
Constructing an Environment and
Providing a Performance Assessment of
Android’s Dalvik Virtual Machine on

x86 and ARM

Goutham Selvakumar

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty

of the University of Kansas School of Engineering in partial
fulfilment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Xin Fu

Dr. Victor Frost

Date Defended

The Thesis Committee for Goutham Selvakumar certifies

That this is the approved version of the following thesis:

Constructing an Environment and Providing a Performance

Assessment of Android’s Dalvik Virtual Machine on x86 and ARM

Committee:

Chairperson

Date Approved

i

Acknowledgements

I would like to take this opportunity to thank my advisor Dr.Prasad Kulkarni

for guiding me right from the beginning till the end of this research. This project

is result of his vision and accumulated knowledge from his past. I am glad to have

such a mentor who is very kind, extremely patient, flexible and highly knowledged.

He is the sole motivation for completing this research and writing this report.

I would like to thank all my committee members, Dr.Xin Fu and Dr.Victor Frost,

who helped me to make this possible. I would like to thank my parents, friends

and family, whom are the very reason for me being in this position today. They

were always available whenever I needed them. I would like to thank, Univer-

sity of Kansas for its research program and all the facility it provided to help me

gain knowledge in the recent cutting edge technology. I am glad that I got the

assistant-ship which help me to focus more on academics by backing me financially.

Finally, I would like to thank all the teachers in my life, who shaped me to become

who I am now, without their dedication and encouragement all this would have

been next to impossible.

Thank you all.

ii

Abstract

Android is one of the most popular operating systems (OS) for mobile touch

screen devices, including smart-phones and tablet computers. Dalvik is a process

virtual machine (VM) that provides an abstraction layer over the Android OS,

and runs the Java-based Android applications. The first goal of this project is to

construct a development environment for conveniently investigating the properties

of Android’s Dalvik VM on contemporary x86 and ARM architectures. The nor-

mal development environment restricts the Dalvik VM to run on top of Android,

and requires an updated Android image to be built and installed on the target

device after any change to the Dalvik code. This update-build-install process un-

necessarily slows down any Dalvik VM exploration. We have now discovered a

configuration that enables us to study the Dalvik VM as a stand-alone application

on top of the Linux OS on x86 machines.

The second goal of this project is to understand the translation/compilation

sub-system in the Dalvik VM, experiment with various modifications to deter-

mine the best translation parameters, and compare the Dalvik VM’s just-in-time

(JIT) compilation characteristics (such as quality of code generated and compi-

lation time) on the x86 and ARM systems with a state-of-the-art Java VM. As

expected, we find that JIT compilation is able to significantly improve applica-

tion performance over basic interpretation. Comparing Dalvik’s generated code

quality with the Java HotSpot VM, we observe that Dalvik’s ARM target is a

much more mature compared to Dalvik-x86. Therefore, Dalvik’s simple trace-

based compilation generates code quality that is much worse than HotSpot on

the x86, but achieves better performance on ARM. Finally, our experiments also

reveal effective JIT compilation parameters for the Dalvik VM, and their effect

on benchmark performance and memory usage.

iii

Contents

Abstract iii

Table of Contents iv

List of Figures vi

1 Introduction 1

2 Background and Related Work 5

2.1 Just-in-Time Compilation . 5

2.2 Android Platform Architecture 7

2.3 The Dalvik Intermediate Code and Virtual Machine 8

2.4 Related Works on Evaluating Dalvik VM Performance 10

3 Environment to run Dalvik on x86 and ARM 12

3.1 Standalone Execution of DalvikVM 15

3.2 Dalvik Debugging Environment 17

3.3 Important Dalvik VM Files . 18

3.4 Using Linaro image tool . 19

3.5 Compiler Code Flow . 20

3.6 Dalvik Command Line Arguments 24

4 Assessing Dalvik VM Performance 27

4.1 Experimental Environment . 27

4.1.1 Hardware/OS Setup . 27

4.1.2 Benchmark Setup . 28

4.2 Performance Comparison of Hotspot and Dalvik Virtual Machines 29

iv

4.3 Dalvik Compiler Parameter Tuning 34

5 Future Work 41

6 Conclusions 42

References 44

v

List of Figures

1.1 Building and evaluating Android OS or Dalvik VM 2

1.2 Our modified process for building and evaluating Android OS or Dalvik VM 3

2.1 The Android operating system architecture. [8] 7

2.2 The Comparison between DEX and CLASS file format [8] 9

3.1 Overall Compiler Code Flow. 24

4.1 The Interpreter Performance of Hotspot and Dalvik. 30

4.2 The Dalvik Interpreter versus Compiler performance. 31

4.3 The Dalvik Interpreter versus Steady State Compiler performance on X86. 32

4.4 The Compiler performance of Hotspot versus Dalvik. 33

4.5 The Impact of JitThreshold on Dalvik’s compiler efficiency on X86. 34

4.6 The Impact of JitThreshold on Dalvik’s Application run time on X86. 35

4.7 The Impact of JitThreshold on Dalvik’s compiler efficiency on ARM. 37

4.8 The Impact of JitThreshold on Dalvik’s Application run time on ARM. 38

4.9 The Run time performance comparison of various JIT configurations 40

4.10 The Compile time performance comparison of various JIT configurations 40

vi

Chapter 1

Introduction

Android is an open-source operating system (OS) initially developed by An-

droid Inc. and Google. It is currently one of the most popular OS for touchscreen-

based mobile devices, including smart-phones and tablet computers. Android is

built on top of the Linux operating system kernel, and allows developers and

manufacturers to freely modify and distribute the OS for their specific devices.

Thus, close variants of the Android OS are currently deployed by several device

manufactures, including Motorola, Samsung, HTC, and Google.

The Android OS does not allow native execution of any programs/applications.

Instead, applications are developed in the Java language [9], and are securely

executed within a sand-boxed process virtual machine (VM) [20]. This virtual

machine used by Android is called Dalvik. Thus, the performance, usability, ac-

ceptance, and competitiveness of the Android platform is intimately linked to the

quality of the run-time environment facilitated by the Dalvik VM.

Given this importance of the Dalvik VM, it is important to have an accessible,

efficient, and easy to use framework to study and change the code and properties

of the Dalvik VM, and measure (the changes to) its performance characteristics.

1

Android
Source
Code

Google
Repository

Host (x86)

Build on

on host (x86)

Modify code

Target (ARM)

Install on

Test/Evaluate
on Target
(ARM)

download

Figure 1.1. Building and evaluating Android OS or Dalvik VM

However, the Dalvik VM is not distributed as a stand-alone component, and can

only execute within the context provided by the Android OS. Likewise, the An-

droid open-source community provides no instructions for only building/installing

the Dalvik VM sub-component on the host machine.

An even greater challenge is caused by the existing Android build process that

is focused solely on installing Android on the supported target devices. Currently,

the tasks of compiling the Android source code files and building the OS image

need to be performed on x86 machines. This OS image (embedding the Dalvik

VM) is then installed on the corresponding hardware device. We can then install

and run the applications on the target device. Thus, there is no existing docu-

mentation to run the Dalvik VM natively on x86 (Linux) machines (without first

installing the Android OS). While there exists an indirect mechanism for emulat-

ing the Android OS on x86, accurately measuring the performance characteristics

of Dalvik benchmarks is very hard (and slow) in an emulated environment.

