Executables from Program Slices for
Java Programs

Jason M. Gevargizian

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty
of the University of Kansas School of Engineering in partial
fulfillment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Andy Gill

Dr. Perry Alexander

Date Defended

The Thesis Committee for Jason M. Gevargizian certifies

That this is the approved version of the following thesis:

Executables from Program Slices for Java Programs

Committee:

Chairperson

Date Approved

Acknowledgements

I thank my advisor, Professor Prasad Kulkarni, for mentoring me throughout
my research projects. He often goes above and beyond the call of professorship
and without his guidance none of this would have been possible.

I thank all of the other professors who have taught and advised me during
my time at the University of Kansas. I would especially like to thank Professors
Perry Alexander and Andy Gill, who, along with my labmates, have made me feel
welcome in the Computer Systems Design Laboratory and, with whom, I have
enjoyed cross-interest collaboration.

I thank my close friend, Zachary Hoffman, who has encouraged me throughout
the years through inspiration and friendly competition in my computer science
career.

Finally, I would like to thank my family for their love and support; they mean
the world to me.

Thank you all.

1

Abstract

Program slicing is a popular program decomposition and analysis technique
that extracts only those program statements that are relevant to particular points
of interest. Executable slices are program slices that are independently executable
and that correctly compute the values in the slicing criteria. Executable slices can
be used during debugging and to improve program performance through paral-
lelization of partially overlapping slices.

While program slicing and the construction of executable slicers has been stud-
ied in the past, there are few acceptable executable slicers available, even for pop-
ular languages such as Java. In this work, we provide an extension to the T. J.
Watson Libraries for Analysis (WALA), an open-source Java application static
analysis suite, to generate fully executable slices.

We analyze the problem of executable slice generation in the context of the
capabilities provided and algorithms used by the WALA library. We then employ
this understanding to augment the existing WALA static SSA slicer to efficiently
track non-SSA datapendence, and couple this component with our exectuable
slicer backend. We evaluate our slicer extension and find that it produces accurate
exectuable slices for all programs that fall within the limitations of the WALA
SSA slicer itself. Our extension to generate executable program slices facilitates
one of the requirements of our larger project for a Java application automatic

partitioner and parallelizer.

111

Contents

3 Static vs. Dvnamic Slicerd
|2_.2 1 Shrike IR and Shrike Instrumentod

B4.1 Main Recoverv
[3.4.2 Special Considerations and Fixes]
3.4.3 Generate Executabld

v

iii

v

vi

© © 0w o = ot ot

—_
—_

|4 Experimental Results and Analysisl

4.1 Benchmarkd . . .

32
32
33
35

37
38

39

40

List of Figures

|3 1 Simplified phi node call qranh] 17
3.2 Divided phinode call graphl o . 18
3.3 Running example’s SDGJ00 21
3.4 Running example’s SSA Slicel 23

vi

Chapter 1

Introduction

Program slicing is a popular program decomposition and analysis technique
that extracts only those program statements that are relevant to particular points
of interest [BL21L22126]. A program slice is the set of instructions that the specific
criteria is dependent upon. Program slicing is a useful technique and has found ap-
plication in program debugging [1L8I0L13], program parallelization [24], program
differencing and integration [I6L[17], software maintenance [14], testing [315],
reverse engineering [4,9], and compiler tuning [19].

Program slicing algorithms and the slices they generate can be categorized in
many ways. One useful categorization is between executable and non-executable
slices. An executable slice is program slice that is independently executable and
that correctly computes the values in the slicing criteria. Simple program slicers
often do not generate exectuble slices and can ignore many key elements that
are required by the langauge definition. The control and data dependence rela-
tionships between instructions do not express all invoke dependency relationships,
which carry with them many language specific considerations. Thus, slicers gener-

ating executable slices need to do additional work to find and maintain such depen-

dence relationships in the final slice, as well as include only the other statements
that are necessary to generate a syntactically and semantically valid program.

Executable program slices are useful to us to test the correctness of the slicer
by ensuring the computed state in the slice is equivalent to the original programs
computed state at the point of the slice criteria. Executable slices are useful in
isolating behaviours of a program when all behaviors are not desired. Executable
slices can provide improved program performance through program parallelization
with partially overlapping slices. Executable slices are necessary for the software
maintenance techniques proposed by Gallagher and Lyle and the regression testing
reduction algorithm proposed by Binkley [5]. A (section of) the program may
interleave the computation of multiple independent tasks, which may later all
be needed to realize some program action. For example, computing the partial
program state to initiate a slow security check, like invoking a remote certificate
authority (CA), may be done in parallel to running the remaining program tasks
that occur earlier or are independent of the security check. With the use of slicing,
programs can be partitioned to allow such partially overlapping program states
to be computed in parallel, thus freeing many instructions from costly delays and
speeding-up overall program execution.

A simple program slice can be augmented to be executable by tracking invoke
dependencies and enforcing other language specific rules. As such, the nature of
the problem will vary by language. In the case of Java, work must be done to
include information from the exception table, which is a mapping for potential
branches not expressed by the program statements (and thus not present in a
simple slice). Also, slices are often computed and expressed in an intermediate

form that may not exactly match the initial source language nor the final binary

representation. In such cases, a mapping criteria must be established to return to
the original form. Furthermore, if the intermediate form is a lossy form (as is the
case with WALA’s SSA form), the unrepresented data must be tracked alongside
the intermediate form to produce a complete and accurate slice. Java also has
other rules, like the need for invokes to constructors and superconstructors that
often do not have simple data or control dependence over any of the instructions
in the simple slice.

