D 3.0Ghz processor. Our exhaustive experiments were
conducted on five different machines of varying strengths, and so we only provide an es-
timate of the compile time on the granularity of several minutes (M), hours (H), days (D),
or weeks (W). As expected, the compile time is directly proportional to the number of in-
structions, complexity of the control-flow, and the phase order space size of each function.
Additionally, for the executed functions, the compile timeis also dependent on the number
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Function Inst Br Lp Fn inst Len CF CT Leaf within ? % of opt. % perf dif.
opt 2% 5% Batch Worst

main(t) 1275 110 6 2882021 29 389 W 15164 1.1 26.3 41.1 0.0 84.3
parsesw...(j) 1228 144 1 180762 20 53 D 2057 0.4 1.9 4.1 6.7 64.8
askmode(i) 942 84 3 232453 24 108 D 475 1.7 2.9 4.6 8.4 56.2
skiptoword(i) 901 144 3 439994 22 103 D 2834 0.5 5.6 29.6 6.1 49.6
start in...(j) 795 50 1 8521 16 45 H 80 20.0 60.0 60.0 1.7 28.4
treeinit(i) 666 59 0 8940 15 22 H 240 3.3 40.0 100.0 0.0 3.4
pfx list...(i) 640 59 2 1269638 44 136 D 4660 0.3 0.3 2.1 4.3 78.6
main(f) 624 35 5 2789903 33 122 W 4214 0.0 0.0 0.0 7.5 46.1
shatran...(h) 541 25 6 548812 32 98 H 5262 0.0 9.4 30.2 9.6 133.4
initckch(i) 536 48 2 1075278 32 32 D 4988 24.1 91.1 91.1 0.0 108.4
main(p) 483 26 1 14510 15 10 H 178 1.7 21.9 32.0 7.7 13.1
pat insert(p) 469 41 4 1088108 25 71 D 3021 1.4 46.6 47.3 0.0 126.4
main(j) 465 28 1 25495 21 12 H 134 0.0 0.0 0.0 5.6 6.0
main(l) 464 51 4 1896446 25 920 W 5364 0.0 25.0 25.0 0.9 89.3
adpcmco...(a) 385 35 1 28013 23 24 H 230 1.3 2.6 12.6 1.8 48.9
dijkstra(d) 354 22 3 92973 22 18 H 1356 0.3 22.1 26.8 0.0 51.1
good(i) 313 29 1 87206 22 32 H 370 4.3 17.3 48.9 0.0 14.6
chk aff(i) 304 30 1 179431 21 160 H 2434 1.6 10.8 39.8 0.1 58.7
cpTag(t) 303 40 0 522 11 9 M 16 0.0 100.0 100.0 1.6 1.6
makeposs...(i) 280 33 1 70368 24 119 H 498 2.4 30.5 33.7 0.0 130.1
xgets(i) 273 37 1 37960 19 103 H 284 4.2 32.4 32.4 0.0 129.7
missings...(i) 262 28 2 23477 26 30 H 513 8.2 8.2 14.4 4.0 86.8
missingl...(i) 252 31 3 11524 16 40 H 180 0.6 0.6 3.3 12.9 79.2
chk suf(i) 243 21 1 75628 21 29 H 2835 0.8 4.4 11.7 0.8 62.4
compound...(i) 222 30 1 78429 20 49 H 448 3.6 3.6 3.6 11.1 100.0
main(b) 220 15 2 182246 23 84 H 508 0.8 16.9 16.9 8.3 250.0
skipover...(i) 212 30 1 105353 29 110 H 413 0.5 7.3 47.0 7.7 75.4
lookup(i) 195 22 2 37396 20 38 H 114 0.0 0.0 0.0 7.7 75.9
wronglet...(i) 194 25 2 22065 17 25 H 430 0.5 0.5 4.2 15.0 89.8
ichartostr(i) 186 26 3 40524 21 40 H 304 1.6 27.3 52.6 0.0 236.0
main(s) 175 12 3 30980 23 10 M 163 4.9 7.4 8.6 0.0 67.4
main(d) 175 15 3 9206 20 22 M 85 2.4 3.5 49.4 4.3 75.3
main(q) 174 14 2 38759 23 121 H 160 2.5 25.0 25.0 0.0 214.3
treelookup(i) 167 23 2 67507 17 65 H 1992 15.3 15.3 15.3 0.0 66.7
insertR(p) 161 15 0 2462 14 6 M 22 18.2 36.4 72.7 0.5 97.9
shafinal(h) 155 4 0 2472 13 3 M 68 20.6 20.6 41.2 0.0 21.7
selectf...(j) 149 21 0 510 10 10 M 16 25.0 25.0 75.0 0.0 7.1
byte rev...(h) 146 5 1 2715 19 13 M 54 7.4 61.1 74.1 0.4 42.4
main(a) 140 10 1 1676 16 8 M 12 0.0 66.7 66.7 0.0 16.9
strtoichar(i) 140 18 1 10721 19 17 H 109 7.3 11.0 26.6 0.0 100.5
ntbl bit...(b) 138 1 0 48 7 1 M 8 25.0 25.0 75.0 0.0 10.7
readpbm...(j) 134 21 2 4182 15 18 H 60 6.7 16.7 20.0 6.7 69.3
bitcount(b) 133 1 0 44 8 1 M 7 14.3 14.3 28.6 0.0 64.3
strsearch(s) 128 17 2 32550 17 48 H 972 0.3 0.9 5.2 1.5 135.2
enqueue(d) 124 10 1 488 13 4 M 12 16.7 75.0 100.0 0.2 4.5
shaupdate(h) 118 7 1 5990 18 50 H 49 0.0 81.6 81.6 0.1 82.0
transpos...(i) 117 10 1 5310 16 19 H 44 4.5 13.6 25.0 4.5 98.7
pat search(p) 110 14 1 5052 15 33 H 98 4.1 16.3 16.3 0.6 66.8
init sea...(s) 103 9 2 1430 15 11 M 30 3.3 53.3 53.3 0.4 459.3
main(h) 101 11 1 22476 20 129 H 320 0.0 0.0 0.0 7.1 100.0
remaining(29) 51.5 4.1 0.3 442.6 9.1 4.4 - 13.0 41.8 47.8 52.8 7.8 34.0
average(79) 234.3 21.7 1.2 174574.8 16.1 47.4 - 813.4 18.7 32.6 41.8 4.8 65.4

