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Abstract

Global variables in C/C++ programs are those that are declared outside a

function, and whose scope extends the lifetime of the entire program. Global

variables have been shown to cause issues to program maintainability, extensibil-

ity, dependence, verification, and thread-safety. Consequently, the use of global

variables has been disparaged in many programming textbooks and coding guides.

However, employing global variables can also make coding more convenient and

improve program performance. We have found that the use of global variables

remains unabated and extensive in most real-world software programs. In this

work we present our source-to-source refactoring tool to automatically detect and

localize global variables in a program. Our tool implements a compiler based

transformation algorithm that finds the best location to move and redefine each

global variable as a local. For each global variable, our algorithm initializes the

corresponding new local variable, and passes it as an argument to all functions

that need it, and updates the source code line that used the global variable to

now instead use the corresponding local or function argument, thus maintaining

the original program semantics. In this work we further characterize the nature

of how global variables are employed in common benchmark programs. We fur-

ther study the effect of our transformation on static program properties, such as

the change in the number of function arguments and visibility of program state.

Additionally, we also quantify the effect of localizing global variables on dynamic

program characteristics, including the change in data and stack memory usage

and runtime program performance.
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Chapter 1

Introduction

A Global variable in C and C++ is one that is declared outside a function,

and is in-scope and visible throughout the program. Thus, global variables are

accessible and can be set and used in any program function [1]. The use of global

variables has been observed to cause several problems. First, researchers have

argued that global (and other non-local) variables increase the mental effort nec-

essary to form an abstraction from the specific actions of a program to the effects

of those actions, making it more difficult to comprehend a program that uses

global variables [2]. In other words, source code is easiest to understand when

we limit the scope of variables. Second, developers have found it more difficult

to test and verify software that employs global variables. Use of globals makes

it difficult (for humans and automatic tools) to understand the state being used

and modified by a function, since globals do not need to be explicitly passed and

returned from the function. Similarly, formally verifying code that uses global

variables typically requires stating and proving invariant properties, which make

make the verification task more arduous [3]. For such reasons, the formally-defined

SPARK programming language requires the programmer to annotate all uses of
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global variables [4]. Third, global variables have also been implicated in increas-

ing program dependence, which measures the influence of one program component

on another [5]. Additionally, global variables have also been observed to cause

dependence clusters, where a set of program statements are all dependent on one

another. A low program dependence and a lack of dependence clusters are found

to benefit program comprehension [6, 7] as well as program maintenance and re-

engineering [8, 9]. Fourth, the use of global variables causes the program to be

non-thread-safe [10,11]. This is because global variables are allocated space in the

data region of the process address space, providing only one copy of these vari-

ables for all program threads. Consequently, developers are generally required to

eliminate global variables or synchronize their access for multi-threaded programs.

Thus, on account of these limitations, the use of global variables in generally dis-

couraged in modern programming practice.

Regardless of the problems caused by global variables, they are still extensively

used in most current real-world software systems. Their use can be attributed

to two (real or perceived) primary benefits of using global variables: efficiency

and convenience. Researchers have shown that employing global variables can

boost program efficiency and lower (stack) space usage by reducing or eliminating

the overhead of argument passing and returning values during function calls/re-

turns [12]. However, the globalization transformations to achieve this effect can

generally be performed automatically by the compiler during the source-to-binary

generation without affecting the high-level source code. It may also be more con-

venient for developers to hold program state that is manipulated and consumed

in multiple dislocated programs regions in global variables. In such cases, it may

be difficult for the programmer to determine the best place for declaring the local
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variable and find the best path to make this variable available to all functions set-

ting or using it. Such use of globals is especially attractive for developers updating

unfamiliar code regions in large software programs. However, given the harmful

effects of global variables, it will be more desirable if we could still provide de-

velopers the convenience of using global variables, but then automatically localize

such variables to preserve the understandability, verifiability, and maintainability

of the source code program.

In this work, we develop a compiler-based tool to automatically find and eliminate

global variables in a program by transforming them into local variables. Our tool

automatically finds the closest dominator function to localize each global vari-

able, and then passes the corresponding local variable as a parameter to every

function setting/using the original global. Function prototypes are appropriately

modified throughout the program reflect the new parameters for each function.

At the same time, each access of the global variable is updated to instead modify

or use the corresponding local variable or parameter argument. In this paper we

describe the algorithms we used to accomplish this transformation, and measure

their effect on the space and time requirements of the modified programs. Thus,

we make the following contributions in this work:

1. To our knowledge, we present the first source-to-source transformation tool

to localize global variables in C programs.

2. We present detailed statistics and observations on the use of global variables

in existing MiBench and SPEC benchmarks.

3. We measure and quantify the effect of our transformation on the number of

function arguments passed, along with its space and size overheads.
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Chapter 2

Motivation

2.1 Global Variables

Variable in languages are a portion of memory to store a determined value.

A variable can be either of global or local scope. A global variable is a variable

declared in the main body of the source code, outside all functions, while a local

variable is the one declared within the body of a function or a block.

Each local variable in a function comes into existence only when the function is

called, and disappears when the function is exited. This is why such variables are

usually known as automatic variables. Because automatic variables come and go

with function invocation, they do not retain their values from one call to the next,

and must be explicitly set upon each entry. If they are not set, they will contain

garbage. A global variable in contrast is always initialized to 0. Additionally they

can be referred from anywhere in the code, even inside functions, whenever it is

after its declaration.
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2.1.1 Disadvantages of global variables

Ever since their conception, global variables have caused almost as much con-

troversy as the goto statement. A good programming practice is that global

variables should not be overused even though they can simplify the code consid-

erably.

”Relying too heavily on external variables is fraught with peril since it leads to

programs whose data connections are not all obvious - variables can be changed in

unexpected and even inadvertent ways, and the program is hard to modify” [13].

Experienced programmers support a programming philosophy called ”the princi-

ple of least privileges”. This philosophy says that if the accessibility of a program

resource, such as a function or variable, is restricted to just those portions of the

program where such accessibility is absolutely required, then the programmer is

less likely to introduce errors into the code. Global variables violate this principle.