Figure 1.1 illustrates performance evaluation process enabled by the docu-

mented instructions for building, installing, and running the Android OS. Building

2

Android
Source
Code

Google
Repository

Host (x86)

Build ondownload
Test, modify, &

Evaluate
on Host (x86)

Install on
Target
(ARM)

Figure 1.2. Our modified process for building and evaluating An-
droid OS or Dalvik VM

and Installing the updated version of Android after change to the Dalvik source

code is highly tedious and time consuming. It is clear that this process is very

clumsy, frustrating and slow. Therefore, our first goal for this project was to

determine and provide an environment to run the Dalvik VM natively on x86-

Linux machines, without the need to first install the Android OS. We have now

constructed this framework, which allows us to quickly and effectively build and

evaluate the performance characteristics of the Dalvik VM in a similar fashion

to any other Java virtual machine. An illustration of our current Dalvik VM

evaluation framework on x86-Linux is presented in Figure 1.2.

The other goal of this project is to understand the internal organization and

implementation details of the Dalvik VM, quantify its performance characteristics,

and study the effect of modifying the VM properties on overall program speed

and memory consumption. We perform an extensive white-box evaluation of the

Dalvik VM, and compare its performance with the sophisticated HotSpot Java

virtual machine [13] on both the x86 and the ARM. Our study complements and

expands other recent Dalvik VM evaluations [17] by employing a wider selection

of benchmarks, exploring different aspects of the Dalvik VM, and conducting the

evaluation on two dominant processor architectures (x86 and ARM), instead of

just conducting the analysis on the ARM platform.

Thus, the successful implementation of this project enables more comprehen-

3

sive updates and evaluations of the Dalvik VM in the future, as well as indicates

the direction to take to improve future Dalvik VM performance. The rest of this

project report is structured as follows. In the next chapter, we describe relevant

background concepts and present related works. In Chapter 3 we present the steps

we take to construct our stand-alone evaluation framework for the Dalvik VM on

x86. We describe the results of our evaluation of the Dalvik VM performance in

Chapter 4. We describe some future research to extend this project in Chapter 5

and present our overall observations and conclusions in Chapter 6.

4

Chapter 2

Background and Related Work

Our project needs familiarity with several technical concepts, including just-

in-time compilation, staged compilation, profiling, etc. We explain these relevant

background concepts in this chapter. We also present details regarding the An-

droid OS architecture stack and the placement of the Dalvik virtual machine

in this stack. Additionally, we also discuss related research results from other

projects evaluating Dalvik VM performance.

2.1 Just-in-Time Compilation

Managed languages, such as Java, Java-script, and C#, were designed with

the compile once run anywhere philosophy. Statically at compile time, programs

written in such languages are converted into a platform-independent intermediate

representation. Since the binary distribution format for such programs is specially

designed to be platform-independent, they can portably execute on all platforms

that provide a run-time environment (or virtual machine) for their execution. Such

portable program execution is extremely important for applications distributed

5

over the Internet.

Program emulation performed by the VM can take the form of interpretation

or binary translation [20]. However, interpretation is inherently slow. Therefore,

most of the performance-aware VMs also incorporate a module to compile the

program to native code before its execution at run-time. Since this compilation

occurs at run-time (in parallel with program execution) it is called dynamic or

just-in-time (JIT) compilation [2].

Since JIT compilation happens at run-time, it can adversely affect overall

program performance and cause non-deterministic application pauses if performed

injudiciously and especially on single-core machines. The ParcPlace Smalltalk

VM [5] followed by the Self-93 VM [11] pioneered many adaptive optimization

techniques to reduce such adverse effects of JIT compilation. For example, the

technique of selective compilation uses online profiling to detect and only compile

the subset of hot program methods in a program. [1,11,14,19]. This technique is

based on the observation that most applications spend a large majority of their

execution time in a small portion of the code [1, 3, 12].

Thus, selective compilation reduces compilation overhead while achieving ap-

plication efficiency gains comparable to full compilation. Most VMs deploy se-

lective compilation with a staged emulation model [10]. With this model, each

method is initially interpreted or compiled with a fast non-optimizing compiler at

program start to improve application response time. Later, the virtual machine

attempts to determine the subset of hot methods to selectively compile, and then

compiles them at higher levels of optimization to achieve better program perfor-

mance. Both the Dalvik VM and HotSpot Java VM employ selective compilation

and staged emulation.

6

Figure 2.1. The Android operating system architecture. [8]

2.2 Android Platform Architecture

Figure 2.1 shows the system architecture and various components of the An-

droid OS software stack [7]. The Linux kernel functions as the base layer for

Android that interacts with the hardware. Android’s native libraries in the next

layers are specific to each device platform and are written in C/C++ and com-

piled to native code. The Dalvik VM provides the run-time environment for

Android, and is the most important component for the purpose of this project.

The Dalvik VM is a variant of a Java virtual machine, but does not run Java

classfiles. Instead, it converts the stack-based classfiles into a register-based inter-

mediate format, called the dex files. Some more details about the Dalvik VM and

dex files is presented in the next section. Finally, the higher layers include the

application framework that provide tools used by the applications in the top-most

layer of the Android OS architecture.

7

2.3 The Dalvik Intermediate Code and Virtual Machine

DalvikVM is a Process Virtual Machine that instantiates an application, op-

timizes and verifies it in an individual execution environment for each process. [8]

It uses a register based IR, which uses registers to encode the instructions in the

intermediate binary file. In contrast, JVM is a stack based IR that uses the stack

to decode the instructions. JVM opted stack based architecture because that gives

a simple implementation for a virtual machine. But a register based VM has the

advantage of reducing the number of binary instructions executed as it does not

need to load each operand to and from the stack. But a register based IR has

the overhead of encoding more operands in each instruction, which increases the

static binary file. DalvikVM made the instruction set more precise by fetching

two instructions per cycle making each line 25% larger in size. Overall this helps

to improve the efficiency of the program execution relative to the stack based

VM. DalvikVM opted for a register based model mainly because of its intrinsic

performance advantage over the conventional stack based model used by JVM.

Moreover byte code verification is much faster in a register based VM, where the

integrity checks are highly simplified. Additionally, malfunctioning code due to

transmission or storage discrepancy, it is easier to handle in a register based VM

rather than in the stack machine. Dalvik also reduces the executable size to mini-

mize the memory footprint, which is one of the key factors in embedded operating

system like Android. DalvikVM is designed to operate on custom made byte code

which is stored in a specific format called dex file rather than the conventional

Java byte code. DEX files is interpreted and optimized for each application during

the install and first run. Since the Android uses the java coded application, the

Java class-file has to be converted to the Dalvik recognized DEX file format for

8

Figure 2.2. The Comparison between DEX and CLASS file for-
mat [8]

execution. The dex tool is used to convert the java byte code zip/jar files to the

DEX files. The dex utility command to convert the Java butecode class-file is:

dx --dex --output=example.jar example.class

DEX file has individual constant space as shown in the figure 2.2 which

helps to minimize memory footprint. This implicit typing helps to reduce the

method signature redundancy. dx is capable of aggregating various DEX files

into a single DEX file format. DEX files are made read only and they are shared

across the applications by the inter-process communication handle of Android

called binders. Byte code alignment, verification and the possible optimization

are done well ahead and stored as the optimized DEX file in the dalvik-cache

9

for faster run time execution. So this optimization is done ’just in time’ when

the application is first run after the installation. The Android system creates

this optimized DEX file and stores it to the dalvik-cache in ’system’ folder. This

folder can be found in the $ANDROID DATA/data/dalvik-cache. The dexopt

tool is used to do the byte-code validation and alignment before executing the

code from the DEX file format. The verifier is run to check whether the DEX file

has valid legal instructions. This check avoids run time error due to misalignment

and code sizing problems. Verification is more important because the interpreter

can avoid lots of potential error scenarios if checked by the verifier before hand.