(Function- function name followed by benchmark indicator [(a)-adpcm, (b)-bitcount, (d)-dijkstra,
(f)-fft, (h)-sha, (i)-ispell, (j)-jpeg, (l)-blowfish, (q)-qsort, (p)-patricia, (t)-tiff, (s)-stringsearch]), (Inst
- number of instructions in unoptimized function), (Br - number of conditional and unconditional
transfers of control), (Lp - number of loops), (Fninst - number of distinct control-flow instances),
(Len - largest active optimization phase sequence length), (CF - number of distinct control flows),
(CT - compile time [M-minutes, H-hours, D-days, W-weeks]), (Leaf -Number of leaf function
instances), (within ? % of optimal - what percentage of leaf function instances are within ”?”% from
optimal), (% perf dif. - % performance difference betweenBatchandWorstleaf from Optimal).

Table IV. Optimization Phase Order Evaluation Results for the Executed Functions in the MiBench Benchmarks
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of distinct control-flow paths of the function, since these determine the number of applica-
tion simulations required to evaluate the performance of all function instances. Please note
that the compile time for the undisplayed functions varied from several seconds in most
cases to a few minutes.

The next column, labeledLeaf, gives a count of theleaf function instances. These are
function instances for which no additional phase is able to make any further changes to
the program representation. The small number of leaf function instances imply that even
though the enumeration DAG may grow out to be very wide, it generally starts converging
towards the end. Leaf instances are an interesting and important sub-class of possible
function instances. They are the only instances that can be generated by an aggressive
compiler like VPO that repetitively apply optimizations until there are no more that can be
applied. At the same time, leaf instances generally producegood performance. It is easy to
imagine why this is the case, since all optimizations are designed to improve performance,
and leaf instances apply all that are possible in some particular ordering. For most of our
benchmark functions, at least one leaf function instance isable to reach optimal. Note
again that we are defining optimal in this context to be the function instance that results
in the best dynamic frequency measures. The set of the next three columns in Table IV,
labeledwithin ?% of opt., reveal that over 18% of all leaf instances, on average, reached
optimal, with over 40% of them within 5% of optimal. Additionally, we calculated that for
86% of the functions in our test suite at least one leaf function instance reached optimal.

We analyzed the few cases for which none of the leaf function instances achieved op-
timal performance. The most frequent reason we observed that caused such behavior is
illustrated in Figure 8. Figure 8(a) shows a code snippet which yields the best performance
and 8(b) shows the same part of the code after applyingloop-invariant code motion. r[0]
andr[1] are passed as arguments to both of the called functions. Thus, it can be seen from
Figure 8(b) thatloop-invariant code motionmoves the invariant calculation,r[4]+28 , out
of the loop, replacing it with a register to register move, asit is designed to do. But later,
the compiler is not able to collapse the reference bycopy propagationbecause it is passed
as an argument to a function. The implementation ofloop-invariant code motionin VPO
is not robust enough to detect that the code will not be further improved. In most cases,
this situation will not have a big impact, unless this loop does not typically execute many
iterations. It is also possible thatloop-invariant code motionmay move an invariant calcu-
lation out of a loop that is never entered during execution. In such cases, no leaf function
instance is able to achieve the best dynamic performance results.

