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Abstract

Application profiling is a popular technique that attempts to understand pro-

gram behavior to improve its performance. Offline profiling, although beneficial

for several applications, fails in cases where prior program runs may not be fea-

sible, or if changes in input cause the profile to not match the behavior of the

actual program run. Managed languages, like Java and C#, provide a unique op-

portunity to overcome the drawbacks of offline profiling by generating the profile

information online during the current program run. Indeed, online profiling is ex-

tensively used in current VMs, especially during selective compilation to improve

program startup performance, as well as during other feedback-directed optimiza-

tions.

In this thesis we illustrate the drawbacks of the current reactive mechanism

of online profiling during selective compilation. Current VM profiling mecha-

nisms are slow – thereby delaying associated transformations, and estimate future

behavior based on the program’s immediate past – leading to potential misspec-

ulation that limit the benefits of compilation. We show that these drawbacks

produce an average performance loss of over 14.5% on our set of benchmark pro-

grams, over an ideal offline approach that accurately compiles the hot methods

early. We then propose and evaluate the potential of a novel strategy to achieve

similar performance benefits with an online profiling approach. Our new online

profiling strategy uses early determination of loop iteration bounds to predict

future method hotness. We explore and present promising results on the poten-

tial, feasibility, and other issues involved for the successful implementation of this

approach.
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Chapter 1

Introduction

Application profiling is a technique of gathering information during the execu-

tion of a program. This information, or profile data, is used to monitor dynamic

behavior of the application which can then be utilized to make compilation and op-

timization decisions, and improve application performance. Based on the tenden-

cies observed during program’s past and present runs if the program’s execution

is altered to improve performance then such a technique is called feedback-directed

optimization. Feedback-directed optimization can be achieved using offline or an

online profiling or combination of both. Offline strategy uses the profiling informa-

tion collected from the previous runs and optimization takes place after program

execution. Online strategy collects the profiling data dynamically, during the pro-

gram execution itself. Profile-based compilation and optimization, when feasible

and successful, can result in significant performance benefits.

In the earliest systems, feedback-directed optimization was performed using

offline profiling [8,24,30,32]. Profiling data is gathered by running an application

for one or more times and used to summarize the program’s behavior. These

statistics are then used to optimize the application according to the predicted
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behavior. Since the optimization decisions are based on the predictions made using

the profile data collected during previous program runs, it is clearly a reactive

profiling technique. As a result, although offline profiling results in significant

performance improvement, it fails in situations where (1)it is impractical to collect

a profile prior to execution, or (2)a change in the execution environment or the

input causes the application’s behavior to differ from its behavior during the

profiling run.

Virtual machines provide an environment for running the managed language

code. For example, high level languages like Java [17] and Microsoft C# [10] are

the managed languages that run on the Java Virtual Machine and CLR virtual ma-

chine respectively. The managed runtime environment (i.e., a Virtual Machine)

presents a unique opportunity of performing profiling and optimizations online

to overcome the previously mentioned drawbacks of offline profiling [2, 4, 5, 20].

The Java Virtual Machine implements online profiling to determine the program

methods that take up most of the execution time, so that such methods can be

compiled and optimized. Thus, based on the program behavior, compilation and

optimization decisions are made adaptively. Such adaptive optimizations are crit-

ical to the startup as well as overall performance of managed runtime application.

Even though the online profiling shows significant performance improvement by

exploiting the runtime information, it still has some limitations:

1. Compilation and optimization decisions are based on the immediate past

behavior of the application which may not remain the same in the future.

Although profiling is performed online, it still relies on the stale information

and assumes that the behavior will not undergo any change in future. Thus,

it is again a reactive profiling mechanism and can result in performance
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degradation in case of incorrect future prediction.

2. The compilation and optimization decisions are delayed because of the lack

of adequate profiling information during the program startup. Thus, the

application suffers a long startup delay.

In this thesis, we quantify the performance degradation due to drawbacks of

the current adaptive online profiling technique and propose a new online profiling

mechanism for virtual machines. Our new profiling technique tries to exploit the

ability to determine the values of certain program variables during execution. The

knowledge of exact values of particular variables at some specific points during ex-

ecution run can help not only to predict, but accurately determine the significant

characteristics of the program behavior. This detailed program monitoring, pos-

sible due to the managed runtime environments, can help drive the compilation

decisions earlier as well as avoid incorrect future speculations. Most current virtual

machines employ a policy of selective compilation. Since, virtual machine performs

compilation dynamically, it introduces compilation overhead at runtime. Selec-

tive compilation uses profiling information to focus compilation resources only on

the frequently executed code portions to minimize this overhead [3, 28]. Usually,

individual methods are these code portions and method hotness is determined by

the proportion of method’s execution period in the total application’s execution

time. Method hotness is a loosely defined term that indicates the impact of a

method’s individual performance on the overall execution time of the application.

In our new profiling technique, we use the exact values of loop iteration bounds,

available at runtime, to accurately predict the future invocation frequency of all

the methods called from that loop, prior to the method’s first invocation. Thus,

our profiling technique can remove both the drawbacks of current profiling. Due
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to the accurate future prediction, incorrect speculations can be reduced and due

to early detection of hot methods the compilation decisions need not be delayed.

We use classfile annotations for Java bytecodes in order to mark instructions that

can fetch the loop iteration bounds. The loops are detected and the annotations

are inserted statically. Also, the virtual machine is modified to parse these anno-

tations and perform new actions at the marked instructions. Our experimental

results demonstrate that our new profiling technique can significantly improve

application startup performance by accurately compiling hot methods early. The

specific contributions of this thesis are as follows:

1. measure and manifest the performance degradation due to the drawbacks of

the current profiling strategy.

2. suggest a new profiling technique that aims at overcoming the mentioned

drawbacks by collecting information regarding crucial sections of code, to

predict the future accurately.

3. evaluate potential of complete as well as practical knowledge of loop iteration

bounds to predict future method hotness.

4. study issues regarding the feasibility and runtime cost of our new profiling

strategy for selective compilation.

The rest of this thesis is organized as follows. In chapter 2, we describe work

related to the areas of online profiling and selective compilation. We outline our

experimental framework in Chapter 3. In Chapter 4 we demonstrate the draw-

backs of current implementations of online profiling. We propose and evaluate our

new online profiling technique in Chapters 5 and 6. We then describe the results

of our technique with only practically analyzable loops in chapter 7. Further we
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outline our plan for the future maturation of the online profiling framework in

chapter 8, and finally draw our conclusions in chapter 9.
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Chapter 2

Background

The managed runtime languages offer some very significant advantages over

statically compiled languages, like portability, safety guarantees, ability to install

software components at runtime due to dynamic class loading, etc. Due to these

requirements, managed languages cannot use the traditional static program opti-

mizations. Thus, it becomes challenging to achieve high performance. In response

to this limitation, adaptive optimizations are used extensively to improve perfor-

mance by relying on the online profiles to drive runtime optimization decisions.

In this chapter, we provide background information and related work in the areas

of selective compilation, online profiling techniques and reducing the overhead of

dynamic compilation using selective optimization and binary file annotations.

2.1 Selective Compilation

Interpreters were probably the first widely used virtual machines. But, the

execution of interpreted code is much slower than executing native and optimized

code. To improve interpreter performance, virtual machines employ runtime com-
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pilers, commonly known as Just-in-Time (JIT) compiler [12]. JIT compilers per-

form compilations and optimizations of code sequences to native code at runtime.

Since the compilation time is now added in the total execution time, it is im-

portant to perform compilations judiciously. The virtual machines thus aim at

reducing this compilation overhead.

Initially, JIT compilers dynamically compiled each new method upon its first

invocation. This simple strategy is called lazy compilation [28]. Since it only

compiles methods on-demand, it avoided compilation of the methods that are

never invoked during the application execution. However, this strategy is still

found to compile several methods that are either never reached again or invoked

so infrequently as to not justify the time and resources spent in compiling the code.

In order to further reduce compilation overhead, virtual machines exploit the well-

known fact that most programs spend most of their time in a small part of the

code [3,6,26]. Hence, only frequently executed code sequences or “hot spots” can

be compiled. This technique is called Selective compilation [11, 18, 19, 35]. Using

this technique, mostly the current virtual machines use “cheap” implementation of

interpretation by default and a more expensive compilation for only the program

hot spots. Some virtual machines may use a fast non-optimizing compiler for all

the methods and only optimize the frequently executed methods, thus introducing

the different levels of optimizations [2,9]. Selective compilation technique needs a

profiling mechanism which can detect or identify program hot spots to drive the

compilation decisions. The identified hot code sequences may then further qualify

for higher levels of optimizations as well. Profiling is also used during feedback-

directed optimizations to specialize, revert, or adapt optimization decisions based

on changing program conditions [4, 32].
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2.2 Online Profiling for Selective Compilation

For effective online feedback-directed optimizations, it is necessary for a virtual

machine to implement a profiling technique that can collect accurate information

with low overhead. Current VMs use one or a combination of different profil-

ing techniques that are based on counters [19, 22, 31] and sampling [2, 18]. The

approach based on counters, updates counts for method entry points and loop

backward branches. Both these counters are associated with every method. If the

method invocations and/or loop backward branch counts exceed a fixed thresh-

old then the method is selected for compilation. The second approach based

on sampling, uses interrupts generated by the hardware performance monitors.