Avoiding the global variables have been suggested as one of the best practices for

software development.

Following are some of the well-known disadvantages in using global variables in a

program.

• Increase in Code Complexity

A global variable has an unlimited potential for creating mutual dependen-

cies, and adding mutual dependencies increases code complexity. Untracked

interactions between different components are the archetypal defect in soft-

ware engineering called Action at a Distance and global variables contribute

to it. It happens when we run one part of the program that we believe is

isolated but unexpected interactions and state changes happen in distant lo-

cations of the system. This can throw the code wildly of its track and such
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bugs can be hard to track down. Ultimately it indirectly lowers developer

productivity

• Wasted Memory

Since global variables are alive throughout the program, its memory can’t be

reclaimed even if we no longer need access to it as opposed to local variables

which are de-allocated when the function in which it is declared returns.

• Non-locality

Source code is easiest to understand when the scope of its individual elements

is limited. Global variables can be read or modified by any part of the

program, making it difficult to remember or reason about every possible

use. In addition it removes the logical isolation of the functions from the

rest of the code.

• Namespace Pollution

Since C does not have Namespace, global names are available everywhere.

We may unknowingly end up using a global all the while thinking that we

are using a local by misspelling or forgetting to declare the local or vice

versa. Also, if we ever have to link together modules that have the same

global variable names either one of the following output is expected

1. get linking errors

2. the linker simply treats all uses of the same name as the same object

without as much as throwing a warning

If the later is the case then external programs can overwrite user written

portions of the code. As a consequence we lose some of the functionality

offered and introduce subtle bugs.
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• Testing Constraints

It is difficult to see what variables are currently on scope of a function

unless they are all passed as parameters or declared locally. Since any code

anywhere in the program can change the value of the global variable at any

time, understanding the use of the variable may entail understanding a large

portion of the program. It also makes isolating units of code for purposes

of unit testing more difficult. Thus they can directly contribute to lowering

the quality of the code.

For communicating systems, the ability to test system invariants may require

running more than one copy of a system simultaneously, which is greatly

hindered by any use of global variables that are not provided for sharing as

part of the test.

• Access Control Issues

A global variable can be get or set by any part of the program, and any

rules regarding its use can be easily broken or forgotten. The lack of access

control greatly hinders achieving security in situations where we may wish

to run untrusted code.

• Concurrency Issues

Writing code in such a way that it can be partially executed by a thread, re-

executed by the same thread(Re-entrant) or simultaneously executed by an-

other thread(thread-safe) and still correctly complete the original execution

is essential for concurrency. This requires the saving of state of information

in variables local to each execution, usually on a stack, instead of in global

variables. If global variables have to be accessed by multiple threads of ex-

ecution, synchronization is necessary. When dynamically linking modules
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with global variables, the composed system might not be thread-safe even if

the two independent modules tested in dozens of different contexts were safe.

So data consistency may not be guaranteed. In such cases manually elimi-

nating or synchronizing the use of globals is extremely hard, time-consuming

and tedious.

Our research proposes a pure software and fully automated approach to do away

with unnecessary globals in existing software applications by localizing them.
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Chapter 3

Related Work

In this section we describe previous research efforts to localize global vari-

ables and techniques to manage some of the shortcomings of global variables.

Many popular programming language textbooks [13] as well as several individual

programming practitioners [14] have derided and discouraged the use of global

variables. At the same time, acknowledging the necessaity and/or convenience of

employing global variables/state, language designers have developed alternative

programming constructs that provide some of the benefits while controlling many

limitations of global variables. Arguably, one of the most well-known alterna-

tive to some uses of global variables is the static specifier in C/C++ that limits

the scope of global variables to individual functions or source files [13]. Another

construct that programmers often use in place global variables is the singleton

design pattern that can encapsulate global state by restricting the instantiation

of a class to a single object [15]. However, the use of the singleton pattern can

result in many of the same problems with testing and code maintainence that are

generally associated with global variables [16].

To our knowledge, there exist few attempts at source-to-source code refactor-
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ing to automatically detect and eliminate global variables in C/C++ programs.

Sward and Chamillard developed a tool to indentify global variables and add them

as locals to the parameter list of function in Ada programs [17]. However, apart

from operating only on Ada programs, this work does not describe their implemen-

tation and does not provide any results. Yang et al. proposed and implemented a

“lifting” transformation to move global variables into main’s local scope [18]. Lift-

ing was designed to only work with their other “flattening” transformation that

absorbs a function into its caller without making a new copy of the function for

each call-site. This earlier research aimed to place the stack allocated variables in

static memory to minimize RAM usage for embeded systems applications, and did

not have to deal with most of the issues encountered in a more general technique

to eliminate global variables.

Most related to our current research are works that attempt to automatically

eliminate global variables to generate thread-safe programs. Zheng et al. outlined

a compiler-based approach to eliminate global variables from multi-threaded MPI

(Message-Passing Interface) based Fortran programs [11]. Their transformation

moves all globals into a single structure. Every MPI process gets its own instance

of this structure, which is them passed as an argument to all functions. Thus,

unlike our implementation, their transformation does not affect code maintainabil-

ity. Additionally, this previous work also did not collect statistics on the use of

global variables and the affect of the transformation on code maintainability and

performance metrics. Our earlier work also implemented a similar algorithm to

transform global variables into their local variants to make ‘C’ programs thread-

safe [10]. However, this earlier work was not targeted at code maintainability and

did not implement a source to source transformation. Moreover, it did not collect
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and analyze the various statistics about global variables and the transformation

that we present in this work.

The ultimate goal of our research is to develop a new code refactoring tool

that can generally reassign storage between local and global variables. Existing

code refactoring tools are typically only used to enhance non-functional aspects

of the source code, including program maintainability [19] and extensibility [20].