The last two columns in Table IV compare the performance of the conventional (batch)
compiler and the worst performing leaf function instance with the function instance(s) hav-
ing the optimal ordering. The conventional VPO compiler iteratively applies optimization
phases until there are no additional changes made to the program by any phase. As a result,
the fixed (batch) sequence in VPO always results in a leaf function instance. In contrast,
many other compilers (including GCC) cannot do this effectively since it is difficult to
re-order optimization phases in these compilers. The fixed batch optimization sequence
in VPO has been tuned over several years. The maturity of VPO is responsible for the
batch sequence finding the optimal function instance for 33 of the 79 executed functions.
However, in spite of this aggressive baseline, the batch compiler produces code that is
4.8% worse than optimal, on average. The worst performing leaf function instance can
potentially be over 65% worse than optimal on average.
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L2:

L1:
 

L2:

L1:
 

 r[0]=r[4]+28;
 r[1]=64;
 call reverse; 

 r[0]=r[4]+28;
 r[1]=r[5];
 call memcpy;

 r[7]=r[4]+28;
 PC = L1;

 c[0]=r[6]?191;
 PC=c[0]<0, L2;

 r[0]=r[7];
 r[1]=64;
 call reverse; 

 r[0]=r[7];
 r[1]=r[5];
 call memcpy;

 c[0]=r[6]?191;
 PC=c[0]<0, L2;

 PC = L1;

(a) Before Code Motion (b) After Code Motion

Fig. 8. Case When No Leaf Function Instance Yields Optimal Performance

Function Insts Blk Trans. of Cntr. Loops
Cond. Uncond. Depth1 Depth2 Depth3

main(i) 3335 369 93 142 3 1 0
linit(i) 1842 180 51 98 5 3 0
checkline(i) 1387 203 69 96 5 2 0
saveroot..(i) 1140 133 38 73 4 4 0
suf list..(i) 823 102 33 48 1 1 0
fft float(d) 680 45 11 21 3 1 1
treeoutput(i) 767 114 29 60 7 3 3
flagpr(i) 581 86 21 46 8 0 0
capok(i) 521 95 24 54 1 5 0
prr pre..(i) 470 65 17 33 3 0 0

(Function - function name followed by benchmark indicator [(d)-dijkstra, (i)-ispell]), (Inst - number
of instructions in unoptimized function), (Blk - number of basic blocks in unoptimized function),
(Trans. of Cntr. - number of conditional and unconditional transfersof control), (Loops - number of
loops at nesting depths 1, 2, and 3),

Table V. Static Features of Functions which We Could Not Exhaustively Evaluate

Table V displays the static features of the functions that wewere unable to exhaustively
enumerate according to our stopping criteria. As explainedearlier, we terminate the ex-
haustive evaluation for any function when the time requiredfor the algorithm exceeds two
weeks. Out of the 244 possible functions, we were unable to exhaustively evaluate only 10
of those functions. It is difficult to identify one property of each function that leads to such
uncontrollable growth in the phase order space. Instead, webelieve that some combination
of the high number of loops, greater loop nesting depths, branches, number of instructions,
as well as the instruction mix are responsible for the greater phase order space size.
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7. CORRELATION BETWEEN DYNAMIC FREQUENCY MEASURES AND PRO-

CESSOR CYCLES

Even after pruning the optimization phase order search space, evaluating the performance
of all distinct function instances usingsimulationis prohibitively expensive. Therefore, we
used a measure of estimated performance based partly on static function properties. Our
performance estimate accounts for stalls resulting from pipeline data hazards, but does not
consider other penalties encountered during execution, such as branch misprediction and
cache miss penalties. In spite of the potential loss in accuracy, we expect our measure of
performance to be sufficient for achieving our goal of findingthe optimal phase ordering
with only a handful of program simulations. Our expectationis especially true for embed-
ded applications. Unlike general-purpose processors, thecycles obtained from a simulator
can often be very close to executed cycles on an embedded processor since these proces-
sors may have simpler hardware and no operating system. For similar reasons, dynamic
frequency measures on embedded processors will also have a much closer correlation to
simulated cycles, than for general-purpose processors. Indeed, in the next section, we per-
form some studies to show that there is a strong correlation between dynamic frequencies
and simulator cycles. Even though our measure of dynamic frequencies do not exactly
match the simulator cycles we believe that this issue is lesscritical. An exact match is
less important since we are mainly interested in sorting thefunction instances according
to their performance, and in particular in determining the best function instance. A strong
correlation between dynamic frequencies and simulator cycles allows us to achieve that
objective.