The system is interrupted to record the method(s) on top of the stack. If the

same method is encountered multiple times such that it exceeds a predetermined

sampling threshold, then it can be queued for compilation.

Both the currently used online profiling techniques by the VMs, are reactive

in nature. They collect information about the immediate past program execu-

tion and make the optimization decisions regarding the future program behavior.

Current techniques fail to priori predict the future and assume that the future

behavior will remain similar to the past behavior. But, previous works show that

the program behavior variability requires the systems to adapt according to future

rather than recent past behavior [14]. The work shows that the programs exhibit

significant behavior variations and thus the reactive mechanism is bound to mis-

speculate future. Since the compilations and optimizations are performed online,

incorrect decisions can result in performance loss. Incorrect speculations can ad-

versely affect the application’s startup performance and short-running programs.

Another drawback of the current profiling techniques is delay introduced in the
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compilation decisions due to the insufficient profile data. The longer an applica-

tion is profiled, the future prediction is further delayed and thus lower will be the

reuse of the predictions [13]. Sampling using an external clock trigger distributes

the profiling overhead over a longer time interval than corresponding counter-

based schemes, thereby, potentially delaying the compilation decisions even more.

Additionally, sampling-based profiling also introduces non-determinism that can

complicate performance analysis and system debugging. Instead, we propose a

new profiling mechanism that predicts future application behavior, early, and as

much or more deterministically than current profiling techniques.

A few research works have also explored the use of hardware performance mon-

itors to reduce the overhead of collecting profiles [1, 7]. In addition to harboring

the same drawbacks of current counter and sampling-based profiling schemes, sys-

tems using hardware performance monitors have often also found it difficult to

associate the very low-level information obtained via hardware monitors with the

higher-level program elements that actually influence the counters. One earlier

work demonstrated that delaying important compilation decisions can be harmful

to application startup performance [29]. However, this prior work only focused

on reducing the delay between the detection and compilation of hot methods, and

still uses and suffers from all the drawbacks of current profiling-based schemes

that our research attempts to solve.

2.3 Static Analysis to Aid Dynamic Optimization

Some earlier research works used static analysis of the source code and annota-

tions to carry information concerning compiler optimizations. These works aimed

at making the bytecodes more expressive in conveying compiler optimizations
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to the JIT. The annotation aware JIT system uses this information to generate

high-performance native code [23, 27, 33]. Hummel et al. used an annotation-

based framework to send static information about register allocation in the Kaffe

JIT. Their scheme improved the performance of register allocation at the cost

of greatly increased code-size for the intermediate classfile. Also, some works

employed static analysis to reduce JIT compiler’s compilation overhead. Annota-

tions consists of analysis information collected off-line which is used to speedup

compilations and optimizations that are performed dynamically [27]. Krintz et

al. predicted hot methods for selective compilation based on profile information

based on previous application runs to reduce compilation overhead [33]. Pom-

inville demonstrated the framework using annotations for elimination of need to

generate native code for array bounds and null pointer checks. The static analysis

guaranteed that these checks are not needed and thus optimized the classfiles. In

our proposed technique, static analysis is used to detect loops and identify loop

entry, exit instructions. Annotations are used to convey offsets of the bytecode

instructions corresponding to program points where values of loop iteration bound

variables can be collected at runtime.

10



Chapter 3

Experimental Framework

3.1 Benchmarks

We used the Standard Performance Evaluation Corporation’s (SPEC) JVM98

benchmarks to conduct our experiments [34]. Table 3.1 lists the benchmarks

belonging to this suite. There are two input sizes small(10) and large(100), which

is indicated by the suffix of each benchmark’s name. Next columns give total

number of methods executed, total (application+library) and only application

methods detected hot by the HotSpot VM and number of loops in application

classes.

3.2 HotSpot VM

We conducted all our experiments using Java HotSpot virtual machine

(build 1.7.0-ea-b24) [31], Sun Microsystem’s high performance VM.
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Name Methods Hot Methods App
Executed Total App. Loops

201 compress 10 1410 21 17
26

201 compress 100 1410 22 18

202 jess 10 1741 41 22
171

202 jess 100 1757 80 47

205 raytrace 10 1515 75 49
43

205 raytrace 100 1516 104 77

209 db 10 1415 36 11
21

209 db 100 1418 39 9

213 javac 10 2135 89 42
237

213 javac 100 2173 409 308

222 mpegaudio 10 1574 55 50
77

222 mpegaudio 100 1576 99 77

227 mtrt 10 1524 78 52
43

227 mtrt 100 1531 106 79

228 jack 10 1652 107 20
89

228 jack 100 1656 172 70

Table 3.1. Benchmarks used in our experiments

3.2.1 HotSpot Components

This section gives a brief overview of the Java HotSpot virtual machine, and

provides a short description of the components that are directly relevant to this

thesis.

The Java Standard Edition Platform contains two implementations of the Java

VM, the Client and the Server. For all our experiments we use the client VM

because it has been specially tuned to reduce application startup time and memory

footprint, making it particularly well-suited for client environments.

Adaptive compiler: In order to overcome the drawbacks of JIT compilation,

HotSpot employs an adaptive compilation and optimization technique. The JVM

initially launches an application using the interpreter, and analyzes the code,

as it runs, to detect the critical hot spots in the program. The online profiler

12



does a counter based sampling and collects counts for each method at method

entry and backward branches. The HotSpot VM has a statically set, default

CompileThreshold of 1500. When the sum of method invocation count and loop

backedge count exceeds this threshold then the method is detected as hot and it

is queued for compilation. Thus, every method is individually profiled, compiled

and optimized. Hotspot’s optimizing compiler does not profile the method any

further once it is optimized.

Template Interpreter: It is a default interpreter in the HotSpot VM. Ev-

erytime the VM initializes, the interpreter is generated at runtime from assembler

templates. These templates are translated into native language code that runs

as an interpreter within HotSpot. Advantage of the template interpreter is that

machine code does the dispatching of each bytecode. But, the interpreter itself is

quite complicated.

Classfile Parser: Every classfile is loaded dynamically and parsed through

the VM’s classfile parser. While the classfile is parsed, the method structures are

created corresponding to each method present in the classfile. To maintain the

portability of classfiles, all the non-java attributes (or annotations) are ignored by

the classfile parser.

3.2.2 Our Experimental Conditions

On-stack replacement: By default, the HotSpot VM employs On-stack re-

placement (OSR) strategy. If the method is detected to be hot due to long-running

loops then special version of the method is compiled. The interpretation can stop

after this compiled code is available and execution of compiled method begins by

allowing entry in the middle of the loop. Due to the complexity of the OSR pro-
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cess [15,21], OSR compilation, in most cases, is only supported in commercial VMs

and some other extensive research projects such as Jikes RVM [2]. Additionally,

a fair comparison between the default HotSpot compilation policy (with OSR)

and our early compilation strategy will require substantial updates to enable the

HotSpot VM to employ the generated native code during the same method invo-

cation or loop iteration as when the method is first detected hot and compiled.

Currently, the compiled code is only employed in the invocation/iteration after

the hotness detection. We have disabled the OSR compilation in HotSpot to keep

our study simple and to allow more straight-forward analysis of our results.

Background compilation: The HotSpot VM spawns a separate compiler

thread in order to carry out compilation of methods. Thus, even though a method

is queued, it may not be immediately compiled by the compiler thread. Hence,

we turn off the background compilation to make sure that all the methods are

compiled immediately after they are queued. With no background compilation,

the compiler thread blocks the application, or the main thread, compiles the

method and then the application execution resumes. This helps us measure the

benefits of early compilation more deterministically.

DelayCompileInstall: Along with the detection of hot methods, the counter-

based sampling technique is used to carry out other optimizations. The early

compiled code does not get a chance to undergo these optimizations. Thus, in

order to measure the benefit of early compilation solely, we do not allow the default

technique to perform optimizations on methods that are profiled for longer period.

Thus, even for the default runs, we compile the marked hot methods during their

first invocations. But, the VM starts the execution of the native code only after

the method’s total count reaches the CompileThreshold.

14



3.2.3 Threshold Selection

The default CompileThreshold of the HotSpot VM is 1500. But, we experi-

mentally choose the threshold that gives the best performance on an average for

the SPEC JVM98 benchmarks. The optimal value of the hotness threshold is

very critical for the startup performance of the VM. Too low value of the thresh-

old may result in detection of too many methods to be hot thus increasing the

compilation overhead, due to the compilation of unimportant methods, resulting

in the performance degradation. Or, too high threshold may not detect some

methods to be hot and avoid compilation resulting in the performance degrada-

tion due to large number of interpretations. To find the correct threshold values

to use for our results, we experimented with several different thresholds to find

the one that achieves the best performance for our experimental conditions and

benchmark set. Please note that this approach is also the current state-of-the-art

Figure 3.1. Comparison of benchmark performances at different
hotness thresholds with the threshold of 10,000
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method for detecting hotness thresholds to use in production JVMs. The results

of our experiment for a subset of the tested thresholds (1500, 5000, 10000, 15000,

25000) are presented in Figure 3.1. In this figure, each benchmark’s performance

at the threshold of 10,000 is used as the base to compare its performance at the

remaining thresholds. The results indicate that, although individual benchmark

performances at the various thresholds may vary, a compile threshold of about

10,000 achieves the best performance result, on average. Therefore, we selected

the threshold of 10,000 as the base for our experiments in this work.