Examples of important code refactorings for C program maintainability include

renaming variables and functions, dividing code blocks into smaller chunks, and

adding comments to the source codes [21]. None of the existing refactoring tools

provide an ability as yet to transform global/local variables, as we perform in this

work.
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Chapter 4

Algorithm

4.1 Localizing Global Variables

Even moderate-sized programs in C/C++ typically contain many global vari-

ables. Additionally, these global variables may be scattered throughout the code,

which make it highly tedious and error-prone to manually detect and refactor the

code to remove these variables. Therefore, our approach employs an automatic

compiler-driven algorithm to find and eliminate global variables. Our algorithm

works by converting the global variables to locals, and then passing them as ar-

guments to all the functions where they are needed. In this section we provide

more details on our compiler-based framework and transformation algorithm.

4.1.1 Transformation Algorithm for Localizing Global Variables

Our compiler based transformation tool performs two passes to localize global

variables. In the first pass, we generate the call-graph, detect global variables, and

collect other information regarding the use of global variables in the program. The

second pass uses this information to move global variables into the local scope

12



main

func

foo1 foo2

bar2bar1

(a) Original program
using global variable

(b) Function call−graph (c) Program after applying our
refactoring transformation to

localize global variables

   func();

}

void func(){

   foo1();

   foo2();

}

void foo1(){

   bar1();

}

void bar1(){

    = var;

}
   var = ;

void foo2(){

   bar2();

}

void bar2(){

    = var;

   var = ;

}

}

void foo1(int *gbl_var){

}

void bar1(int *gbl_var}{

    = *gbl_var;

   *gbl_var = ;

}

void foo2(int *gbl_var){

   bar2(gbl_var);

}

void bar2(int *gbl_var){

    = *gbl_var;

   *gbl_var = ;

}

   bar1(gbl_var);

int var;

int main(){

   func();

int main(){

}

void func(int *gbl_var){

   foo1(gbl_var);

   foo2(gbl_var);

   int gbl_var = 0;

   func(&gbl_var);

   func(&gbl_var);

Figure 4.1. Example to illustrate the program transformation to
localize global variables

of the appropriate function, pass these local variables to other functions using

them, update function prototypes and the variable names in the source statements

accessing each global variable. We use the small example program in Figure 4.1(a)

to explain our transformation algorithm in more detail. The syntax “= var” in

Figure 4.1(a) indicates a use of the variable var, while “var =” indicates a set of

the variable var. The algorithm proceeds as follows.

1. In the first step we invoke the compiler to compute the static call-graph of

the program. Figure 4.1(b) shows the call-graph that will be generated for

the example program in Figure 4.1(a).

2. The compiler then detects all global variables in the program, as well the

functions that set and/or use each global variable. We also record the data

type and initialization value of each global variable.
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3. Next, we automatically determine the best function to localize each global

variable. While the root program function, main(), can act as the default

localizing function for all global variables, we attempt to place each global as

close as possible to the set of functions that access that variable in order to

minimize the argument passing overheads. We employ our implementation

of the Lengauer-Tarjan algorithm [22] to find the immediate dominator of

each node (function) in the call-graph. A dominator for a control flow

graph node n is defined as a node d such that every path from the entry

node to n must go through d [23]. Since one global variable can be used in

many functions, we further extend the Lengauer-Tarjan algorithm to find

the closest dominator function for the set of functions that use each global

variable. This closest dominator is determined by locating the first common

dominator of all the functions that use that global. Thus, as an example

the global variable var that is used in two functions, bar1() and bar2(),

in Figure 4.1(a) has the function func() as its common dominator.

4. Simply localizing each global variable in its closest common dominator func-

tion may not retain the semantics of the original program. This is because

if this dominator function is called multiple times, then it will re-declare

and re-initialize the localized variable each time, which is different than the

single initialization of the original global variable. Thus, in the example

program in Figure 4.1(a) the closest dominator function func() is called

multiple times from main(), and therefore may not be a semantically legal

choice to locate the global variable var. For each global variable, we tra-

verse the dominator tree starting from its closest common dominator up to

main() to find the first legal dominator that is only invoked once by the

14



program.

5. Next, our transformation moves each global variable as a local variable to

its closest legal dominator function. The transformation also adds new in-

structions to this function to correctly initialize the new local variable. In

Figure 4.1(a), the global variable var is moved to the function main() and

initialized as the new local variable glob var.

6. The next step involves finding the functions in the call-graph between the

legal dominator and all the functions where the global is used. We call

this set of functions as the global variable’s frontier. The local copy for

each global variable needs to be passed by reference to each of its frontier

functions in order to reach their appropriate end locations, where they are

used. This requires modifying the calling interface of each frontier function.

Thus, in program 4.1(a), the local variable glob var is passed by reference

to all its frontier functions, namely func(), foo1() and foo2().

7. The final step in our transformation is to modify the calling interface of

the end functions for each global variable to get the additional arguments

corresponding to the local variants of global variables. Thus, the calling

interface of functions bar1() and bar2() is updated to accept the address

of the local variable glob var as an argument. Our tool then automatically

updates every use of each global variable to instead use its corresponding

local variant.

Thus, our algorithm to eliminate global variables will automatically transform

the program in Figure 4.1(a) to the program in Figure 4.1(c). Our tool has

the ability to either transform all possible global variables in the program, or to

15



selectively apply the transformation to individual globals that are specified by the

user.
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Chapter 5

Compiler Framework

We have implemented our algorithm to localize global variables as a source-to-

source transformation using the Clang compiler framework. In this section we first

describe our compiler framework along with the limitations that were imposed by

the framework on our algorithm implementation.

5.1 Clang

We use the modern and popular Clang/LLVM [24,25] compiler for this work.