7.1 Complete Function Correlation

The SimpleScalar simulator toolset [Burger and Austin 1997] includes many different sim-
ulators intended for different tasks. For these experiments we used SimpleScalar’s cycle-
accurate simulator,sim-outorder, modified to measure cycles only for the function of in-
terest. This enhancement makes the simulations faster, since most of the application is
simulated using the fasterfunctionalsimulation mode. We have verified that our modifica-
tion did not cause any noticeable performance deviation [Kulkarni et al. 2006b].

Clearly, simulating the application for all function instances in every function is very
time-consuming as compared to simulating the program only on encountering new control-
flows. Therefore, we have simulated all instances of only a single function completely to
provide an illustration of the close correlation between processor cycles and our estimate of
dynamic frequency counts. Figure 9 shows this correlation for all the function instances for
the init searchfunction in the benchmarkstringsearch. This function was chosen mainly
because it is relatively small, but still has a sufficient number of distinct function instances
to provide a good example.

All the performance numbers in Figure 9 are sorted on the basis of dynamic frequency
counts. Thus, we can see that our estimate of dynamic frequency counts closely follows
the processor cycles most of the time. It is also seen that thecorrelation gets better as the
function is better optimized. We believe that this improvement in correlation may be due
to the reduction in memory accesses after optimizations such asregister allocation, in turn
reducing the number of cache misses, the penalty for which wedid not consider during
our performance estimates. The improved correlation for optimized function instances
is important since the best function instance will generally reside in this portion of the
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Fig. 9. Correlation between Processor Cycles and FrequencyCounts forinit search

phase ordering space. The excellent correlation between dynamic frequency estimates
and simulator cycles for the optimized function instances allows us to predict the function
instances with good/optimal cycle counts with a high level of confidence.

7.2 Correlation for Leaf Function Instances

Figure 10 shows the distribution of the dynamic frequency counts as compared to the op-
timal counts for all distinct function instances, averagedover all 79 executed functions.
From this figure we can see that the performance of the leaf function instances is typically
very close to the optimal performance, and that leaf instances comprise a significant por-
tion of optimal function instances as determined by the dynamic frequency counts. From
the discussion in Section 6 we know that for more than 86% of the functions in our bench-
mark suite there was at least one leaf function instance thatachieved the optimal dynamic
frequency counts.

Since the leaf function instances achieve good performanceacross all our functions,
it is worthwhile to concentrate our correlation study on leaf function instances. These
experiments require hundreds of program simulations, which are very time consuming.
So, we have restricted this study to only one application from each of the six categories of
MiBench benchmarks. For all the executed function from the six selected benchmarks we
get simulator cycle counts for only the leaf function instances and compare these values to
our dynamic frequency counts. In this section we show the correlation between dynamic
frequency counts and simulator cycle counts for only the leaf function instances for all
executed functions over six different applications in our benchmark suite.

The correlation between dynamic frequency counts and processor cycles can be illus-
trated by various techniques. A common method of showing therelationships between
variables (data sets) is by calculating Pearson’s correlation coefficient for the two vari-
ables [Weisstein 2006]. The Pearson’s correlation coefficient can be calculated by using
the formula:

Pcorr =
∑xy− ∑x∑y

n
√

(∑x2
−

(∑x)2

n )∗ (∑y2
−

(∑y)2

n )

(1)

In Equation 1x andy correspond to the two variables, which in our case are the dynamic
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Fig. 10. Average Distribution of Dynamic Frequency Counts

frequency counts and simulator cycles, respectively. Pearson’s coefficient measures the
strength and direction of a linear relationship between twovariables. Positive values of
Pcorr in Equation 1 indicate a relationship betweenx andy such that as values forx in-
crease, values ofy also increase. The closer the value ofPcorr is to 1, the stronger is the
linear correlation between the two variables.

It is also worthwhile to study how close the processor cycle count for the function in-
stance that achieves the best dynamic measure is to the best overall cycle count over all
the leaf function instances. To calculate this measure, we first find the best performing
function instance(s) for dynamic frequency counts and obtain the corresponding simulator
cycle count for that instance. In cases where multiple function instances provide the same
best dynamic frequency count, we obtain the cycle counts foreach of these function in-
stances and only keep the best cycle count amongst them. We then obtain the simulator
cycle counts for all leaf function instances and find the bestcycle count in this set. We then
calculate the following ratio for each function:

Lcorr =
best overall cycle count

cycle count for best dynamic freq count
(2)

The closer the value of Equation 2 comes to 1, the closer is ourestimate of optimal by
dynamic frequency counts to the optimal by simulator cycles.