Verification further helps to improve the inter application security as Dalvik runs

in a sandbox. Since the Android ecosystem allows the sharing of certain libraries

across the application space there could be problems of concurrency. So this

modules are made read only to increase the efficiency to enable fast access by the

Zygote layer. The necessary file that has to be rewritten is handled separately

using the file lock mechanism.

2.4 Related Works on Evaluating Dalvik VM Performance

DalvikVM is a nascent virtual machine that has been developed mainly to

improve the Android run time performance which runs on ARM. DalvikVM was

first introduced with the interpreter only implementation in the older Android

versions. Later with the Android 2.2 Froyo release, it also included the Just-

in-Time Compiler (JITC) to improve program performance. Researchers have

concluded some preliminary studies of Dalvik VM to compare its efficiency with

other existing Java virtual machines for standard benchmark programs. A blog

written by Oracle employees compares the performance of Dalvik with its own

10

Java SE implementation. [18] Android and Java run time have different library

implementation, so many benchmarks do not run on both of these target VMs.

Since Android and Java do not share same graphics library, benchmarks using

graphics API have to be avoided. Additionally the Android version of Linux

does not support glibc. After resolving all such compatibility issues their early

study evaluated the performance of benchmarks like SciMark, CaffeineMark 3.0 ,

Tegra2, kBench on Dalvik and Java SE virtual machines. A developmental ARM

beagleboard was used to run the benchmarks. They observed that Java SE virtual

machine achieves 2 to 3 times better program run-time compared to the Dalvik

VM.

Another evaluation of Android Dalivk VM was done with the Hotspot imple-

mentation of java virtual machine. [17] The Android Gingerbread Version 2.3 and

an implementation of HotSpot called PhoneMe was used to run some benchmarks.

Both the virtual machines are installed on the same board and to evaluate them.

Benchmarks from Embedded Microprocessor Benchmark Consortium (EEMBC)

was used. The observation from these tests showed that the Dalvik interpreter

slightly outperforms the HotSpot Interpreter. However, when both the virtual

machines are run in the JITC mode, HotSpot performance efficiency is about 3

times compared to the Dalvik. Moreover, they found that Dalvik generated code

size is larger due to worst code quality and trace chaining. All these experiments

only used the ARM target. Since Android is gaining more popularity in tablets

and porting of Android to x86 is done by many enthusiasts. we in this thesis, also

compare the performance of Dalvik with HotSpot on x86.

11

Chapter 3

Environment to run Dalvik on

x86 and ARM

Dalvik, a process virtual machine is an integral part of the Android OS. We

configure the entire development environment of the latest Android Open Source

Program (AOSP) version 4.1 called Jelly Bean. The AOSP is forked from

https://source.android.com/source/downloading.html as per the given in-

structions. The first step is to install a concurrent version management tool called

Repo. Repo helps to fetch a particular branch of the Android source tree by using

the repo sync option with the master branch details. Since the code is huge it

takes a significant amount of time to download the source files which totals about

13GB in size. Then, the required dependencies like the python run-time and other

tools are configured for the host system on which the code is to be built.

The Android source is built after updating the environment using the provided

envsetup.sh script. This script has the necessary Android build paths and the

toolchains that are required for the host machine and the build target. The

required target build can be chosen by using the command called lunch. This

12

script will prompt the user with the options to build the target for the emulator,

ARM, x86, Virtual Box, and development boards like pandaboard, etc. This

script also supports enabling the debugging mode on the target. For instance,

the full-eng-x86 option builds for the x86 target with debug mode enabled. This

selection can be further narrowed by allowing more user customization by using

the command choosecombo. This command will prompt the user for a build type

selection (release, debug), followed by the target product and architecture and

its variants. This script will prepare a configured parametrized file that will be

used to build the Android environment for the target accordingly to the selected

options. Finally, the source can be built by using make, which can also enable

multi-core CPUs to be simultaneously involved in the build process.

After the environment is built, Android along with the Dalvik VM sub-system,

is packaged as an image file for the target installation. This process entails many

checks for building and validating the Android source with the various target

specific system parameters for the specified target architecture and the product.

As mentioned earlier, this update-build-install cycle takes a long time. So any

changes done to the Dalvik VM require the same procedure to be repeated every

time.

Obviously, a re-compilation withmake for only small code updates significantly

reduces the amount of time required to rebuild the changed code, provided that

target architecture and the product configured remain the same. The Android OS

image is then installed on the target device. The Dalvik VM has to be instantiated

for a particular process and its functionality has to be checked to see the particular

feature change works as intended. Since the Dalvikvm is targeted to the ARM

machine, this whole setup has to be ported to the target hardware for testing.

13

After building, the target images like system.img, boot.img, userdata.img are

located in the out/target/product/ directory. These images have to be copied

and installed to the target machine in the necessary file partition format like

/system and /data. The images have to be transferred to the Pandaboard in

a specific file format with manual configurations of the partitions. Creating the

proper partitions, like /system, /data, /sdcard again takes a long time and needs

to take care of many subtle details. Similarly, the process of changing the Dalvik

source code and then porting it to the hardware, followed by testing and verifying

the functionality is very time consuming and tedious.

Therefore, running and testing the Dalvik functionality on the x86 emulator is

a viable solution. The Android OS build can be targeted to the emulator and the

functionality can be checked using a particular application .apk. The applications

can be either installed on the emulator via Google play or similar media or can be

copied to the /system/bin folder. Then a copy of ODEX (optimized DEX file)

has to be updated to the dalvik-cache to install it manually. The emulator can

interface with the abd tool and the activity can be monitored and logged on to the

logcat. Unfortunately, this emulator configuration cannot be used for performance

evaluation. To reduce this tedious work process, we have now simplified the

test process by configuring Dalvik to run on native x86. After testing, the final

configured versions. Only final version can then be ported to the target device

(ARM).

Once the Android environment is configured the rebuild time can be substan-

tially reduced by just making and building the Dalvik source and its dependent

library. The following script snippet cleans the Dalvik dependent library and then

makes the libdvm and dalvikvm libraries.

14

make clean-libdvm clean-libdvm_assert clean-libdvm_sv clean-libdvm_interp

make -j4 libdvm

make -j4 dalvikvm

After this step, Dalvik can be natively tested on x86 and iterated till the final

version and then ported to the target making the process relatively simpler.

3.1 Standalone Execution of DalvikVM

The Dalvik virtual machine can be run as a standalone entity without the

Android OS environment when some dependent library files and environment

variables are exported. The standalone Dalik VM is capable of instantiating a

particular application and executing it in its own environment. This setup can

expedite the developmental process of Dalvik.