3.3 Soot

In order to conduct some of our experiments, we require to indicate some

additional profiling information to the VM in the form of classfile annotations.

Thus, we extended Soot, a Java Optimization and Annotation framework, to

insert method level attributes. Also, we used soot to statically detect and analyze

loops. The method attributes are inserted to indicate the instruction offsets of

loop entries and exits. Finally, all our experiments were performed on a single

core Intel(R) Xeon(TM) 2.80GHz processor using Fedora linux 7 as the operating

system. All the performance results report the median over 10 runs for each

benchmark-configuration pair.
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Chapter 4

Drawbacks of Current Online

Profiling

As discussed earlier, the JIT compiler dynamically compiles all the methods,

since the execution of the compiled native code is much faster than the inter-

pretation. But, compiling all the methods incurs a heavy compilation overhead

resulting in performance degradation since the compiler runs in the application’s

execution time. The JIT compilation technique resulted in significant delay in the

startup of a program and affected more for the short running application. Thus,

future generation VM employed selective compilation technique using online pro-

filing. It has been known that programs spend most of the time in a small fraction

of code, 90% of the execution time comes from 10% of the code. In order to re-

duce the compilation overhead and taking advantage that most programs spend

vast majority of time in small part of code, selective compilation only compiles

frequently executed sections of the code. Online profiling strategy helps to detect

the hot sections of code, which is carried out during the execution of the applica-

tion. However, the current online profiling approach has some limitations. There
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are two main drawbacks, namely:

1. incorrect future prediction, since the past behavior may undergo a change

in future.

2. delayed compilation decision, due to the lack of sufficient profiling informa-

tion.

In this chapter, we quantify the performance impacts due to each of the above

mentioned drawbacks.

4.1 Incorrect Future Prediction

The selective compilation with the online profiling strategy is a reactive mech-

anism to detect hot methods. The counter based sampling keeps a record of

the number of times methods have been invoked as well as the number of back

branches taken, in the past. It assumes that the profiled program behavior will

continue to be the same in the future. Based on this assumption, if the counts

exceed the threshold then that method is detected hot. But, there is no guarantee

about the method’s future invocation or loop branches. Thus, if the future spec-

ulation goes wrong then in worse case the VM will incur the compilation cost to

compile such a method and not get a chance to execute the compiled code even

once.

In order to determine the incorrectly speculated methods, for our benchmarks

we consider the theory of choosing the correct compile threshold. The theory to

determine the correct compile threshold for the selective compilation technique,

aims at reducing the worst-case damage of online compilation, in case when the

future speculation goes wrong. This approach is based on the ski-renting princi-

18



ple [16,25]. In our context, ski renting principle will try to make a choice between

continuing interpretation or compilation of a method, which will reduce the re-

peated interpretation cost. This principle aims to reduce the worst case damage,

when we have no knowledge of the future behavior. According to this princi-

ple, every method is interpreted for some number of times before it is compiled,

in order to ensure that it is worth introducing the compilation overhead if the

method continues to execute. The worse-case is when a compiled method never

gets a chance to execute. The ski-renting principle gives the worse-case overhead

of twice the amount of time spent in compilation. Any other algorithm will give

a greater worse-case damage. Let Y be the time taken for interpretation of a

method and X be the time required to execute the compiled method. If a method

is executed n times, then the compilation of this method can be beneficial only if:

nX + compilationoverhead < nY (4.1)

If we apply the ski-renting principle, then let m be the number of times the method

is already interpreted before compilation, then :

mX + compilationoverhead = mY (4.2)

In the above equation, m is nothing but the optimal compile threshold that gives

the best performance. We have stated in the earlier chapter that empirically the

best performance is achieved on an average for the threshold of 10000 for the Spec

JVM98 benchmarks.

We employ the ski-renting principle and Equation 4.2 conservatively to say

that a method is incorrectly speculated to be hot if C < I, where the method
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is interpreted I number of times before compilation and for C number of times

the compiled method is executed. Thus, in our case, if a method that is detected

hot and compiled at a hotness threshold of 10,000 has a total count (invocation +

backedge) of less than 20,000, then we consider the detection as a case of incorrect

speculation. We calculated the number of incorrectly speculated methods for all

our benchmarks. These results are presented in Figure 4.1. It shows that on

an average 23% of methods are incorrectly sent for compilation. Also, incorrect

speculation can be as high as 53% for some benchmarks.

Figure 4.1. Percentage of methods incorrectly speculated as hot

Further, we measured the performance improvement if the wrongly speculated

methods are prevented from compilation. Method is incorrectly speculated hot

when the benefit due to execution of the optimized native code over pure interpre-

tation is not sufficient enough to offset the compilation overhead. Indeed, avoiding

the compilation of such incorrectly speculated hot methods, resulted in a overall

3.79% increase in average performance.
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4.2 Delayed Compilation Decisions

The second important drawback of the current online profiling technique is

that the compilation decisions are delayed due to the lack of sufficient profiling

information. Thus, according to equation 4.2, the VM has to interpret methods

for m number of times. Then, if the method counters exceed this threshold, the

method will get queued for compilation. For the HotSpot VM, as mentioned

in the previous chapter, the value of m is set to be 10000. We believe that

interpreting each method for such a large value can be quite detrimental to the

startup performance of applications. Due to the delayed compilation decision,

it is also possible that the overall benefit of compilation is reduced as well. To

empirically quantify the actual performance loss caused due to this drawback, we

performed the following steps:

1. We collected histograms for each benchmark by running all the benchmarks

as a prior profiling run. The histograms give the sum of the method invoca-

tion count and backedge count for each method in a benchmark. This sum

is denoted as total count. Since, this total count for each method quantifies

the total execution time spent in a particular method, it is a direct measure

of the method hotness. In HotSpot VM, a method is detected as hot if its

total count >= 10000.

2. Next, we employed the Soot annotation framework to insert method level

attribute in the hot methods detected in the previous step.

3. Finally, we modified the HotSpot VM to recognize this annotation. We

inserted a flag field to indicate if the method is hot or cold. This flag is

set for all the annotated methods and only such methods are allowed to
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be compiled. Our technique of early compilation sends hot methods for

compilation right during their first invocation. While, the default queues

methods for compilation after their total counts exceed or match 10000.

Thus, we try to record the maximum early compilation benefit that we can

get by queuing the hot methods for compilation at the count of 1 instead of

10000.

Figure 4.2 shows the performance gain due to compiling hot methods early, at

the hotness threshold of 1 compared to compiling them normal, at 10000. Thus,

early compilation of hot methods results in a performance benefit of 14.5%, on

average over the default technique. As we can observe the benefits for smaller size

Figure 4.2. Ideal benefits of early compilation of hots methods

(input size 10) benchmarks are much better (17.7%) than for the longer running

or the larger size (input size 100) benchmarks (11.4%). This is because we are

impacting only the startup performance. That is, with the longer execution time

of a benchmark, the early benefit gets distributed over a larger period and thus
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percentage improvement measured get reduced. Also, since the early technique is

compiling methods at the count of 1, there are no incorrect speculations.

Thus, we have shown in this section that drawbacks of current online profiling

technique causes some performance loss. Certainly, if the current technique’s

limitations can be removed or reduced then significant performance improvement

is possible. We have empirically shown by the percentage of incorrectly speculated

methods that it is important to find about method’s future hotness than its past

total counts. Similarly, early compilation decisions can improve performance by

utilizing the maximum compilation benefit. Hence, we propose a new technique in

order to priori predict the future hotness behavior. Our new approach can reduce

both the current approaches drawbacks.

4.3 Implementation Challenges

One of the greatest challenge in this work was to understand the various parts

of the extensive source code of the HotSpot VM. We needed to determine the

internals of the interpreter implementation, the sections of code where profiling is

performed on every method entry and loop back branches, how a method is queued

for compilation, etc. We also explored the various runtime flags that helped us

get log information about the benchmark run, like which methods are queued for

compilation and also the method invocation and loop backedge counts at which

the particular methods are queued. Further, the HotSpot VM interpreter is a

performance critical component and its code is generated during the VM startup.

During initialization, the VM generates the code pieces that the interpreter per-

forms for each bytecode. The VM creates assembler templates, which contain the

platform dependent machine code. This machine code implements the behavior
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of the bytecode. Thus, it was difficult to know the specific x86 instructions that

will be generated by the particular assembler templates.