Table VI lists our correlation results for the leaf functioninstances over all studied func-
tions in our benchmarks. The column, labeledPcorr provides the Pearson’s correlation
coefficient according to Equation 1. An average correlationcoefficient value of 0.96 im-
plies that there is excellent correspondence between dynamic frequency counts and cycles.
The next column shows the value ofLcorr calculated by Equation 2. The following col-
umn gives the number of distinct leaf function instances which have the same best dynamic
frequency counts. These two numbers in combination indicate that an average simulator
cycle performance ofLcorr can be reached by simulating onlynLf number of the best leaf
function instances as determined by our estimate of dynamicfrequency measure. Thus,
it can be seen that an average performance within 2% of the optimal simulator cycle per-
formance can be reached by simulating, on average, less than5 good function instances
having the best dynamic frequency measure. The next two columns show the same mea-
sure ofLcorr by Equation 2, but instead of considering only the best leaf instances for
dynamic frequency counts, they consider all leaf instanceswhich come within 1% of the
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Function Pcorr Lcorr 0% Lcorr 1% Function Pcorr Lcorr 0% Lcorr 1%
Diff nLf Diff nLf Diff nLf Diff nLf

AR btbl b... 1.00 1.00 1 1.00 1 BW btbl b... 1.00 1.00 2 1.00 2
bit count 1.00 1.00 2 1.00 2 bit shifter 1.00 1.00 2 1.00 2
bitcount 0.89 0.92 1 0.92 1 main 1.00 1.00 6 1.00 23
ntbl bitc... 0.99 0.95 2 0.95 2 ntbl bitcnt 1.00 1.00 2 1.00 2
dequeue 0.99 1.00 6 1.00 6 dijkstra 1.00 0.97 4 1.00 269
enqueue 1.00 1.00 2 1.00 4 main 0.98 1.00 4 1.00 4
print path 1.00 1.00 2 1.00 2 qcount 1.00 1.00 1 1.00 1
CheckPoin... 0.95 1.00 2 1.00 5 IsPowerOf... 0.93 0.98 3 1.00 24
NumberOfB... 0.84 1.00 1 1.00 20 ReverseBits 1.00 1.00 2 1.00 2
byte reve... 0.89 1.00 1 1.00 3 main 0.71 1.00 25 1.00 74
shafinal 0.72 0.82 26 1.00 50 shainit 0.98 1.00 4 1.00 9
shaprint 0.95 0.88 1 1.00 6 shastream 1.00 1.00 1 1.00 8
shatrans... 0.97 1.00 2 1.00 35 shaupdate 0.98 1.00 14 1.00 32
finish in... 1.00 1.00 1 1.00 1 get raw row 1.00 1.00 7 1.00 7
jinit rea... 1.00 1.00 2 1.00 2 main 1.00 0.99 2 1.00 153
parseswi... 0.95 1.00 8 1.00 16 pbm getc 0.99 1.00 2 1.00 2
readpbm ... 0.73 0.98 2 0.98 2 selectfi... 0.97 0.90 3 1.00 12
start inp... 0.95 0.99 12 0.99 15 write std... 1.00 1.00 1 1.00 1
init search 1.00 1.00 1 1.00 14 main 1.00 1.00 8 1.00 12
strsearch 1.00 1.00 3 1.00 3

average 0.96 0.98 4.38 0.996 21

Pcorr - Pearson’s correlation coefficient, Lcorr - ratio of cycles for dynamic frequency to best overall cycles (0%
- optimal, 1% - within 1 percent of optimal frequency counts), Diff - ratio for Lcorr, nLf - number of leaves
achieving the specified dynamic performance

Table VI. Correlation Between Dynamic Frequency Counts and Simulator Cycles for Leaf Function Instances

best dynamic frequency estimate. This allows us to reach within 0.4% of the optimal per-
formance, on average, by performing only 21 program simulations per function. In effect,
we can use our dynamic frequency measure to prune most of the instances that are very
unlikely to achieve the fewest simulated cycles.

The conclusions of this study are limited since we only considered leaf function in-
stances. It would not be feasible to get cycle counts for all function instances over all
functions. In spite of this restriction, the results are interesting and noteworthy since they
show that a combination of static and dynamic estimates of performance can predict pure
dynamic performance with a high degree of accuracy. This result also leads to the ob-
servation that we should typically need to simulate only a very small percentage of the
best performing function instances as indicated by dynamicfrequency counts to obtain the
optimal function instance by simulator cycles. As a final point, it should be noted that
although our simple estimation technique is seen to work well on our simple ARM proces-
sor, it may not perform as well on more complicated architectures, and in such cases other
more detailed estimation techniques should be explored.