After making the necessary code changes the Dalvik VM module alone can be

built and compiled. Then, the same can be executed in native x86 environment

to verify and validate its correctness. This will improve the development process

reducing the time spent on administrative work. This process helps to make a

simplified setup environment, and can be used to optimize a particular application

on Dalivik VM or developing more Dalvik features on top of the existing code.

This initialization script is configured to export and set the necessary bootclass-

path and other environment variables to execute the Dalvik VM in the standalone

mode.

#!/bin/sh

Base directory, at top of source tree is replaced

with absolute path.

15

Configure root dir of interesting stuff.

export LD_LIBRARY_PATH=/vendor/lib:/system/lib

root=‘pwd‘

export ANDROID_ROOT=$root

configure bootclasspath

bootpath=/system/framework

export BOOTCLASSPATH=/system/framework/core.jar

:/system/framework/core-junit.jar

:/system/framework/bouncycastle.jar

:/system/framework/ext.jar

:/system/framework/framework.jar

:/system/framework/telephony-common.jar

:/system/framework/mms-common.jar

:/system/framework/android.policy.jar

:/system/framework/services.jar

:/system/framework/apache-xml.jar

This is where we create the dalvik-cache directory;

make sure it exists

export ANDROID_DATA=/tmp/dalvik_$USER

mkdir -p $ANDROID_DATA/dalvik-cache

exec ./bin/dalvikvm -cp /home/go/vm/hello.dex Hello $@

16

The Android root is the base directory for the deployment, and the base frame-

work and library files are expected to be located in fixed directories starting from

this root. Every other file reference is relative to this location. The dependencies

of the bootclasspath varies from device to device. These dependencies can be found

from the init.rc file located /out/target/product/generic x86/root/init.rc

in the target source. The Android data comes into picture when the DEX files

are optimized and stored during the first run of the program. The dalvik-cache

is the directory inside the Android data which is exclusively accessed by the ap-

plication at run-time. This ODEX helps to save more memory space by storing

the optimized version of the byte file and also drastically reduces the application

initialization time which is of more importance in the embedded systems. These

optimizations focus on reducing the power consumption and improve the battery

backup, while lowering the memory utilization.

3.2 Dalvik Debugging Environment

Dalvik VM allows source level debugging with any tool that supports the Java

Debug Wire Protocol (JDWP). One such debugger used here is jdb. Debugging

terminal can be used to instantiate the debugging over the TCP via the adb shell

for remote debugging. The Dalvik VM has implementations of the Dalvik Debug

Monitor, which exposes the source of Dalvik to hook it up for detailed analysis

whenever needed. The JIT profile tracking can be closely monitored using such

a debugger in real-time. The debug server is made to run and listen on the given

port 8000, and then the Dalvik VM is hooked to the running application. Then,

the client is attached to the listening port to start recording the debug messages

and to create traces for later analysis.

17

This is how a jdb debugger can be attached to the running program in Dalvikvm.

run -agentlib:jdwp=transport=dt_socket,address=8000,suspend=y

,server=y -cp /home/go/vm/bin/loop.dex looper $@

jdb -attach localhost:8000

Dalvik can also execute under well know debugger, like gdb, for source level

debugging. The debugger is a separate module in Dalvik VM that implements the

generic JDWP protocol. Any more changes to those files can be done as needed.

The source location for this debugger is /dalvik/vm/jdwp. The Debugger.cpp file

in the dalvik/vm is the bridge point to connect the debugger to the DalvikVM.

3.3 Important Dalvik VM Files

Some important Dalvik virtual machine files we used and updated include:

1. /dalvik/vm/Globals.h file is the global header where the necessary variables

are declared to retain the global scope across the library. DvmGloblal,

DvmJitGlobal struct maintain the state wherever the vm starts or shutdown

by tracing state parameters.

2. /dalvik/vm/Init.cpp file is used for the initialization and shutdown of the

virtual machine and as well as handling the command line arguments during

the invocation. This is the file used to expose the command line arguments

to the user initialization.

3. /dalvik/vm/Thread.cpp is used to manage the system threads that are im-

plemented as native pthread library. This is where Dalvik spawns compiler

threads, GC threads and other system threads and associates them with the

18

thread structure created. There are a total of seven threads in the Dalvik

VM that do the intended work.

4. /dalvik/vm/compiler/Compiler.cpp is where the compiler en-queues the work

and where the code cache is filled with the trace recorded. The code cache

allocation and reset are also done here. Profiling is tracked by the JIT profile

table as and when needed.

5. /dalvik/vm/interp/Jit.cpp file implements the trace based JIT, which records

the trace as code cache when the necessary criteria are met (threshold). The

Jit traces are recorded in two levels.

The JIT threshold parameters and the code cache size are initialized to default

values if not set earlier in the following files.

1. /dalvik/vm/compiler/codegen/x86/CodegenInterface.cpp this file has the tar-

get specific configuration for the x86 machines. This also has the trace

profiling methods.

2. /dalvik/vm/compiler/codegen/arm/arm7-a/ArchVariant.c this file has the

target specific configuration for the ARM machines. There are four version

of ARM where the ArchVariant.c has to be updated accordingly. This also

has the trace profiling methods.

3.4 Using Linaro image tool

Linaro is the Android alliance formed from the partnership of the hardware

manufactures and the software developers primarily to reduce the fragmentation

19

of Android [16]. The Android fragmentation is a serious problem for the develop-

mental community that needs to be addressed to make the Android OS a better

ecosystem to increase the flexibility and resilience among varied devices where it

is used.

Linaro’s image tool helps us to move the Android OS images to the sdcard

with the pre-configured default memory layout. This layout can be customized

by altering the code in linaro image tools/media create/android boards.py

if necessary. So our files produced for the specific target can be easily moved by

utilizing this tool. Example Linaro image tool usage to format the SDcard using

the android images is shown here.

linaro-android-media-create

--mmc /dev/mmcblk0

--dev panda intel jelly bean android x86

--boot ./out/target/product/pandaboard/boot.tar.bz2

--system ./out/target/product/pandaboard/system.tar.bz2

--userdata ./out/target/product/pandaboard/userdata.tar.bz2

The adb shell provides a way to interact with the Android board file transfer

and further debugging and necessary data gathering from the system remotely. A

physical connection can be used to obtain an Android terminal. Then interaction

with the system is done over the USB serial cable. Any terminal emulator like

minicom can help to establish this connection.

3.5 Compiler Code Flow

The interpreter code of the Dalvik virtual machine is written in both the C

and assembly languages. The assembly level implementations are intended for

20

better performance. Each routing in the assembly is crafted to fit in the same

memory bounds to be more efficient. The interpreter is very fast and frequent

checking of the traces for the compilation criteria will reduce its robustness. So

the compilation criteria are only checked when a particular trace is executed N

number of times. The N is the threshold value which is used to mark the trace to

the compilation queue. For x86 architecture the default value for this compilation

threshold is 255. The different ARM boards have a range of values from 40 to 200

accordingly to the specific memory and processor configurations.

The /dalvik/vm/mterp/x86/footer.S is the assembly file that is used to

jump to the JIT from the interpreter [6]. The interpreter is designed to select the

mostly hot traces as well as some normal traces . Then the hash table which tracks

the profile count of each trace and records its PC value when the criteria is met.