LLVM provides a mature SSA-based compiler backend [23] that supports both

static and dynamic compilation and optimizations for programs written in dif-

ferent languages and across multiple target architectures. Clang is a modern

C/C++/Objective-C frontend for LLVM that provides fast code transformation

and useful error detection and handling ability. Clang also exposes an exten-

sive library of functions that can be used to build tools to parse and transform

source code. In this project we employ the extensive Clang library to build a

source-to-source transformation tool for localizing global variables.
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libbasic Diagnostics, SourceLocations, SourceBuffer abstraction, file sys-
tem caching for input source files

libast Provides classes to represent the C AST, the C type system, built-
in functions, and various helpers for analyzing and manipulating
the AST

liblex Lexing and preprocessing, identifier hash table, pragma handling,
tokens, and macro expansion

libparse Parsing, invokes coarse-grained Actions provided by the client but
knows nothing about ASTs or other client specific data structures

libsema Semantic Analysis, provides a set of parser actions to build a stan-
dardized AST for programs

librewrite Editing of text buffer for code rewriting transformation, like refac-
toring

libanalysis Static analysis support

libindex Cross-translation-unit infrastructure and indexing support

driver A driver program, client of the libraries at various levels

Table 5.1. Clang Libraries

5.1.1 Clang as Rewriter

Clang was designed to retain more information during the compilation process

than GCC, and preserve the overall form of the original code. This makes it

easier to map errors back into the original source. The parse tree built by clang is

more suitable for supporting automated code refactoring as it remains in a parse-

able text form at all times. Clang is highly modularized, based almost entirely

on replaceable link-time libraries as opposed to source-code modules that are

combined at compile. A library-based architecture makes the reuse and integration

of functionality provided by clang more flexible and easier to integrate into other

projects. The table shows clang’s base libraries.

Clang’s FrontendAction is the task that can be performed on an built Abstract

Syntax Tree(AST). AST is a tree representation of the abstract syntactic structure

of the source code written in a high-level programming language. Each node of

the tree denotes a construct occurring in the source code. Clang has only one

18



type of an AST for C based languages like C++, C and ObjectiveC. Unlike most

common compilers, Clang’s AST preserves lots of high-level information, which

is highly useful for doing the refactoring.It implements the AST visitor interface

called ASTConsumer. Using this interface and the rewriter library we perform

the necessary analysis on the source code and make changes accordingly.

Using the rewriter library’s API changes to the source can be made selectively,

which are then mirrored in the original source code. The rewriter has objects that

store the entire source buffer. It also provides interface to modify this buffer. As

code is rewritten, source buffer from the original input with modifications get a

new Rewrite Buffer associated with them. The Rewrite Buffer captures modified

text itself as information used to map between Source locations in the original

input and offsets in Rewrite Buffer. Finally this modifier buffer is redirected to

an output file.
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Chapter 6

Implementation

In this chapter we describe the process of localizing the global variables in C

programs. This is a completely generalized approach and experimental results

show that it is practical on real-world examples. We built a plugin that is dy-

namically linked to clang compiler tree at runtime. The input to the tool is a C

program and output is the transformed C program with localized global variables.

To analyze a program, our system first parses the source file and constructs

a single AST in memory. Then we collect all the definitions and uses of all

global variables in the program by traversing the AST. For every global variable

we collect the set of functions in which it is used. We find the best function

to which the definition of the global can be moved. This function is called the

global dominator. Additionally we find the set of frontier functions for each global

variable. The storage for the global variable is then moved from the global data

storage into the local data storage in its dominator function. The global then is

passed by reference to all the function in the global variable’s frontier.

We will see each of the above steps in detail in the Phases section below.
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6.1 Phases

6.1.1 Setup

• Source File Setup

For every benchmark program we check whether all the header files have

defined the header guards and define one if not. This makes sure that header

file contents are not included more than once inadvertently in the including

source file. Then we concatenate all the source files (.c) to make a single

.c file. ASTContext object used heavily in our refactoring tool is unique

for every source file. AST Objects associated with it are released when the

ASTContext is itself destroyed i.e. when the compiler moves to next source

file. Usage and definition of some of the functions and global variables

span multiple files and their objects are required to be present in memory

throughout our analysis and transformation phase. The concatenated file is

then preprocessed so as to expand any macros present. Since clang’s rewriter

API does not support macro rewriting this step is indispensable.

• Static and Dynamic Call Graph Generation

The static call graph is then generated using clang. The output is a dot

file, which along with the dynamic call information would be then read by

the refactoring tool along with the source file that needs to be transformed.

After a single run of the original benchmark program the dynamic call graph

is generated. This is done using user written profiler extension for GNU gcc

compiler.
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6.1.2 Analysis

• Dominance Analysis First we find the dominator for each function in the

program. This will further help in pruning call graph orphans and finding

functions involved in loops. We then compute the global variable dominator

to which the declaration of the variable is moved in the transformation phase.

Global frontier functions are also deduced to which the global variable will

be later in transformation passed as an argument.

• Global Variable Analysis In this phase we classify all the global variables

to Read-Only(RWO), Read-Write(RW) and Unused categories. Read-only

variables contain some constant information, and usually they reflect what is

known at the time of the allocation. The read-only variables are used mainly

for comparison operations and their values are never modified. Write-Only

variables are just written to but their value is never used. Both these class

of variables form the RWO class. From maintenance point of view, we avoid

localizing them, as we cannot justify the time and memory overhead. We

also let the unused variable as it is. The RW variable has an initial value

that is overridden through the course of the program. This section of the

global variables is up for localization.

At the end of analysis phase we will have detailed information about all the

global variables and we proceed with localizing relevant global variables.

6.1.3 Transformation

• Rewrite Declarations In this phase we remove the original global dec-

laration and move it to its dominator function. The name of the variable

is modified to include the term global in the name so as to not collide with
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any existing local variable names with the same name. Also since the loader

before program execution always initializes global variables, we also have to

explicitly initialize it. Straightforward initialization is done if it is scalar or

if it is a vector then it is initialized with memset library function.

• Rewrite Function Prototypes For every function we also have computed

the list of global variables that are to be passed to it so we update the func-

tion prototype with this additional set of global variables. This is done by

traversing the AST for function prototypes and modifying it as we encounter

it.