8. ANALYSIS OF THE PHASE ORDER SPACE

Exhaustive evaluation of the phase order space for a large number of functions has provided
us with a huge data-set which we have analyzed to determine some interesting properties
of the optimization phase order space. In this section we will describe some of the charac-
teristics of the optimization phase order space.
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Fig. 11. Function Complexity Distribution

8.1 Statically Predicting Optimization Phase Order Space Size

Out of the 244 functions from the MiBench benchmark suite we were able to completely
enumerate the phase order space for 234 of these functions. Although we were unable
to exhaustively enumerate the space for the remaining 10 functions, we still had to spend
considerable time and resources for their partial search space evaluation before realizing
that their function complexity was greater that the capability of our current space pruning
techniques to contain the space growth. For such cases, it would be very helpful if we could
a priori determine the complexity of the function and estimate the size of the search space
statically. This estimation is, however, very hard to achieve. The growth in the phase order
space is dependent on various factors such as the number of conditional and unconditional
transfers of control, loops, and loop nesting depths, as well as the number of instructions
and instruction mix in the function.

We attempted to quantify the function complexity based on static function features such
as branches, loops, and number of instructions. All transfers of control are assigned a unit
value. Loops at the outermost level are assigned a weight of 5units. All successive loop
nesting levels are weighted two times the weight of the preceding loop level. Functions
with the same weight are sorted based on the number of instructions in the unoptimized
function instance. The 10 unevaluated functions are assumed to have 3,000,000 distinct
function instances, which is more than the number of instances for any function in our set
of evaluated functions. Figure 11 shows the distribution ofthe number of distinct function
instances for each function as compared to its assigned complexity weight.

Figure 11 shows a marked increase in the number of distinct function instances with
increase in the assigned complexity weights. A significant oscillation of values in the
graph reconfirms the fact that it is difficult to accurately predict function phase order space
size based on static function features. It is, however, interesting to note that out of the
10 unevaluated functions, five are detected to have the highest complexity, with eight of
them within the top 13 complexity values. Thus, a static complexity measure can often aid
the compiler in effectively prioritizing the functions forexhaustively evaluating the phase
order space.

8.2 Redundancy Found by Each Space Pruning Technique

As described in Section 4.1 we employ three techniques to exploit redundancy in the op-
timization phase order space: detecting dormant phases, detecting identical function in-
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Fig. 12. Ratio of the Active to Attempted Phase Or-
der Search Space for Different Sequence Lengths

Fig. 13. Active Search Space for Different Se-
quence Lengths

stances, and detecting equivalent function instances. Theattempted search spacefor any
function in our compiler with 15 optimization phases is 15n, wheren is the maximum
active sequence length for that function. The length of the longest active sequence for
various executed functions is listed in Table IV. As explained earlier, phases that are un-
successful in changing the function when applied are calleddormantphases. Eliminating
the dormant phases from the attempted space results in theactive search space. Thus, the
active search space only consists of phases that areactive, i.e., successful in changing the
program representation when attempted. Figure 12 shows theratio of the active search
space to the attempted search space sorted by different sequence lengths. The comparison
of the active space to the attempted space, plotted on a logarithmic scale in Figure 12,
shows that the ratio is extremely small, particularly for functions with larger sequence
lengths. Figure 13 shows the average number of function instances in the active space
for each maximum active sequence length. These two figures show the drastic reduction
in attempted search space that is typically obtained by detecting and eliminating dormant
phases from the search space.

The remaining pruning techniques find even more redundancy in the active search space.
These pruning techniques detect identical and equivalent function instances, which causes
different branches of the active search space tree to merge together. Thus, the active search
space tree is converted into a DAG. Figure 14 shows the average ratio of the number of dis-
tinct function instances to the number of nodes in the activesearch space tree. Thus, this
figure illustrates the redundancy eliminated by detecting identical and equivalent function
instances. The fraction of the tree of function instances that is distinct and represented as
a DAG decreases as the active sequence length increases. This property of exponential in-
crease in the amount of redundancy detected by our pruning techniques as sequence lengths
are increased is critical for exhaustively exploring the search spaces for larger functions.

8.3 Performance Comparison with Optimal

Figure 15(a) shows the distribution of the dynamic frequency count performances of all
function instances as compared to the optimal performance.Figure 15(b) illustrates a
similar distribution over only the leaf function instances. For both of these graphs, the
numbers have been averaged over all the 79 executed functions in our benchmark suite.
Function instances that are over 100% worse than optimal arenot plotted. On average,
22.27% of total function instances, and 4.70% of leaf instances fall in this category.