We had some issues due to the early compilation of library methods. Unless

the VM is initialized, the adaptive compiler cannot compile any method. With

early compilation, many library methods are invoked and thus detected hot even

before the VM is initialized. The main thread calls the VM and tries to queue

the library method, but fails and resets the method’s counts. This causes an

unnecessary overhead during an early compilation run. To avoid these failing

attempts, we had to check if the VM is initialized before any method is queued

for compilation. This problem never occurs for the application methods, because

the application execution cannot begin unless the VM is initialized.
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Chapter 5

Loop Iteration Counts for Early

Prediction of Method Hotness

In the previous chapter we demonstrated that early compilation of hot methods

can significantly benefit the startup performance of applications. In order to be

able to early compile hot methods it is essential to determine the future method

hotness. Thus, in this chapter we evaluate the possibility of using the values of loop

iteration bounds in-order to calculate future invocation frequency of the methods

invoked from loops and the amount of time that will be spent for execution of a

method with a loop. It has been known that loops constitute the most executed

sections of applications and thus are best candidates to apply profiling. It is

unlikely for a method to be invoked for a large number of times unless it is called

from at least one loop or the method itself is recursive. It is generally easier

to analyze loops than recursive methods. Also, most programs have much more

number of loops than recursive methods and thus to make it simpler we have

restricted our scope of current work to only analyze loop-based behavior. Thus,

it is reasonable to assume that any method will be hot only if it is called from
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loops and/or itself contains a long running loop. With the long running loop

present in a method, a significant amount of time might be spent in execution of

that method. Experimentally, we evaluate the potential of knowing accurate loop

bounds to detect hot methods early. Since our profiling technique is online, we

can get the exact values of loop iteration bounds for most of the loops from the

managed runtime environment even before entering a loop. In further chapters

we will give statistics of the number of loops for which it is possible to get the

loop bounds before entering the loop for each benchmark. Initially, we evaluate

the detection of hot methods early if we know accurate loop bounds of all the

methods before loop is entered. Then, we shall evaluate the ability to detect hot

methods early by considering only the loops for which it is feasible to know their

loop bounds early.

Here, we conceptually describe with the help of some simple programs (not the

code snippets from any benchmark), the use of knowledge of loop iteration bounds

to determine the future method hotness. Figure 5.1 shows program call-graph for

a very simple program. For this particular program, loop iteration bounds is able

to detect methods to be hot before or during their first invocation itself. The

program execution begins with the main method, but the main method is called

just once and does not contain any loop in its body. Program execution will not

stay in main method for long and hence it is not a hot method in this example.

Further, hot func1 method is hot because it contains a long running loop with a

bound greater than the compile threshold. Method hot func2 is also hot. Since

it is called from a hot loop, its future invocation count will exceed the compile

threshold. In contrast, method cold func is not hot even though it is called from

a hot method, since it is neither called from a loop nor does it’s body contain any
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loop.

   hot_func1();
}

      hot_func2();      

   cold_func();
   cold_func();
}

  
}

main()
{

hot_func1()
{  

cold_func()
{

  
}

hot_func2()
{

   for(i=0 ; i<100000 ; i++)

Figure 5.1. Simple partial program flowgraph

With this example, we have shown that for some cases it is possible to predict

future method hotness very accurately just by loop bounds information. But, this

precision may not always be possible. Next example shows that a method may or

may not be hot even though it is called from a hot loop. Figure 5.2 shows a partial

call-graph in which the method hot cold func may or may not be hot depending

upon the input data. Thus, we expect such scenarios that depend on conditional

program control-flow and values of program input to affect the accuracy of method

hotness detection even with the knowledge of all loop iteration bounds.

5.1 Simulation Setup

In the previous section, we hypothesized that knowledge of the loop iteration

bounds (just prior to the loop entry) may enable early determination of most hot

methods. In this section we describe the experiments we performed to assess this
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hot_cold_func()
{
   .
   .
   .
}

{
   for(i=0 ; i<100000 ; i++)
   {
      if(ch[i] == ’a’)

   }
}

         hot_cold_func();

hot_func()

Figure 5.2. Partial program flowgraph with difficult to predict
methods

hypothesis. To perform these experiments, we require information regarding all

loop iteration bounds, as well as factors contributing towards method hotness,

such as method invocation frequencies and backedge counts. To limit the com-

plexity of our simulation setup, we have restricted the scope of this study to only

the methods and loops present in the application classfiles (ignoring library meth-

ods and loops). This restriction is purely for easing the clarity and feasibility

of our analysis, and in no way affects the generality of this work. We perform

the following steps to generate a trace file that contains this information for later

offline analysis.

1. We employ the Soot bytecode analysis and annotation framework [36] to

detect the loops in every application method, and identify their correspond-

ing loop entry and exit instructions. Figure 5.4 (a) shows an example Java

program with three methods, main, methodA, and methodB. Figure 5.4 (b)

(minus the annotation instructions shown in bold) presents the Java VM

bytecode instructions generated for the Java program in Figure 5.4 (a). All
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loop entry and exit instructions detected by Soot are indicated in a bold

font.

2. We employ Soot again to annotate the application methods in our bench-

mark classfiles with attributes to identify the particular method as well as

indicate all the loop entry and exit instructions to the VM. As mentioned

earlier, JVM bytecode specification allows the addition of user-defined at-

tributes to the Java classfiles. Unfortunately, the JVM bytecode specifi-

cation does not provide any direct means of annotating individual instruc-

tions. Therefore, we use method-level attributes to forward the necessary

instruction-level information to the VM. Figure 5.4 (b) shows the method-

level annotations that we add to a Java classfile. The first annotation,

labeled MethodID, is a unique integer identifying each application method.

The next annotation, labeled Loop entry, provides the (loop entry instruc-

tion offset, loop id) pair for each loop in that method. Finally, the Loop exit

annotation specifies the (loop exit instruction offset, loop id) pair for the

loop identified by loop id.

3. We then use a modified version of the HotSpot Java virtual machine to recog-

nize our new attributes, and output appropriate trace data at corresponding

points during the execution of the benchmark programs. On executing the

annotated classfiles, the JVM prints out markers to identify method entry,

all later iterations of a loop, the loop exit, and the number of iterations of

the loop. Figure 5.4 (b).

4. Finally, the trace file is post-processed to shift the loop iteration bound,

originally printed at the end of the loop, to the start of the loop, so as to
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static void methodB();
   Annotation:   
    MethodID = 3

(a) Java Source Program

(b) Annotated JVM Bytecode Classfile

(c) Trace File Generated by the HotSpot JVM

(d) Post−Processed Trace File

f1 $0 f2 $1 , f3 , , f3 , , f3 , , f3 , , f3 , %1 10 ,
      f2 $1 , f3 , , f3 , , f3 , , f3 , , f3 , %1 10 ,
   %0 2

f1 $0    f2 $1    , f3 , , f3 , , f3 , , f3 , , f3 , %1 ,
         f2 $1    , f3 , , f3 , , f3 , , f3 , , f3 , %1 ,
   %0

10
10

2

    static void methodB() {
        System.out.print(" ");
    }

class TestProgram {

    public static void main(String args[]) {
        for(int i=0 ; i<2 ; i++) {
            methodA(10);
    }

    static void methodA(int len) {
        int i;
        while(i < len){

                methodB();
            i++;

            if(i%2 != 0)

        }
    }

   Annotation:
    MethodID = 2
    Loop_entry = #4,1
    Loop_exit = #22,1

   19: goto 2
   22: return

static void methodA(int);
   Code:
    Stack=2, Locals=2, Args_size=1
    0: iconst_0
    1: istore_1
    2: iload_1
    3: iload_0
    4: if icmpge 22
    7: iload_1
    8: iconst_2
    9: irem
   10: ifeq 16
   13: invokestatic #3
   16: iinc 1, 1

public static void main(java.lang.String[]);
   Code:
    Stack=2, Locals=2, Args_size=1
    0: iconst_0
    1: istore_1

    3: iconst_2
    2: iload_1

    4: if_icmpge 18
    7: bipush 10
    9: invokestatic #2
    12: iinc 1, 1
    15: goto 2

// call methodA

    18: return

   Annotation:
    MethodID = 1
    Loop_entry = #4,0
    Loop_exit = #18,0

// call methodB

Figure 5.3. Process of generation of the trace file containing com-
prehensive information of all loop iteration bounds and method invo-
cations for each benchmark

make it available to our offline analysis program on the first iteration of

each loop. The trace file from Figure 5.4 (c) after post-processing appears
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as shown in Figure 5.4 (d). The shifted loop iteration bound is indicated in

a bold font.

A loop may have more than one exit instruction, and Soot allows us to detect

all loop entry and exit instructions correctly.

}

        for(int i=0;i<10;i++) {
    static void methodA() {

          try{
            int j = 3;
            if(i%j==0) {

            }
          }
          catch(Exception e) {

          }

    }

 MethodID = 1
 Loop_entry = #5,68

Annotation:

                break;

              return;

       }

public class MultipleLoopExitExample {

   Stack=2, Locals=2, Args_size=0

 Loop_exit = #23,68#30,68

  Code:

   0:iconst_0
   1:istore_0
   2:iload_0
   3:bipush10
   5:if_icmpge30
   8:iconst_3
   9:istore_1
   10:iload_0
   11:iload_1
   12:irem
   13:ifne19

   19:goto24
   22:astore_1

   24:iinc0, 1
   27:goto2
   30:return

   23:return

   16:goto30

static void methodA();

Figure 5.4. Example of multiple loop exit program

Program profile information from the trace file allows us to accurately calcu-

late the number of method invocations and loop backedges, as well as the number

of iterations for every loop. Such information is later used by our offline analyzer

to estimate the earliest point when a method can be detected hot. We realize

that a more direct approach of testing the potential of loop iteration bounds for

early hotness detection would be to actually implement all the necessary modifica-

tions in a real virtual machine, like HotSpot, and compare the resulting runtime

performances. However, the presented simulation-based strategy allows several

advantages over this direct approach:

• The virtual machine is a complex piece of software. Indeed, a major portion

of the HotSpot interpreter (the component where most of our changes would

be localized) is code to dynamically generate a native language interpreter
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at runtime. Using offline simulations allows us an opportunity to confirm

our hypothesis before attempting to overhaul the profiling and compilation

mechanism in the HotSpot VM.