So, on the next trigger this hash table is checked for the PC value which indicates

the translation is already requested for a particular trace. If there is a hit this

goes to the next level of the translation process where the traces pass the second

level filtering. If there is a miss, then the interpreter control is passed back to the

trace selection mode. This is done in the small code chunk called common-update-

profile in the footer.s. So, this code triggers a reset of the counter associated

with each trace to zero.

This translation request queue is intentionally less aggressive, meaning there

are many chances for non-hot traces to be marked as hot. To ensure only the hot

methods are chosen correctly from the second level a check is done here. These

second-level checks happen during the positive scenario where the trace is hot

and needs to be translated and the recorded trace executes correctly without any

exceptions. If there is any exception in the execution of the trace the JIT code

21

has to be returned back to the interpreter in the normal trace selection mode. To

move from the JIT code cache to the interpreter, the VM can take two frequent

paths named dvmJitToInterp*. One of the path is dvmJitToInterpNormal, which

is used based on the profiling threshold when the code has a conditional branch.

The other path would be dvmJitToInterpTraceSelect method, which is chosen

during unconditional branch or a direct invocation.

So after a trace is passed from the level one criteria it is marked for the

compilation in the hash table which is indexed with the PC value of the trace

being requested. So this is the decision making criteria for the level two trace

selection to enter the compilation queue. Now the traces entering this level are

entered into the hash table and the control goes back to the interpreter for further

recording of the traces. This is done in the dvmJitCheckTraceRequest method in

the /dalvik/vm/interp/Jit.cpp file. This method uses a Filter-key which serves

as the filter head to process the selective trace to compilation. The filter key is

the combination of the two values of the filter criteria, the Program Counter (PC)

and the method pointer. If the target system architecture and the type of the

application run on it is already know these values can be tuned and tailored for

particular execution profile.

At the same time the type of the execution profiles can be varied. It can either

be configured for spiky or the flat program profile. The spiky execution profiles

have small number of selective hot methods/traces that need to be cached and

compiled. As this criteria requires the selection process to be more stringent and

selective, a perfect match of the PC value of the trace is required. So these will

have better performance with the PC key.

intptr_t filterKey = (intptr_t)self->interpSave.pc value

22

The other execution profile is the flat scenario where many methods are hot

in a short period of time. This profile requires more methods to be eventually

compiled. So a heuristic solution to this problem would be to find all the possible

hot traces in the particular method and compile them all anticipating that they

will be required in the future. This requires the method pointer to be selected,

and all the traces within it are selected and compiled as Filter-key.

intptr_t filterKey = (intptr_t)self->interpSave.method

But, the applications used can have varied profiles and we need a combination

of both to find an optimal heuristic value for overall performance gain during JIT

compilation. For the existing filtering scheme, the higher order bits are chosen

from the method pointer and the lower order bits from the Dalvik PC value.

This would help us to get the average performance gain for both sets of applica-

tions. The JIT TRACE THRESH FILTER PC BITS is used to select the filter criteria

by changing the Dalvik PC slice. The wider the slice, the lesser the compilation.

The default value of this Dalvik PC slice is 4. In our experiments, we vary this

number from 0 to 32 to check for the various other possible configuration runs

and their effect on performance. Choosing just the method key as the filter will

be beneficial for the flat execution profiles. On the other hand choosing just the

Program Counter(PC) will be beneficial for the spiky execution profiles as this

will make the selection more specific to the hot traces.

Finally, the recorded trace is added to the compile queue. In short, until this

point the trace which is recorded is profiled to a value 2N+1 times where the

N is the target threshold value. Later, the compiled code is added to the code

cache. The code cache is by default set to the 512k in Android. This value can

be altered to accommodate more compiled code in the cache. The upper bound

23

Figure 3.1. Overall Compiler Code Flow.

of the code cache size is set to make sure that each process does not use much

memory for just caching hot traces. This value can only be changed in accordance

with the maximum heap size allowed. All possible combinations are tried to find

the optimal threshold value that can be configured for a particular target. To

do this dynamically we need the profile information before hand. A high level

control-flow of the JIT compiler is illustrated in Figure 4.1.

3.6 Dalvik Command Line Arguments

Dalvik can be instantiated by passing certain parameters during program start-

up, which changes its behaviour accordingly. The following flags recognize more

24

generic arguments. The classpath (-cp) flag is used to indicate the location of

the dex file to Dalvik. Other flags are used to alter the heap size during startup:

-XmsN (min heap, must be multiple of 1K, >= 1MB) and -XmxN (max heap,

must be multiple of 1K, >= 2MB). Dalvik can be indicated to run in three modes

by setting these flags: -Xint (extended to accept ’:portable’, ’:fast’ and ’:jit’).

Usually the default Dalvik executes with JIT compilation enabled.

There are other arguments unique to Dalvik which alter the JIT profiling,

code checking and validation etc. For example, -Xjitverbose flag is used to log the

JIT profile stats in verbose mode for analysis and further optimization purpose.

This has to be coupled with exporting the ANDROID LOG TAGS during the

execution. The ANDROID LOG TAGS can be customized for each application

that runs. The log level can be changed to a specific demon or application as

follows:

ANDROID_LOG_TAGS="ActivityManager:I MyApp:D *:S".

The -Xjitthreshold:decimalvalue flag can be set in accordance to the target

machine as needed. Additionally, there are many other arguments that can help

to optimize a particular method by its signature, class name etc.

We added some command line arguments to access the JIT compiler by chang-

ing the threshold and filter criteria of JITC on the go. These include

1. -XjitfiltermethodKey enables to set the Filter-key as just method pointer.

This allows the VM to execute the whole method containing traces that are

not yet labelled as hot. This heuristic helps to compile more trace assuming

that running application as the flat execution profile.

2. -XjitfilterpcKey enables to set the Filter-key as the trace’s program counter,

which selects particularly the relatively hot traces that stand apart from

25

others. This Filter-key will be more effective on applications having the

spiky execution profile.

3. -Xjitdpcslice:decimalvalue alters the size of the Dalvik PC slice that has to

be selected for the Filter-key. The default value is 4. The lower bound is 0

and the upper bound is 32. This can be altered in this range to chose an

optimal filter criteria for the second level JITC parameter.

4. -Xjitdisablel2 disables the level two trace selection completely. So this means

that the traces are profiled only N+1 times before it is sent to the compiler

queue for caching.

The max heap used for the execution is calculated from pooling the current

heap size used in every run periodically. This value is stored in the global space

allocated in the DvmGlobal structure. To measure the compiler execution, garbage

collector, and VM thread run-times, we add a code snippet to get the thread ID

during their assignment from the Thread.cpp file. The IDs are stored in the

library scope Globals.h. When these threads are signalled for termination, each

thread’s time is greped from the /proc file system for the execution time. All

the threads are signalled before the garbage collector thread that is done later in

time. The Dalvik VM shutdown path is traced and the run-times are calculated

right before each thread termination.

26

Chapter 4

Assessing Dalvik VM

Performance

In this chapter we report our observations from experiments comparing Dalvik

VM performance to that on Java Hotspot’s virtual machine on both the x86 and

ARM architectures. We notice that the results differ quite significantly on these

two architecture. We suspect that this difference is on account of Dalvik being

optimized more for the ARM, which is its primary target architecture.