Figure 15(a) rates the performances of all function instances, even the un-optimized and
partially optimized instances. As a result very few instances compare well with optimal.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,September 2008.



26 · Prasad Kulkarni et al.

Fig. 14. Ratio of Distinct Function Instances in Active Space

(a) (b)

Fig. 15. Distribution of Performance Compared to Optimal

We expect leaf instances to perform better since these are fully optimized function in-
stances that cannot be improved upon by any additional optimizations. Accordingly, over
18% of leaf instances on average yield optimal performance.Also, a significant number
of leaf function instances are seen to perform very close to optimal. This is an important
result, which can be used to seed heuristic algorithms, suchas genetic algorithms, with leaf
function instances to induce them to find better phase orderings faster.

8.4 Optimization Phase Repetition

Figure 16 illustrates the maximum number of times each phaseis active during the exhaus-
tive phase order evaluation over all studied functions. Theorder of the boxes in the legend
in Figure 16 corresponds to the order of the phases plotted inthe graph, which is also the
order in which the phases are described in Table I. Functionswith the same maximum
sequence length are grouped together, and the maximum phaserepetition number of the
entire group is plotted. The functions in the figure are sorted on the basis of the maximum
sequence length for that function. The optimization phasesin Figure 16 are labeled by the
codesassigned to each phase in Table I.

Common subexpression elimination(c) and instruction selection(s) are the phases that
are typically active most often in each sequence. These phases clean up the code after
many other optimizations, and hence are frequently enabledby other phases. For exam-
ple, instruction selection(s) is required to be performed beforeregister allocation(k) so
that candidate load and store instructions can contain the addresses of arguments or local
scalars. However, after allocating locals to registers,register allocation(k) creates many
additional opportunities forinstruction selection(s) to combine instructions. For functions
with loops,loop transformations(l) may also be active several times due to freeing up of
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Fig. 16. Repetition Rate of Active Phases

registers, or suitable changes to the instruction patternsby other intertwining optimiza-
tions. Most of the branch optimizations, such asbranch chaining(b), branch reversal(r),
block reordering(i), anduseless jump removal(u), are not typically enabled by any other
optimizations, and so are active at most once or twice duringeach optimization sequence.
As mentioned,loop unrollingwas restricted to be active at most once in each sequence.

8.5 Analyzing the Best Optimization Sequences

A big motivation for this research is to analyze the optimization sequences resulting in good
performance to determine recurring patterns of optimization phases in such sequences.
Such analysis can help compiler writers to come up with good phase orderings for con-
ventional compilers. However, any such analysis is made difficult by the sheer number
of goodoptimization sequences. Figure 17 shows the number of active phase orderings
achieving optimal performance for all 79executedfunctions. Note that thenumber of best
active phase orderingsis plotted on a logarithmic scale along the Y-axis in Figure 17. The
functions in this figure are sorted from left to right in the order of decreasing number of
instructions in the unoptimized version of the function.

Figure 18 plots the percentage of optimal phase orderings amongst all possible active
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Fig. 17. Number of Optimal Phase Orderings Among All Orderings

Fig. 18. Ratio of Optimal to All Possible Phase Orderings

phase orderings for the functions shown in Figure 17. This graph also uses a logarith-
mic scale to plot the percentages along the Y-axis. This figure again reiterates that the
total number of active phase orderings for each function canbe many orders of magnitude
greater than the number of distinct function instances. Consequently, the number of active
phase orderings resulting in the best performance is extremely large as well. An interesting
trend that can be easily noticed is that this ratio tends to bevery small for the larger func-
tions, while a significant percentage of active phase orderings for the smaller functions are
in fact optimal.

Figure 19 displays the number ofactivesequences that generated an optimal function
instance for multiple functions. For each phase ordering that generated an optimal func-
tion instance for one function, we applied that ordering on all 78 other executed functions
and compared the resulting performance with the best performance for the corresponding
function. 2 Thus, we can see that no single phase ordering produced the best performance
for more than 33 (out of 79) distinct executed functions. As mentioned earlier, the batch
VPO compiler also reaches optimal performance for 33 functions. However, note that the

2Due to an exceptional number of active phase sequences (5.03 *1011) in the functioninitckch in ispell, we were
unable to complete our analysis of this function for Figure 19.
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Fig. 19. Number of Active Sequences that Produced an Optimal Function Instance for Multiple Functions

sequence applied by the current batch compiler is much more aggressive. By applying
optimization phases in a loop until there are no more programchanges allows the batch
compiler to generate different phase sequences for different functions depending on cor-
respondingly different active phases. More detailed analysis of the characteristics of good
phase orderings is very interesting future work that we planto pursue.