• Rewrite Call Expressions We also traverse the call expression and update

them with the added global variables for each function. Global variables are

always passed as reference to retain any changes made to it.

• Rewrite Statements For every function we have built a small table, which

maps list of original global variable name and the new name. We perform

analysis to see if the function has any local variable that has the same name

as the global variable. Since the local in the particular function overrides

the global variable we make sure not to modify function statements that

may be actually just referring to its local variable. This phase is actually

done using the user written lexer.

6.2 Limitations Imposed by the Current Compilation

Framework

In this section we describe some of the limitations in our current algorithm

implementation that are present due to some of the restrictions in our selected
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compiler framework. We note that none of these shortcomings are fundamental

restrictions on the algorithm, but we may need better support from the underlying

compiler to resolve these issues in the future.

6.2.1 Precise Call-Graph Generation in the Presence of Function

Pointers

Our compiler-based static approach to localize global variables requires the

construction of a precise call-graph for each program. Unfortunately, the presence

of indirect function calls via function pointers makes precise call-graph construc-

tion difficult in languages like C/C++ [26, 27]. We also find that most larger

benchmarks make generous use of indirect function calls. The Clang/LLVM com-

piler that we use for this project does not yet perform precise pointer analysis

necessary for the proper resolution of all function pointers and indirect function

calls. This limitation can produce incomplete call-graphs, which may later cause

our transformation to generate code that is semantically inconsistent with the

original program.

Clang/LLVM
Program

source code

standard

input

call−graph

GCC
instrumented

Call Info.
call−graph

(for input)

Execute
Program

static

(incomplete?)

binary

indirect call

information

preciseMerge

Figure 6.1. Framework for obtaining precise call-graph information
for our analysis experiments

In our current work we circumvent this problem of incomplete call-graphs by

supplementing the compiler-generated static call-graph with profiling-based infor-

mation linking indirect function call-sites with their targets for each benchmark-

input pair. Our framework for call-graph generation is illustrated in Figure 6.1.
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We use the Clang/LLVM static compiler to generate the (possibly incomplete)

static call-graph. We then employ our modified variant of GCC (version 4.5.2) [28]

to instrument each source file with additional instructions that produce the (caller

→ callee) function relationships at every indirect call on program execution. We

modified GCC to provide this instrumentation ability especially for our current

research. We then use this supplemental indirect function call information to com-

plete the static call-graph, if necessary. We note that the use of function pointers

is not a limitation of our general technique, since precise function pointer analysis

and call-graph construction has been shown to be feasible for most programs in

earlier studies [29]. Thus, our workaround is intended to only provide a temporary

fix until the ability of generating precise call-graphs is integrated into the Clang

compilation environment.

6.2.2 Incomplete Variable Name Alias Analysis

Another related concern in C/C++ programs is correctly dealing with variable

aliasing. Aliasing occurs when a data location in memory can be accessed through

different symbolic names in the program. Along with complete pointer analysis,

precise alias analysis to locate aliased variables that point to the same memory

address is also critical to accurately localize all global variables for all programs.

Precise alias analysis is also not currently implemented in the Clang source-to-

source compiler. Our transformation tool is able to detect simple aliasing cases

when a global variable is passed as a parameter (with or without a distinct name)

to another function. In such cases, our tool automatically links the global variable

name with the parameter name in that function. However, we do not yet handle

more complex aliasing cases in the source codes.
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6.2.3 Support for Multiple Source Files

A final limitation of our present tool setup is manifested due to the current

implementation of the Clang compiler frontend that only allow it to hold the

parse tree representation and other internal data structures for one (or the cur-

rent) file at a time. Thus, Clang destroys the previous AST (Abstract Syntax

Tree) representation before reading each next file from the command-line. This

limitation does not prevent the generation of a static call-graph over multiple

source files since all information to produce the call-graph is maintained in exter-

nal data structures. However, the transformation for localizing global variables

may require updates to multiple function ASTs across different source files simul-

taneously. Such inter-file AST updates are currently not possible with the Clang

compiler.

We have not yet attempted to modify this default behavior of the Clang com-

piler to handle multiple ‘C’ program source files on the command-line. Instead,

for our current project we perform a simple pre-processing pass on multi-file in-

put programs to concatenate the multiple input files into a single file that is then

handed to the Clang compiler. While this solution works for most of our multi-file

benchmark programs, it fails for a few applications that employ file-level statics

with the same names in multiple different files.

6.2.4 Incorrect Static Call-Graph

We also find that our version of the Clang compiler sometimes generates an

incomplete static call-graph even for the set of functions that contain no function

pointers or indirect calls. This is a separate problem than the issue of imprecise

call-graph generation due to indirect calls, and therefore we decided to not extend
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our workaround from Section 6.2.1 to cover all program function calls. Instead,

we are currently working to understand and resolve this problem in the Clang

compiler toolset.

The Clang/LLVM framework is a rapidly evolving target with several separate

groups resolving existing issues and adding novel features to the toolset. We will

work with these open-source groups to extend the Clang compiler and resolve

some of the issues discussed in this section. Moreover, we note that none of these

issues pose a fundamental restriction on the benefit of our tool to eliminate local

variables for most programs.
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Chapter 7

Benchmark Framework

We have collected a rich and extensive set of benchmark programs to analyze

the use of global variables in existing programs and validate the behavior of our

transformation tool to eliminate global variables. Our benchmark set includes

14 benchmarks from the MiBench suite [30] and five benchmarks from SPEC

CPU CINT2006 benchmark suite [31]. The MiBench benchmarks include popular

C applications targeting specific areas of the embedded market. The standard

SPEC suite allows us to experiment with larger and more complex general-purpose

applications. In addition, the following MiBench benchmarks were analyzed but

not included in our experimental set since they do not contain any global variables:

basicmath, crc32, fft, patricia, qsort, rijndael, sha, and susan.