4.1 Experimental Environment

In this section we describe the hardware, OS, and benchmark setup we employ

for our experiments comparing the Dalvik VM with the standard HotSpot JVM.

4.1.1 Hardware/OS Setup

For building the Android OS from source we use a 64-bit Intel Core i7-2630QM

CPU @ 2.00GHz 8-core x86 machine running the Linux Ubuntu 12.04.2 LTS

27

(Precise Pangolin) operating system. This machine has a total installed physical

memory of 6GB.

For our experiments on the ARM architecture we employ a developmental

ARM ‘PandaBoard ES’, which has an ARMv7 dual-core CortexA9 processor with

1GB DDR2 physical memory. The pandaboard has on-board 10/100 Ethernet,

2x USB 2.0 High-Speed host ports for IO, and an HDMI video out port. The

pandaboard is configured to run both the Android as well as the Ubuntu OS. On

ARM-Ubuntu we use the HotSpot JVM (Java version 1.6.0 27) that is installed

by default on Ubuntu 12.04.1. We built the Android OS (with all our Dalvik

VM updates) from source on the x86, and then install this updated version of

Android on the pandaboard by using OS image installation tools distributed by

Linaro [16].

We conduct all our x86 experiments on a single dedicated machine. This

machine has an 8-core x86 64-bit processor with 2GB of physical memory.

4.1.2 Benchmark Setup

To accurately compare the Dalvik and HotSpot virtual machines we use and

adapt Java programs from standard Java benchmark suites, including Caffeine [4],

SPEC jvm98 [22], and SPEC jvm08 [21]. To correctly run these benchmark pro-

grams on the Android Dalvik platform, we convert each program into the Android

compatible DEX file format by using a tool called dx. The DEX jar file includes all

the internal DEX files and manifest files information needed for identification of

items inside the archive. The CaffeineMark contains benchmarks that run smaller

(sieve, loop, logic, method, float, and Graphics) programs. The overall score is the

Geomean of these values. From the jvm98 suite we use the 202 jess, 205 raytrace,

28

209 db, 213 javac, 227 mtrt and 228 jack benchmark programs. From jvm08 we

use the crypto.signverify, scimark fft, scimark monte carlo, scimark sor and sci-

mark sparse programs. For our startup runs, each benchmark is run 10 times

and the average time is reported. For each comparison experiment we plot a spe-

cific Dalvik VM performance property as compared to the same property on the

HotSpot Java VM. So, if the result of the comparison is exactly one, this implies

that both VMs deliver comparable performance.

4.2 Performance Comparison of Hotspot and Dalvik

Virtual Machines

Interpreter performance is an important aspect for VMs employing selective

just-in-time (JIT) compilation. For such VMs all program code needs to be in-

terpreted until it is selected for compilation. Given this importance of interpreter

performance, both the Dalvik and HotSpot interpreters are written primarily in

assembly, with some C language code. In this section, we first evaluate the perfor-

mance of Dalvik’s interpreter. For these experiments we disable JIT compilation

in both the HotSpot and Dalvik VM, and then compare the program run-time in

interpretation mode on both VMs on the x86 and ARM architectures.

Figure 4.1 compares program run-times on the Dalvik VM with their corre-

sponding run-times on the HotSpot VM. In this graph, any bar-plot lower than one

implies that Dalvik achieves a performance gain over hotspot. On the other hand,

bar-plots greater than one indicate poorer Dalvik VM performance. The chart

shows the interpreter comparison results for both X86 and ARM architectures.

We find that the Dalvik interpreter is very competitive, and is able to improve

upon the highly optimized HotSpot VM for all our programs. This improvement

29

may be a result of the register-based intermediate format (IR) used by the Dalvik

DEX code (as opposed to the stack-based IR used by HotSpot). The interpreter

performance is dominated by the issue, decode, and dispatch Intel jelly bean

android x86 overhead for each executed instruction, and is affected less by any

other optimization. A three-address register-based IR is able to express the same

computation is much fewer instructions compared to a zero-address stack-based

IR. Therefore, by reducing the number of interpreted instructions, the Dalvik VM

is able to improve interpreter VM performance.

�

���

���

���

���

���

���

��	

��

���

�

��������	
���

�
�
��
��
��
�	

��
�

��
�

��
�
�	

���������	�
������	�
���	���	�	�������

��
 ���

Figure 4.1. The Interpreter Performance of Hotspot and Dalvik.

Figure 4.2 shows the benefit of JIT compilation to program start-up perfor-

mance. This experiment compares the program run-time using the Dalvik VM

with its interpreter-only configuration to the program run-time with the default

30

Dalvik VM that compiles and optimizes the hot program traces dynamically. As

expected, we find that several applications see a significant positive performance

impact with JIT compilation enabled. This experiment also shows that both the

x86 and ARM architecture targets witness a similar performance gain for each

benchmark program. On average, the performance benefit ranges from 44% to

50% on the x86 and ARM respectively.At the same time, it is surprising to find

that many applications, including javac, mtrt and jack, do not benefit much from

JIT compilation.

�

���

���

���

���

�

���

�������� !"�#

$%
&
'
(
)
*
+
,(
-
.
%)
/(
01
0
(
/(
0
23
)
,4

�����������	
����
����������������������

567 89:

Figure 4.2. The Dalvik Interpreter versus Compiler performance.

Figure 4.3 compares the steady-state program run-time (with JIT compilation

enabled) with interpreted performance for Dalvik on x86.Steady-state time mea-

sures the program run-time after all/most compilation activity is over. For our

31

steady-state experiments we run 5 iterations during each benchmark run and the

time of the last iteration is considered as the program run-time. Interestingly, we

find that with the Dalvik VM on x86 the program run-time is not much different

in the start-up and steady-state modes. This result suggests that compilation of

hot methods happens very early in the Dalvik VM. Additionally, since compila-

tions happens in its own thread (which will get its own dedicated core on our

math-core test machines), it does not interfere with application performance.

;
;<=
;<>
;<?
;<@
;<A
;<B
;<C
;<D
;<E
=

��
�
�
��
�
�
	

�
�
��
��
�

�
��
��

�
��
�
�

�

��������	
���

�����������	
����
�����������������������

FDB

Figure 4.3. The Dalvik Interpreter versus Steady State Compiler
performance on X86.

Figure 4.4 illustrates the results of experiments comparing the program start-

up performance with the default Dalvik VM configuration (JIT compilation en-

abled) to the default HotSpot setting on the x86 and the ARM. These results are

32

G

GHI

J

JHI

K

KHI

L

LHI

M

��������	
���

�
�
��
��
��
�	

��
��

��
�

��
�
�	

�����������	
���
��� !

NOP QRS

TUVW XUWY

Figure 4.4. The Compiler performance of Hotspot versus Dalvik.

quite interesting, and must be interpreted with the knowledge that traditionally,

while the ARM has been the primary target for Android’s Dalvik VM, the x86

may have been a preferred target for Oracle’s HotSpot over the ARM. Therefore,

we find that while the default HotSpot configuration severely outperforms Dalvik

on the x86, the Dalvik VM is able to achieve better program performance on the

ARM. We also note that our results comparing the Dalvik VM with HotSpot on

the ARM are contrary to earlier experiments [18]. We believe that the difference

may be on account of using different benchmarks and/or different builds/versions

of both Dalvik and HotSpot.