8.6 Effectiveness of Heuristic Approaches to Address Phase Ordering

In some earlier work we performed a study to determine the effectiveness of popular heuris-
tic approaches, in particular genetic algorithms, in finding goodper-function optimization
sequences efficiently [Kulkarni et al. 2006b]. Since we now know the optimal function
instance for each function, our study was the first to determine how close the solutions
provided by heuristic algorithms come to the performance provided by the optimal func-
tion instance in each case. We found that a basic genetic algorithm is able to quickly
converge to its solution in only a few generations in most cases. At the same time, the
performance of the delivered function instance is often very close to our optimal solution,
with a performance difference of only 0.51% on average. Evenmore interesting, we were
able to extract information regarding theenablinganddisabling interaction between op-
timization phases from the data provided by our exhaustive phase order exploration runs.
We used the phase enable/disable interaction information to modify the baseline genetic
algorithm so that it is now able to find the optimal performingfunction instance in all but
one cases, resulting in a performance difference of only 0.02% on average.

We, along with some other researchers, have also compared the performance and ef-
ficiency of several different heuristic approaches to address optimization phase order-
ing [Kulkarni et al. 2007; Almagor et al. 2004]. The conclusions suggest that most heuristic
approaches yield comparable performance and efficiency, with more mature approaches
based on genetic algorithms, simulated annealing, or hill climbing generally performing
much better than a random sampling of the optimization phaseorder space. We have
avoided furnishing detailed analysis of such comparative studies in the current paper, since
the earlier publications provide good references.
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9. FUTURE WORK

To our knowledge, this work is the first successful attempt atexhaustive optimization phase
order space evaluation over all the optimization phases in amature compiler, and as such
has opened up many interesting avenues for future research.We have planned a variety
of enhancements to this work. First, we would like to examinemethods to speed up the
enumeration algorithm. The phase order space can be reducedby changing the imple-
mentation of some compiler analysis and optimizations, so that false dependences due to
incomplete analysis are no longer present. Phase interaction information can be used to
merge phases into mutually independent groups, to reduce the number of effective opti-
mizations during the enumeration process. Remapping of register numbers can also be
employed to detect greater equivalence between function instances. Second, we plan to
develop additional techniques to further reduce the numberof simulations required during
exhaustive evaluations. Such reductions can be achieved byunambiguous and accurate
prediction of block execution frequencies. We would also need to develop very different
techniques to estimate performance for architectures where our measure of dynamic fre-
quency counts does not correlate well with processor cycles. Third, we plan to work on
parallelizing our exhaustive enumeration algorithm to make this approach more practical.

We have shown that exhaustive information regarding the optimization phase order space
and phase interaction can be used to improve non-exhaustivesearches of the phase order
space. We plan to continue our work in this area to make heuristic approaches to address
optimization phase ordering more widely acceptable. A broader aim of this work is to gain
additional insight into the phase ordering problem in orderto improve conventional com-
pilation in general. We believe that a priori generation of program specific optimization
phase sequences, achieving optimal or near optimal performance, may be possible after
a more thorough knowledge of the phase interactions within themselves, as well as with
features of the program such as loops and branches.

10. CONCLUSIONS

The compiler phase ordering problem has been a difficult issue to systematically address,
and has found widespread attention by the compiler community over the past several
decades. Until now it was assumed that the optimization phase order space is too large
to exhaustively enumerate on acceptable benchmarks, usingall the phases in a mature
compiler. In this paper we have effectively solved the phaseordering problem for VPO
on the ARM platform, and for the benchmark and input data set studied in this work. The
problem required solutions to two related sub-problems. The first sub-problem is enumer-
ating the phase order space for each function. This enumeration was made possible by
detecting which phases were active and whether or not the generated code was unique,
making the actual optimization phase order space orders of magnitude smaller than the at-
tempted space. The other sub-problem is to determine the dynamic performance of all the
enumerated function instances for each function, in order to find the optimal solution. We
have demonstrated how we can use properties of the phase order space to drastically reduce
the number of simulations required to efficiently and accurately estimate performance for
all distinct function instances. We further showed that ourestimate of performance bears
excellent correlation with simulator cycles in our experimental environment. Our results
show that we have been able to completely evaluate the phase order space for 234 out of
the 244 functions in our benchmark suite. Our correlation numbers further show that we
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can obtain performance very close to optimal by performing avery small number of sim-
ulations per function. We have also analyzed the phase orderspace to identify interesting
properties, which may prove helpful for many other related issues in compilers.

11. ADDITIONAL INFORMATION

Instructions regarding downloading the proper version of the VPO compiler to reproduce
these results, links to download the MiBench benchmarks, and other relevant information is
provided at the following web-page: http://www.ittc.ku.edu/∼kulkarni/research/taco08/taco08.html
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