
Compiler Transformations to Generate
Reentrant C Programs to Assist

Software Parallelization

Adam R. Smith

Submitted to the Department of Electrical Engineering &
Computer Science and the Faculty of the Graduate School

of the University of Kansas in partial fulfillment of
the requirements for the degree of Master’s of Science

Thesis Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Perry Alexander

Dr. Andy Gill

Date Defended

c© 2009 Adam R. Smith

2009/06/16

The Thesis Committee for Adam R. Smith certifies

That this is the approved version of the following thesis:

Compiler Transformations to Generate Reentrant C Programs to

Assist Software Parallelization

Committee:

Chairperson

Date Approved

i

Acknowledgements

I thank my advisor, Professor Prasad Kulkarni, for being my sole well of knowl-

edge throughout the development of this project. He seemed to always have the

answer to any question that may have arose.

I am grateful to my fellow researchers, Michael Jantz and Manjiri Namjoshi,

who helped me stay sane as we worked seven days a week.

I thank my friend, Jim Stevens, for introducing me to QEMU, which has saved

me countless hours of simulation time.

I am forever indebted to my parents for all of their love and support that has

allowed me to see that I can accomplish anything I set my mind to.

Most of all, I thank my fiancée, Miranda Brown, for her understanding and

patience as she and my schoolwork vied for my time.

ii

Abstract

As we move through the multi-core era into the many-core era it becomes obvi-

ous that thread-based programming is here to stay. This trend in the development

of general purpose hardware is augmented by the fact that while writing sequential

programs is considered a non-trivial task, writing parallel applications to take ad-

vantage of the advances in the number of cores in a processor severely complicates

the process. Writing parallel applications requires programs and functions to be

reentrant. Therefore, we cannot use globals and statics. However, globals and

statics are useful in certain contexts. Globals allow an easy programming mecha-

nism to share data between several functions. Statics provide the only mechanism

of data hiding in C for variables that are global in scope.

Writing parallel programs restricts users from using globals and statics in their

programs, as doing so would make the program non-reentrant. Moreover, there is

a large existing legacy code base of sequential programs that are non-reentrant,

since they rely on statics and globals. Several of these sequential programs dis-

play significant amounts of data parallelism by operating on independent chunks

of input data, and therefore can be easily converted into parallel versions to ex-

ploit multi-core processors. Indeed, several such programs have been manually

converted into parallel versions. However, manually eliminating all globals and

statics to make the program reentrant is tedious, time-consuming, and error-prone.

In this paper we describe a system to provide a semi-automated mechanism for

users to still be able to use statics and globals in their programs, and to let the

compiler automatically convert them into their semantically-equivalent reentrant

versions enabling their parallelization later.

iii

Contents

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

2 Background 6

2.1 Globals, Statics and Their Implementation in C 6

2.1.1 Implementation and Use of Global Variables 6

2.1.2 Implementation and Use of Static Variables 7

2.1.3 Global Data in C . 9

2.2 What It Means to be Reentrant 10

2.3 Terminology . 11

3 Related Works 15

4 Design & Framework 19

4.1 Flow of Compiler . 19

4.2 RTLs and the Intermediate Form 21

4.3 Execution Environment . 22

4.4 Benchmarks . 23

5 Implementation 24

5.1 Overview . 24

iv

5.1.1 Different Types of Globals and Statics 24

5.1.2 General Approach . 27

5.1.3 Example of Making a Program Reentrant 28

5.2 Flow Graph . 28

5.2.1 VPO . 28

5.2.2 Semi-Automatic Code Transformation 30

5.3 Global Dominators and Affected Functions 36

5.3.1 Global Functions . 36

5.3.2 Global Dominators . 36

5.3.3 Global Frontiers . 37

5.4 Intermediate Code and How It Changes 39

5.5 Implementation Issues . 40

6 Results 43

6.1 CINT2006 Benchmark Statistics 43

6.2 Single-Threaded Overhead Introduced by the Transformation . . . 47

7 Future Work 51

8 Conclusion 53

A Code Examples 55

A.1 Overview of RTL files . 55

A.2 A Code Example . 55

A.2.1 C File . 56

A.2.2 Non-Reentrant RTLs . 57

A.2.3 Reentrant RTLs . 61

A.2.4 Non-Reentrant ARM Assembly 67

A.2.5 Reentrant ARM Assembly 75

References 86

v

List of Figures

2.1 Example program with a global 7

2.2 Declaration and use of static variables 8

2.3 Example program with its address space 9

2.4 Example call graph . 12

4.1 Flow graph of compiler . 20

4.2 An example RTL . 21

4.3 Example RTLs to access memory 22

5.1 Example of making a program reentrant 26

5.2 Example non-reentrant and reentrant program 29

5.3 Modified compiler flow graph . 30

5.4 Example program and its corresponding call graph 38

5.5 RTLs to reference a global . 39

vi

List of Tables

4.1 Memory access types . 22

4.2 The CINT2006 benchmarks . 23

6.1 Total functions in the SPEC CINT2006 benchmarks 44

6.2 Average number of functions using each global 44

6.3 Global access patterns . 45

6.4 Static access patterns . 45

6.5 Reentrant functions in the benchmarks without read-only globals 46

6.6 Reentrant functions in the benchmarks with read-only globals . . 46

6.7 Number of functions in global and static frontiers 48

vii

Chapter 1

Introduction

The power wall, which is a limit to the amount of power that a microproces-

sor chip can dissipate, has proven to be an impregnable barrier to the further

scaling of microprocessor clock frequencies, effectively ending the era of high-

performance uni-processor chips. Thus, software developers can no longer rely

on perpetually increasing clock speeds to provide performance improvement for

all programs. However, Moore’s law of exponentially reducing feature (transis-

tor) sizes is still maintaining its course. Processor manufacturers now exploit this

continuous growth in transistor count to place multiple processing cores1 on the

same chip. Multi-core microprocessors employing two2, four3, and eight4 cores

are already shipping in general purpose machines, and many-core processors that

employ tens5 to hundreds6 of cores can be purchased for high end server installa-

1In this context a single core can be thought of as an independent processing element, or
CPU.

2Intel Core 2 Duo, AMD Athlon 64
3Intel Core i7, AMD Phenom
4Intel Nehalem-EX is an 8 core chip with 2 concurrent threads per core
5Azul Systems Vega 3 is a 54 core chip
6Intel Nehalem-EX and Azul Systems Vega 3 can be combined in multiple chip configurations

with up to 128 and 864 concurrent threads, respectively

1

tions.

Multi-core and multi-processor based computers are poised to become the wave

of the future. Programs on such machines derive their performance by executing

multiple threads of execution concurrently on separate cores or processors. The

demise of the uni-processor era was due in large part to microprocessors having

hit the power wall, which is a limit to the amount of power that a microprocessor

chip can dissipate. In the past, each successive generation of uni-processors con-

sumed more power as they improved their performance by increasing their clock

frequency. High clock rates result in higher thermal dissipation with potential

overheating of the processor chip. Multi-core chips are an attempt to increase

overall chip performance, without the need to scale the clock frequency of indi-

vidual cores. Indeed, the scaling up of the number of cores per chip may come at

the expense of scaling down the clock frequency of individual cores to maintain

the power budget. Increasing the total number of cores on a chip and reducing

clock speed can enable the processor to do more work in a given amount of time

given that the processor keeps all cores busy. Thus, exploiting the available per-

formance in multi-core chips requires programs to adopt the multi-threaded model

of execution.

Unfortunately, the availability of multiple cores can provide no performance

benefit to single-threaded applications. Consequently, software developers find

themselves in an overdrive situation on two fronts: (a) generate new multi-

threaded applications, and (b) convert existing sequential application to use mul-

tiple threads. It is clear that only scalable parallel applications will be able to

gain continuous performance improvements on future processors.

While developing sequential applications is considered to be a non-trivial task,

2

writing multi-threaded applications has been found to increase the cost and com-

plexity of software development. At the same time, parallel programming requires

a different way of approaching the problem, and a different way of coding the

solution. In particular, parallel programs need to be reentrant. A function is

reentrant if, while it is being executed by one thread, it can be re-invoked by the

same thread, or a routine in any other thread of the application. Thus, as far as

parallel programs are concerned, reentrancy entails that it should be possible for

multiple threads of execution to be simultaneously active in the same functions.

Reentrancy requires all program state to be clearly partitioned into thread-specific

(local) and shared (global) data. Modification of its thread-specific information

by any thread should be invisible to all other threads. Additionally, in most cases,

modifications to shared information must be atomic. Thus, developing parallel

programs necessitates the elimination of global and static variables for all thread

specific data, and the protection of global data from simultaneous access by mul-

tiple threads (typically by using mutexes or semaphores).

However, a significant number of legacy sequential C applications make gen-

erous use of static and global variables. We would also like to point out that sev-

eral sequential programs exhibit significant coarse-grained data-level parallelism.

Given the right tools, it appears relatively straight-forward to manually parallelize

such applications to achieve scalable performance on multi-core machines. The

problem therein lies in the burden placed on the user to parallelize the program.

Part of the extra burden that is placed on the user while writing parallel

programs includes verifying that the function that the programmer is threadifying

is reentrant. Non-reentrant functions can lead to hidden bugs in the code that

appear only in certain circumstances, or may change depending on random system

3

events, such as race conditions, deadlock and livelock. This results in errors that,

due to their inherent randomness, are difficult, if not impossible, to reproduce,

which can greatly increase the amount of time and expense required to develop

the application.

Automatically handling static and global variables to be reentrant will signifi-

cantly reduce the user burden to parallelize such applications. At the same time,

several programmers migrating from writing sequential applications for single-core

processors to developing parallel programs for multi-core machines experience a

steep learning curve before adapting to this change in their programming style.

We believe that requiring programmers to stop using global and static variables

in their programs may be unnecessary, if they could be automatically managed by

the compiler—thereby easing the process of writing parallel applications. More-

over, several programming idioms can be naturally and more efficiently expressed

using globals and statics. Statics also provide a very convenient mechanism of

data hiding in non-object-oriented languages such as C, and even in C++.

In this thesis, we describe the issues involved in the implementation of a new

program transformation to automatically eliminate static and global variables

from a program to make it reentrant with minimal input from the user, thus

easing the process of developing a parallel application. In certain instances, that

must be specified by the user, the global data can be moved from the global data

portion of memory, where it would be accessible to all threads, into the local

memory for each thread. The transformation then automatically updates various

function definitions with the number of arguments passed to each function to

correctly reflect passing the new local variables to the necessary function. Once

each thread has its own copy of the data, the user no longer needs to worry about

4

each thread’s access to the data since the program is now reentrant, thereby

alleviating the need for the programmer to do so by hand.

The rest of this thesis is organized as follows. Chapter 2 provides the reader

with a basic understanding of globals and statics in C, reentrancy and basic termi-

nology that is used throughout the text. Chapter 3 acknowledges related work in

the area. Chapter 4 provides the basic structure of the compiler, the intermediate

form the compiler uses, the environment in which data is collected and an intro-

duction to the benchmarks we use in this thesis. Chapter 5 describes the process

the transformation uses to make a program reentrant and how the intermediate

code changes during transformation process. Chapter 6 discusses the benchmarks

in detail, including the number and types of globals in the benchmarks and any

overhead that the transformation may introduce. Chapter 8 provides concluding

remarks and Chapter 7 discusses the road-map of this work as is continues into

the future.

5

Chapter 2

Background

2.1 Globals, Statics and Their Implementation in C

In this section, we present a brief primer on the purpose and use of global

variables in C, C++ and derived languages, describe their typical implementation

and storage in the process address space, and discuss why the presence of global

variables in a sequential program may make it more tedious to parallelize the

application.

2.1.1 Implementation and Use of Global Variables

Any variable that is declared outside of the declaration of any function is said

to have global scope. This means that the variable’s data will persist throughout

the execution of the program. These variable are typically referred to as globals

in C terminology. Any global in a C program may be read or updated by any

function in the application, including those that are not in the same file as the

global.

An example program using a global can be seen in Figure 2.1. As mentioned

6

#include <stdio.h>

int glob;

void foo() {

 printf("%d\n", glob);

}

int main() {

 for (glob=0; glob<10; glob++)

 foo();

}

Figure 2.1. Example program with a global

previously, the value of global glob will be maintained throughout the entire

execution of the program and the modifications of glob in main() will be visible

in foo(). This technique, which should generally be avoided, also has the side-

effect of reducing code size and increase performance in an application where the

global may need to be accessed by many functions in the code. Indeed, many

embedded and high performance application adopt this technique.