WALA, Watson Libraries for Analysis, contains a static SSA slicer designed
primarily for analysis of Java programs. WALA uses an SSA, single static as-
signment, intermediate representation to generate a simplified system dependence
graph, which represents program statments along with both control and data de-
pendence. This SSA slicer was designed and works extremely well for some types
of analysis but does not generate an executable slice. Furthermore, this SSA form
does not represent local variable and stack information present in Java bytecode.

In this thesis, we build a system that extends the WALA Slicer to produce a
fully executable slice. This extension accurately tracks the additional non-SSA
data dependences and produces a fully executable slice from the SSA-only slice.
We have produced this system and have used it to test the performance of the
framework.

This thesis is organized as follows. Chapter 2 will present related work, dis-
cussing program slicing in more depth and then covering the WALA features that
were used most heavily in the proposed framework. In Chapter 3, we will discuss
the methodology of the extended slicer by discussing the phases of the slicer’s
execution and simultaneously showing an example Java program being processed

from Java source all the way to an executable slice. In Chapter 4, we will discuss

the future work and how we intend to use our frameworks for program paralleliza-

tion by program partitioning. In Chapter 5, we present our conclusions.

Chapter 2

Related Work

2.1 Technology Background

2.1.1 Program Slicing

Program slicing is a popular program decomposition technique that extracts
only those program statements that are relevant to particular points of interest [5
21122126]. These points of interest are called slicing criteria, and each are typically
comprised of the location of a program statement p and a set of program variables
v which are in scope at p. As such, a slice is defined as the subset of the original
program statements that includes all of the instructions upon which the states of
variables in v at statement p is dependent, for all slicing criteria. Figures 211 (b)
and (c) show examples of static executable slices for two different slicing criteria
for the example program in Figure ZIa). Figure EI(b) shows a program slice
with respect to the criteria (9, sum), and ZIc) shows the slice for the criteria
(10, prod).

Program slicing was first proposed by Mark Wieser as a conceptual abstraction

people implicitly use during program debugging [222325], and recommended ex-

(a) Example program

(1) read(n);

(2) i =1

(3) sum = 0;

(4) prod = 1;

(5) while (i < n) do {
(6) sum = sum + 1;
(7) prod = prod * i;
(8) _

(9) wite(sun);

(10) write(prod);

read(n)

i =1;

sum = 0;

while (i < n) do {
sum = sum + 1;

wite(sun);

(b) program dlice for

rod = 1;
ile (i <n) do {

prod = prod * i

write(prod);

(c) program slice for

criteria (9, sum) criteria (10, prod)

Figure 2.1. Examples of static program slices

plicit tools to aid the process. Program slicing for debugging was further explored
by several researchers [I[8[10,[13], and interactive slicer tools for program under-
standing and debugging are now available [I820]. Program slicing techniques have
since found numerous other applications is areas as varied as program paralleliza-
tion [24], program differencing and integration [I6l[17], software maintenance [14],
testing [3L[15], reverse engineering [4,0], and compiler tuning [19].

Program slices can be derived in a variety of ways. One of the most im-
portant distinctions is between a static and a dynamic slice. A static slice is
computed without making assumptions regarding a program’s input, whereas the
dynamic slice depends on some specific test case [2,27]. Our proposed paralleliza-
tion model uses an ezecutable static program slice, as first proposed by Wieser [22].
Executable slices are supersets of their non-executable counterparts in that an ex-
ecutable slice may contain additional program statements that are required to
maintain proper language syntax or to otherwise ensure that the slice can be ex-
ecuted independent of the main program. Both the program slices in Figures 2.1]
(b) and (c) are examples of executable static slices.

Detailed empirical studies on the size of program slices reveal that for a pre-

cise slicer and without optimizations, the average program slice contains under

one-third of the program [6,[7]. While slices for smaller programs tend to include
most program statements, the slices for larger programs have been observed to be
considerably smaller than the original program. At the same time, previous inves-
tigations show that compiler optimization techniques can improve the accuracy
of slices and reduce their size further [I1[12]. Researchers have also reported that
sizes for highly optimized and accurate speculative slices for instructions caus-
ing branch mispredictions and cache misses were less than 10% of the program’s
dynamic instruction stream for a window of 512 closest instructions [28]. Gener-
ating minimal and precise program slices forms a core component of our proposed

research as is be described in Chapter

2.1.2 Executable Program Slicers

Executable program slicers produce independently executable slices; id est,
complete programs. Executable slices are supersets of their non-executable coun-
terparts in that an executable slice may contain additional program statements
that are required to maintain proper language syntax or to otherwise ensure that
the slice can be executed independent of the main program.

Grammatech’s CodeSurfer is an commercial C static slicer that can produce
executable slices.

Indus is a collection of program analysis and transformation tools for Java,
part of which is an executable Java program slicer. The Indus Java Program
Slicer was implemented as part of a project to work with Bandera, a tool set
for model checking of concorruent Java applications. Indus is a static slicer that
produces executable slices. We chose not to use this slicer for our work as it does

not support slicing of Java programs more recent than those compiled in JDK4.

2.1.3 Static vs. Dynamic Slicers

A static slice is computed through static analysis and thus produces a slice
that is correct for any arbitrary input. A dynamic slice is computed from a single
dynamic trace and thus is a correct slice for only one set of program inputs.

Static slicers produce static slices; a static slicer will typically compute full
control and data dependence graphs to then attempt to find reachability to pro-
gram statements from the specified criteria to arrive at the slice. Dynamic slicers
produce dynamic slice; a dynamic slicer generates a dynamic trace and then works
backward through dependencies from the slice criteria to calculate the dynamic
slice.

WALA is a Java static analysis suite and has implemented a static SSA slicer,
see Section for details. Saarland University’s JavaSlicer and Wang & Roy-
choudhury’s JSlice are example of dynamic slicers for Java.

For our application of automatic program partitioning and subsequent execu-
tion for arbitrary program input (more details in Chapter [), we required a static

slicer such as WALA.