Unfortunately, issues caused by the lack of multi-file support and incomplete

static call-graph generation discussed in the last section prevent the proper han-

dling of some of the larger benchmarks by our current tool implementation. As

a result, we leave out the some MiBench (lame, typeset, ghostscript, sphinx ) and

SPEC (400.perlbench, 403.gcc, 445.gobmk, 464.h264ref ) benchmarks from our ex-

perimental set. Additionally, rsynth from MiBench was not included as it produces
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Benchmark LOC Func Description

MiBench benchmarks

adpcm 114 8 compress 16-bit linear PCM samples to 4-bit

bitcount 33 test processor bit manipulation abilities

blowfish 299 17 symmetric block cipher with variable length key

dijkstra 70 15 Dijkstra’s shortest path algorithm

gsm 76 GSM voice encoding/decoding algorithm

ispell 2,802 167 fast spelling checker

jpeg 1,256 408 image compression and decompression

mad 217 high-quality MPEG audio decoder

pgp 454 public key encryption algorithm

stringsearch 134 20 searches for given words in phrases

tiff2bw 409 convert color tiff image to b&w image

tiff2rgba 406 convert color tiff image to RGB tiff image

tiffdither 399 reduce image resolution/size at expense of clarity

tiffmedian 412 convert image to a reduced color palette

SPEC CINT benchmarks

401.bzip2 2,852 117 popular compression program v1.0.3

429.mcf 699 38 network simple algorithm for vehicle scheduling

456.hmmer 12,039 592 protein sequence analysis using Markov models

458.sjeng 4,935 174 a highly-ranked chess program

462.libquantum 125 simulate factorization algo. on quantum comp.

Table 7.1. Our set of benchmark programs (LOC – counts the num-
ber of lines containing a semi-colon; Func – counts the number of static
function definitions in each program).

no traceable output to verify the correctness of our transformation. In spite of

these restrictions, we believe that our benchmark set is large and diverse enough

to allow a good understanding and generalization of the properties of our algo-

rithm implementation. Table 7.1 contains descriptions of our selected benchmark

programs.

Table 7.2 shows the static characteristics of global variables in our benchmark

programs. We only show those benchmarks that have at least one global variable.

For each benchmark listed in the first column, the remaining columns successively

show the total number of global variables declared in the program (total), the

number of read-only or write-only global variables (RO/WO), the number of un-

29



Benchmark Total RO/WO Unused RW Moved

adpcm 5 4 0 1 1

bitcount 1 0 0 1 1

blowfish 2 0 1 1 1

dijkstra 10 0 0 10 10

gsm 22 1 3 18 6

ispell 97 5 14 78 69

jpeg 15 5 7 3 3

mad 38 5 24 9 2

pgp 276 63 11 202 147

rijndael 8 1 2 5 5

stringsearch 8 0 5 3 3

tiff2bw 44 10 24 10 9

tiff2rgba 36 8 23 5 3

tiffdither 39 12 14 13 7

tiffmedian 51 7 25 19 17

401.bzip2 30 9 13 8 8

429.mcf 8 1 0 7 7

456.hmmer 48 26 7 15 7

458.sjeng 244 45 23 176 166

462.libquantum 10 0 0 10 8

Table 7.2. Number and type of global variables in benchmark pro-
grams.

used global variables (Unused), and the number of globals that are both read as

well as written by the program (RW ). Our transformation algorithm only con-

siders the variables in the RW category as potential candidates from moving as

local variables.

The final column in Table 7.2 shows the number of RW global variables that

were successfully localized by our transformation algorithm for each benchmark.

Thus, we can see that while our tool is able to localize most global variables, it

fails in a small number of cases. We have categorized these failed cases into three

primary sets: (a) Global variables used in calls to the sizeof function: After our

transformation these calls fail to provide the correct size for the corresponding

function parameters that are passed via reference. (b) Global variables used in
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Figure 7.1. Categories and number of global variables that our tool
fails localize for each benchmark

functions called indirectly: We do not yet update function pointer declarations.

(c) Miscellaneous: Global variables that cause the compiler to generate incorrect

code, if transformed. We studied a few of these cases, and found most of them to

occur due to the imprecise alias analysis performed by the Clang compiler. Global

variables belonging to the first two sets are automatically detected and bypassed

by our tool, with a message sent to the user. Figure 7.1 plots the number of global

variables in each of these categories for every benchmark for which our tool is not

able to eliminate all RW global variables.

7.1 Properties of Global Variables in Benchmark

Programs

It is believed that developers typically employ global variables as a convenience

feature when a particular program state is set or accessed in multiple program

functions, and it is difficult to determine the best place to declare the variable

so it can be made visible to all program regions that need the variable. Global

variables are also sometimes used to improve program efficiency by reducing the
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Figure 7.2. Number of functions accessing global variables

overhead of passing the variable to several different program functions. Figure 7.2

plots the number of functions that use/set each global variable. Thus, the first set

of bars in Figure 7.2 shows that 30 global variables in the MiBench benchmarks,

and 25 global variables in our set of SPEC benchmarks are only accessed by one

function in the program. We uniformly accumulate all global variables from each

of our benchmark suites for this plot. Thus, we can see from this figure that most

global variables are only used in a small number of program functions. We reason

that such usage trends indicate either poor programming practices or scenarios

where the developer may not be comfortable with a large program code base. We

believe that our automatic source-to-source transformation tool to localize globals

will be very useful to resolve such improper uses of global variables.
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Chapter 8

Results

In this section we describe our results and observations that characterize the

properties of our transformation to eliminate global variables. Our experiments

employ the set of standard benchmark programs described in Section ?? to deter-

mine properties regarding the use of global variables in typical C programs, and

static (source code visible) and dynamic (performance) effects of our localizing

transformation.