2.1.2 Implementation and Use of Static Variables

The static specifier can be used during the declaration of variables to extend

the life of such variables to the entire program execution. A variable with a static

specifier is commonly referred to as a static in C and C++ parlance. Thus, statics

in C have the same global lifetime as globals. In spite of their global lifetime, static

variables enjoy restricted visibility and scope that depends on where that static

has been declared. A static declared outside a function definition has its scope

restricted to the file in which it is declared, which means that the compiler will not

allow this static variable to be accessed by any function not in that particular file.

7

int glob = 10;

static int filestat;

int proc() {

 int procloc;

 foo();

}

foo() {

 static int foostat = 0;

 int fooloc = 0;

 if (foostat < 10) {

 foostat++;

 foo();

 }

}

Figure 2.2. Declaration and use of static variables

Moreover, if the static variable is declared within some subroutine, then it will

only be visible in that single subroutine. However, the static will retain its value

between calls, so the function can preserve its state. Thus, the static specifier

provides a very basic, yet convenient, mechanism to hide the visibility of global

variables to only those places where they are needed.

Usage of static variables can be seen in Figure 2.2. The global variable glob

will be visible to all functions in the entire program while the variable filestat

will have its scope restricted to just the file in which it is declared. The variable

procloc is local to procedure proc and thus will not retain its value across function

calls. Variables foostat and fooloc will both have their scope limited to function

foo(), but foostat’s value will persist across function calls. This means that

every time function foo() is entered, a new copy of fooloc will be set to 0 as in

its declaration line and will be destroyed upon exiting the function, but foostat

will keep whatever previous value it had from the last time foo() was called.

8

2.1.3 Global Data in C

Due to their global lifetimes, the compiler detects all global or static variables

during program compilation and allocates them space in the global data area of

the process address space. The allocation of variables defined in the program

illustrated in Figure 2.3(a) is shown in Figure 2.3(b). The typical process address

space consists of four regions: code region (text region), data region, the heap,

and the stack. Local variables (such as var1 and var2 in Figure 2.3(b)) reside in

the activation record of each function on the stack. We can thus have multiple

instances of the same local variable on the stack at the same time, one instance

for each invocation of its enclosing function. In contrast, global variables (such as

glob and s in program 2.3(a)) receive just one location in the data region for the

entire program lifetime.

int glob[8];

void func() {

 int var1;

 short var2;

 static int s;

 ...

}

int main() {

 ...

 func();

 ...

}

(a) Single
Threaded Pro-
gram Code

User Address Space

func()

var1
var2

main()

...
func()
...

stack

text

data

heap

glob
s

Stack Pointer

Program Counter
Registers

(b) Single threaded program

User Address Space

func()

var1
var2

main()

...
func()
...

Thread 1
stack

text

data

heap

glob
s

func()

var1
var2

Thread 2
stack

Stack Pointer

Program Counter
Registers

Stack Pointer

Program Counter
Registers

(c) Two threaded program

Figure 2.3. Example program with its address space

9

It is this single global allocation status of global variables that is responsible for

the issues it creates for function reentrancy. Figure 2.3(c) shows a snapshot of the

process address space for a multi-threaded version of the program in Figure 2.3(a),

where the active threads, Thread 1 and Thread 2, have each just begun execution

of func(). Both the threads get their own activation records on the stack where

local data is stored, by virtue of which, there is no conflict between the local

variables of the two threads. However, both threads share the same unique copy

of static and global variables, creating conflicts if both threads are simultaneously

accessing the same global. An obvious strategy to address this issue would be to

remove the global from the global data area, and assign it storage in the stack

region of each active thread, thus allowing each thread to have its own unique

copy. This strategy is precisely the solution we adopt in this work to automatically

result in reentrant C and C++ programs. However, this strategy is not always

as straightforward to handle all categories of globals (discussed in chapter 5.1.1)

due to their access patterns and compiler implementation issues. Notice also that

function reentrancy is not only relevant for multi-threaded programs, but is also

important for recursive functions and signal handlers.

2.2 What It Means to be Reentrant

We mentioned previously that a subroutine must be reentrant for it to be

safely executed concurrently. In order for a a subroutine to be reentrant it must:

1. Hold no global non-constant data.

2. Not return the address of global non-constant data.

3. Work only on the data provided to it by the caller.

10

4. Not rely on locks to singleton resources.

5. Not modify its own code.

6. Not call non-reentrant computer programs or subroutines.

We can use compiler transformations to guarantee a certain subset of these

conditions that is described in Section 5.1. The remaining conditions require

intimate knowledge of the code that only the user can posses and therefore requires

a certain amount of interaction to be sure that they are met.

2.3 Terminology

Included here is a brief overview of some of the terms we use to describe various

parts of an application that is made reentrant. These terms will be used frequently

throughout the rest of the text. All terms here refer to one or more nodes in a

call graph. We refer to Figure 2.4 to define the following terms:

2.3.0.1 Global Function

A global function is any function that uses a global variable at any time

during its execution. A static function is any function that uses a static vari-

able. Throughout the text, we may use the term global function to refer to any

function that uses data that resides in the global data area, i.e., it may be a static

function or a global function. While slightly confusing, it makes it much easier

to generalize. E.g., in order to make an entire program reentrant we must make

all global functions reentrant. Indeed, when referring to a global we mean any

variable whose data resides in the global data area, i.e., a static or global. We

11

int g;

int gfunc1() {

 return g++;

}

int gfunc2() {

 return g--;

}

int sfunc() {

 static int s;

 return s++;

}

int front1() {

 return gfunc1() + gfunc2();

}

int front2() {

 return gfunc1();

}

int dom() {

 return front1() + front2() + sfunc();

}

int main() {

 dom();

}

(a) Code

dom()

front1() front2()

gfunc1()

main()

gfunc2()

sfunc()

(b) Call Graph

Figure 2.4. Example call graph

take special care to point out specific static or global differences as they arise. In

Figure 2.4, functions gfunc1(), gfunc2() and sfunc() are all global functions.

2.3.0.2 Function Dominator

A function d is said to dominate a function f if every path from the root of

the call graph to f must go through d. Figure 2.4(a) shows an example program

and its corresponding static call graph in Figure 2.4(b). Thus, in Figure 2.4,

functions main(), dom() and gfunc1() all dominate function gfunc1(). A func-

12

tion d strictly dominates a function f if d dominates f and d does not equal f.

Thus, in Figure 2.4, functions main() and dom() both strictly dominate func-

tion gfunc1(). The immediate dominator, or idom, of a function f is the unique

node that strictly dominates f but does not strictly dominate any other node that

strictly dominates f. Therefore every function has exactly one immediate domi-

nator and in Figure 2.4, dom() is the immediate dominator of function gfunc1().

A static dominator, for a particular static variable, is the function that is

the immediate dominator of the function that declares and uses the static. This

is fine and well for a static since a static can only be used in a single function, but

a global can be used in any number of functions. Thus a global dominator, for

some global variable, has two requirements: (a) it strictly dominates all functions

that read or update that global and (b) it does not strictly dominate any function

that meets requirement (a). Once again, there can be only one global dominator

for a global function. In Figure 2.4, global g is used in functions gfunc1() and

gfunc2(). Function front1() is the immediate dominator of function gfunc2()

and function dom() is the immediate dominator of function gfunc1(). Therefore

dom() is the global dominator of global g. The static function, sfunc(), shows the

simplest case. Since sfunc() only has one parent, dom() is the static dominator

for static s.

2.3.0.3 Function Frontier

A static frontier is the frontier of functions between a static function and its

dominator. A global frontier is the frontier of functions between every global

function of a global and that global’s dominator. In Figure 2.4, the global frontier

for global g is made up of the functions front1() and front2(). Since static

13

function sfunc()’s dominator is its parent, there are no functions between it and

its dominator. Therefore, there are no functions in static s’s static frontier.

14

Chapter 3

Related Works

Writing parallel programs is universally acknowledged to be more complicated

and error-prone than writing sequential code. Researchers and industry practi-

tioners have developed numerous languages, compilers and tools to make it easier

to write parallel programs, and to automatically transform sequential programs

and loops to run concurrently on multi-processor and vector machines. In this

section we briefly discuss work related to making it easier to develop parallel

programs.

Many researchers have focused on new programming languages or extensions

to existing programming languages to enable easier specification of parallelism

[7, 10, 15, 21, 22, 27]. Current parallel programming languages, in many cases,

present significantly different programming interfaces than their sequential coun-

terparts, making their use unattractive for most traditional programmers. Tradi-

tional low-level multi-threading libraries, such as Pthreads, allow the programmer

to express parallelism, but leave program and data partitioning, and synchro-

nization, communication and deadlock management in the hands of the program-

mer [18]. Concurrent programming has also been long practised in the scientific

15

computing domain using data parallel language extensions and message passing li-

braries [11,12]. Our work does not propose a new parallel language, but a compiler

transformation that can be employed during manual or automatic parallelization

of traditional C and C++ programs.

Automatic compiler-based parallelization of sequential programs also has a

rich history. Such approaches have achieved considerable success on regular scien-

tific applications, by extracting DOALL parallelism [14] from loop nests accessing

arrays [4, 26]. Unfortunately, automatic techniques have not been able to derive

comparable results on general-purpose applications. Moreover, automatic par-

allelization is most commonly conducted using intraprocedural analysis within

tight inner loops to exploit fine-grained and vector parallelism. Inter-procedural

analysis required for coarse-grained parallelism is generally considered more com-

plicated, and has only achieved limited success [13]. We are not aware of any

automated inter-procedural technique that attempts to globally modify the func-

tion declarations, as is required to privatize global and static variables to make

functions reentrant.

Attempts at integrating manual and automatic parallelization of applications

have achieved interesting results. SUIF Explorer [20] enables programmer spec-

ification of parallelism guided by several tools to indicate parallelization oppor-

tunities and ensure correctness. The Software Behavior-Oriented Parallelization

system also allows the programmer to indicate intended parallelism [8]. The tool

attempts to make speculative parallelization more effective by employing user in-

tuition and some other techniques, such as critical-path minimization and value

based correctness checking. Tools to ease the exploitation of pipeline parallelism

for streaming applications that exhibit regular data flows have been developed,

16

which also work in conjunction with a user [25]. Our work intends to use user

knowledge to indicate the category of the global or static variable, as explained

in Section 5.1.1.

Bridges et al. propose a new source annotation and compiler directive, called

Commutative, to enable concurrent invocation of functions with the property that

multiple calls to that function are interchangeable even though they share inter-

nal state [5]. Our handling of such class of global and static variables is based

on a similar notion. However, this earlier work did not present details on the

compiler implementation of their Commutative directive. Rinard et al. developed

a novel analysis technique, called commutativity analysis, to automatically detect

operations or functions that generate the same final result regardless of the order

in which they execute [23]. Such analysis can be employed in our framework to

supplement the manual annotation of the class of globals and statics that occur

in commutative functions. Moreover, in addition to handling such commutative

globals and statics, we are also interested in addressing the more challenging case

of automatically managing globals and statics that do not share any information

between concurrent threads of execution.

Our technique of localizing global and static variable accesses is most simi-

lar to the popular compiler optimizations of scalar expansion and scalar priva-

tization [14]. Scalar expansion replaces a loop scalar with a compiler generated

temporary array that has a separate location for each loop iteration. Loop priva-

tization is a slightly different way to achieve the same result by declaring the local

as private to each iteration of a loop. Application of these techniques allow the

loop to be vectorized or parallelized at the cost of increased code size. However,

as opposed to our technique of global replacement outlined in this paper, scalar

17

expansion and privatization are local transformations and do not affect the calling

interface of the function.

18

Chapter 4

Design & Framework

4.1 Flow of Compiler

In this section we describe the compiler framework that was used throughout

this project. At the highest level we can describe the flow of the program as

it passes from a *.c source file into an executable. This process can be seen in

Figure 4.1. Program compilation is composed of three major components as seen

in Figure 4.1(a). The front end produces a list-based three-address intermediate

code that is passed to the compiler back end that generates assembly. The assem-

bly code produced by the compiler is then input to the assembler and linker that

produce a machine executable binary.

We use the Edison Design Group’s (EDG) C++ based compiler front end [9]

that generates a *.cex file containing the intermediate representation of the origi-

nal C source file. The *.cex file that is generated contains intermediate instructions

in the form of Register Transfer Lists (RTLs) [3] that are used throughout the

compilation process as the intermediate form. RTLs are described in Section 4.2.