2.2 WALA

WALA is the T.J. Watson Libraries for Analysis. WALA provides many static
analysis and manipulation capabilites that our executable slicer makes use of, in-

cluding but not limited to, a Java bytecode instrumentor, SSA system dependence

graph builder, and SSA slicer.

2.2.1 Shrike IR and Shrike Instrumentor

Shrike is an intermediate representation that is, with few exceptions, a 1-to-
1 mapping of Java bytecode instructions. For all program analysis in WALA,
Java program bytecode is first loaded in and translated into collections of Shrike
statements, by class and method.

WALA has a Java bytecode instrumentor that allows loading Java programs,
performing manipulations, and then outputing a new Java executable. This is
implemented as the Shrike instrumentor, which makes modifications to the Shrike
intermediate form. This functionality is utilized by the executable slicer to output
the final executable slice. After the executable slice set is determined the original

Jar is manipulated using the shrike instrumentor to match the slice.

2.2.2 SSA, the SDG, and the SDG Builder

For the WALA slicer and other analysis, WALA can generate a System De-
pendence Graph (SDG). The SDG is a graph that represents both a program’s
data and control dependence for its instructions. The SDG nodes represent in-
dividual WALA SSA IR instructions and the edges between the nodes represent
control and data dependence. The SDG that it generates is in a single static
assignment form (SSA) and thus does not keep track of the java stack and local
map instructions. The SDG node are SSA statements, and thus are not 1-to-1
mappings with the Shrike code nor the Java bytecode. Single static assignment
form treates all possible states of variables as a new constant and this SSA form,
specifically, does not express the local map data nor the virtual stack interaction
represented in the Java bytecode. As such, many instructions are not in the SDG;

e.g. the push instructions, pop instructions, dup instructions, load instructions,

and store instructions.

The WALA SSA form is sufficient for various types of analysis like WALA’s
SSA slice, but it is not sufficient to produce a fully executable program. Getting
from the SSA SDG and SSA slice to a fully executable slice is described in Chapter
Bl

The SDG builder works as a non-deterministic simulator of the input Java
program, which is processed in the Shrike intermediate form. As the simulation
runs, the SDG is built with state meta-data that is tracked along the way. As
statements are visisted for the first time, SSA versions of the statements are
created as nodes in the SDG, if there is an SSA translation (others are omitted).

The simulator is non-deterministic in the sense that it takes all branches rather
than just one actual execution path. During the similuation, the system states are
tracked in a similar fashion to the Java runtime. In the Java runtime environment,
a single state maintained and is comprised of primarily a stack and a localmap;
the stack is a stack of values and the local map is value mapped to a given local
number. In the SDG build simulator, multiple states are maintained for all paths
the execution can take and each state is comprised of also a stack and a local
map. For the SDG simulator, the stack and local map contain references to an
abstract constant. Each constant has a created-by relationship with the node that

originally made it.

10

i | Instruction | Creates | Uses
1 | iconst_0 1

2 | store_0 1

3 | iconst_d 2

4 | load_0 1

5 | addi 3 1,2
6 | store_1 3

Table 2.1. WALA constant tracking.
For example, a binary op (addi) instruction creates a new constant (the result)
and uses two existing constants (the operands). See Table 21
As the simulation runs, the SDG nodes are built for the instructions that are
visited. Data dependence edges are made when a constant is used; the edge is
between the node that used it and the node that created it.
As control statements are visited, scopes are maintained and control dependence

edges are added to the SDG.

2.2.3 SSA Slicer

The SSA slicer uses the SSA SDG and user specified criteria instructions to com-
pute the SSA slice. This done by determining reachability from the slice criteria
node to all other nodes; nodes that are reachable have either data or control
dependence and are therefore part of the slice.

Again, this slice is not sufficient for an executable program as it does not contain

information about the stack and local-map instructions.

11

Chapter 3

Methodology

The goal of this thesis is to extend the WALA SSA Slicer and dependent tools
to produce a fully executable slice. The WALA SDG builder has been extended
to track the non-SSA data dependence between instructions. A new executable
slice backend has been designed to take an SSA Slice, using the non-SSA data
dependence, and compute a complete executable slice. The Shrike isntrumentor
is then used to manipulate the original Java bytecode to produce an executable
Jar from the resulting slice.

Non-SSA data dependence speaks to any dependence not captured in the SSA
form. The SSA form does not express the Java virtual stack, thus push-pop
relationships are non-SSA. The SSA form does not have local variables, thus
load-store relationships are non-SSA.

Some other patches/fixes have been employed to deal with special cases and lim-
itations of the WALA SDG build and WALA SSA slicer that cause issues for the
generation of an exectuable slice. These fixes are described in Section

This Chapter will discuss the methodology of the phases of the executable slicing

system in execution order from Java source input to executable slice output. A

12

running example, input Java program with slice criteria, will be used to illustrate
the process. The phases, and organization of this chapter, are as follows:
1. Slice problem preparation and breakup of the multi-branch merge points
2. SDG Build and tracking of non-SSA Data Dependence
3. Single Static Assignment Backwards Slice
4. Complete Slice Generation

(a) Recovery of non-SSA instructions

(b) Special cases handling (Exception Table and Exception Handlers, Un-
used Invoke Pops, Constructors for News, Recovery Phases and Fixed
Point)

5. Executable Generation

We use a simple example program to illustrate and explain our approach. The ini-
tial source for our running example is shown in Listing B.Iland the corresponding

Java bytecode is shown in Listing B.2

Listing 3.1 Running Example’s Java Source

public class Sample {
public static void main(String[] args) {

int x = 0;

int y = 1;

int z = 2;

if (z == 3) {
x = 4;

}

z = foo(x);

System.out.println(z);

public static int foo(int v) {
System.out.println(v);

v++;

)