8.1 Static Characteristics of Our Transformation

Algorithm

Our transformation to eliminate global variables can affect many aspects of

the static program characteristics. In this section we quantify and analyze some

effects of our transformation on static program properties. Our experiments in

this section use the algorithm described in Section 4.1 to localize all the global

variables in the Moved column of Table 7.2.
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Figure 8.1. Average number of function parameters before and after
applying our localizing transformation to eliminate global variables

8.1.1 Effect on Average and Maximum Function Arguments

After localizing the global variables, our algorithm needs to make their values

available to all functions that set/used the original global variable. We make

the new local variable accessible by explicitly passing it as an argument to all

functions that need it. This scheme adds additional parameters to several function

declarations in the transformed program. Figures 8.1 and 8.2 respectively plot the

average and maximum number of function parameters over all the functions in

each of our benchmark programs.

Thus, we can see that the change in the average and maximum number of

function arguments does not change a lot for most of the benchmark programs,

although it can change significantly for some programs. On average, we find

that the average number of function arguments increases from 1.95 to 3.33 for

MiBench benchmarks and from 2.59 to 7.45 for SPEC programs. Similarly, the

maximum number of function arguments increase, on average, from 6.78 to 16.50

for MiBench programs and from 10.4 to 40.4 for SPEC benchmarks. An impor-

tant and desirable side-effect of our transformation is to reveal the declarations
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Figure 8.2. Maximum number of function parameters before and
after applying our localizing transformation to eliminate global vari-
ables

of all variables used/set in any function in that function itself. This property

is particularly important both from the aspects of program maintainability and

verifiability. Unfortunately, passing additional function arguments can have an

adverse effect of program efficiency, and we will explore the dynamic performance

properties of our transformation in a later section.

8.1.2 Number of Frontier Functions

In order to make each new local variable available in all the functions that

used/set the corresponding global variable in the original program, we may need

to pass the local as an argument to intermediate (or frontier) functions that do

not themselves use the local variable apart from sending them to other functions

(see Figure 4.1). Figure 8.3 presents the number of frontier functions for every

transformed variable. The first two bars in Figure 8.3 reveal that 12 of the new

local variables in the MiBench benchmarks and one new local variable in the

SPEC benchmarks have zero frontier functions. Thus, we can see that most local

variables have only a small number of frontier functions. This observations shows
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that most global variables are used in functions that are located close to each

other in the static program call-graph. However, many global variables are used

in functions that are considerably dislocated in the program call-graph. Thus, at

the other extreme, we find that there is one function each in MiBench and SPEC

that has 58 and 45 frontier functions respectively. Global variables employed in

such dislocated call-graph functions will likely require more user effort to man-

ually eliminate, and also seem to be more sensible scenarios for the developer

using global variables. By automatically handling such variables, our tool can

provide the programmer the convenience of using global variables in such difficult

situations, but eliminate them later to satisfy software engineering goals.

8.1.3 Effect on Program State Visibility

Global variables are visible and accessible to all functions in the program,

which is argued to make if more difficult for automatic program verification and

program maintainability. One goal of our localizing transformation is to reduce

the visibility of all variables to only the program regions where they are needed,
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and assist and program verification and maintainability. Figure 8.4 plots the

percentage reduction in the visibility of the each transformed local variable. There

is a point-plot for each transformed variable in Figure 8.4, sorted by its percentage

visibility for all MiBench and SPEC benchmark variables. This figure shows that

program visibility is drastically reduced for almost (originally) global variables

after transformation. For example over 81% of the global variables in MiBench

programs and 68% of variables in SPEC benchmarks are visible in less than 10%

of their respective program after the transformation. How about average visibility

per benchmark ? (Smaller benchmarks will have higher percentage visibility?).

8.2 Dynamic Characteristics of Our Transformation

Algorithm

At a lower level the transformation algorithm to eliminate global variables can

have the following effects on memory consumption and program performance.

• Localizing global variables will move them out of the data region to the
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respective function activation records (or the stack region) of the process

address space. This movement may reduce the size of the data region, but

will supplement this reduction with a corresponding increase in the size of

the stack. 1

• Each localized variable may need to be passed as an argument to other func-

tions that access it. This operation may increase the function call overhead,

as well as increase the size on the function activation record (stack).

• While global variables are either initialized statically or implicitly by the op-

erating system, after localization, the corresponding local variables will need

to be explicitly initialized in the program by the compiler. This initialization

may be a source of additional overhead at runtime.

In this section we present results that quantify the memory space and runtime per-

formance of the program before and after our transformation. For all these exper-

iments all our benchmark programs were compiled with GCC (version 4.5.2) [28]

with the ‘-O2’ optimization flag. 2 We also built a simple GCC-based instrumen-

tation framework to enable us to measure the maximum stack space requirement

and program dynamic instruction counts for each benchmark. This framework is

described in the next section. The MiBench and SPEC benchmarks were run with

their small and test inputs respectively. The outputs produced by each program

with and without our transformation were compared to validate the correctness

of our tool.

1Assuming that each global is moved to a function that is only called once.
2The original tiff2rgba benchmark program failed to run correctly with GCC’s -O2 optimiza-

tions. Therefore, this program was run unoptimized with -O0 flag.
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8.2.1 GCC-Based Instrumentation Framework

We updated the GCC compiler to instrument the program during code gen-

eration. Our instrumentations can generate two types of execution profiles at

program runtime. (a) One set of instrumentations output the stack pointer reg-

ister on every function entry, after it sets up its activation record. The difference

between the minimum and maximum stack pointer values gives us the maximum

extent of the stack for that particular program run. (b) Our other set of instru-

mentations are added to the start of every basic block to produce a linear trace

of the basic blocks reached during execution. We also modified GCC to generate

a file during compilation that contains a list of all program basic blocks along

with their set of instructions. The knowledge of the blocks that are reached at

runtime and the number of instructions in each block allow us to compute the

dynamic instruction counts for a particular program run. Since our instrumenta-

tions only modify the compiled benchmark code, this added code can only count

the instructions in the application program and not in the library functions. We

believe that dynamic instruction counts are a good supplement to actual program

run-times since they are deterministic and cannot be affected by any hardware

and operating system affects.