The back end selected is the Very Portable Optimizer (VPO) [2, 3]. VPO

19

EDG Front End

VPO Back End

GCC Cross Compiler

ARM
Binary

*.c
fi le

*.s
fi le

 *.cex
file

(a) Compiler Flow

Optimizer

*.s
fi le

 *.cex
file

Assembly Generator

Optimized Code

(b) VPO Back End
Flow

Figure 4.1. Flow graph of compiler

reads the intermediate code from the *.cex file, optimizes it and then generates

an assembly file, as seen in Figure 4.1(b). As the name implies, the back end is

very portable and supports several architectures. We have developed an RTL-

to-RTL transformation that can be used to either output a new reentrant *.cex

file, or produce assembly code for a particular architecture. We conducted our

experiments on the StrongARM SA-100 platform. We use the compiler framework

as a cross-compiler executing on x86 machines while generating code for the ARM.

Once the assembly files are obtained, they need to be assembled and linked.

We use the GNU Compiler Collection (GCC) assembler and linker for this task.

Once the user has obtained the executable, they are free to use it as they wish.

We verified our executables on the platforms described in Section 4.3.

20

4.2 RTLs and the Intermediate Form

As mentioned previously, VPO reads in a *.cex file that contains intermedi-

ate code in the form of Register Transfer Lists (RTLs). This section provides a

brief introduction to RTLs and how they are used. RTLs are a low-level, machine

and language independent representation that encode machine-specific instruc-

tions. RTLs enable VPO optimizations to be largely implemented in a machine-

independent fashion, yet allow easy migration of VPO to new platforms. Each

RTL can be directly mapped to a single machine instruction. An example of RTLs

can be seen in Figure 4.2. This is a very simple example to increment the value

in r[1] (register 1).

4.2.0.4 Memory Accesses on the ARM

VPO provides five unique memory reference types for the ARM platform.

The different types depend on the size and type of the variable being read. These

memory access types are presented in Table 4.1. An example of reading a value

can be seen in Figure 4.3(a) and an example of writing a value can be seen in

Figure 4.3(b). The memory accesses denoted with B, W, and R will read 1, 2 or 4

bytes into an integer register, respectively, and the memory accesses denoted with

F and D will read 4 or 8 bytes into a floating point register, respectively. Detailed

examples of accessing global data can be seen in Appendix A.

r[1]=r[1]+1;

Figure 4.2. An example RTL

21

r[1]=R[r[2]];

(a) RTL to read 4
bytes from the address
stored in r[2]

W[r[1]]=r[2];

(b) RTL to write 2
bytes to the address
stored in r[1]

Figure 4.3. Example RTLs to access memory

Table 4.1. Memory access types
Access Type Bytes Accessed Data Type
B 1 Byte char
W 2 Bytes short
R 4 Bytes int, long int, long long int
F 4 Bytes float
D 8 Bytes double, long double

4.3 Execution Environment

We employ VPO as a cross-compiler running on x86 machines and targeting

the ARM architecture. We then use an ARM simulator to verify the correctness of

the generated code. We use two different platforms for this task: The QEMU [1]

virtual machine and the SimpleScalar ARM Simulator [6].

QEMU is a fast virtual machine that is capable of emulating many different

architectures. We, naturally, used the ARM version. QEMU was chosen for its

ability to quickly run generated code and verify its correctness.

The SimpleScalar ARM simulator is a cycle-accurate simulator that is also used

to collect execution data on generated code. We found it to be significantly slower

than QEMU, but it allows gathering valuable execution time information such as

the number of machine cycles executed, cache and branch access information, etc.,

on two different executables. Thus, SimpleScalar allows us to compare the number

of cycles taken to execute the original code with the number of cycles required to

execute our modified code.

22

4.4 Benchmarks

We used the Standard Performance Evaluation Corporation’s (SPEC) CPU2006

C Integer benchmarks to get various statistics on our transformation. The SPEC

CPU2006 C Integer benchmarks [24] are a well known collection of software that

provides a standard testing environment for hardware and compilers. The bench-

marks are designed to test the performance of various hardware and compiler

algorithms, however, they are all single-threaded, thus, are unable to take advan-

tage of current multi-core systems. As previously mentioned, this is a problem

that plagues many legacy applications. Indeed, the benchmarks have evolved over

time from older software bases. Thus, they provide us with an ideal set of soft-

ware to test our transformation. The integer benchmarks included in this suite

are presented in Figure 4.2.

Table 4.2. The CINT2006 benchmarks
Benchmark Lines of Code Description
400.perlbench 155,497 The PERL programming language
401.bzip2 8,293 Lossless data compression
403.gcc 517,642 C compiler
429.mcf 2,685 Combinatorial optimization
445.gobmk 192,283 Artificial Intelligence: Go
456.hmmer 35,992 Search gene sequence
458.sjeng 12,846 Artificial Intelligence: chess
462.libquantum 4,357 Physics: quantum computing
464.h264ref 51,523 Video compression

23

Chapter 5

Implementation

In this chapter we describe our approach to semi-automatically transform a

non-reentrant program into its semantically equivalent reentrant counterpart. The

wide flexibility in program specification allowed by C (such as pointers, aliasing,

loose typing, etc.) enables very efficient low-level program implementation, but

prevents us from providing a completely general and automatic implementation.

5.1 Overview

5.1.1 Different Types of Globals and Statics

There are 3 different types of uses of globals as they pertain to parallel algo-

rithms:

1. The globals that are completely thread-specific and independent of each

other.

2. The global is shared between the threads, but the values need not be in any

particular order.

24

3. Shared globals that must be accessed in the same order as in the original

sequential program.

The user needs to specify what category each global falls into. Currently we are

unable to do so. See Section 5.5 for a discussion on this.

We concentrate on categories 1 and 2. For category 1, we use our basic ap-

proach, as will be described in the next section. For category 2, we can synchronize

access to global using mutexes or semaphores. This can easily be added in the

RTLs. Category 3 presents an entirely different problem. The threads are depen-

dent on their ordering, so they cannot be executed concurrently anyway. This

code is difficult to parallelize without changing the algorithm. Thus, we cannot

handle category 3 globals and the user must either handle them on his own, or

change the algorithm.

Since we currently have no way of determining the category of globals, they

are all assumed to be of category 1. This means that the user must still determine

the category of each global on his own and manually handle category 2 and 3

globals.

5.1.1.1 Scope of Our Transformation

An example of a non-reentrant program and its semantically equivalent reen-

trant version can be seen in Figure 5.1. This is a fictional compiler for illustrative

purposes only, although its architecture resembles that of VPO. In this compiler,

each function in a file is compiled one at a time. The function is read from the

input file, optimized and then written to the output file. Since the compilation

of each function is entirely independent of every other function, this is a perfect

candidate for parallelization. Thus, we create a thread for each function that

25

FILE *in_fp;

FILE *out_fp;

struct FN *fn;

int main() {

 while (more_functions) {

 compile();

 }

}

void compile() {

 read_next_func();

 optimize();

 write_opt_func();

}

void read_next_func() {

 /* set fn by reading in_fp */

 get_func_from_file();

}

void optimize() {

 /* optimize function

 pointed to by global fn */

}

void write_opt_func() {

 /* write out func pointed

 to by fn to out_fp */

}

(a) Non-reentrant compiler

FILE *in_fp;

FILE *out_fp;

int main() {

 while (more_functions) {

 compile_threads();

 }

}

void compile_thread() {

 create_thread(&compile);

}

void compile() {

 struct FN *fn;

 read_next_func(&fn);

 optimize(&fn);

 write_opt_func(&fn);

}

void read_next_func(FILE **fn) {

 /* lock file in_fp */

 get_func_from_file(fn);

 /* unlock file in_fp */

}

void optimize (FILE **fn) {

 /* optimize function pointed

 to by local fn */

}

void write_opt_func(FILE **fn) {

 /* lock file out_fp */

 /* write out func pointed

 to by fn */

 /* unlock file out_fp */

}

(b) Reentrant compiler

Figure 5.1. Example of making a program reentrant

needs to be compiled!

Before applying our compiler transformation, the user is responsible for de-

termining how to best threadify the program. In this example, the function

compile() is chosen, by the user, to be the entry point for each thread, as seen

26

in Figure 5.1(b).

In the non-reentrant version of the code, seen in Figure 5.1(a), there are three

globals fn, in fp and out fp. fn is a type 1 global. Thus, each thread that will be

created should get its own copy of fn, which will not be shared across threads in

any way, since each will be working on a unique function. The globals in fp and

out fp are of type 2. Each thread will need access to the file that is being read,

but it needs to be ensured that each thread reads a unique function to compile.

The reentrant version of the program accomplishes this by locking access to the

file to guarantee that only one thread can be reading the file at any given time,

thus ensuring that the file will be read sequentially and each thread will read a

unique function. Similarly, access to the output file, accessed through out fp,

needs to be coordinated to ensure that the threads are not concurrently writing

to the same file.

Our implementation, as described in the next sections, will be able to make

the program reentrant, while the user is responsible for determining how best to

parallelize the program, and implement the parallelization.

5.1.2 General Approach

Our basic approach to making a function reentrant is to first identify all def-

initions and uses of all statics or globals in the program. Then, we determine

the dominator1 of the function(s) that defines or uses the global or static. The

storage for the global is then moved from the global data storage into the local

data storage in the dominator function, as described in Section 2.1.1. The global

is passed by reference to any function in the global’s frontier. Thus, if the domi-

1More about function dominators can be found in Sections 2.3.0.2 and 5.3

27

nator is reentered, each thread will have its own copy of the “global” data that it

can modify and not affect other threads of execution.

5.1.3 Example of Making a Program Reentrant

An example of a non-reentrant program and its semantically equivalent reen-

trant version produced by our transformation is illustrated in Figure 5.2. The

technique to make the program reentrant follows our basic approach outlined

above. First, for the non-reentrant program in Figure 5.2(a), identify all the

global functions. In this case, our only global function is gfunc(). Then, we

have to find the global dominator of each global. In this case, dom() is the global

dominator of global glob. This is where the storage for glob will be placed, thus

moving it from the global address space into the local address space for its global

dominator. Now that glob no longer has global scope, we need to allow gfunc()

to still be able to reference the data. This is accomplished by passing glob by ref-

erence to gfunc() and changing the accesses of glob to reflect these changes. The

fully reentrant version can be seen in Figure 5.2(b). Now if dom() is reentered,

each instance will have its own copy of the data to work with.

5.2 Flow Graph

5.2.1 VPO

We modified VPO to include our reentrification transformation before the code

is optimized. Our transformation phase to make the program reentrant operates

on the unoptimized program instance, and is inserted in the VPO compiler design

flow as illustrated in Figure 5.3(a). An expanded view of the major components of

our reentrification transformation can be seen in Figure 5.3(b). The optimization

28

int glob=0;

void dom() {

 gfunc();

}

void gfunc() {

 glob++;

}

(a) Non-reetrant

void dom() {

 int glob=0;

 gfunc(&glob);

}

void gfunc(int *glob) {

 *glob++;

}

(b) Reentrant

Figure 5.2. Example of a non-reentrant program with its semanti-
cally equivalent reetrant version

and assembly generation phases of VPO work in exactly the same way as they

previously did and are unmodified. We also include a feature to turn the trans-

formation on or off. If the transformation is off, VPO control flows in exactly

the same way as before. This allows us to directly compare the effects of our

transformation on the generated code.

There are two major advantages to applying our transformation before the op-

timizations are applied in VPO. First, we are guaranteed that the front end will

always generate the same sequence of instructions for each global access, whereas

after optimization the instruction sequences may be different. The predictable

format of instructions in the unoptimized code makes it easy to identify global

references, whereas the same reference instructions may be obscured in unpre-

dictable ways after applying the optimizations. Secondly, it allows our changes

to be optimized. Indeed, there are certain instructions that we need to replace

with a new combination of instructions, but have left the old instructions in there

that will be optimized away. This helps with debugging when we are looking at

29

Optimizer

*.s
fi le

 *.cex
file

Assembly Generator

Optimized Code

Code Transformation

Altered
Intermediate Code

Modif ied VPO

(a) Modified VPO Flow

Data Collection

Reserve Space

Call Graph Construction

altered
intermediate code

Code Modification

code with extra
locals and params

dominators and
frontiers

call graph andlist
of globals/statics

intermediate code

(b) Transformation Flow

Figure 5.3. Modified compiler flow graph with changes shown in
red

either the intermediate code or the assembly to see that the correct instructions

are inserted in the correct place. More about this will be explained in Section 5.4.