13

return v;

Listing 3.2 Running Example’s Java Bytecode

public class Sample extends java.lang.0bject{
public Sample();
Code:
0: aload_0
1: invokespecial #1; //Method java/lang/Object."<init>":()V

4. return

public static void main(java.lang.String[]);

Code:

0: iconst_0O

1: istore_1

2: iconst_1

3: istore_2

4: iconst_2

5: istore_3

6: iload_3

7: iconst_3

8: if_icmpne 13

11: iconst_4

12: istore_1

13: iload_1

14: invokestatic #2; //Method foo:(I)I
17: istore_3

18: getstatic #3; //Field

java/lang/System.out:Ljava/io/PrintStreamn;
21: 1iload_3
22: invokevirtual #4; //Method java/io/PrintStream.println:(I)V

25: return

public static int foo(int);
Code:

14

0: getstatic #3; //Field
java/lang/System.out:Ljava/io/PrintStreamn;
3: iload_0

4 invokevirtual #4; //Method java/io/PrintStream.println:(I)V
7: iload_0
8

9

iconst_1
iadd
10: istore_0
11: iload_O

12: ireturn

3.1 Breakup of Multi-branch Merge Points

First, the original jar is modified to separate multi-branch merge points so that
phi-nodes remain distinct.

Multi-branch merge points are points in execution where two or more execution
paths merge; in other words, it is an instruction that is the target of at least
two branches. The number of possible incoming paths merged at a point in the
program is the number of branches that target the specified point plus one, for
fall through from the previous instruction.

The WALA SSA system dependence graph builder automatically symplifies the
phi-nodes of multi-branch merge points into single, mathematically equivalent,
phi nodes. This simplification is useful for some types of analysis but does not
allow the WALA Slicer to differentiate the control dependence of one branch vs
another that share the same target.

EXAMPLE:

15

The following example shows how the PHI node simplication can result in an
incorrect slice. Algorithm [I] shows the source program. Algorithm] and Figure
B shows the source with the simplified Phi nodes. Algorithm B and Figure

shows the souce with the divided Phi nodes.

Algorithm 1 Source
1: x <0
2. y<+0
3: if ¢l then
4 r+1
5: y<+1
6
7
8

if ¢2 then
Y2
. print(zx)

Algorithm 2 SSA with Simplified Phi Node

1 29«0 //in slice
2: Yo 0
3: if ¢l then //in slice
4: x1 1 //in slice
5: Y1 <— 1
6: if ¢2 then //in slice
7 Yo <— 2
8: Y3 < &(Yo, Y1, Y2)
9: xg < ¢(z0, 11, 27) //in slice
10: print(xs) //slice criteria

The WALA system dependence graph builder simulates the execution of the ap-
plication and keeps track of all paths and their representative states. When a
point in execution is visited that has already been visited, this is considered a
meet, and a phi node is created or extended for the representative states. States
from previous visites are merged, via the phi node, with the current state.

Because the phi node for X in the simplified example is created with information

from both the path taken flow for the branch at 6 and the not-taken flow, the

16

[y3 = ®(Yo,y1,Y2)] [X2 = P(X0,X1,X1)] Control

Figure 3.1. Simplified phi node call graph.

Algorithm 3 SSA with divided phi nodes

1: 2o+ 0 //in slice

2: yo <0

3: if ¢l then //in slice
4: xy 1 //in slice
5: yp < 1

6: if c2 then

7 Yo < 2

8 ys ¢ 0y 42)

9: nop

10: Y4 4= ¢ (Yo Y3)

11: xo < ¢(xg, 1) //in slice
12: print(xs) //in slice

17

[Y4 = ®(Yo,y3)]

Figure 3.2. Divided phi node call graph.

SDG will be built with control dependence edges from both if-statements. Conse-
quently, the WALA slicer will include both branch statements in the slice because
of this control dependence releationship.

In the divided example, a nop instruction is inserted at the merge point to make
the targets of the two if-statements different; the inner if-statement now targets
the nop while the outer if-branch targets the print(). Consequently, the WALA
SDG builder does not combine the meets for the two branches; the SDG can be
seen with separate phi nodes of only two incoming states in Figure B2l Now, the
x variable has control dependence only with the outer if-statement thus allowing
the slicer to successfully include the outer if-statment and omit the inner.

We found that a trivial modification of the WALA SDG builder to simply not

merge the states was not an option. This phi node merging is necessary in many

18

cases; for example, loops that meet on the same point multiple times often need
to have updated versons of their SSA variables added to the phi node. Without
additional static data (like the nop separators), there is no way for the SDG build
simulator to differentiate between states that come from the same or different

branches.

3.2 SDG Build and non-SSA Data Dependence

The new divided jar is passed along to the WALA SDG builder which produces the
SDG. At this point the user specified class exclusions and main class specification
is necessary.

The class exclusions define a set of classes to be ignored in the call graph build.
This was used by our tests, in Chapter [, to slice on only the application libraries
as opposed to the application libraries and the Java libraries. The main class
specification is required to give the SDG builder a start point to build the SDG.
WALA’s SDG builder is described in more detail in Section

The SDG builder has been extended to track non-SSA data dependence for the
non-SSA instruction recovery for the final executable slice. A table, sourcetable,
has been implemented to keep track of push-pop and load-store relationships
between instructions. Hook-ins have been inserted into the SDG build to update
the source table as the SDG simulator executes.

In sync with the SDG simulator states, the sourcetable keeps track of simulation
states as well. Like an actual JVM runtime state and the WALA simulator state,
the non-SSA data states contain a local map and a stack. Instead of the ac-
tual values (like the JVM), or the constant values (WALA simulator), the source

instruction index is maintained.