• Unless our basic, naive strategy works directly out of the box (which, as

we later show is not the case), performing our experiments offline on the

once-generated trace file allows us greater options of investigating alternative

techniques and tuning our heuristics without having to modify the VM every

time. With the flexibility now available to settle on the best technique and

heuristics by performing offline experiments, we only need to port over those

changes to the VM.

5.2 Tracefile Post Analysis Description

We use the procedure described in the last section to generate trace files for all

our benchmark programs. Now, based on the upfront knowledge of all loop itera-

tion bounds before loop entry, we, in this section, describe our algorithm to detect

the hot methods early, along with results on the algorithm’s detection accuracy.

We also measure the performance benefit of compiling the detected hot meth-

ods at their earliest detection counts over the default reactive VM compilation

strategy.

Our algorithm to analyze the trace file simulates the occurrence of interesting

events in the exact order that they occur during the actual execution of the pro-

gram. In addition, the trace file contains information about the exact number of

loop iterations at the entry point of every loop. The interesting events required to

detect method hotness include loop entry and exit, loop back-edges, and method

invocations. The analysis program maintains and updates additional data struc-
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tures to facilitate the simulation process. The most significant of these structures

include:

loop stack: A single structure that holds information regarding the loop identi-

fier, total iteration bound, and the current iteration count for every active

loop during program simulation. The structure is dynamically updated by

pushing a new record onto the loop stack on loop entry, and popping a

record on loop exit.

method info: A method-specific data structure that records the dynamic num-

ber of method invocations for each loop context. A loop context is defined

by all the loops in the loop stack when that method is reached.

On the occurrence of each interesting event in the trace file, the analyzer takes

the following steps to update the data structures and predict hot methods along

with outputting the counts when they are first detected hot:

Loop Entry: The pattern $<loop id> <loop bound> indicates entry into a

loop. The simulator pushes a new record on top of the loop stack, along

with its total loop bound.

Loop Backedge: A ‘,’ in the trace file indicates the occurrence of a backedge

to start the next iteration of the loop on top of the stack. The simulator

increments the corresponding current loop iteration count.

Loop Exit: The record on top of the loop stack is popped on occurrence of the

pattern ‘%’ in the trace file.

Method Entry: The symbol f<method id> indicates an invocation of the method

denoted by its method id, and the method’s invocation count in all relevant
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loop contexts in the method info structure is incremented. For the first in-

vocation of a method in every new loop context, the simulator estimates the

method’s total count using the formula:

total cnt =
(inv + back) ∗ tot iter

curr iter
(5.1)

where,

inv is the current method invocation count,

back is the current method backedge count,

tot iter is the total loop iteration bound, and

curr iter is the current iteration count for the present loop context.

If total cnt > compile threshold, then this method will be sent for compila-

tion. Thus, method compilation now happens when the method’s total (past

+ future) count is estimated to exceed the VM’s compilation threshold.

Figure 5.5 demonstrates the simulation of the trace file that is produced for

the Java program in Figure 5.4. Assume for this example that the hotness

threshold is 10, i.e., a method is marked hot and sent for compilation if its

total count (given by Equation 5.1) exceeds 10. The processed trace file from

Figure 5.4 (d) is reproduced in Figure 5.5 (a). Figures 5.5 (b)–(g) show the

states of the simulator data structures, loop stack and method info, along with

the counts at which the methods are detected hot for six simulation snapshots

marked in Figure 5.5 (a). These events are described below:

1. Figure 5.5 (b) shows the state of the loop stack after the simulation program

reads in the symbols $0, corresponding to stage (1) in Figure 5.5 (a). Each

application loop is provided with a unique identifier that is recorded in the
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f1 $0 2 f2 $1 10 , f3 , , f3 , , f3 , , f3 , , f3 , %1 ,
        f2 $1 10 , f3 , , f3 , , f3 , , f3 , , f3 , %1 ,
   %0

(6)
(a) Example Trace File

loop_id = 0
bound = 2
cur_iter = 1

top

1

2

3

hot at stage 3at stage 2
(c) Method_info table

at stage 1
(b) Loop_stack 

loop_id = 0
bound = 2
cur_iter = 1

top
loop_id = 1

bound = 10
cur_iter = 2

loop_id = 1

loop_id = 0

top

(f) Loop_stack 
hot at stage 4 at stage 5

(g) Loop_stack
at stage 6

(1)

inv_cnt = {1}

predict_cnt = {2}
loop_id = 0
bound = 2
cur_iter = 1

top
loop_id = 1

bound = 10
cur_iter = 1

predict_cnt = {22,−}

1

2

3
predict_cnt = {2,10}

inv_cnt = {1,−}

predict_cnt = {22,−}

1

2

3

inv_cnt = {1,−}
back_cnt = {10,−}

inv_cnt = {1,1}
back_cnt = {0,0}

(d) Detection of method f2

(e) Detection of method f3

back_cnt = {10,−}

back_cnt = {0}

(4)(3)(2) (5)

loop_id = 0
bound = 2
cur_iter = 1

loop_id = 1

bound = 10

top
cur_iter = 11

bound = 2
cur_iter = 3

bound = 10
cur_iter = 11

Figure 5.5. Demonstration of the simulation algorithm on an ex-
ample trace file (for hotness threshold of 10)

field loop id. The loop iteration bound is noted in the field bound. The

field curr iter indicates the current iteration number of the loop and is

initialized to 1.

2. Figure 5.5 (c) shows how the method info array is updated on reading the

symbol f2. The fields inv cnt and back cnt, corresponding to the number
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of invocations and backedges already seen for each method, are vectors with

an entry for each loop level. Thus, if a method invocation or backedge is

seen in an inner loop, then it is recorded as seen in all outer loop levels

as well. These fields are set to 1 and 0 respectively at the loop level 0 on

reading symbol f2. The simulator then employs Equation 5.1 to predict the

method’s total count for each current loop context. Method f2 presently has

only one loop context defined by the loop $0. Method f2’s total count in this

loop context is: (1 + 0) ∗ 2/1 = 2, and is indicated in the field predict cnt.

The method is detected to not be hot.

3. Figure 5.5 (d) shows the state of the two simulator structures at stage (3)

of the simulation, after having read the symbol $1. A new loop record

corresponding to loop id=1 is pushed onto the loop stack. Since this loop

exists in the method f2, its back cnt is updated to the loop’s iteration

count of 10. Equation 5.1 is again used to calculate f2’s total count, given

by: (1 + 10) ∗ 2/1 = 22. Since f2’s total count is greater than the compile

threshold (assumed as 10 in this example), f2 will be sent for compilation

at this stage. Thus, method f2 is compiled during its first invocation, and

the compiled version will be available before its next invocation. Therefore,

the invocation count at which f2 is first predicted to be hot is output as 1

by the analyzer.

4. The symbol f3 is encountered in stage 4. Figure 5.5 (e) shows the updated

states of the loop stack and the method info array. Note that we have

already seen the first ‘,’ symbol in the trace file, and accordingly updated

the curr iter field for the loop on top of the loop stack. Method f3 is

present in two loop contexts, one defined by the loop nest formed by loops
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$0 and $1, and the other defined by the loop $0. f3’s total count is calculated

as (1 + 0) ∗ (10 ∗ 2)/(2 ∗ 1) = 10 and (1 + 0) ∗ 2/1 = 2 for the loop contexts

($1 $0) and ($0) respectively. Since total count at context ($1 $0) is equal

to the compile threshold, f3 can be sent for compilation at this stage. Thus,

f3’s first predicted hotness count is also output as 1.

5. The loop record from loop id=1 is popped off the loop stack on encountering

the symbol %1 in stage 5. Please note that the curr iter is equal to one more

than the bound for loop id=1 at this stage.

6. Finally, the loop record for loop id=0 is popped off the loop stack on reading

symbol %0 in stage 6 of Figure 5.5.

The analysis of each per-benchmark trace file outputs all detected hot methods

along with the invocation counts when they are first detected hot. We again em-

ploy Soot to annotate the benchmark classfiles to indicate the hot methods, as well

as their detected compilation counts to the VM. Our modified VM then compiles

all annotated methods at their specified counts during benchmark execution. This

framework allows us to evaluate the performance potential of using loop iteration

bounds information for detecting and compiling hot methods early. Our present

analysis framework only supports single-threaded application programs, and so

we had to leave out the multi-threaded benchmark 227 mtrt from the results in

this and future sections.