5.2.2 Semi-Automatic Code Transformation

The transformation that semi-automatically makes a C program reentrant is

broken down into four primary phases:

1. Call Graph Construction

(a) Construct call graph

(b) Build global and static list data structures

(c) Note the function each global or static is used in

(d) Store the initial values of each global or static

30

2. Data Collection From Call Graph

(a) Prune call graph orphans

(b) Remove unused globals or statics

(c) Remove statics in main since main can’t be reentered

(d) Find function dominators

(e) Find global dominators

(f) Find global frontiers

(g) Find memory access types

3. Reserving space for new locals and parameters

(a) Add new parameters to global functions and their frontier functions

(b) Add storage for global data as a local in the global dominators

4. Modification of RTLs to be Reentrant - just before optimization

(a) Change global functions, intermediate functions and dominator func-

tions

This process is shown in Figure 5.3(b). The first two phases of the transformation

are both data collection phases, while the third and fourth phases actually change

the structure of the RTLs with the information that it has collected. While the

third phase adds additional memory usage overhead to the code by allocating

space on the stack of each global dominator and the global frontier for new locals

and parameters, respectively, only the fourth phase changes the semantics of the

program.

31

5.2.2.1 Generation of the Call Graph

VPO already had a system to generate a call graph for a file, but several

significant modifications had to be made. First and foremost, the compiler must

be able to generate a complete call graph for the entire application. Since VPO

was designed to work on a single file at a time, it had to be changed to be able to

accept all necessary program files at the same time. It is important to be able to

generate a complete call graph for the entire application for program semantics to

be maintained consistent after our transformation. Thus, VPO is now able to take

in all of the *.cex files corresponding to the original source files and generate the

complete call graph from them in the call graph generation pass. The compilation

pass still works on one function at a time and outputs the corresponding assembly

code to the correct *.s file.

During the call graph phase, the call graph is generated by looking at each

of the RTLs in the intermediate code and constructing nodes and edges as nec-

essary. As mentioned previously, the transformation must make multiple passes

over the intermediate code in order to collect the read information. During the

call graph generation phase, the data that is collected includes: the call graph, a

data structure containing each global found as well as their initial values, and the

function(s) that use each global. This means that after this phase we now have

a list of every global with its initial value and the function it is used in, i.e., the

global functions.

5.2.2.2 Collection of Data From Call Graph

Our transformation then analyzes the call graph generated in the previous step

to retrieve the required information before modifications to the program.

32

Steps that are needed in order to change the intermediate code to make it

reentrant include:

Pruning call graph orphans. The call graph data structure contains a node

for every function that appears in the source code as well as relevant information

such as functions called by each node and functions that call that node. However,

not every function that appears in the source code actually has a path from the

main() function. This results in multiple extraneous nodes or graphs that cannot

be reached when tracing from the root of the tree (the main() function) to each

of the leaf nodes. We refer to these extraneous nodes as orphans, since they have

no parents in the call graph. These orphan functions must be removed from the

call graph in order for certain algorithms to work properly on it later.

Ignoring unused globals. We also found globals that are declared, and even

initialized, but never referenced. This can happen for many reasons, including

the programmer not checking for this, or compiler options. Thus, some globals

that are declared at the top of a file and are only used in a certain subset of

the functions that depend on a compiler option that was not enabled during a

particular compilation, resulting in them never being referenced. We ignore such

globals to ensure proper execution of the transformation.

Ignoring read-only globals. Sometimes globals are read-only. These globals

do not affect reentrancy and can be ignored. Indeed, ignoring these globals will

prevent any extra overhead that the transformation may introduce when handling

globals.

33

Ignoring statics in main. Statics that appear in the main() function have to

be removed for a couple of reasons. First, main() does not have any parents and

thus any static used in it cannot have a static dominator. Secondly, statics used

in main() can safely be ignored since main() cannot be reentered. Globals that

are used in main() present a different problem since they can be used in other

functions as well. This problem will be discussed in Section 5.2.2.4.

Finding function dominators. We update each node in the call graph data

structure with a field containing that node’s immediate dominator. Finding the

immediate dominators is discussed in Section 5.3. The immediate dominator

information is essential to our algorithm to find global dominators.

Finding global dominators. The global dominator for a particular global is

the function in which the global is assigned storage after our transformation as

a local. We need to know, for each global, the function in which to place this

storage.

Finding global frontiers. Once you know all of the global functions and global

dominators you can then find the global frontiers. This is any function in the call

graph between the global function and its dominator.

Finding memory access types. The RTLs must be scanned to determine the

type of memory access that is used when referencing a global. This needs to be

determined before the modification of the RTLs so that you can use the correct

memory access to read the data of the global. The intermediate code distinguishes

between reading of floating point numbers and integers as well as reading 1, 2, 4

or 8 bytes.

34

5.2.2.3 Reserving Space for New Locals and Parameters

While VPO is populating the data structures for the optimization phase, we

need to put some of the data that we collected to good use by reserving space

for the new locals and parameters that will be added. In particular, this is the

point that we add the new parameters to the global functions and frontiers. These

parameters will store the address of each global that they need. In other words,

the globals are passed by reference. There will also be space for the locals reserved

in the global dominators’s activation records to store the data for the global.

5.2.2.4 Modification of Intermediate Code

The final phase of the transformation is to change the RTLs to actually make

the code reentrant. The first two phases of the transformation are strictly data

collection phases. The third phase modifies the function prototypes of the global

functions and frontier functions as well as making space for the data as locals in the

respective global dominators, but does not actually change the semantics of the

functions. After the third phase the code will use more memory (the newly added

locals and parameters), but still executes exactly as it did before the changes.

The fourth phase actually changes the intermediate code to make each function

reentrant by using the new locals and parameters that were introduced in the

third phase.

After the intermediate representation has been modified to be reentrant, it is

then sent on to the optimizer. Thus, any changes we make to the application will

still be optimized.

35

5.3 Global Dominators and Affected Functions

In this section, we describe the algorithm for identifying functions that will

need to have their intermediate code changed in order to be made reentrant. We

recognize three basic types of functions that are affected as part of our transfor-

mation to modify the intermediate code to make a program reentrant: (a) global

functions, (b) global dominators, and (c) global frontiers. We identify each of the

aforementioned functions as follows.

5.3.1 Global Functions

Global functions are, naturally, the easiest to identify as they are just the

functions that use a global. These functions are detected during the generation

of the call graph as the RTLs are read for the first time. Note that the pattern of

RTLs that access a global remains the same in the unoptimized code, and hence

can be easily and uniformly identified. An example pattern of RTLs accessing a

global is shown in Figure 5.5(a) and will be discussed in Section 5.4.

5.3.2 Global Dominators

There are three different types of dominators that we care about. The first

is just the immediate dominator of a function as described in Section 2.3.0.2.

We used the Lengauer-Tarjan algorithm [19] to find these dominators. Since a

static can only be used in a single function, the static dominators are simply the

immediate dominator of any static function.

The global dominators are more difficult to determine, since a global may be

used in any number of functions. When finding the immediate dominators of all

of the functions, we saved them in the data structure by adding a link from the

36

function to its immediate dominator. The global dominator can then be found

by finding the first common ancestor of all of the functions that use the global

by tracing up the call graph from immediate dominator to immediate dominator.

For example, consider Figures 5.4(a) and (b) that show a sample program and its

corresponding call graph, respectively. The global variable g is used in function

func4() and func9(). Our algorithm first determines the immediate dominator

of each use of the global functions, yielding func5() as the immediate dominator

of the function func9() and func3() as the immediate dominator of the global used

in func4(). We then determine the first common ancestor of all these immediate

dominators, yielding func1() as the global dominator of global g. This is where

the local definition of global g will be added later. The RTLs corresponding to

this program are presented in Appendix A.2.

5.3.3 Global Frontiers

The Global Frontiers are much easier to calculate. For each global, a list of

its global frontiers is maintained in a data structure. The frontier functions are

found by starting at each global dominator adding all of its children to the frontier

list. Then, the transformation adds all of the children of each of the functions

that just were added and continues until it reaches each global function for that

particular global. Now the list will contain all functions that reside in the call

graph between the the global’s global functions and the global’s dominator. Thus,

functions func2(), func3(), func5(), func6(), func7(), and func8() are the

frontier functions for global g. After the local definition of g is moved to func1()

(say as loc g), we need to pass loc g by reference as an argument to all frontier

and global functions.

37

int glob = 2;

int func1() {

 return func2() + func3();

}

int func2() {

 return func5();

}

int func3() {

 return func4();

}

int func4() {

 glob += 1;

 return glob;

}

int func5() {

 return func6() + func7() + func8();

}

int func6() {

 return func9();

}

int func7() {

 return func9();

}

int func8() {

 return func9();

}

int func9() {

 glob -= 1;

 return glob;

}

int main() {

 return func1();

}

(a) Example program

main()

func1()

func2() func3()

func4()func5()

func6() func7() func8()

func9()

(b) Call graph

Figure 5.4. Example program and its corresponding call graph

38

5.4 Intermediate Code and How It Changes

In VPO, the unoptimized function instance loads each global before its use,

and stores it back after modification. The RTLs used to load or store the global are

consistent, which allows us to easily update each reference to use the parameter

that has been passed to the global function instead of the original global. See

Appendix A for detailed code examples.

The RTLs used to reference a global in the unoptimized code can be seen in

Figure 5.5(a) In this example, r[14] is a general purpose register and r[13] is

the stack pointer. On line 1, r[14] is loaded with the value 4 that represents the

offset on the stack of the pointer to the global data. The RTL on line 2, obtains

the address of the pointer to the global data by adding the offset in r[14] to

the stack pointer and this address is now stored in r[14]. Line 3 is a register to

register transfer of the contents of r[14] to r[1]. Line 4 is the dereference of

the address and reading of 4 bytes. After the block of RTLs in Figure 5.5(a) are

executed the address of the global will be stored in r[1].

Invariably, all accesses to a global are performed using the RTLs shown in

Figure 5.5(a). Only the offset used will changed depending on which function is

1) r[14]=4;

2) r[14]=r[13]+r[14];

3) r[1]=r[14];

4) r[1]=R[r[1]];

(a) RTLs to reference a global.

1) r[14]=4;

2) r[14]=r[13]+r[14];

3) r[1]=r[14];

6) r[1]=r[14];

7) r[1]=R[r[1]];

4) r[14]=8;

5) r[14]=r[13]+r[14];

(b) Modified RTLs to reference a global.

Figure 5.5. RTLs to reference a global

39

being transformed and the global that needs to be accessed. Now that we have

obtained the address of the global that we are referencing any number of things

may be done. The value of the global can be read, written to or you can use the

address in any means, such as passing it by reference to a function, or any other

action that you may need the address of the global for.

Modifying the RTLs to use data other than the original data located in the

global data section of the code is a trivial task once you have the means to identify

all of the places that globals are referenced. You may simply replace those instruc-

tions to load the address of the data that you have added. For us, this means

replacing the address of the global data with the address of the parameter that is

passed in to the global function. An example of this can be seen in Figure 5.5(b).

In this case, the parameter that was added was at an offset of 8 from the stack

pointer.

As you can see, we leave the original instructions in the RTLs for the sake of

development. It allows us to more easily see in the RTLs and in the assembly that

the correct instructions have indeed been added. The semantics are the same as

removing the original instructions and replacing them with the added instructions.

This is slightly wasteful, as the old instructions that will have no effect will be

executed, slightly degrading performance, but they can easily be optimized out.

5.5 Implementation Issues

As mentioned in Section 5.1.1, there are three types of globals as they pertain

to parallel algorithms. Given the different categories of globals, the compiler needs

a way to determine the category of each global. This task must be performed

by the user. Possible implementations include using source-level annotations, or

40

employing an interactive compilation framework, such as the VISTA framework

built into VPO [16, 17, 28]. So, we assume some knowledge of the program being

compiled.

Currently, our implementation is not able to handle a few types of globals.

These are arrays of pointers, structs, and globals that are initialized to large

numbers. Handling arrays of pointers and globals with big initial values are ar-

chitecture dependent issues. In order to create arrays of pointers we must inject

assembly into the RTLs. The big initial values present a problem given that you

are limited to 12 bits for values in the RTLs. Any values larger than this requires

inserting assembly into the RTLs. We have solutions to these problems and will

implement them as time permits.

Also, it is important to note that the user is responsible for identifying the

point in the code at which to create threads as well as changing the code to create

the threads.