19

For Example; Table Bl shows the tracking of the non-SSA data dependence after

bytecode instructions executed sequentially.

i | Instruction | Localmap after | Stack after | PushForPop | StoreForLoad
iy | iconst_0 {} $, 11 {} {}

i | store_0 {lo =11} $ {ir} {}

i3 | iconst_b {lo =11} $, i3 {} {}

iq | load_0 {lo =11} $, 13,14 {} {is}

15 | addi {lo =11} $, 5 {i4,13} {}

ig | store_1 {lo="i1,li=1i5} | $ {is} {}

Table 3.1. Sample non-SSA tracking and non-SSA Data Depen-

dence Table.

We can see that the stack holds reference to the instructions that pushed the

would-be value and the localmap contains references to the instructions that would

have stored the would-be value. For each instruction, PushForPop and StoreFor-

Load mappings are tracked. These mappings are used to recover the non-SSA

instruction in the final slice recovery. For example, if ig is in the slice, we know i

must be included as well since there is a Push-Pop relationship between the two.

In Figure B.3] the running example’s resulting SDG is shown. In Table B2 the

source table is shown with the non-SSA data dependence.

20

METHOD_ENTRY: main(java.lang.String;)V

if icmpne 13

invokestatic foo

7

METHOD_ENTRY: foo(l)I I

getstatic PrintStream

getstatic PrintStream

invokevirtual print el

ireturn

Control

invokevirtual print

Figure 3.3. Running example’s SDG.

21

Instruction

PushForPop

StoreForLoad

main

0 J O O = W N = O

N = = = = =
= 00 ~J &= W NN =

22

iconst_0
istore_1
iconst_1
istore_2
iconst_2
istore_3
iload_3
iconst_3
if_icmpne...
iconst_4
istore_1
iload_1

invokestatic...

istore_3
getstatic...
iload_3

invokevirtual...

return

{0}
{2}
{4}

{6,7}
{11}
{13}
{14}

{18,21}

{5}

(1,12}

{17}

foo

getstatic...
iload_0

invokevirtual...

iload_0
iconst_1
iadd
istore_(
iload_0

ireturn

Table 3.2.

0,3

Running example’s non-SSA Data Dependence Table.

Po

Do

10

22

3.3 Single Static Assignment Backwards Slice

The WALA Slicer uses the SDG to generate the SSA slice. The SSA slice is a
collection of SSA statments that the criteria instruction(s) are depedant upon.
The WALA SSA Slicer is described in Subsection

Figure B4 shows the resulting SSA slice for the running example.

METHOD_ENTRY: main(java.lang.String;)V

if_icmpne 13 J

invokestatic foo

[METHOD_ENTRY: foo(l)l J

getstatic PrintStream

invokevirtual print

Control

Figure 3.4. Running example’s SSA Slice.

23

3.4 Generate Complete Slice / Recover Stack & Local

Instructions

The SSA slice is not sufficient to generate an executable. First, the Java instruc-

tions that relate to the Java virtual stack and local map must be recovered.

3.4.1 Main Recovery

The sourcetable is used to recover the non-SSA data dependent instructions.
These non-SSA data dependencies are the stack push-pop relationships and the
local load-store relationships.

For every instruction in the SSA slice, the Java bytecode equivalent is included in
the final slice. Then, for each of these instructions the sourcetable is used to find
and include any instructions that have push-pop or load-store relationships with
the given instruction. Upon the newly included instructions, the same process is
repeated until all non-SSA data dependencies have been exhausted (and included
in the final slice). The results are stored the final slice map, a mapping from each
instruction to a bytecode-manipulation operation (include, omit, replacewithpop)
to be carried out during executable generation.

Figure shows the final slice and the non-SSA data dependence as edges. Table

shows the final slice for the running example.

24

C main (parameters) >

0:iconst O

1:istore 1

)

4 :iconst_2

5 :istore_3

6 :iload_3

7 :iconst_3

8 : ifcompne...

11 :iconst_4

12 :istore_1

13 :iload_1

14 : invokestatic..

)
3
)

foo (parameters)

0 : getstatic...
3:iload 0O
4 : invokevirtual..

7 :iload 0

8 :iconst_1

9 :iadd

10 :istore_O
11 :iload O
12 :ireturn

iy

SSA Instruction

Non-SSA

In SSA Slice

In Final Slice

Figure 3.5. Running example’s Slice Recovery.

25

i | Instruction Operation
main

0 | iconst_0 Include

1 | istore_1 Include

2 | iconst_1 Omit

3 | istore_2 Omit

4 | iconst_2 Include

5 | istore_3 Include

6 |iload_3 Include

7 | iconst_3 Include

8 | ifiicmpne... Include

11 | iconst_4 Include

12 | istore_1 Include

13 | iload_1 Include

14 | invokestatic... | Include

17 | istore_3 ReplaceWithPop

18 | getstatic... Omit

21 | iload_3 Omit

22 | invokevirtual... | Omit

25 | return Include
foo

0 | getstatic... Include

3 | iload_0 Include

4 | invokevirtual... | Include

7 | iload_0 Omit

8 | iconst_1 Omit

9 |iadd Omit

10 | istore_0 Omit

11 | iload_0 ReplaceWithPush

12 | ireturn Include

Table 3.3. Running example’s Final Executable Slice.

26

3.4.2 Special Considerations and Fixes

There are special considerations for a few cases that the main recovery process

does not cover to make sure the Java rules are adhered to for actual execution.

3.4.2.1 Dup Instructions

Duplnstructions are instructions that duplicate items on the stack. This is essen-
tially a pop of the stack and multiple pushes of the value. There are also some
variations of dup that involve duplicating items other than the top element of the
stack.

For the executable slicer and non-SSA recovery, it is possible to have a dup in-
struction included in the slice without the pops for both duplicates in the slice.