5.3 Results of Basic Post Analysis Algorithm

The analysis results are presented in Table 5.1 and Figures 5.7 and 5.8. The

first column in Table 5.1 lists the benchmark name, along with its input size. The
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next set of two columns, labeled Hot Methods shows the Actual and Predicted

number of hot methods during our simulation. Actual hot methods are the meth-

ods that are compiled during a normal run of the HotSpot VM. Our aim is to pre-

dict the hotness characteristic of the same methods early. The number of predicted

hot methods is generally greater than their actual number due to the presence of

false positives during our trace-file simulations. False positives are methods that

are wrongly predicted hot by our algorithm, and indicate the inability of loop

iteration bounds to provide accurate results by themselves. As mentioned earlier,

instead of only relying on the predicted future method counts, our current imple-

mentation employs the sum of the past and future method counts to determine

hot methods. Therefore, our current implementation has no true negatives. This

means that all the actual hot methods, if not predicted to be hot early, will be sent

for compilation at the method threshold count of 10,000 (although this happens

very rarely in practice).

Benchmark Hot Methods False
Actual Predicted Positives

201 compress 10 17 19 2

201 compress 100 18 22 4

202 jess 10 22 25 3

202 jess 100 47 51 4

205 raytrace 10 49 67 18

205 raytrace 100 71 78 7

209 db 10 11 12 1

209 db 100 9 14 5

213 javac 10 42 100 58

213 javac 100 309 527 218

222 mpegaudio 10 50 159 109

222 mpegaudio 100 77 169 92

228 jack 10 20 63 43

228 jack 100 69 120 51

Table 5.1. Results of Trace-File Simulation to Predict Hot Methods
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Even for the correct detections, methods may be predicted hot at total counts

greater than 1. Among other reasons, this unintentional delay may be caused due

to inadequate future information available from loops with small iteration bounds.

For example, in Figure 5.6, information available in Loop1 regarding the future

invocation of method funcA is insufficient to predict funcA hot ((1+0)∗8000/1 =

8, 000 by Equation 5.1 is less than compile threshold of 10,000). However, funcA

will be detected hot in Loop2, although, after it has already been invoked for 8000

times.

for(i=0 ; i<100 ; i++) {

LOOP1: for(j=0 ; j<80 ; j++)

funcA();

LOOP2: for(j=0 ; j<100 ; j++)

funcA();

}

Figure 5.6. Small loop bounds delay the prediction of hot methods

Figure 5.7 ignores the false positives and shows the total (invocation + backedge)

counts at which the actual hot methods are first predicted to be hot and compiled.

Thus, this figure shows that knowledge of loop iteration bounds does allow most

hot methods to be detected much earlier than the default compile threshold of

10,000. The presence of mostly recursive methods coupled with very few big loops

explains the particularly harsh numbers for the benchmark 202 jess.

Figure 5.8 compares the performance of the various benchmark programs when

using the simulation results to compile the detected methods early with the de-

fault system that compiles methods at hotness counts of 10,000. The results, for

the most part, are not surprising and are intuitive. The large number of false posi-

tives (seen in Table 5.1) results in a significant performance degradation for several

benchmarks, including 213 javac, 222 mpegaudio and 228 jack. The inability
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Figure 5.7. Total (invocation + backedge) counts when actual hot
methods are first predicted hot

Figure 5.8. Benchmark performance when compiling methods as
predicted by our analysis algorithm compared to the ideal offline per-
formance from the app field in Figure 4.2

of our analysis framework to detect hot methods early, as seen for benchmarks

202 jess and 205 raytrace in Figure 5.7, also results in significantly reducing the

gains compared to ideal early compilation. Finally, benchmarks with good predic-
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tion accuracies and early prediction counts, such as 201 compress and 209 db,

are able to get most of the performance benefit of early compilation.

5.4 Implementation Challenges

We have extended Soot framework to detect loops, identify offsets correspond-

ing to each loop entry and exit instructions, and to insert the method level an-

notations in the application classfiles. Though Soot is able to correctly identify

offsets present in the original classfiles, it is unable to preserve these offsets in the

classfiles that are generated. Soot converts bytecodes to an intermediate represen-

tation called Jimple and then back to bytecodes. This is not a 1:1 transformation.

It also performs some optimizations on the input classfiles before it can generate

valid bytecodes. This transformation and optimizations cause instruction offsets

in the generated classfiles to change. Thus, the offset values inserted as annota-

tions do not match the offsets corresponding to the newly generated classfiles. For

this reason, we need to split this process into two separate steps.

1. First pass of basic Soot program will only transform all the classfiles. Then,

we allow another Soot program which identifies loops and offsets to run

on these transformed classfiles. This program outputs a file containing the

assigned method identifiers, loop identifiers and their entry and exit offsets.

2. Our final Soot program runs on the original classfiles. It reads the offsets

from the file which is generated in the previous step and inserts this infor-

mation as method level attributes.
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Chapter 6

Delaying Early Prediction to

Improve Quality

From the last chapter, we see that early compilation based only on the knowl-

edge of loop iteration bounds can produce significant number of false positives

causing unnecessary compilation overhead, and a resulting loss in performance for

several benchmarks. In this chapter, we analyze these results to discover the most

common causes for the incorrect predictions, and present and evaluate a technique

to improve the quality of our predictions.

6.1 Main causes of false predictions

The examples presented in Figure 6.1 indicate the main causes of false predic-

tions (cold methods predicted as hot) during our early compilation results shown

in the last chapter. Both the examples in Figure 6.1 show trace file fragments

that are derived from actual benchmark programs. The first fragment derived

from the benchmark program 205 raytrace explains the effect of variable inner
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%7

$7 11 ... $18 1395 f100 , f100 , ... , %18
          $18    1 f100 , %18
          $18    1 f100 , %18              
          .
          .
          .
          $18    1 f100 , %18

%3

$3 503 ... $4 2048 f100 , , , , ... , %4
           $4 2048 f100 , , , , ... , %4
           $4 2048 f100 , , , , ... , %4
           .
           .
           .
           $4 2048 f100 , , , , ... , %4

(b) Example 2 (_222_mpegaudio): Impact of Conditional Statements

(a) Example 1 (_205_raytrace): Impact of Variable Loop Bounds

Figure 6.1. Impact of runtime variables on method hotness predic-
tion

loop iteration bounds on method hotness detection. The loop nest consists of an

outer loop (loop id = 7) with an iteration bound of 11, and an inner loop (loop id

= 18) with a variable iteration bound. The inner loop iterates for 1395 times

during the outer loop’s first iteration, but only iterates once for all future outer

loop iterations. The method with id=100 is invoked once during every iteration

of the inner loop. The total invocation count of method f100 calculated during its

first invocation ((1+0)∗ (11∗1395)/(1∗1) = 15, 345) exceeds the threshold count

of 10,000, and hence the method is sent for compilation during its first invocation

itself. However, this prediction for f100 proves too optimistic due to loop $18’s

smaller future iteration counts.

The second example fragment presented in Figure 6.1 (b) explains the impact

of conditional control-flow statements on the predicted future method invocation

counts. The loop nest consists of two loops (id=3 and id=4) with fixed iteration

counts of 503 and 2048 respectively. The conditional control-flow statements sur-

rounding method f100 (not captured in the trace file) only allow its invocation
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during the first iteration of loop $4. However, method f100 is predicted hot during

its first invocation itself ((1+0)∗ (503∗ 2048)/(1∗ 1) = 24, 144), which ultimately

proves incorrect. For each false prediction, the cumulative gain due to faster ex-

ecution of the native code fails to eclipse its compilation overhead, resulting in a

net loss of application performance.

Thus, the above examples reveal the following causes for the hotness mispre-

dictions:

• non-consistent inner loop iteration bounds, and

• conditional control-flow statements affecting method invocations.

6.2 Improved Tracefile Analysis

To reduce the number of false positives, we propose a new heuristic that avoids

making a hotness prediction the first time a method is seen in any loop context,

but delays the decision until sufficient history of the method counts is available for

that method in that loop context. This heuristic is designed to address both the

primary causes of false predictions witnessed during our simulation experiments.

Figure 6.2 (a) shows an example trace file to demonstrate the effect of delaying

the prediction of hot methods. The example uses a delay factor of 1% of the

default compile threshold of 10,000. Thus, for any loop context, a method is first

checked for hotness only after that method’s total count has already reached a 100

in that loop context. The trace file in Figure 6.2 (a) contains one loop at outer

level 0 (id=3), and two inner loops at level 1 (id=4 and id=5) entered during each

iteration of the outer loop. Method f100 is called only in the first iteration of loop

$4, and in all iterations of loop $5; method f200 is invoked in all iterations of loop
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loop_id = 4
bound = 200
cur_iter = 100

loop_id = 3
bound = 500
cur_iter = 1

     {50000,100000}

inv_cnt = {100,100}
back_cnt = {0,0}
predict_cnt=

inv_cnt = {1,1}
back_cnt = {0,0}
predict_cnt = {−,−}

loop_id = 5
bound = 4

loop_id = 3
bound = 500
cur_iter = 20

cur_iter = 4

$3 500 $4 200 f100 f200 , f200 , f200 , ... %4
       $5   4 f100 , f100 , f100 , f100 , %5

       .
       .
%3

100 100

200200

inv_cnt = {100,4}
back_cnt = {0,0}
predict_cnt = {2500,−}

Method

compiled
already

loop_stack method_info method_infoloop_stack

its delay intervalits delay interval

0 0

1 1

(a) Example trace file

(b) Method id=200 reaches (c) Method id=100 reaches

  ,    $4 200 f100 f200 , f200 , f200 , ... %4
       $5   4 f100 , f100 , f100 , f100 , %5
  ,    .