The transformation is dependent on being able to construct a call graph for

the entire program statically. This means that there can be no function pointers

used in the program. Function pointers prevent the ability to statically determine

the call graph and are not supported by the transformation. The user is warned

about this and then has the choice of either changing the program to not use

function pointers, or manually determining that the function being called by a

pointer is already reentrant.

Changing of the calling conventions has some interesting implications based

on the particular computer architecture. On the ARM platform, you can pass

up to four arguments to a function in registers. If a function requires more than

four parameters, the additional parameters have to be placed on the stack by

41

the caller, so that they may be read off of the stack by the callee. In the third

phase of the transformation, space is added to allow for new parameters to be

passed. While calculating how much space will be needed for each function, we

are able to calculate the offset from the stack pointer to the new parameter on

the stack, should parameters need to be passed on the stack. This offset is saved

in the data structure for the global. In other words, we now know, for every

function in a global’s frontier, its offset on the stack, if it is not being passed in

a register. Furthermore, while constructing the call graph, data was saved that

indicated the pre-transformation number of parameters that are passed to every

function. If the number of parameters is less than four, the transformation begins

placing parameters in the next available parameter register. If at any point, the

four parameter registers are already allocated, new parameters are added at the

pre-computed stack offsets.

As mentioned previously, globals that are used in main() present a special case.

The function main() has no dominating functions, so the global cannot be moved

to be a local in main()’s dominator. This special case was handled by moving the

data storage for the global to be a new local in main() as well as adding another

local to store the address of the data that now resides in main(). This sounds a

bit cumbersome, but it allows us to keep our same framework in place for main().

It is safe to make the data storage a local in main() since main() cannot be

reentered. The second local that was added is taking the place of the parameter

that would normally be added to main()’s function prototype to pass the global

in by reference. When initializing the new local data, the transformation also

places the address of the data into this new local to be reference just like the new

parameter would have.

42

Chapter 6

Results

In this chapter we present statistics on the number of globals and statics used

in our various benchmark programs. We present insights into the use of globals,

as well as describe the overheads of our transformation in terms of static number

of instructions added during the various changes made by the transformation. We

use the SPECINT2006 benchmark programs to collect our results.

6.1 CINT2006 Benchmark Statistics

Table 6.1 shows the number of functions, globals and statics in each bench-

mark. Thus, we can see that the size of the benchmarks and the number of globals

and statics in each benchmark varies greatly.

Table 6.2 shows the average number of functions that use each global in each

benchmark. Since the scope of a static is limited to a single function, it can only

be used in the function that defines it.

The counts of global and static access patterns can be seen in Tables 6.3

and 6.4, respectively. As mentioned previously, some of the benchmarks, 458.sjeng

43

Table 6.1. Total functions in the SPEC CINT2006 benchmarks
Benchmark Total Functions Num Globals Num Statics
400.perlbench 607 207 2
401.bzip2 81 5 0
403.gcc 3890 696 50
429.mcf 23 4 0
445.gobmk 687 134 17
456.hmmer 207 6 16
458.sjeng 119 69 18
464.h264ref 503 215 14

Table 6.2. Average number of functions using each global
Benchmark Average Number of Functions
400.perlbench 2.25
401.bzip2 1.00
403.gcc 2.64
429.mcf 1.00
445.gobmk 2.75
456.hmmer 2.00
458.sjeng 2.21
464.h264ref 3.20

in particular, makes heavy use of read-only globals or statics. For functions that

are invoked often, allocating certain constant data (like the possible moves a chess

piece can make from a given coordinate) in the global address space can prevent

the function from initializing the data each time the function is called, thereby

improving performance. By detecting read-only globals such as these and ignor-

ing them, we can prevent our transformation from introducing any unnecessary

overhead, since read-only globals don’t affect reentrancy.

Our algorithm could not determine the access patterns of some global vari-

ables. The column “Unknown” in Tables 6.3 and 6.4 represents these globals.

Investigation into this phenomenon revealed that such globals were only accessed

by reference. Thus, the address of the global was loaded into a register, but that

44

Table 6.3. Global access patterns
Benchmark Read-Only Write-Only Unknown Read/Write
400.perlbench 38 18 6 145
401.bzip2 3 1 0 1
403.gcc 211 32 19 434
429.mcf 0 0 0 4
445.gobmk 51 7 2 74
456.hmmer 2 0 1 3
458.sjeng 30 4 0 35
464.h264ref 70 16 18 111

Table 6.4. Static access patterns
Benchmark Read-Only Write-Only Unknown Read/Write
400.perlbench 0 0 2 0
401.bzip2 0 0 0 0
403.gcc 11 0 8 31
429.mcf 0 0 0 0
445.gobmk 3 0 2 12
456.hmmer 1 0 1 14
458.sjeng 13 0 0 5
464.h264ref 9 0 0 5

address was neither directly read from or written to. Examples of what may

happen to the address include aliasing the global data with another pointer or

passing the global by reference to some function, such as memset(). In such cases

our algorithm loses the ability to track what happens to the data in the global.

These particular globals cannot be handled automatically. The user is presented

with a warning describing this case and they are required to handle the global

manually.

Table 6.5 presents the number of reentrant and non-reentrant functions in each

benchmarks due to statics and globals. Thus, we can see that a large number of

functions in each benchmark are non-reentrant, highlighting the importance of

the transformation presented in this thesis. For example, in the GCC benchmark

45

Table 6.5. Reentrant and non-reentrant functions in the bench-
marks after ignoring read-only globals

Benchmark Reentrant
Non-Reentrant Due To

Global Static Combined
400.perlbench 117 490 301 490
401.bzip2 79 2 0 2
403.gcc 1040 2828 2550 2850
429.mcf 19 4 0 4
445.gobmk 214 472 187 473
456.hmmer 175 25 14 32
458.sjeng 43 76 2 76
464.h264ref 189 314 14 314

Table 6.6. Reentrant and non-reentrant functions in the bench-
marks before ignoring read-only globals

Benchmark Reentrant
Non-Reentrant Due To

Global Static Combined
400.perlbench 107 500 301 500
401.bzip2 64 17 0 17
403.gcc 868 3015 2552 3022
429.mcf 19 4 0 4
445.gobmk 205 481 187 482
456.hmmer 175 29 14 32
458.sjeng 34 78 42 85
464.h264ref 170 330 27 333

only 1,040 out of the total 3,890 functions are reentrant.

The data in Table 6.5 is collected after ignoring read-only and write-only

globals. By ignoring read-only and write-only globals we were able to save some

overhead in all benchmarks except for 429.mcf, which used very few globals to

begin with. The number of reentrant and non-reentrant functions due to globals

before ignoring read-only and write-only globals is presented in Table 6.6.

46

6.2 Single-Threaded Overhead Introduced by the

Transformation

The goal of this research is to make it easier for a programmer to parallelize

an application to take advantage of increasing number of cores on a chip, thereby

increasing the application’s performance. However, the astute reader will have

noticed that many of the transformations we have performed may add instruc-

tions to the code, thereby decreasing single-threaded performance in some cases.

However, the transformation is intended to enable the user to parallelize the appli-

cation and run multiple threads concurrently. Thus, although our transformation

may result in slightly lower per thread performance, with many threads executing

in parallel, a total increase in overall performance is expected. The performance

overhead introduced by the transformation is as follows.

Increased memory usage. After we move the global into the local storage in

the global’s dominator, every thread that is generated will have its own copy of

the data. This means that the total memory usage of the application will increase

each time a dominator function is entered. The total amount of memory used

by the program cannot be calculated statically however, because, for example, a

function may be recursive and reenter itself a variable number of times.

The average number of functions in a global or static’s frontier is shown in Ta-

ble 6.7. For some of the benchmarks, the average number of functions in a global’s

frontier is zero. For benchmarks with a non-zero number of global variables, the

number of functions in its global frontier can still be zero if the benchmark only

has a single parent, resulting in the parent being the global’s dominator, thus

leaving no functions between the global function and the global dominator.

47

Table 6.7. Number of functions in global and static frontiers

Benchmark
Global Static

Min Max Average Min Max Average
400.perlbench 0 490 324.17 3 490 246.50
401.bzip2 0 0 0.00 0 0 0.00
403.gcc 0 2500 215.14 0 1517 325.79
429.mcf 0 0 0.00 0 0 0.00
445.gobmk 0 407 61.70 0 174 48.94
456.hmmer 0 15 7.00 0 3 1.06
458.sjeng 0 29 7.08 0 0 0.00
464.h264ref 0 192 13.51 0 4 2.40

Some of the benchmarks that make heavy use of globals result in a large num-

ber of frontier functions, on average, for each global. The 403.gcc and 400.perl-

bench had particularly high numbers of functions in the average global frontier.

We must point out that a user not using our semi-automatic transformation may

have to perform this analysis on their own. They would have to determine the

global’s dominator as well as the frontier functions. Then they would have to

painstakingly perform the accounting by hand and ensure that they passed the

global as a parameter along until it reaches the destined global function. It is

plain to see that this can get out of hand very quickly in terms of the introduced

overhead.

One word of data is added to each frontier and global function for each global

that they take as a new parameter. This cost may increase the memory usage

slightly.

Increased number of instructions. We add instructions in three main places:

in the global functions, in the frontier functions and in the dominator functions.

Every time we add instructions we are not only increasing the number of instruc-

tions needed to be executed when the program is run, thus increasing execution

48

time, but also increasing code size. This section describes the overhead involved in

adding instructions to make a program reentrant. Keep in mind that all overhead

is on a per-thread basis, so when running multiple threads concurrently, overall

performance is still expected to increase.

In each global function, the RTLs are changed to access the new parameter

instead of the the global data, which introduces no additional instructions. In

fact, we can actually reduce overhead in some cases. With the way that the RTLs

are presently created in VPO it requires 2 temporary locals and 11 instructions,

5 of which are memory accesses, for the first time you access a global. The first

temporary is initialized with 4 of the instructions, using 2 memory accesses. This

places the address of a global table into the first temporary. The remaining 7

instructions, with 3 memory accesses, uses the previously computed table pointer

to index into the table to find the address of the desired global. The second

temporary now contains the address of this global. This overhead is introduced

with the assumption that the global will be accessed many times in the function

and instructions and memory access will be saved by keeping the address of the

global in a temporary local. All of those instructions are no longer needed if we

remove all globals from a function, thus saving this overhead.

The global frontier functions and the global dominator functions are also re-

quired to pass the address of the newly created local containing the global data

along to the global function. As mentioned previously, on the ARM platform, up

to four parameters can be passed in registers. Any more than that will have to be

passed on the stack. If the function is able to pass the parameter in a register it

requires three instructions with one memory access to do so. If there are already

four parameters being passed in registers, then the function will have to use five

49

instructions with two memory accesses.

There are instructions that need to be added to initialize the new local variable

inside of the global dominator functions. This requires three instructions with one

memory access to initialize a scalar global. Currently, we treat arrays and structs

as list of scalars, so if an array is declared as 1,000 elements, the transformation

will include 3,000 instructions which increases code size and execution time. We

are currently investigating efficient ways to bring this number down. One of the

biggest problems in this respect is that uninitialized globals are zeroed out. This

means that we have to introduce instructions to zero out the global when we move

it to the local address space. If we do not do this, the programmer may assume

that it is zeroed out in the code and we will produce incorrect code. Perhaps an

efficient function call like memset() can be used in the future. Chapter 7 provides

further discussion on this topic.

50

Chapter 7

Future Work

The VPO compiler has built in support for interacting with the user. The

general framework of the transformation could be extended to use this interaction

to gain knowledge about the globals. In particular, it is up to the user to provide

knowledge about the type of each global. Currently, we assume that the user has

already handled type 2 and 3 globals and only focus on type 1 globals. If VPO

interactions were extended to include gathering information about global types,

we could continue our work to handle type 2 globals. As mentioned previously,

type 2 globals can be made reentrant by providing a locking mechanism, such

as mutexes or semaphores to ensure that only one thread is accessing the global

at a time. Furthermore, interaction with the user may very well provide them

with more clues about how to handle each of the globals in the program. The

data collected during the transformation will ensure that all of the globals are

accounted for and presented to the user to prevent the user from accidentally

skipping a global.

There are times that we might introduce a lot of instructions that will increase

code size and execution time for each thread. In particular, we add instructions

51

to initialize uninitialized globals to zero. Uninitialized identifiers in the global

address space are automatically zeroed for you. Thus, when we move the global

into the local address space, we must explicitly initialize the data to zero as well

to maintain the correctness of the code. Currently, this has the potential to add

significant overhead into the system. We would like to find a way eliminate this

overhead if possible. Perhaps we can implement a more efficient way to handle

this case, or, through interaction with the user, not initialize the data if it is not

needed.