In this case the dup instruction is removed as it is not utilized in the slice.

i | Instruction | Before Fix | After Fix
1 | iconst_1 X X
2 | dup X -
3 | istore_0 - -
4 | istore_1 X X

Consider the above example where we have a push followed by a dup followed by
two pops. In this case the instruction at 4 (istore_1) is already in the slice. From
the pop at 4 (istore_1) we recover the push at 2 (dup) and from the pop at 2 (dup)
we recover the push at 1 (iconst_1). Now we have the dup[2] in the slice, which
has the stack signature [value — value value], but only one corresponding pop is

included. Since foo()[3] is not to be part of the slice we can simply remove the

dupl2].

27

3.4.2.2 Recover Super Constructors

The WALA SDG build does not create dependence relationships for object con-
structors and their super constructors unless the super constructor explicitly ini-
tializes variables that are used later in the slice. This suffices for some forms of
analysis but not execution of Java code because Java requires superconstructors
to be called all the way back to the object class.

For all constructors that are included in the slice, corresponding super constructors
must be recovered. This recovery phase looks at all init functions that are included
in the slice and finds the superconstructors within them to be included (init invokes

within inits).

3.4.2.3 Exception Handlers

The WALA SDG build does not observe the control dependencies between instruc-
tions and their exception handlers because non-executable slicers do not need
them. To build an executable slice, all instructions in the slice that throw ex-
cpetions need to have handlers.

For all exception handlers in the exception table, this phase determines the set of
exception handlers that handle exceptions for instructions that are in the slice. For
these exceptions, an exception handler is required for the generated executable.
The original exception handler is checked to see if it is included in the slice. If the
exception handler is not already in the slice itself (because of side effects), this
recovery phase replaces it with a generic exception handler.

The generic exception handler is a sequence of two instructions: 1) a goto for the
non-exceptional path to jump over the handler, and 2) a pop for the exception

handler object.

28

It should be noted that since the slice is defined as the set of instructions the
criteria instructions are dependant upon, exception handlers are only necessary in
so far as the are required by the Java code verification process to execute. Unless,
the criteria is directly dependent upon or within the exception handler itself; this

is generally not the case.

3.4.2.4 Unused Invoke Pops

There are cases where invokes to methods that return a value will be included in
the slice because of some side effect but the return value itself will not be needed.
In this case, the invoke will be included in the slice but the corresponding pop
will not. This violates the stack rules for Java execution as some other instruction
will pop this element undesirably.

These instructions needed to be handled by adding generic pop instructions that
throw away unused return values. This recovery phase identifies invoke pushes
that do not have corresponding pops and adds generic pop instructions after the

invoke.

3.4.2.5 Constructors for the 'New’ Instruction

The WALA SDG build does not create a dependence relationship between the
NEW instruction and the invoke of init for said object unless there are elements
in the init that are later used in the slice. This works for some types of analysis but
not for actual execution because in Java all objects must have their constructor
called to initialize memory.

The invokes that are not included in the slice need to be recovered. This recovery

phase finds the corresponding invoke to init for all included NEW instructions

29

and includes them if they are not in the slice already.

3.4.2.6 Recovery Phases and Fixed Point

The afore mentioned recovery phases can lead to the inclusion of new elements
that need the operation of other phases to be applied again.

For example, a super constructor’s inclusion may require another object’s con-
structor which may in turn require it’s super constructor and potentially in turn
require another constructor and so on and so forth. Or, consider that any one of
these phases may have dependencies that cause the inclusion of new instructions
that have exception handlers.

To handle this, the phases all run and repeat until a fix point is reached; that
is, a full run of all phases where no changes are no longer made. To handle this,

changes made to the final slice are recorded in a transaction log.

3.4.3 Generate Executable

The WALA shrike instrumentor is used to modify the original jar to reflect the
changes described by the final slice operation map produced by the complete slice
generation.

The final slice map is a maping from each intsruction to a bytecode-manipulation
operation. All instructions are iterated through and the corresponding action in

the final slice map is applied. The operations act as follows:

1. For every instruction that is marked as included, the instruction is left alone

to appear in the final jar as is.

2. For any instruction that is marked as omutted, the shrike instrumentor is

used to replace said instruction with an empty code block, thus removing

30

the instruction from the final jar.

3. For any instruction that is marked as replacewithpop, the shrike instrumentor

is used to replace said instruction with a the Poplnstruction.

Finally, the shrike passes are terminated and the output jar is produced.

31

Chapter 4

Experimental Results and

Analysis

In this chapter, we present some results and observation from experiments to
study the quality of the WALA slicer and correctness of our executable slicer

implementation.

4.1 Benchmarks

Certain limitations in the current implementation of the original WALA slicer
prevented the use of larger /standard benchmarks to evaluate our executable slicer.
We explain these limitations in Section LIl Therefore, we constructed our own
benchmark set consisting of smaller but realistic programs to test our project.
Our slice criteria allowed the majority of the program to appear in the slice.

We include the following programs in our benchmark set. (a) QuickSort: imple-
mentation of the quicksort sorting algorithm, (b) HeapSort; implementation of

the heapsort sorting algorithm; (c¢) MergeSort; implementation of the MergeSort

32

sorting algorithm, (d) TransposeAMatrix; program to compute the transpose of
an aribtrary matrix, and (e) TSPNearestNeighbor; program to compute the so-
lution of the traveling salesman problem using an implementation of the nearest
neighbor algorithm. These programs implement standard algorithms in Computer

Science.

4.2 Slice Comparisons

Full Trace App Only
Benchmark Original | Static Sliced | Original | Static Sliced
QuickSort 599,614 | 574,137 894 840
HeapSort 64,328 33,802 833 727
MergeSort 59,616 39,988 1,585 1,536
TransposeAMatrix 1,732,431 | 1,593,387 4,574 4,235
TSPNearestNeighbor | 1,335,005 | 1,324,365 5,832 5,811

Table 4.1. Trace size comparisons.