Figure 6.2. Demonstration of the simulation algorithm with early
compilation delayed for a delay factor of 1% (of 10,000)

$4, and never called from loop $5. Figure 6.2 (b) shows the states of the loop stack

and method info when method f200’s total count first reaches 100. Method f200’s

predicted count (by using Equation 5.1) is also shown for both loop contexts (just

$4 and $3 $4). Since f200’s predict cnt is greater than 10,000 for at least one of

these loop contexts, f200 can be sent for compilation at this stage. Method f100

reaches is delay interval (only for the loop context $3 $5) when the state of the

loop stack and method info structures is as shown in Figure 6.2 (c). However, its

predicted count (at context $3 $5), calculated as ((100 + 0) ∗ 500/20 = 2, 500),

is less than the compile threshold, and so the method is predicted as cold at this

point, and not sent for compilation. Note that without this delay factor, f100

would have been predicted hot during its first invocation itself. Thus, the delay

factor allows us to eliminate some false positives, at the cost of postponing the
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compilation of actual hot methods by a similar factor.

The ideal delay factor varies for different methods. For example, although a

delay factor of 1% is able to eliminate compilation of false positives for examples

in Figures 6.2 (c) and 6.1 (b), a higher delay factor will be necessary to eliminate

the false positive in Figure 6.1 (a).

6.3 Results of Improved Post Analysis Algorithm

Table 6.1 shows the number of false positives at various delay factors for the

benchmarks in our set. While extremely small delay factors suffice to purge all

the false positives for some benchmarks, such as 201 compress and 209 db, some

very large delay factors are required for others, such as 213 javac and 202 jess.

As noted earlier, a higher delay factor also suspends the early detection of actual

hot methods longer, resulting in an erosion of the desired benefits due to early

compilation. Thus, finding the ideal delay factor is important for achieving the

gains of early compilation.

Figure 6.3 plots the ratio of the average performance improvement seen at

various delay factors to the average ideal early compilation benefit available from

Figure 4.2. The best delay factor is the benchmark-specific delay at which that

benchmark achieves its best improvement. The best delay factor for each bench-

mark is indicated in Table 6.1 by expressing the appropriate false positive number

in bold fonts. Figure 6.3 shows that, for constant delay factors, the performance

improves rapidly with initial increases in delay factors and fluctuates (or decreases

slightly) as prediction delays start affecting the benefit due to early compilation

of actual hot methods. The best performance (8.5%, on average, over default VM

compiling only app methods) is achieved for benchmark-specific delay factors,

46



Benchmark Act. False Positives at Delay Factors (% of 10,000)
hot 0% 1% 3% 7% 10% 20% 30% 40% 50% 70% 90%

201 compress 10 17 2 2 0 0 0 0 0 0 0 0 0

201 compress 100 18 4 2 1 1 1 1 1 1 1 0 0

202 jess 10 22 3 3 3 3 3 3 3 3 3 3 0

202 jess 100 47 4 4 2 2 2 2 2 1 1 0 0

205 raytrace 10 49 18 5 4 4 4 4 2 2 2 0 0

205 raytrace 100 71 7 5 4 4 4 4 2 2 2 0 0

209 db 10 11 1 1 1 0 0 0 0 0 0 0 0

209 db 100 9 5 4 2 0 0 0 0 0 0 0 0

213 javac 10 42 58 57 53 38 38 37 31 24 15 6 0

213 javac 100 309 218 132 105 84 71 16 1 1 1 0 0

222 mpegaudio 10 50 109 14 8 5 4 1 1 1 0 0 0

222 mpegaudio 100 77 92 4 2 0 0 0 0 0 0 0 0

228 jack 10 20 43 41 36 25 10 2 1 1 0 0 0

228 jack 100 69 51 43 14 0 0 0 0 0 0 0 0

Table 6.1. Actual hot methods and false positives at different delay
factors

Figure 6.3. Average performance results of delaying compilation to
improve prediction accuracy, as a percentage of ideal early compilation
benefit at selected delay factors
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indicating that there is some potential for tuning the delay factors as well.

Figure 6.4. Individual benchmark performance results of delaying
compilation to improve prediction accuracy, as a percentage of ideal
early compilation benefit at selected delay factors

Figure 6.4 shows the percentage of ideal early compilation improvement that is

achieved for each benchmark at selected delay factors. Thus, small delay factors

seem to do well for most benchmarks. At the same time, elimination of false

positives also seems to be very important to achieve close to ideal performance

gains.
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Chapter 7

Feasibility of Early Determination

of Loop Iteration Counts

In the last chapter we showed that the comprehensive knowledge of loop itera-

tion bounds can allow us to achieve close to the ideal performance benefits of early

compilation for several benchmarks. However, the success of this technique still

hinges on the ability of the static analysis framework and, more importantly, the

managed runtime environment to automatically determine the iteration bounds

of program loops. In this chapter, we explore the feasibility of determining the

loop bounds for only the application classes during execution, and the impact of

non-analyzable loops on the early detection of method hotness, and the overall

performance improvement.

Figure 7.1 presents an instance of each of the three categories of loops that

we currently label as analyzable, since the iteration bounds of such loops can

be deciphered at runtime before entry into the loop. The iteration bound of

loops in category A can be trivially determined statically or dynamically. Even

though, the loops in category B may depend on runtime values, their iteration
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bounds can also be determined dynamically. We modified the branch routine in

the VM interpreter to confirm that the bounds of loops in categories A and B can

indeed be determined prior to the first entry into the loop. Loops belonging to

category C are simple loops that iterate over standard library data structures, and

will most probably require additional static analysis and/or classfile annotations

to be analyzable. We still categorize such loops as analyzable since we believe

that capability to prepare such loops for our prediction tasks, such as by adding

additional instructions to indicate the loop bound to the VM (shown by the bold

comment for Loop C), can be made available to static analysis tools, such as Soot.

...
}

Example 2

while((line = in.readLine()) != null) {

    static_hot();
}

for(i=0 ; i<25000 ; i++){

   while(it.hasNext()){          

   }
}

      el = (Element) it.next();

    Example 1

   // n = list.size();

void method(List list){

Category  A

for(i=0 ; i<n ; i++){
    dynamic_hot();
}

n = data.length;

Category  B

Category C

Figure 7.1. Iteration bounds of some categories of loops can be
accurately predicted early

On the other hand, loops in Figure 7.2 belong to categories that can make it

highly improbable or very expensive to a priori determine their bounds. Loops

in category D iterate over program-specific data structures, and category E loops

are non-linearly dependent on input values. We term such loops as non-analyzable

in this thesis.

We performed a manual study using the Soot framework to find the percentage
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do{
    diff_func(myStack.pop());
} while(!myStack.isEmpty());

tok = getToken();
i=0;
while(arr[i] != tok){
    ...
}

Category D

Category E

Figure 7.2. Iteration bounds of some categories of loops are difficult
to predict

Benchmark
Analyzable Loops
Category % of

A B C Total

201 compress 1 15 2 69.23
202 jess 1 140 4 84.79
205 raytrace 9 21 2 74.42
209 db 2 12 1 71.42
213 javac 3 108 41 64.13
222 mpegaudio 23 43 2 88.31
228 jack 2 29 37 76.40

Table 7.1. Loops that permit determination of its iteration count
prior to entry

of analyzable loops in the SPECjvm98 benchmark programs. Table 7.1 lists the

results of this study. For each benchmark, columns two, three, and four present

the number of loops in categories A, B, and C, while the last column lists the

percentage of total analyzable loops. Thus, a large majority of the loops in most

benchmarks can be easily targeted by our approach.

Table 7.2 and Figure 7.3 show the results of discarding the non-analyzable

loops from the simulation runs, and correspond to the numbers presented earlier

in Table 6.1 and Figure 6.3 respectively. More than affecting the detection of
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the actual hot methods, eliminating the non-analyzable loops has the unexpected

side-effect of reducing the number of false positives. The number of false positives

for different delay factors is presented in Table 7.2.

Benchmark False Positives at Delay Factors (% of 10,000)
0% 1% 3% 7% 10% 20% 30% 40% 50% 70% 90%

201 compress 10 2 2 0 0 0 0 0 0 0 0 0

201 compress 100 3 1 0 0 0 0 0 0 0 0 0

202 jess 10 3 3 3 3 1 0 0 0 0 0 0

202 jess 100 25 17 13 11 9 6 6 4 4 4 0

205 raytrace 10 18 5 4 4 4 4 2 2 2 0 0

205 raytrace 100 7 5 4 4 4 4 2 2 2 0 0

209 db 10 1 1 1 0 0 0 0 0 0 0 0

209 db 100 3 3 2 0 0 0 0 0 0 0 0

213 javac 10 55 54 51 36 36 35 30 23 13 5 0

213 javac 100 207 126 105 84 71 15 0 0 0 0 0

222 mpegaudio 10 20 13 7 4 2 1 1 1 0 0 0

222 mpegaudio 100 44 9 5 1 1 1 1 1 1 1 0

228 jack 10 9 7 0 0 0 0 0 0 0 0 0

228 jack 100 14 10 2 0 0 0 0 0 0 0 0

Table 7.2. False positives at different delay factors after removing
non-analyzable loops

Not surprisingly, discarding non-analyzable loops also delays the early detec-

tion of hot methods in some cases. The average performance improvement over

the default VM performance is presented in Figure 7.3. The combination of re-

duced instances of false positives and delayed detection of actual hot methods,

results in improving the performance over the all-loops configuration of figure 6.3

for the lowest delay factors, but results in some degradation for the remaining

factors. The most prominent reduction in the performance gain is witnessed for

the 201 compress benchmark, in which case the improvement dropped from over

33% to about 19% over the default VM performance. Overall, we measured an

average improvement of 66% of ideal offline early compilation benefit considering
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the best delay factor for each benchmark.