Another potentially dangerous case that the transformation cannot currently

handle is aliasing of the global data or passing the global by reference to a function.

If the user does this, the transformation loses track of accesses to the global. We

are looking into a method to determine when aliasing of the global data occurs to

warn the user that the code may have potentially harmful effects. Currently we

display a general warning if we cannot determine a global’s access type, but any

extra information will ease the user’s job of handling this manually.

Further lessening of the overhead introduced by the transformation can be

achieved through interaction with the user by determining the entry point for the

threads. If the user discloses this information during the transformation, only

those functions that are descendents of the function that the user specifies need

to be made reentrant.

52

Chapter 8

Conclusion

In this thesis we discussed compiler transformations to semi-automatically gen-

erate reentrant C code. The parallelization of software is known to be a difficult

problem, but it is necessary to take advantage of current and future general pur-

pose hardware. Any work that can be done automatically, or semi-automatically,

can help reduce developer burden and allow them to focus on the algorithms that

they employ and not low level bookkeeping to make a program reentrant. Indeed,

we have shown that there are many globals and statics used in common software,

such as the SPEC CINT2006 benchmark suite.

Furthermore, our transformation allows the user to continue to use the well

developed practice of using statics and globals. Of particular note is the ability to

continue to use the static qualifier, which provides the only means of data hiding

in C.

In summary, I believe that as current trends to shift software development to

the multi-core and many-core domain, away from the well established sequential

paradigm, that software development will continue to become increasingly com-

plex. Take, for example, the heterogeneous parallel architectures such as GPGPU

53

or the Cell Broadband Engine Architecture. I strongly believe that programmers

will begin to adopt automatic or semi-automatic tools to help them achieve the

best performance possible. As we march into the future of many-core architec-

tures, perhaps transformations, such as those outlined in this thesis, will lead the

charge.

54

Appendix A

Code Examples

I have included some example code here showing a C program with its corre-

sponding source file file, generated RTL file and assembly file.

A.1 Overview of RTL files

When looking at an RTL file it is important to note that the first character

on every line describes the type of instruction that is contained on the line. For

example, # denotes a comment line, + denotes an RTL line, and - denotes an

assembly line. In certain instances extra comments will be added for clarity.

A.2 A Code Example

This example was discussed in Section 5.3. The call graph for this program

can be seen in Figure 5.4 on page 38.

55

A.2.1 C File

int glob = 2;

int func1() {

return func2() + func3();

}

int func2() {

return func5();

}

int func3() {

return func4();

}

int func4() {

glob += 1;

return glob;

}

int func5() {

return func6() + func7() + func8();

}

int func6() {

return func9();

}

int func7() {

return func9();

}

int func8() {

return func9();

}

int func9() {

glob -= 1;

return glob;

}

int main() {

return func1();

}

56

A.2.2 Non-Reentrant RTLs

Beginning of concatenation of all *.cex files

Beginning file global_tree4.cex

-.globl func1

-.globl func2

-.globl func3

-.globl func4

-.globl func5

-.globl func6

-.globl func7

-.globl func8

-.globl func9

-.globl main

-.data

-.globl glob

-.data

-.align 2

-glob:

-.word 2

-.text

-.align 2

-.L1:

-.word .L2

-func1:

+r[32]=L1;

+r[32]=LA[r[32]];

+r[33]=r[11]+.TMP.0;

+R[r[33]]=r[32];

File global_tree4.c Line 16

File global_tree4.c Line 17

+ST=func2;

+ST=func3;

+r[34]=r[32]+r[33];

+r[0]=r[34];

+PC=RT;

-.data

-.align 2

-.L2:

-.text

-.align 2

-.L4:

-.word .L5

-func2:

+r[35]=L4;

+r[35]=LA[r[35]];

+r[36]=r[11]+.TMP.1;

+R[r[36]]=r[35];

File global_tree4.c Line 20

File global_tree4.c Line 21

+ST=func5;

+r[0]=r[32];

+PC=RT;

-.data

-.align 2

-.L5:

-.text

-.align 2

-.L7:

-.word .L8

-func3:

+r[33]=L7;

57

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.2;

+R[r[34]]=r[33];

File global_tree4.c Line 24

File global_tree4.c Line 25

+ST=func4;

+r[0]=r[32];

+PC=RT;

-.data

-.align 2

-.L8:

-.text

-.align 2

-.L10:

-.word .L11

-func4:

+r[33]=L10;

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.3;

+R[r[34]]=r[33];

+r[33]=r[11]+.TMP.3;

+r[33]=R[r[33]];

+r[34]=0;

+r[33]=r[33]+r[34];

+r[35]=LA[r[33]];

+r[36]=r[11]+.TMP.4;

+R[r[36]]=r[35];

File global_tree4.c Line 28

File global_tree4.c Line 29

+r[32]=1;

+r[34]=r[11]+.TMP.4;

+r[33]=R[r[34]];

+r[35]=R[r[33]];

+r[37]=r[11]+.TMP.4;

+r[36]=R[r[37]];

+r[38]=r[35]+r[32];

+R[r[36]]=r[38];

+

File global_tree4.c Line 30

+r[33]=r[11]+.TMP.4;

+r[32]=R[r[33]];

+r[34]=R[r[32]];

+r[0]=r[34];

+PC=RT;

-.data

-.align 2

-.L11:

-.word glob

-.text

-.align 2

-.L13:

-.word .L14

-func5:

+r[35]=L13;

+r[35]=LA[r[35]];

+r[36]=r[11]+.TMP.5;

+R[r[36]]=r[35];

File global_tree4.c Line 33

File global_tree4.c Line 34

+ST=func6;

+ST=func7;

+r[34]=r[32]+r[33];

+ST=func8;

58

+r[36]=r[34]+r[35];

+r[0]=r[36];

+PC=RT;

-.data

-.align 2

-.L14:

-.text

-.align 2

-.L16:

-.word .L17

-func6:

+r[37]=L16;

+r[37]=LA[r[37]];

+r[38]=r[11]+.TMP.6;

+R[r[38]]=r[37];

File global_tree4.c Line 37

File global_tree4.c Line 38

+ST=func9;

+r[0]=r[32];

+PC=RT;

-.data

-.align 2

-.L17:

-.text

-.align 2

-.L19:

-.word .L20

-func7:

+r[33]=L19;

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.7;

+R[r[34]]=r[33];

File global_tree4.c Line 41

File global_tree4.c Line 42

+ST=func9;

+r[0]=r[32];

+PC=RT;

-.data

-.align 2

-.L20:

-.text

-.align 2

-.L22:

-.word .L23

-func8:

+r[33]=L22;

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.8;

+R[r[34]]=r[33];

File global_tree4.c Line 45

File global_tree4.c Line 46

+ST=func9;

+r[0]=r[32];

+PC=RT;

-.data

-.align 2

-.L23:

-.text

-.align 2

-.L25:

-.word .L26

-func9:

+r[33]=L25;

59

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.9;

+R[r[34]]=r[33];

+r[33]=r[11]+.TMP.9;

+r[33]=R[r[33]];

+r[34]=0;

+r[33]=r[33]+r[34];

+r[35]=LA[r[33]];

+r[36]=r[11]+.TMP.10;

+R[r[36]]=r[35];

File global_tree4.c Line 49

File global_tree4.c Line 50

+r[32]=1;

+r[34]=r[11]+.TMP.10;

+r[33]=R[r[34]];

+r[35]=R[r[33]];

+r[37]=r[11]+.TMP.10;

+r[36]=R[r[37]];

+r[38]=r[35]-r[32];

+R[r[36]]=r[38];

+

File global_tree4.c Line 51

+r[33]=r[11]+.TMP.10;

+r[32]=R[r[33]];

+r[34]=R[r[32]];

+r[0]=r[34];

+PC=RT;

-.data

-.align 2

-.L26:

-.word glob

-.text

-.align 2

-.L28:

-.word .L29

-main:

+r[35]=L28;

+r[35]=LA[r[35]];

+r[36]=r[11]+.TMP.11;

+R[r[36]]=r[35];

File global_tree4.c Line 54

File global_tree4.c Line 55

+ST=func1;

+r[0]=r[32];

+PC=RT;

-.data

-.align 2

-.L29:

End file global_tree4.cex

60

A.2.3 Reentrant RTLs

Beginning of concatenation of all *.cex files

Beginning file global_tree4.cex

-.globl func1

-.globl func2

-.globl func3

-.globl func4

-.globl func5

-.globl func6

-.globl func7

-.globl func8

-.globl func9

-.globl main

-.data

-.globl glob

-.data

-.align 2

-glob:

-.word 2

-.text

-.align 2

-.L1:

-.word .L2

-func1:

#

#Initializing new local for global glob

+r[35]=r[11]+.new_local_glob;

+r[36]=2;

+R[r[35]]=r[36];

#End initializing new local

#

+r[32]=L1;

+r[32]=LA[r[32]];

+r[33]=r[11]+.TMP.0;

+R[r[33]]=r[32];

File global_tree4.c Line 16

File global_tree4.c Line 17

#

#Passing param for global glob

+r[35]=r[11]+.new_local_glob;

+r[0]=r[35];

+ST=func2;

+

#End passing param

#

#

#Passing param for global glob

+r[35]=r[11]+.new_local_glob;

+r[0]=r[35];

+ST=func3;

+

#End passing param

#

+r[34]=r[32]+r[33];

+r[0]=r[34];

+PC=RT;

-.text

-.align 2

-.L4:

-.word .L5

-func2:

61

+r[35]=L4;

+r[35]=LA[r[35]];

+r[36]=r[11]+.TMP.1;

+R[r[36]]=r[35];

File global_tree4.c Line 20

File global_tree4.c Line 21

#

#Passing param for global

+r[37]=r[11]+.new_param_glob;

+r[37]=R[r[37]];

+r[0]=r[37];

+ST=func5;

+

#End passing param

#

+r[0]=r[32];

+PC=RT;

-.text

-.align 2

-.L7:

-.word .L8

-func3:

+r[33]=L7;

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.2;

+R[r[34]]=r[33];

File global_tree4.c Line 24

File global_tree4.c Line 25

#

#Passing param for global

+r[35]=r[11]+.new_param_glob;

+r[35]=R[r[35]];

+r[0]=r[35];

+ST=func4;

+

#End passing param

#

+r[0]=r[32];

+PC=RT;

-.text

-.align 2

-.L10:

-.word .L11

-func4:

+r[33]=L10;

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.3;

+R[r[34]]=r[33];

#

#Static/Global Declaration

+r[33]=r[11]+.TMP.3;

+r[33]=R[r[33]];

+r[34]=0;

+r[33]=r[33]+r[34];

+r[35]=LA[r[33]];

+r[36]=r[11]+.TMP.4;

+R[r[36]]=r[35];

#End Static/Global Declaration

#

File global_tree4.c Line 28

File global_tree4.c Line 29

+r[32]=1;

#

62

#Global Reference

+r[34]=r[11]+.TMP.4;

+r[34]=r[11]+.new_param_glob;

+r[33]=R[r[34]];

#End Global Reference

#

+r[35]=R[r[33]];

#

#Global Reference

+r[37]=r[11]+.TMP.4;

+r[37]=r[11]+.new_param_glob;

+r[36]=R[r[37]];

#End Global Reference

#

+r[38]=r[35]+r[32];

+R[r[36]]=r[38];

+

File global_tree4.c Line 30

#

#Global Reference

+r[33]=r[11]+.TMP.4;

+r[33]=r[11]+.new_param_glob;

+r[32]=R[r[33]];

#End Global Reference

#

+r[34]=R[r[32]];

+r[0]=r[34];

+PC=RT;

-.text

-.align 2

-.L13:

-.word .L14

-func5:

+r[35]=L13;

+r[35]=LA[r[35]];

+r[36]=r[11]+.TMP.5;

+R[r[36]]=r[35];

File global_tree4.c Line 33

File global_tree4.c Line 34

#

#Passing param for global

+r[37]=r[11]+.new_param_glob;

+r[37]=R[r[37]];

+r[0]=r[37];

+ST=func6;

+

#End passing param

#

#

#Passing param for global

+r[37]=r[11]+.new_param_glob;

+r[37]=R[r[37]];

+r[0]=r[37];

+ST=func7;

+

#End passing param

#

+r[34]=r[32]+r[33];

#

#Passing param for global

+r[37]=r[11]+.new_param_glob;

+r[37]=R[r[37]];