Trace Ratios - Static / Original

12

0.8
® Full Trace
H App Only
0.6
0.4
0.2
0

QuickSort HeapSort MergeSort TransposeAMatrix TSPNearestNeighbor

Figure 4.1. Trace Ratios - Statically Sliced Trace Size / Original
Trace Size.

33

The Hotspot VM was used to generate traces of the original and statically sliced
benchmarks for comparison. The traces instruction counts are compared above in
Table Il The trace size ratios are shown in Figure [I.I} the bars show the ratio
of the size of the statically sliced program trace to the size of the original program
trace.

Most of the statically sliced program traces were 90% or greater the size of the
original program trace for both the full trace and the application only subset.
This is as expected as the benchmarks are simple algorithms with little sideffects;
id est, most of the program should be needed in the static slice to produce the
correct output.

The HeapSort and the Mergesort deviated from this expectation with the full
trace of the sliced program at 52.55% and 67.08% the size of the original program
traces, respectively. The application only traces however are back in the 80-
100% range. With these two benchmarks there are a few program statments
that produce inconsequential output; id est, output not needed in the static slice.
These statements are invokes inside the application classes to functions outside
the application classes (mainly System.out.println()). The invokes themselves
comprise a very small portion of the application classes trace but their callee
functions comprise a very large portion of the full trace; which is why we see most

of the instructions appearing in the application only trace but not the full trace.

34

4.3 Performance of Executable Slice

Heap Usage (B)

Extensions to WALA

Duration (ms)

Benchmark WALA All WALA | All

QuickSort 719,022,344 | 733,059,118 | 3,497 3,724

HeapSort 728,685,230 | 745,328,660 | 3,191 3,003

MergeSort 744,654,237 | 757,513,290 | 3,946 4,084

TransposeAMatrix 712,579,912 | 717,016,988 | 3,408 3,467

TSPNearestNeighbor | 725,464,171 | 781,390,128 | 3,336 3,644
Table 4.2. Maximum utilization of heap and slice computation du-
ration.

112

11

1.08

1.06

1.04

1.02

0.

©
@©

0.96

Figure 4.2.

Slicer Extension Overhead

HeapSort Merg

Transpc Matri;

TSPNearestNeighbor

Slicer Extension Overhead.

m Awerages Usage %
 Average Time %

Table shows the maxmimum heap usage and the computation duration for

compution the WALA structures only and for the WALA structures extended

with the executable slice components. The WALA only represents the costs of

computing the System Dependence Graph for the input program and the WALA

SSA Slice. The All columns represent the WALA components and the additional

computation for the non-SSA source table and the generation of the executable

35

slice.

Figure shows the maximum heap usage and the computation duration as a
ratio of the extended computation cost to the WALA only computation cost for
each of the benchmarks.

The maximum heap usage ranged from 100.62% (TransposeAMatrix) and 107.71%
(TSPNearestNeighbor). The computation time ranged from 101.73% (Trans-
poseAMatrix) and 109.23% (TSPNearestNeighbor). The overhead for both met-
rics for the executable slice extensions were always below 10%. The average over-
head accross all benchmarks for heap utilization is 2.86% and for computation

time is 6.14%.

36

Chapter 5

Future Work

One of the eventual goals for the executable slicer, is automatic program parti-
tioning and subsequent program parallelization. The ability to automatically com-
pute executable slices allows a program to be partitioned out by sections based
on control and data dependence. Partitioning of this nature can be very use-
ful in optimizing single processor ready programs to make use of multi-processor
environments, today’s commonplace.

Many programs are still built to be only single processor conscious. The ability
to parallelize these programs automatically is highly appealing.

It is often the case that components of single threaded programs delay later exe-
cuting components that have no data or control dependence relationships. In these
cases, there are independent states that can be computed in parallel. Though there
will likely always be some overlap among these partitions, the redundant compu-
tation of common state will in most cases be offset by the benefits of parallelizing
the computation of unique state. Furthermore, the redundant computation of

common state can often be limited via various synchronization mechanisms.

37

5.1 WALA Limitations

WALA SDG builder has limitation when it comes to static variables, aka globals.
The SDG builder does not attempt to determine which writes to a specific static
variable can affect which reads. The SDG simple includes all read edges to the
same node and all writes go out from that node. As such, the SDG seems to
suggest that all writes affect all reads, which is not necessarily true. This sim-
plification is represented in the slice as follows: when a read is in the slice, all
writes in the entire program to that static variable is included. This reality is very
unsatisfying and greately limits the ability for the slicer to cut down the size of
any program that uses static variables at all.

The WALA SDG builder suffers a similar limitation when it comes to instances
of classes and invokes of their methods. If there are multiple instances of a single
class and only truly required, invokes on both may show up in the slice. This
happens when a private variable of an instance class is needed for one instance
but not all and a method is invoked to alter that private variable; the result is
that all invokes to that method are included.

E.g. Class MyClass is instance twice, Instancel and Instance2. They both have
a private instance variable Count. They both have a public method Increment()
which increases the value of Count for the given instance. If a single invoke
of Increment is included for a single method because of the value Count being
important, all calls to Increment on all other objects will be included as well.
This instance class limitation is also quite debilitating as virtually any program
that uses instance classes will include many instruciton that do not belong in the

slice, thus limiting the usefulness of the slicer.

38

Chapter 6

Conclusions

We have produced extensions to the WALA slicer framework to compute fully
executable slices. A fully executable slice can always be formed within the limita-
tions of the WALA slicer itself. Fully executable slices have been produced for a
number of programs and criteria that meet WALA’s limitations and correct exe-
cution and output of the resulting statically sliced programs have been observed.
A few programs were selected, the benchmarks, for analysis. Across these bench-
mars, the overhead introduced by the WALA slicer for heap utilization averaged
at 2.86% and the computation time overhead averaged at 6.14%. This overhead
is made as a trade-off for the tracking of all non-SSA information, which makes
for a significant portion of the program’s data dependence, and the computation
of the executable slice using said data dependence.