Figure 7.3. Average performance gain over all benchmarks at dif-
ferent delay factors after removing non-analyzable loops

7.1 Implementation Cost

In order to remain completely transparent to the user, the online profiling ap-

proach described in this work should be implemented entirely at runtime. At the

same time, for dynamic compilation to improve performance, it is critical that

the profiling and decision mechanisms incur low overhead so as to not subsume

the benefits of early compilation. To minimize execution-time overhead while

maintaining complete user transparency, we suggest the following implementation

strategy for our new profiling mechanism: (1) During classfile loading, a simple

analysis pass will scan the input bytecodes to identify and mark loop entry/exit in-

structions for the VM to generate appropriate trace events during interpretation.

Thus, this pass will replace the static analysis and classfile annotation phase cur-

rently performed by Soot during our trace-file simulation (Step 1 of Section 5.1).

If needed, this dynamic analysis pass can be performed in a separate thread (on a
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free core) to minimize overhead in the primary application thread. (2) The next

stage of the profiling mechanism (described in Steps 2-3 of Section 5.1), which

generates the trace information, should require extremely low overhead and can

be performed inline during the interpretation of the main application. The events

generated by this stage will be inserted into a trace queue. (3) The last stage of

our profiling mechanism (described in Section 5.2) is the higher overhead decision

making component that reads (and removes) events from the trace queue and

determines method hotness. This component should, ideally, be implemented in

a separate thread and run on a free core to minimize interference with the main

application execution.

Thus, by minimizing overhead in the main application thread, the above im-

plementation strategy should be able to hide any additional overhead imposed

by our new profiling mechanism on modern machines. Implementation strategies

for online profiling that employ a distinct profiling thread have already been suc-

cessfully attempted in other VMs [2]. At the same time we are also exploring

heuristics to further reduce the profiling overhead, such as only generating events

for loops with large loop bounds to reduce the number of events generated without

significantly affecting the profiler’s view of future behavior. For example, focusing

on loops with an iteration bound greater than 10 reduces the number of dynamic

loops entered by almost 80%, but only drops the best average performance in

Figure 7.3 by 3.4%.
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Chapter 8

Future Work

There are a variety of enhancements that we plan to make in the future.

8.1 Future implementation steps

We are currently implementing our profiling technique along with the best

heuristics found during our current analysis in a real VM using the implementation

strategy suggested in Section 7.1. Actual implementation in the HotSpot VM will

enable us to measure the overhead imposed by our approach, and determine the

potential benefit of a purely online early compile implementation. Following are

the stages in which we plan to proceed with our research:

1. Modify the interpreter to generate the method invocation and loop entry

events, and insert those in a global queue. Measure the performance gain

with this overhead of additional instructions corresponding to the numbers

presented earlier in Figure 7.3. These results will measure the overhead

imposed in the main application thread.

2. We aim to simplify and reduce the events that are necessary to implement
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our post analysis algorithm. We can assign the loop identifiers based on

the nesting level and approximately determine when the loop has exited.

Figure 8.1 shows the example source program and the generated trace file.

The nesting level of the loops can be determined statically and the loop ids

class  TestProgram {
    // MethodID = 100
    public static void main(String args[]) {
        // LoopID = 1000
        for(int i=0 ; i<10 ; i++) {
            int j=0;
            // LoopID = 2000
            while(j < args.length) {
                ...
            }

        // LoopID = 1001
        for(int i=0 ; i<20 ; i++)  {
            ...
        }
    }
}

        }

(a) Java Source Program

f100  $1000 $2000 ... $1001

(b) Partial trace file with reduced events

Figure 8.1. Example Java program and trace file with the reduced
events

can be assigned accordingly. The outer loops are assigned ids starting from

1000. The loops with the nesting level of 2 are assigned ids starting from

2000 and so on. Thus, with the event $1001 in Figure 8.1(b), it can be

inferred that loops $1000 and $2000 have exited and thus exit events need

not be produced. With the trace file containing the reduced set of events, it

would be interesting to check if the simplified events affect the early method

hotness detection ability of the post analysis program.

3. Finally, run the profiler thread on a different core and measure the perfor-

mance by combining the previous steps. This profiler thread will read the
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events from the global queue and run the post analysis algorithm to queue

the methods for compilation as they are detected hot.

8.2 Prediction of early compilation benefit

We are currently trying to implement a model that may help to statically

determine the early compilation benefit possible for a given benchmark.

Let,

N be number of bytecode instructions interpreted during the default run.

n be number of bytecode instructions interpreted during the early compile run.

T be the total execution time of the benchmark for default run.

t be the total execution time of the benchmark for early compile run.

Thus, N − n is the additional number of bytecode instructions that are inter-

preted by the default run over the early compile run. This difference is directly

proportional to the amount of time saved by the early compile technique over the

default, which is T − t. Now, for any other benchmark, if we have N ′ and n′

as number of bytecode instructions interpreted by default and early compile runs

respectively and timesaved’ is the amount of time saved due to early compilation,

then following should hold true:

timesaved′ =
(N ′ − n′) ∗ (T − t)

(N − n)
(8.1)

Note that considering the difference, T − t, makes the equation independent
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of the characteristics of a benchmark.

T = default appl time + compilation time + IOTime

t = early appl time + compilation time + IOTime

The time required to compile the hot methods remain constant for the default

(T) and early (t) compile configurations. Also, the time spent by the benchmark

doing Input-Output operations is the same for both the configurations. Thus, the

difference (T-t) is the amount of application thread time that is saved by the early

compile run.

We have attempted to verify if equation 8.1 holds true for the benchmarks

in our set. But, we found that the experimentally recorded early compile bene-

fit significantly differs from the calculated value. Therefore, we want to further

investigate the factors causing this difference. In Equation 8.1, we make the sim-

plifying assumption that every instruction has the same execution time. But,

this assumption may not be true. Early compilation for some benchmark might

have a greater benefit if it prevents interpretation of more slower bytecode in-

structions than some other benchmark. In the future we will measure the number

of bytecodes saved from interpretation for each type of bytecode to fine tune the

calculation. Secondly, we will also apply the “leave out one cross-validation” tech-

nique to verify the accuracy of this model. That is, we will average out the ratio of

(T-t) and (N-n) over (Nbm−1) benchmarks and use this average value to calculate

the time saved for the left out benchmark. Note that since we are using absolute

times, we need to ensure that all the benchmarks run on the same machine.
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8.3 Miscellaneous future work

We are working to expand our benchmark set to include newer and greater

number of programs. In fact, preliminary results on the SPECjvm2008 bench-

marks show an ideal performance improvement of over 10% due to early compila-

tion of hot methods. Second, the success of our approach depends on the ability

to determine loop iteration bounds early and accurately. Therefore, we plan to

evaluate various static and dynamic techniques, along with program transforma-

tions to dynamically analyze Category C loops, as well as expand our existing set

of analyzable loops, and investigate other approaches of detecting future method

hotness behavior. Third, we plan to explore the area of automatically finding the

best delay factor to use on a per-benchmark or even per-method basis to achieve

the most performance benefit. We plan to explore using different confidence mea-

sures for different categories of loops (A, B or C), or use other machine learning

techniques to predict the best delay factors in individual cases. Finally, we be-

lieve that the concept of employing a managed runtime environment to see future

program execution behavior dynamically is the most significant contribution of

this work. Consequently, we plan to apply this technique to other areas, including

garbage collection, security, and other aspects of performance improvement.
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Chapter 9

Conclusion

In conclusion, we can say that our exploration into this novel approach of on-

line profiling shows mixed, but promising, results for selective compilation. We

showed that the current reactive mechanisms to online profiling suffer from major

drawbacks, including incorrect hot method speculation and delays in making the

associated compilation decisions. These drawbacks result in considerable perfor-

mance losses during program startup on our benchmark programs. Our novel

profiling strategy, based on the hypothesis that early knowledge of loop iteration

bound information can allow an online profiler to determine future program be-

havior, producing early and accurate compilation decisions, allows early hotness

detection for most benchmarks, but with several false positives in many cases.

Interestingly, simple heuristics are able to eliminate almost all false positives for

most benchmarks without much degradation in performance. Although further

studies show that our new online profiling approach is feasible for current bench-

marks, the VM may need to add capabilities of analyzing more loops for maximum

benefit. We believe that our suggested plan for online implementation of our new

profiling strategy is practical and cost-effective for current VMs and architectures.
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Additionally, we also believe that the core concept of employing the virtual ma-

chine to understand and exploit future program behavior shows promise, and can

also be applied to several other areas of computer science.
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