+r[0]=r[37];

63

+ST=func8;

+

#End passing param

#

+r[36]=r[34]+r[35];

+r[0]=r[36];

+PC=RT;

-.text

-.align 2

-.L16:

-.word .L17

-func6:

+r[37]=L16;

+r[37]=LA[r[37]];

+r[38]=r[11]+.TMP.6;

+R[r[38]]=r[37];

File global_tree4.c Line 37

File global_tree4.c Line 38

#

#Passing param for global

+r[39]=r[11]+.new_param_glob;

+r[39]=R[r[39]];

+r[0]=r[39];

+ST=func9;

+

#End passing param

#

+r[0]=r[32];

+PC=RT;

-.text

-.align 2

-.L19:

-.word .L20

-func7:

+r[33]=L19;

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.7;

+R[r[34]]=r[33];

File global_tree4.c Line 41

File global_tree4.c Line 42

#

#Passing param for global

+r[35]=r[11]+.new_param_glob;

+r[35]=R[r[35]];

+r[0]=r[35];

+ST=func9;

+

#End passing param

#

+r[0]=r[32];

+PC=RT;

-.text

-.align 2

-.L22:

-.word .L23

-func8:

+r[33]=L22;

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.8;

+R[r[34]]=r[33];

File global_tree4.c Line 45

File global_tree4.c Line 46

#

64

#Passing param for global

+r[35]=r[11]+.new_param_glob;

+r[35]=R[r[35]];

+r[0]=r[35];

+ST=func9;

+

#End passing param

#

+r[0]=r[32];

+PC=RT;

-.text

-.align 2

-.L25:

-.word .L26

-func9:

+r[33]=L25;

+r[33]=LA[r[33]];

+r[34]=r[11]+.TMP.9;

+R[r[34]]=r[33];

#

#Static/Global Declaration

+r[33]=r[11]+.TMP.9;

+r[33]=R[r[33]];

+r[34]=0;

+r[33]=r[33]+r[34];

+r[35]=LA[r[33]];

+r[36]=r[11]+.TMP.10;

+R[r[36]]=r[35];

#End Static/Global Declaration

#

File global_tree4.c Line 49

File global_tree4.c Line 50

+r[32]=1;

#

#Global Reference

+r[34]=r[11]+.TMP.10;

+r[34]=r[11]+.new_param_glob;

+r[33]=R[r[34]];

#End Global Reference

#

+r[35]=R[r[33]];

#

#Global Reference

+r[37]=r[11]+.TMP.10;

+r[37]=r[11]+.new_param_glob;

+r[36]=R[r[37]];

#End Global Reference

#

+r[38]=r[35]-r[32];

+R[r[36]]=r[38];

+

File global_tree4.c Line 51

#

#Global Reference

+r[33]=r[11]+.TMP.10;

+r[33]=r[11]+.new_param_glob;

+r[32]=R[r[33]];

#End Global Reference

#

+r[34]=R[r[32]];

+r[0]=r[34];

+PC=RT;

-.text

65

-.align 2

-.L28:

-.word .L29

-main:

+r[35]=L28;

+r[35]=LA[r[35]];

+r[36]=r[11]+.TMP.11;

+R[r[36]]=r[35];

File global_tree4.c Line 54

File global_tree4.c Line 55

+ST=func1;

+r[0]=r[32];

+PC=RT;

66

A.2.4 Non-Reentrant ARM Assembly

@ reg_param_space=0, int_save_space=4

@ local start=8

@ my_arg_build_size=0

@ local size = 4

@ spill size = 8

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 8

@ fp is not necessary, using FP

@ Beginning of concatenation of all *.cex files

@ Beginning file global_tree4.cex

.globl func1

.globl func2

.globl func3

.globl func4

.globl func5

.globl func6

.globl func7

.globl func8

.globl func9

.globl main

.data

.globl glob

.data

.align 2

glob:

.word 2

.text

.align 2

.L1:

.word .L2

func1:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #12

.TMP.0 = 8

@ end of fixentry

adr r12,.L1

ldr r12,[r12]

mov lr,#8

add lr,sp,lr

@ fixentry loaded .TMP.0

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 16

@ File global_tree4.c Line 17

bl func2

str r0,[sp,#0]

bl func3

ldr r12,[sp,#0]

add r12,r12,r0

mov r0,r12

add sp, sp, #12

ldmfd sp!, {pc}

mov r0,r12

@ fp is not necessary, using FP

.data

.align 2

.L2:

@ reg_param_space=0, int_save_space=4

67

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L4:

.word .L5

func2:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #4

.TMP.1 = 0

@ end of fixentry

adr r12,.L4

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.1

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 20

@ File global_tree4.c Line 21

bl func5

mov r0,r0

add sp, sp, #4

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L5:

@ reg_param_space=0, int_save_space=4

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L7:

.word .L8

func3:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #4

.TMP.2 = 0

@ end of fixentry

adr r12,.L7

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.2

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 24

68

@ File global_tree4.c Line 25

bl func4

mov r0,r0

add sp, sp, #4

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L8:

@ reg_param_space=0, int_save_space=4

@ local start=0

@ my_arg_build_size=0

@ local size = 8

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L10:

.word .L11

func4:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #8

.TMP.4 = 0

.TMP.3 = 4

@ end of fixentry

adr r12,.L10

ldr r12,[r12]

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.3

mov r0,lr

str r12,[r0]

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.3

mov r12,lr

ldr r12,[r12]

mov r0,#0

add r12,r12,r0

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.4

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 28

@ File global_tree4.c Line 29

mov r12,#1

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.4

mov r0,lr

ldr r0,[r0]

ldr r0,[r0]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.4

mov r1,lr

69

ldr r1,[r1]

add r12,r0,r12

str r12,[r1]

@ File global_tree4.c Line 30

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.4

mov r12,lr

ldr r12,[r12]

ldr r12,[r12]

mov r0,r12

add sp, sp, #8

ldmfd sp!, {pc}

mov r0,r12

@ fp is not necessary, using FP

.data

.align 2

.L11:

.word glob

@ reg_param_space=0, int_save_space=4

@ local start=8

@ my_arg_build_size=0

@ local size = 4

@ spill size = 8

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 8

@ fp is not necessary, using FP

.text

.align 2

.L13:

.word .L14

func5:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #12

.TMP.5 = 8

@ end of fixentry

adr r12,.L13

ldr r12,[r12]

mov lr,#8

add lr,sp,lr

@ fixentry loaded .TMP.5

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 33

@ File global_tree4.c Line 34

bl func6

str r0,[sp,#0]

bl func7

ldr r12,[sp,#0]

add r12,r12,r0

str r12,[sp,#0]

bl func8

ldr r12,[sp,#0]

add r12,r12,r0

mov r0,r12

add sp, sp, #12

ldmfd sp!, {pc}

mov r0,r12

@ fp is not necessary, using FP

.data

.align 2

70

.L14:

@ reg_param_space=0, int_save_space=4

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L16:

.word .L17

func6:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #4

.TMP.6 = 0

@ end of fixentry

adr r12,.L16

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.6

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 37

@ File global_tree4.c Line 38

bl func9

mov r0,r0

add sp, sp, #4

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L17:

@ reg_param_space=0, int_save_space=4

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L19:

.word .L20

func7:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #4

.TMP.7 = 0

@ end of fixentry

adr r12,.L19

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.7

mov r0,lr

71

str r12,[r0]

@ File global_tree4.c Line 41

@ File global_tree4.c Line 42

bl func9

mov r0,r0

add sp, sp, #4

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L20:

@ reg_param_space=0, int_save_space=4

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L22:

.word .L23

func8:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #4

.TMP.8 = 0

@ end of fixentry

adr r12,.L22

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.8

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 45

@ File global_tree4.c Line 46

bl func9

mov r0,r0

add sp, sp, #4

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L23:

@ reg_param_space=0, int_save_space=4

@ local start=0

@ my_arg_build_size=0

@ local size = 8

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L25:

.word .L26

func9:

72

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #8

.TMP.10 = 0

.TMP.9 = 4

@ end of fixentry

adr r12,.L25

ldr r12,[r12]

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.9

mov r0,lr

str r12,[r0]

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.9

mov r12,lr

ldr r12,[r12]

mov r0,#0

add r12,r12,r0

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.10

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 49

@ File global_tree4.c Line 50

mov r12,#1

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.10

mov r0,lr

ldr r0,[r0]

ldr r0,[r0]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.10

mov r1,lr

ldr r1,[r1]

sub r12,r0,r12

str r12,[r1]

@ File global_tree4.c Line 51

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.10

mov r12,lr

ldr r12,[r12]

ldr r12,[r12]

mov r0,r12

add sp, sp, #8

ldmfd sp!, {pc}

mov r0,r12

@ fp is not necessary, using FP

.data

.align 2

.L26:

.word glob

@ reg_param_space=0, int_save_space=4

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

73

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L28:

.word .L29

main:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #4

.TMP.11 = 0

@ end of fixentry

adr r12,.L28

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.11

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 54

@ File global_tree4.c Line 55

bl func1

mov r0,r0

add sp, sp, #4

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L29:

@ fp is not necessary, using FP

@ fp is not necessary, using FP

@ End file global_tree4.cex

74

A.2.5 Reentrant ARM Assembly

@ reg_param_space=0, int_save_space=4

@ local start=8

@ my_arg_build_size=0

@ local size = 8

@ spill size = 8

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 8

@ fp is not necessary, using FP

@ Beginning of concatenation of all *.cex files

@ Beginning file global_tree4.cex

.globl func1

.globl func2

.globl func3

.globl func4

.globl func5

.globl func6

.globl func7

.globl func8

.globl func9

.globl main

.data

.globl glob

.data

.align 2

glob:

.word 2

.text

.align 2

.L1:

.word .L2

func1:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #16

.new_local_glob = 8

.TMP.0 = 12

@ end of fixentry

@

@ Initializing new local for global glob

mov lr,#8

add lr,sp,lr

@ fixentry loaded .new_local_glob

mov r12,lr

mov r0,#2

str r0,[r12]

@ End initializing new local

@

adr r12,.L1

ldr r12,[r12]

mov lr,#12

add lr,sp,lr

@ fixentry loaded .TMP.0

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 16

@ File global_tree4.c Line 17

@

@ Passing param for global glob

mov lr,#8

75

add lr,sp,lr

@ fixentry loaded .new_local_glob

mov r12,lr

mov r0,r12

bl func2

@ End passing param

@

@

@ Passing param for global glob

mov lr,#8

add lr,sp,lr

@ fixentry loaded .new_local_glob

mov r12,lr

str r0,[sp,#0]

mov r0,r12

bl func3

@ End passing param

@

ldr r12,[sp,#0]

add r12,r12,r0

mov r0,r12

add sp, sp, #16

ldmfd sp!, {pc}

mov r0,r12

@ fp is not necessary, using FP

.data

.align 2

.L2:

@ reg_param_space=0, int_save_space=8

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 8

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L4:

.word .L5

func2:

@ func is not irq handler

stmfd sp!, {r0, lr}

sub sp, sp, #4

.TMP.1 = 0

.new_param_glob = 4

@ end of fixentry

adr r12,.L4

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.1

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 20

@ File global_tree4.c Line 21

@

@ Passing param for global

mov lr,#4

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

76

ldr r12,[r12]

mov r0,r12

bl func5

@ End passing param

@

mov r0,r0

add sp, sp, #8

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L5:

@ reg_param_space=0, int_save_space=8

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 8

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L7:

.word .L8

func3:

@ func is not irq handler

stmfd sp!, {r0, lr}

sub sp, sp, #4

.TMP.2 = 0

.new_param_glob = 4

@ end of fixentry

adr r12,.L7

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.2

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 24

@ File global_tree4.c Line 25

@

@ Passing param for global

mov lr,#4

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

mov r0,r12

bl func4

@ End passing param

@

mov r0,r0

add sp, sp, #8

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L8:

@ reg_param_space=0, int_save_space=8

@ local start=0

77

@ my_arg_build_size=0

@ local size = 8

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 8

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L10:

.word .L11

func4:

@ func is not irq handler

stmfd sp!, {r0, lr}

sub sp, sp, #8

.TMP.3 = 0

.TMP.4 = 4

.new_param_glob = 8

@ end of fixentry

adr r12,.L10

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.3

mov r0,lr

str r12,[r0]

@

@ Static/Global Declaration

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.3

mov r12,lr

ldr r12,[r12]

mov r0,#0

add r12,r12,r0

ldr r12,[r12]

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.4

mov r0,lr

str r12,[r0]