33

�

�

�

�

�

�
�
�
��
��
�
�	
�

�
��

��
��
�
��
�
�
��
��
�
�
��
�
�

��������	
���

����
�������	�
��

��������	
�������
		������	�� ���

��������	��� ��
�����
������

Figure 4.5. The Impact of JitThreshold on Dalvik’s compiler effi-
ciency on X86.

4.3 Dalvik Compiler Parameter Tuning

As explained earlier, Dalvik uses a selective compilation model, with the VM

using interpretation to initially run the program, and then compiling the hot

program sections to optimized native code. The compilation efficiency of the

Dalvik virtual machine depends on many parameters. Some of the parameters that

directly affect the JIT compilation are the selective compilation thresholds chosen

for compiler, along with the values of program counter (PC) and the method

pointer of the traces that are also used to determine when and what program traces

to compile. We modified the Dalvik VM to allow experimentation with several

different parameter configurations to find the selective compilation parameter set

that should be used for ideal program performance for our benchmark suite.

Our first set of experiments studies the effect of using different selective com-

pilation thresholds on overall program performance. The compilation threshold

34

���

���

���

���

���

�

���

�
�
��
��
�
�	

�
��

��
��
�

�
��
��

�

��������	
���

����
���������
�

���������	
����
��� ���

Figure 4.6. The Impact of JitThreshold on Dalvik’s Application run
time on X86.

determines whether a particular recorded trace is hot or cold, and predicts whether

that trace will be executed frequently in the future based on the past profile infor-

mation. It has been shown in several other works that the compilation threshold

can have a huge impact on program run-time, and therefore, determining the ideal

threshold value is important [15]. A low threshold value will select more traces for

compilation and increase the compilation overhead with diminishing returns for

benefiting application run-time. In contrast, an excessively high threshold value

will result in the program running in slow interpretation mode for a longer du-

ration.Therefore, finding the optimal threshold for the execution of the program

is very essential. Unfortunately, there is no scientifically known rule to set this

35

parameter since it is dependent on many factors. So empirical analysis of various

application profile can give us an average value that we can used for a specific

architecture.

To assess the impact of JIT compilation threshold on program performance we

evaluate different JIT configurations. Our first configuration disbales the second

level compilation check performed by Dalvik (see Chapter 3 for a description of

the compilation flow in Dalvik).With no second level check, the VM should allow

many more methods to be sent for compilation. The remaining configurations

select different threshold values. The threshold value of 255 is used as the default

on x86 by the Dalvik VM.The threshold values are incresed beyond the default

255. The figure 4.5 shows that the compile time and code cache size reduces when

the threshold value is increased. Accordingly the figure 4.6 shows application run

time increases towards right, as more time is spent on interpretation.

Figure 4.5 compares the compile time and code cache size impact of different

selective compilation configurations to the default setting used by Dalvik. As

expected, this figure shows that disabling the level two check and lowering the

compilation threshold increases both the compile time as well as the size of the

code cache by allowing more traces to be compiled. Thus, for the very aggressive

threshold value of 10, the more traces compiled causes a significant spike in compile

time and code cache size.

This increase in the compile time may be justified if it produces a correspond-

ing gain in overall program performance. Figure 4.6 compares the overall program

performance with the variations in JIT compilation parameters compared to the

default values used by Dalvik on the x86 architecture. Interestingly, we find that

these more aggressive compilation configurations have a minimal impact on pro-

36

�

���

���

���

���

�

���

���

���

�	
��
�
� ����
��
��� ����
��
��� ����
��
���� ����
��
����

�
�
��
��
�
�	
�

�
��

��
��
�
��
�
�
��
��
�
�
�

�
�

��������	
���

����
���������
�

��������	
�������
	������	�� ���	

����	
���	�� ������������	��

Figure 4.7. The Impact of JitThreshold on Dalvik’s compiler effi-
ciency on ARM.

gram performance. Thus, these results show that there is little motivation for

more aggressive JIT compilation for Dalvik on the x86. Similarly, Figures 4.7

and 4.8 illustrate the tradeoffs of varying JIT compilation threads for Dalvik on

the ARM architecture. Again, the first configuration in each plot enables more ag-

gressive compilation by disabling the second level compiler checks. The remaining

configurations select different threshold values. The threshold value of 40 is used

as the default on ARM, which is more aggressive compared to x86. Results in 4.7

show the expected outcome of a corresponding increase or decrease in compile time

and code-cache size as compilation is made more or less aggressive respectively.

However, 4.8 again shows that a change in compiler aggressiveness does not have

37

���

���

���

���

���

�

���

	
��
���� ��������	�� ��������	�� ��������	��� ��������	���

�
�
��
��
�
�	
�

�
��

��
��

�
��
��

�

��������	
���

����
���������
�

���������	
����
��� ���

Figure 4.8. The Impact of JitThreshold on Dalvik’s Application run
time on ARM.

a noticeable impact on run-time (start-up) performance. This observation indi-

cates that these is potential for reducing Dalvik JIT compiler aggressiveness on

ARM to reduce memory consumption without affecting performance.

Our next set of experiments explores the effect of changes in the Filter-key used

by the level two selective compilation check. The Dalvik PC value is changed from

0 to 32 in units of 4 to accommodate all possible combination of parameters. It is

recommended in the Dalvik source code that the Filter-key should contain only

the PC values for program with significantly spiky profile, and only the method

pointer for programs with significantly flat profile. In lieu of such information,

the default Dalvik configuration uses a combination of both these parameters. For

38

these experiments we vary this Filter-key value along with exploring the effect of

different selective compilation thresholds on x86 and ARM.

In total, we evaluated around sixty different JIT compilation configurations to

determine the best setting on x86. Our observation from average performance of

configuration profiles are show in the figures 4.9 and 4.10. The configurations

are compared with the default Dalvik configuration with JIT enabled as baseline.

The figure 4.9 shows the run time benchmark numbers where as figure 4.10 shows

the compiler run time for the same. We find that the average does not vary much

from one configuration to other. However we observed two significant benchmarks

javac and jess have varied impact for a selected configuration with threshold value

set as 10. With this configuration , the JavaC performance degrades heavily. This

degradation is much worse than the interpreter performance. On the other hand

for the same configuration profile jess benchmark seems to have a performance

gain of about 0.2 times. This clearly shows how the application category affects

the JITC compiler parameters.

JITC also indirectly affects the parameters like code-cache size, heap size and

compiler queue size, which determines the compiler high watermark for queueing

the traces. There is a physical maximum of 1024M of code-cache size for each

process run by Dalvik to conserve memory resource on embedded systems. The

heap size affects the internal code cache efficiency. Low code-cache size may lead

to frequent reset of code cache, which flushes all the compiled code and starts

the JIT compilation from the beginning. This causes the loss of all the profiled

information, which now will need to be recollected, increasing the JIT overhead

drastically for the program run.