Limitations of WALA have been documented along the way and are described

more fully in Section BTl

39

References

1]

H. Agrawal, R. A. Demillo, and E. H. Spafford. Debugging with dynamic slicing
and backtracking. Softw. Pract. Exper., 23(6):589-616, 1993.

H. Agrawal and J. R. Horgan. Dynamic program slicing. Technical Report SERC-
TR-56-P, Purdue University, 1989.

S. Bates and S. Horwitz. Incremental program testing using program dependence
graphs. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 384-396, New York, NY,
USA, 1993. ACM.

J. Beck and D. Eichmann. Program and interface slicing for reverse engineering.
In ICSE ’93: Proceedings of the 15th international conference on Software Engi-
neering, pages 509-518, Los Alamitos, CA, USA, 1993. IEEE Computer Society
Press.

D. Binkley and K. Brian Gallagher. Program slicing. Advances in Computers,
43:1-50, 1996.

D. Binkley, N. Gold, and M. Harman. An empirical study of static program slice
size. ACM Trans. Softw. Eng. Methodol., 16(2):8, 2007.

D. Binkley and M. Harman. A large-scale empirical study of forward and backward
static slice size and context sensitivity. In ICSM ’03: Proceedings of the Interna-
tional Conference on Software Maintenance, page 44, Washington, DC, USA, 2003.

IEEE Computer Society.

40

8]

[13]

[14]

J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging parallel
programs with flowback analysis. ACM Trans. Program. Lang. Syst., 13(4):491—
530, 1991.

M. Daoudi, L. Ouarbya, J. Howroyd, S. Danicic, M. Harman, C. Fox, and M. P.
Ward. Consus: A scalable approach to conditioned slicing. In WCRE ’02: Pro-
ceedings of the Ninth Working Conference on Reverse Engineering (WCRE’02),
page 109, Washington, DC, USA, 2002. IEEE Computer Society.

R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing for software fault
localization. In ISSTA ’96: Proceedings of the 1996 ACM SIGSOFT international
symposium on Software testing and analysis, pages 121-134, New York, NY, USA,
1996. ACM.

M. D. Ernst. Practical fine-grained static slicing of optimized code. Technical
Report MSR-TR-94-14, Microsoft Research, Redmond, WA, July 1994.

J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In POPL
'95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 379-392, New York, NY, USA, 1995. ACM.

P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimothy. Generalized algorithmic
debugging and testing. ACM Lett. Program. Lang. Syst., 1(4):303-322, 1992.

K. B. Gallagher. Using program slicing in software maintenance. PhD thesis,
University of Maryland at Baltimore County, Catonsville, MD, USA, 1990.

R. Gupta, M. J. Harrold, and M. L. Soffa. An approach to regression testing using
slicing. In Proceedings of the Conference on Software Maintenance, pages 299-308,
Orlando, FL, USA, 1992.

S. Horwitz. Identifying the semantic and textual differences between two versions
of a program. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990 conference
on Programming language design and implementation, pages 234245, New York,

NY, USA, 1990. ACM.

41

[17]

[20]

[21]

[22]

[23]

[24]

S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions of programs.
ACM Trans. Program. Lang. Syst., 11(3):345-387, 1989.

G. Inc. 2002. The codesurfer slicing system. last retrieved from
http://www.grammatech.com/products/codesurfer, June 2009.

J. Larus and S. Chandra. Using tracing and dynamic slicing to tune compilers.
Technical Report CS-TR-93-1174, University of Wisconsin-Madison, August 1993.
V. P. Ranganath and J. Hatcliff. Slicing concurrent java programs using indus and
kaveri. Int. J. Softw. Tools Technol. Transf., 9(5):489-504, 2007.

F. Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3):121-189, September 1995.

M. Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international
conference on Software engineering, pages 439-449, Piscataway, NJ, USA, 1981.
IEEE Press.

M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446—
452, 1982.

M. Weiser. Reconstructing sequential behavior from parallel behavior projections.
Information Processing Letters, 17(3):129-135, 1983.

M. D. Weiser. Program slices: formal, psychological, and practical investigations
of an automatic program abstraction method. PhD thesis, University of Michigan,
Ann Arbor, MI, USA, 1979.

B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes, 30(2):1-36, 2005.

X. Zhang and R. Gupta. Cost effective dynamic program slicing. In PLDI ’0/:
Proceedings of the ACM SIGPLAN 2004 conference on Programming language
design and implementation, pages 94-106, New York, NY, USA, 2004. ACM.

C. B. Zilles and G. S. Sohi. Understanding the backward slices of performance
degrading instructions. SIGARCH Comput. Archit. News, 28(2):172-181, 2000.

42

	Abstract
	Table of Contents
	List of Figures
	Introduction
	Related Work
	Technology Background
	Program Slicing
	Executable Program Slicers
	Static vs. Dynamic Slicers

	WALA
	Shrike IR and Shrike Instrumentor
	SSA, the SDG, and the SDG Builder
	SSA Slicer

	Methodology
	Breakup of Multi-branch Merge Points
	SDG Build and non-SSA Data Dependence
	Single Static Assignment Backwards Slice
	Generate Complete Slice / Recover Stack & Local Instructions
	Main Recovery
	Special Considerations and Fixes
	Generate Executable

	Experimental Results and Analysis
	Benchmarks
	Slice Comparisons
	Performance of Executable Slice Extensions to WALA

	Future Work
	WALA Limitations

	Conclusions
	References