8.2.2 Effect on Maximum Stack and Data Size

For most existing systems, global variables reside in the data region of the

process address space, while local variables and function arguments reside in the

function activation record on the process stack. Therefore, our transformation to

convert global variables into locals (that are passed around as additional function

arguments) have the potential of reducing the data region space and expanding the
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Figure 8.5. Ratio of the total data and maximum stack area con-
sumed by each process at runtime before and after the localizing trans-
formation

process stack. We use our GCC based stack-pointer instrumentation to gather the

maximum required stack space (in bytes) for each benchmark run with its standard

input. We also employ the Linux size tool to determine the space occupied by

the data region of each program. Figure 8.5 plots the ratio of the total data and

maximum stack requirement for each of our benchmark programs before and after

the transformation to eliminate global variables.

Thus, we can see that our transformation increases the stack requirement while

reducing the data space size for most programs. While some benchmarks, includ-

ing dijkstra, pgp and 429.mcf, may experience a large increase in maximum stack

usage, many of these also notice a correlating reduction in the data region size. At

the same, it is important to realize that while a program only maintains one copy

of any global variable, multiple copies of the corresponding local variable may

reside simultaneously on the stack for the transformed program. Therefore, there

exist program, such as adpcm, bitcount, and blowfish, that show no discernible

reduction in data size, but still encounter significant increases in maximum stack

space use.
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8.2.3 Effect on Dynamic Performance

Is this section we present results on experiments that quantify the effect of

eliminating global variables on program performance. We employ two metrics

for performance estimation. First, we use the GCC instrumentation framework

to measure each program’s dynamic instruction count before and after applying

our transformation. Dynamic instruction counts can provide a good and deter-

ministic estimation of actual program performance, but cannot account for differ-

ing instruction latencies, and variations due to memory, cache, and other micro-

architectural effects. Second, we execute each benchmark natively on a dedicated

x86-Linux machine to gather actual program run-time. Each benchmark is run in

isolation to prevent interference from other user programs. To account for inher-

ent timing variations during the benchmark runs, all the performance results in

this paper report the average over 15 runs for each benchmark.

Figure 8.6 shows the results of these performance experiments. For the actual

program run-times, we employ a statistically rigorous evaluation methodology, and

only present results that show a statistically significant performance effect (with

a 95% confidence interval) [32]. Thus, we can see that the localizing transforma-

tion does not produce a large performance overhead for most benchmarks. The

dynamic instruction counts for most benchmarks with a small number of Moved

global variables do not undergo a substantial change. However, the dynamic

instruction counts do show large degradations in cases where the transformation

localizes a large number of global variables and/or significantly increases the num-

ber of function arguments (as seen in Figure 8.1). Several benchmark program

including such as dijkstra, ispell, stringsearch, and 458.sjeng fall into this category.

Interesting, we observe that, in most cases, the increases in dynamic instruction
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Figure 8.6. Ratio of the dynamic instruction counts and actual pro-
gram run-time before and after the localizing transformation

count do not produce a corresponding increase in the actual benchmark runtime.

This result may be due to the inherent inaccuracy in our instrumentation frame-

work that only updates application code (and not library code), or due to GCC’s

-O2 optimization that do a good job of negating the overhead of our localizing

transformation.3

3The run-time for tiff2rgba, the only program not compiled with -O2 optimizations, degrades
substantially over the original program run-time.
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Chapter 9

Future Work

There are a number of improvements that can be performed to address the

limitations in our existing compiler framework, and increase the performance and

attractiveness of the presented transformation. First, we plan to implement more

precise pointer analysis and improve alias analysis in the Clang/LLVM compiler.

Pointer analysis is necessary to appropriately resolve indirect function calls and

build a precise call-graph for each benchmark. More accurate alias analysis will

allow the transformation to precisely detect and merge all aliased variable names,

and make our tool more robust. Second, we will extend the Clang compiler to

enable it to maintain the internal AST data structures across files. This capability

will allow our tool to analyze and transform application programs consisting of

multiple source files. Third, we plan to explore techniques to move each global

variable closer to the functions where it is needed. Currently, we employ the

Lengauer-Tarjan algorithm to find the closest dominator function, but are often

not able to localize the global variable in that function if it is called in a loop

or from multiple call-sites. However, a global variable can be located in such a

function if the localized variable is always set before being used. We will stati-
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cally analyze the function control-flow graph to detect such cases to allow keeping

the localized declaration closer to its region of use to minimize the number of

frontier functions and the argument passing overhead. Third, we will further in-

vestigate the causes of performance overhead and develop optimizations to reduce

this overhead of our transformation tool. Optimizations may include techniques

to combine the initialization of different localized variables, and to reduce the

overhead of argument passing during code generation in the compiler backend.

Fourth, we plan to improve the user interface to provide users with a more in-

tuitive coding and maintenance experience. Finally, we require good metrics to

evaluate the benefit of our tool during program development, maintenance, veri-

fication, and thread-safety. We plan to study these topics and attempt to develop

such metrics in the future years.
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Chapter 10

Conclusion

In this paper we present our compiler-based source-to-source transformation

packaged into a refactoring tool to automatically transform global variables into

locals. Our transformation algorithm automatically detects global variables and

where they are used. For each global variable, the tool has the ability to find

the best place to redefine it as a local, appropriately initialize it, pass it as an

argument to all the functions that set/use it, and then modify all program state-

ments that used that global variable to now instead use the corresponding local or

function argument. Our compiler based transformation tool is implemented using

the popular, standard, and rapidly evolving Clang/LLVM compiler framework.

We also analyzed the static and runtime effects of our localizing transformation

to enable the developer in making an informed decision regarding whether to lo-

calize any/all global variables. We found that most of our benchmark functions

make generous use of global variables. However, most of these globals are only

used in a very small number of program functions that are located close to each

other in the function call-graph. Therefore, localizing such global variables greatly

minimizes the percentage visibility of global program state, which can assist code
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verification efforts. At the same time our transformation can significantly affect

the amount and distribution of memory space consumed by the data and stack

regions of the process address space. Additionally, we also found that localizing

most global variables only has a minor degrading effect on runtime performance,

if any.
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