@ End Static/Global Declaration

@

@ File global_tree4.c Line 28

@ File global_tree4.c Line 29

mov r12,#1

@

@ Global Reference

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.4

mov r0,lr

mov lr,#8

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r0,lr

ldr r0,[r0]

@ End Global Reference

@

ldr r0,[r0]

@

@ Global Reference

mov lr,#4

78

add lr,sp,lr

@ fixentry loaded .TMP.4

mov r1,lr

mov lr,#8

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r1,lr

ldr r1,[r1]

@ End Global Reference

@

add r12,r0,r12

str r12,[r1]

@ File global_tree4.c Line 30

@

@ Global Reference

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.4

mov r12,lr

mov lr,#8

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

@ End Global Reference

@

ldr r12,[r12]

mov r0,r12

add sp, sp, #12

ldmfd sp!, {pc}

mov r0,r12

@ fp is not necessary, using FP

.data

.align 2

.L11:

.word glob

@ reg_param_space=0, int_save_space=8

@ local start=8

@ my_arg_build_size=0

@ local size = 4

@ spill size = 8

@ calculate_non_scratch_int_reg_save_size = 8

@ we will need the LR saved

@ spill size = 8

@ fp is not necessary, using FP

.text

.align 2

.L13:

.word .L14

func5:

@ func is not irq handler

stmfd sp!, {r0, lr}

sub sp, sp, #12

.TMP.5 = 8

.new_param_glob = 12

@ end of fixentry

adr r12,.L13

ldr r12,[r12]

mov lr,#8

add lr,sp,lr

@ fixentry loaded .TMP.5

mov r0,lr

str r12,[r0]

79

@ File global_tree4.c Line 33

@ File global_tree4.c Line 34

@

@ Passing param for global

mov lr,#12

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

mov r0,r12

bl func6

@ End passing param

@

@

@ Passing param for global

mov lr,#12

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

str r0,[sp,#0]

mov r0,r12

bl func7

@ End passing param

@

ldr r12,[sp,#0]

add r0,r12,r0

@

@ Passing param for global

mov lr,#12

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

str r0,[sp,#0]

mov r0,r12

bl func8

@ End passing param

@

ldr r12,[sp,#0]

add r12,r12,r0

mov r0,r12

add sp, sp, #16

ldmfd sp!, {pc}

mov r0,r12

@ fp is not necessary, using FP

.data

.align 2

.L14:

@ reg_param_space=0, int_save_space=8

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 8

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L16:

.word .L17

func6:

80

@ func is not irq handler

stmfd sp!, {r0, lr}

sub sp, sp, #4

.TMP.6 = 0

.new_param_glob = 4

@ end of fixentry

adr r12,.L16

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.6

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 37

@ File global_tree4.c Line 38

@

@ Passing param for global

mov lr,#4

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

mov r0,r12

bl func9

@ End passing param

@

mov r0,r0

add sp, sp, #8

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L17:

@ reg_param_space=0, int_save_space=8

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 8

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L19:

.word .L20

func7:

@ func is not irq handler

stmfd sp!, {r0, lr}

sub sp, sp, #4

.TMP.7 = 0

.new_param_glob = 4

@ end of fixentry

adr r12,.L19

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.7

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 41

@ File global_tree4.c Line 42

81

@

@ Passing param for global

mov lr,#4

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

mov r0,r12

bl func9

@ End passing param

@

mov r0,r0

add sp, sp, #8

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L20:

@ reg_param_space=0, int_save_space=8

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 8

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L22:

.word .L23

func8:

@ func is not irq handler

stmfd sp!, {r0, lr}

sub sp, sp, #4

.TMP.8 = 0

.new_param_glob = 4

@ end of fixentry

adr r12,.L22

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.8

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 45

@ File global_tree4.c Line 46

@

@ Passing param for global

mov lr,#4

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

mov r0,r12

bl func9

@ End passing param

@

mov r0,r0

add sp, sp, #8

ldmfd sp!, {pc}

mov r0,r0

82

@ fp is not necessary, using FP

.data

.align 2

.L23:

@ reg_param_space=0, int_save_space=8

@ local start=0

@ my_arg_build_size=0

@ local size = 8

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 8

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L25:

.word .L26

func9:

@ func is not irq handler

stmfd sp!, {r0, lr}

sub sp, sp, #8

.TMP.9 = 0

.TMP.10 = 4

.new_param_glob = 8

@ end of fixentry

adr r12,.L25

ldr r12,[r12]

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.9

mov r0,lr

str r12,[r0]

@

@ Static/Global Declaration

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.9

mov r12,lr

ldr r12,[r12]

mov r0,#0

add r12,r12,r0

ldr r12,[r12]

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.10

mov r0,lr

str r12,[r0]

@ End Static/Global Declaration

@

@ File global_tree4.c Line 49

@ File global_tree4.c Line 50

mov r12,#1

@

@ Global Reference

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.10

mov r0,lr

mov lr,#8

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r0,lr

ldr r0,[r0]

83

@ End Global Reference

@

ldr r0,[r0]

@

@ Global Reference

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.10

mov r1,lr

mov lr,#8

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r1,lr

ldr r1,[r1]

@ End Global Reference

@

sub r12,r0,r12

str r12,[r1]

@ File global_tree4.c Line 51

@

@ Global Reference

mov lr,#4

add lr,sp,lr

@ fixentry loaded .TMP.10

mov r12,lr

mov lr,#8

add lr,sp,lr

@ fixentry loaded .new_param_glob

mov r12,lr

ldr r12,[r12]

@ End Global Reference

@

ldr r12,[r12]

mov r0,r12

add sp, sp, #12

ldmfd sp!, {pc}

mov r0,r12

@ fp is not necessary, using FP

.data

.align 2

.L26:

.word glob

@ reg_param_space=0, int_save_space=4

@ local start=0

@ my_arg_build_size=0

@ local size = 4

@ spill size = 0

@ calculate_non_scratch_int_reg_save_size = 4

@ we will need the LR saved

@ spill size = 0

@ fp is not necessary, using FP

.text

.align 2

.L28:

.word .L29

main:

@ func is not irq handler

stmfd sp!, {lr}

sub sp, sp, #4

.TMP.11 = 0

@ end of fixentry

adr r12,.L28

ldr r12,[r12]

84

mov lr,#0

add lr,sp,lr

@ fixentry loaded .TMP.11

mov r0,lr

str r12,[r0]

@ File global_tree4.c Line 54

@ File global_tree4.c Line 55

bl func1

mov r0,r0

add sp, sp, #4

ldmfd sp!, {pc}

mov r0,r0

@ fp is not necessary, using FP

.data

.align 2

.L29:

@ fp is not necessary, using FP

@ fp is not necessary, using FP

@ End file global_tree4.cex

85

References

[1] F. Bellard. QEMU, a fast and portable dynamic translator. In ATEC ’05: Pro-

ceedings of the annual conference on USENIX Annual Technical Conference, pages

41–41, Berkeley, CA, USA, 2005. USENIX Association.

[2] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In

PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming

Language design and Implementation, pages 329–338, New York, NY, USA, 1988.

ACM.

[3] M. E. Benitez and J. W. Davidson. The advantages of machine-dependent global

optimization. In Proceedings of the international conference on Programming

languages and system architectures, pages 105–124, New York, NY, USA, 1994.

Springer-Verlag New York, Inc.

[4] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,

B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: The next gener-

ation in parallelizing compilers. In Proceedings of the Workshop on Languages and

Compilers for Parallel Computing, pages 10–1. Springer-Verlag, Berlin/Heidelberg,

1994.

[5] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting

the sequential programming model for multi-core. In MICRO ’07: Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pages

69–84, Washington, DC, USA, 2007. IEEE Computer Society.

86

[6] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. SIGARCH

Comput. Archit. News, 25(3):13–25, 1997.

[7] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the

chapel language. Int. J. High Perform. Comput. Appl., 21(3):291–312, 2007.

[8] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior

oriented parallelization. SIGPLAN Not., 42(6):223–234, 2007.

[9] Edison Design Group. http://www.edg.com/.

[10] T. El-Ghazawi and F. Cantonnet. Upc performance and potential: a npb ex-

perimental study. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE

conference on Supercomputing, pages 1–26, Los Alamitos, CA, USA, 2002. IEEE

Computer Society Press.

[11] M. P. I. Forum. Mpi2: A message passing interface standard. High Performance

Computing Applications, 12(1–2):1–299, 1998.

[12] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

Pvm: Parallel virtual machine – a users guide and tutorial for network parallel

computing. MIT Press, 1994.

[13] D. Grove and L. Torczon. Interprocedural constant propagation: a study of jump

function implementation. In PLDI ’93: Proceedings of the ACM SIGPLAN 1993

conference on Programming language design and implementation, pages 90–99,

New York, NY, USA, 1993. ACM.

[14] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2002.

[15] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, Jr., and M. E. Zosel.

The high performance Fortran handbook. MIT Press, Cambridge, MA, USA, 1994.

[16] P. Kulkarni, W. Zhao, S. Hines, D. Whalley, , X. Yuan, R. van Engelen, K. Gallivan,

J. Hiser, J. Davidson, B. Cai, M. Bailey, H. Moon, K. Cho, Y. Paek, and D. Jones.

87

http://www.edg.com/

Vista: Vpo interactive system for tuning applications. volume 5, pages 819–863,

November 2006.

[17] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey,

Y. Paek, and K. Gallivan. Finding effective optimization phase sequences. In

Proceedings of the 2003 ACM SIGPLAN Conference on Languages, Compilers,

and Tools for Embedded Systems, pages 12–23. ACM Press, 2003.

[18] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[19] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-

graph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979.

[20] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum, and M. S. Lam. Suif ex-

plorer: an interactive and interprocedural parallelizer. In PPoPP ’99: Proceedings

of the seventh ACM SIGPLAN symposium on Principles and practice of parallel

programming, pages 37–48, New York, NY, USA, 1999. ACM.

[21] R. W. Numrich and J. Reid. Co-array fortran for parallel programming. SIGPLAN

Fortran Forum, 17(2):1–31, 1998.

[22] K. H. Randall. Cilk: Efficient multithreaded computing. Technical report, Cam-

bridge, MA, USA, 1998.

[23] M. Rinard and P. Diniz. Commutativity analysis: A new analysis technique for

parallelizing compilers. ACM Transactions on Programming Languages and Sys-

tems, 19(6):942–991, Nov. 1997.

[24] SPEC CINT2006. http://www.spec.org/cpu2006/CINT2006/.

[25] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploit-

ing coarse-grained pipeline parallelism in c programs. In MICRO ’07: Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 356–369, Washington, DC, USA, 2007. IEEE Computer Society.

[26] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,

S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L.

88

http://www.spec.org/cpu2006/CINT2006/

Hennessy. Suif: an infrastructure for research on parallelizing and optimizing

compilers. SIGPLAN Not., 29(12):31–37, 1994.

[27] K. Yelick, L. Semenzato, G. Pike, C. M. B. Liblit, A. Krishnamurthy, P. Hilfinger,

S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: a high-performance

java dialect. Concurrency: Practice and Experience, 10(11–13):825–836, December

1998.

[28] W. Zhao, B. Cai, D. Whalley, M. Bailey, R. van Engelen, X. Yuan, J. Hiser,

J. Davidson, K. Gallivan, and D. Jones. Vista: A system for interactive code

improvement. In ACM SIGPLAN Conference on Languages, Compilers, and Tools

for Embedded Systems, pages 155–164. ACM, June 2002.

89

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Globals, Statics and Their Implementation in C
	Implementation and Use of Global Variables
	Implementation and Use of Static Variables
	Global Data in C

	What It Means to be Reentrant
	Terminology

	Related Works
	Design & Framework
	Flow of Compiler
	RTLs and the Intermediate Form
	Execution Environment
	Benchmarks

	Implementation
	Overview
	Different Types of Globals and Statics
	General Approach
	Example of Making a Program Reentrant

	Flow Graph
	VPO
	Semi-Automatic Code Transformation

	Global Dominators and Affected Functions
	Global Functions
	Global Dominators
	Global Frontiers

	Intermediate Code and How It Changes
	Implementation Issues

	Results
	CINT2006 Benchmark Statistics
	Single-Threaded Overhead Introduced by the Transformation

	Future Work
	Conclusion
	Code Examples
	Overview of RTL files
	A Code Example
	C File
	Non-Reentrant RTLs
	Reentrant RTLs
	Non-Reentrant ARM Assembly
	Reentrant ARM Assembly

	References