39

�

���

�

���

�

���

�
�
�
��
��
��
	�
�
�

�
��
��
�

�

�

��
�
�	

�
�
�

�
��

���������	
����
������	��
�������
�

���������	
���
��
��
�����������
�������
�����
�

	
�����
���
����

�����

Figure 4.9. The Run time performance comparison of various JIT
configurations

�

�

�

�

�

�

�

�

	

�
�
�
��
�
�
�	

�
�
�
��

�
�	
�
�

��
�
�
�
��
�
��
��

�

���������	
	����
������
��
�������	�

��������	��������
����
������	������������

�
�
��������
�����
���
����������

Figure 4.10. The Compile time performance comparison of various
JIT configurations

40

Chapter 5

Future Work

We believe that the Dalvik VM environment constructed during this research

for x86 and ARM targets will enable much future research into exploring and

improving application execution performance on mobile and embedded devices.

First, we will perform a more in-depth exploration of Dalvik VM performance

properties using additional benchmarks and by exposing more tunable VM param-

eters. Second, the constructed Dalvik VM environment will allow implementation

and testing of ideas to improve memory and power consumption during applica-

tion execution on mobile devices. For example, we will investigate approaches to

find the ideal working set of the program along with tracking changes to this set so

as to only compile and maintain the necessary native code in Dalvik’s code cache

to reduce per-program memory consumption. Finally, we will explore mechanisms

to customize optimization phase selections and other JIT compilation settings to

improve overall program performance of the Dalvik virtual machine.

41

Chapter 6

Conclusions

The primary goal of this project was to construct an environment to investigate

and improve the performance characteristics of Android’s Dalvik virtual machine

on contemporary x86 and ARM architectures. As part of this project we had

to learn the process of building Android, running a stand-alone version of the

Dalvik VM on x86-Linux machines, and installing updated variants on Android

and Dalvik on the ARM platform. We have been successful at achieving this goal

and now have the knowledge to update and execute the Dalvik virtual machine

on both the x86 and ARM target architectures. Our ability to isolate and run

the Dalvik VM on x86-Linux machines enables us to shorten the update-build-

install cycle necessary to explore Dalvik performance properties on other target

architectures.

The second goal of this project was to understand the internal organization

of Dalvik’s dynamic compilation and execution engine, and evaluate and compare

its runtime performance with other standard Java virtual machines. As part of

this study we have now performed the first open performance assessment of the

Dalvik VM on the x86 and compared it with Oracle’s HotSpot JVM. Addition-

42

ally, we also quantify Dalvik VM performance for Android’s Linaro build on our

ARMv7 pandaboard platform. We have discovered that the register-based in-

termediate format used by Dalvik’s DEX input code enables the VM to achieve

much better interpreter performance compared to the HotSpot JVM that uses the

standard JVM stack-based bytecode classfile representation. We also found that

while Dalvik needs further performance enhancements to make it competitive with

the HotSpot JVM on x86-Linux, its performance is very competitive and often

exceeds that achieved by Oracle’s HotSpot JDK on the ARM. Thus, the success

of this project provides a robust open-source environment that will allow much

future research on JIT compilation in Android’s Dalvik VM for contemporary

architectures.

43

References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey of adaptive

optimization in virtual machines. Proceedings of the IEEE, 92(2):449–466, February

2005.

[2] J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):97–113,

June 2003.

[3] D. Bruening and E. Duesterwald. Exploring optimal compilation unit shapes for

an embedded just-in-time compiler. In 3rd ACM Workshop on Feedback-Directed

and Dynamic Optimization, pages 13–20, 2000.

[4] CaffeineMark. Caffeinemark benchmarks. http://www.benchmarkhq.ru/cm30/,

1997.

[5] L. P. Deutsch and A. M. Schiffman. Efficient implementation of the smalltalk-80

system. In POPL ’84: Proceedings of the 11th ACM SIGACT-SIGPLAN sym-

posium on Principles of programming languages, pages 297–302, New York, NY,

USA, 1984. ACM.

[6] Google. Google android building and development group.

https://groups.google.com/d/topic/android-platform/D1NpRKAiOgg/discussion.

[7] Google. Google io developer conference.

http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html.

[8] Google. Google io developer conference on dalvikvm internals.

https://sites.google.com/site/io/dalvik-vm-internals/.

44

https://groups.google.com/d/topic/android-platform/D1NpRKAiOgg/discussion
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
https://sites.google.com/site/io/dalvik-vm-internals/

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java(TM) Language Specification

(3rd Edition). Prentice Hall, third edition, June 14 2005.

[10] G. J. Hansen. Adaptive systems for the dynamic run-time optimization of programs.

PhD thesis, Carnegie-Mellon Univ., Pittsburgh, PA, 1974.

[11] U. Hölzle and D. Ungar. Reconciling responsiveness with performance in pure

object-oriented languages. ACM Transactions on Programming Language Systems,

18(4):355–400, 1996.

[12] D. E. Knuth. An empirical study of fortran programs. Software: Practice and

Experience, 1(2):105–133, 1971.

[13] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox.

Design of the Java hotspotTMclient compiler for Java 6. ACM Trans. Archit. Code

Optim., 5(1):1–32, 2008.

[14] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead of dynamic

compilation. Software: Practice and Experience, 31(8):717–738, December 2000.

[15] P. A. Kulkarni. Jit compilation policy for modern machines. In Proceedings of

the 2011 ACM international conference on Object oriented programming systems

languages and applications, OOPSLA ’11, pages 773–788, 2011.

[16] Linaro. Automated android installation using linaro image tool.

https://wiki.linaro.org/Linaro-Image-Tools.

[17] H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon. Evaluation of android dalvik

virtual machine. In Proceedings of the 10th International Workshop on Java Tech-

nologies for Real-time and Embedded Systems, JTRES ’12, pages 115–124, New

York, NY, USA, 2012. ACM.

[18] Oracle. Oracle blog comparing java se and dalvik virtual machines.

https://blogs.oracle.com/javaseembedded/entry/how_does_android_22s_performance_stack_

Nov. 2010.

[19] M. Paleczny, C. Vick, and C. Click. The Java hotspottm server compiler. In

JVM’01: Proceedings of the 2001 Symposium on JavaTM Virtual Machine Re-

45

https://wiki.linaro.org/Linaro-Image-Tools
https://blogs.oracle.com/javaseembedded/entry/how_does_android_22s_performance_stack_up_against_java_se_embedded

search and Technology Symposium, pages 1–12, Berkeley, CA, USA, 2001. USENIX

Association.

[20] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and

Processes (The Morgan Kaufmann Series in Computer Architecture and Design).

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[21] SPEC2008. Specjvm2008 benchmarks. http://www.spec.org/jvm2008/, 2008.

[22] SPEC98. Specjvm98 benchmarks. http://www.spec.org/jvm98/, 1998.

46

	Abstract
	Table of Contents
	List of Figures
	Introduction
	Background and Related Work
	Just-in-Time Compilation
	Android Platform Architecture
	The Dalvik Intermediate Code and Virtual Machine
	Related Works on Evaluating Dalvik VM Performance

	Environment to run Dalvik on x86 and ARM
	Standalone Execution of DalvikVM
	Dalvik Debugging Environment
	Important Dalvik VM Files
	Using Linaro image tool
	Compiler Code Flow
	Dalvik Command Line Arguments

	Assessing Dalvik VM Performance
	Experimental Environment
	Hardware/OS Setup
	Benchmark Setup

	Performance Comparison of Hotspot and Dalvik Virtual Machines
	Dalvik Compiler Parameter Tuning

	Future Work
	Conclusions
	References

