
Understanding Optimization Phase

Interactions to Reduce the Phase Order

Search Space

Michael R. Jantz

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty
of the University of Kansas School of Engineering in partial

fulfillment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Perry Alexander

Dr. Andy Gill

Date Defended

The Thesis Committee for Michael R. Jantz certifies

That this is the approved version of the following thesis:

Understanding Optimization Phase Interactions to Reduce the Phase

Order Search Space

Committee:

Chairperson

Date Approved

i

Acknowledgements

Thank you all.

ii

Abstract

Compiler optimization phase ordering is a longstanding problem, and is of

particular relevance to the performance-oriented and cost-constrained domain of

embedded systems applications. Optimization phases are known to interact with

each other, enabling and disabling opportunities for successive phases. Therefore,

varying the order of applying these phases often generates distinct output codes,

with different speed, code-size and power consumption characteristics. Most cur-

rent approaches to address this issue focus on developing innovative methods to

selectively evaluate the vast phase order search space to produce a good (but,

potentially suboptimal) representation for each program.

In contrast, the goal of this thesis is to study and reduce the phase order search

space by: (1) identifying common causes of optimization phase interactions across

all phases, and then devising techniques to eliminate them, and (2) exploiting nat-

ural phase independence to prune the phase order search space. We observe that

several phase interactions are caused by false register dependence during many

optimization phases. We explore the potential of cleanup phases, such as register

remapping and copy propagation, at reducing false dependences. We show that

innovative implementation and application of these phases not only reduces the

size of the phase order search space substantially, but can also improve the quality

of code generated by optimizing compilers. We examine the effect of removing

cleanup phases, such as dead assignment elimination and dead code elimination,

which should not interact with the other compiler phases, from the phase order

search space. Finally, we show that reorganization of the phase order search into

a multi-staged approach employing sets of mutually independent optimizations

can reduce the search space to a fraction of its original size without sacrificing

performance.

iii

Contents

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

2 Related Work 6

3 Background 10

3.1 Attempted Optimization Phase Order Space 10

3.2 Categorization of the Phase Ordering Problem 11

3.3 Our Approach . 12

4 Experimental Setup 15

4.1 The VPO Compiler . 15

4.2 Optimization Space Details . 16

4.3 Our Benchmark Set . 20

4.4 Setup for Search Space Exploration 20

4.5 The Testing Framework . 22

5 False Phase Interactions 24

5.1 Examples of Phase Interactions 25

5.2 Effect of Register Pressure on Phase Order Space and Performance 27

5.3 Measuring the Effect of False Register Dependence 30

iv

5.3.1 Reg. Remapping to Reduce the Phase Order Search Space 30

5.3.2 Copy Propagation to Reduce the Phase Order Search Space 34

5.3.3 Combining Register Remapping and Copy Propagation . . 36

5.4 Eliminating False Register Dependence on Real Architectures . . 37

5.4.1 Reducing the Search Space with Copy Propagation 37

5.4.2 Improving Performance with Localized Register Remapping 39

6 Phase Independence 44

6.1 Eliminating Cleanup Phases . 45

6.2 Eliminating Branch Optimizations 48

6.3 Multi-stage Phase Order Searches 51

6.3.1 The Multi-Stage Approach 52

6.3.2 Automatic Set Partitioning 53

7 Future Work 57

8 Conclusions 59

References 61

v

List of Figures

3.1 Optimization phase order search space DAG 13

5.1 True phase interaction example 25

5.2 Register remapping eliminates false register dependence 26

5.3 Copy propagation eliminates false register dependence 26

5.4 Search space sizes with different numbers of available registers . . 29

5.5 Effect of register remapping (512 registers) 31

5.6 Non-orthogonal use of registers affects register-remapped code . . 33

5.7 Effect of copy propagation (512 registers) 35

5.8 Effect of register remapping with copy propagation (512 registers) 36

5.9 Effect of copy propagation (16 registers) 38

5.10 Effect of aggressive localized register remapping (16 registers) . . . 40

5.11 Effect of conservative localized register remapping (16 registers) . . 41

5.12 Effect of localized register remapping on batch performance 42

5.13 Register remapping disables some optimization opportunities . . . 43

6.1 Effect of removing DAE . 45

6.2 Non-orthogonal use of registers affects space with DAE removed . 46

6.3 Effect of removing branch optimizations 49

6.4 Branch optimization interaction 50

6.5 Effect of multi-stage phase order search 52

6.6 Independence table . 54

7.1 Phase interaction between instruction selection and CSE 58

vi

List of Tables

3.1 Example phase order search space 11

4.1 Candidate Optimization Phases Along with their Designations . . 17

4.2 MiBench Benchmarks Used in the Experiments 21

vii

Chapter 1

Introduction

Compiler optimization phase ordering and selection have been longstanding

and persistent problems for compiler writers and users alike [9, 23, 26]. Current

compilers typically contain several different optimization phases. Each optimiza-

tion phase applies a sequence of transformations to improve the quality of the

generated code for some measure of performance, such as speed, code-size or

power consumption. Optimization phases require specific code patterns and/or

availability of architectural registers to do their work. Consequently, phases in-

teract with each other by creating or destroying the conditions necessary for the

successful application of successive phases. Unfortunately, no single ordering of

optimization phases is able to produce the best code for all programs in any in-

vestigated compiler [7, 16, 20, 25, 27]. Instead, the ideal phase sequence depends

on the characteristics of the code being compiled, the compiler implementation,

and the target architecture.

Most conventional compilers are plagued with the problem of determining the

ideal sequence or ordering of optimization phases to apply to each function or

program so as to maximize the gain in either speed, code-size, power, or any

1

combination of these performance constraints. Furthermore, the potentially large

performance difference between the code produced by different phase sequences

can have major implications on the cost (e.g., memory size) or power requirements

of the application. Such implications make finding a good set and ordering of

optimization phases very attractive in performance-critical application domains

such as embedded systems.

The most common solution to the phase ordering problem employs iterative

search algorithms to evaluate the performance of the codes produced by many

different phase sequences and select the best one. Although this process may take

longer than traditional compilation, longer compilation times are often acceptable

when generating code for embedded systems. Many embedded system developers

attempt to build systems with just enough compute power and memory as is

necessary for the particular task. Most embedded systems are also constrained

for power. Thus, reducing the speed, code size, and/or power requirements is

extremely crucial for embedded applications, as reducing the processor or memory

cost can result in huge savings for products with millions of units shipped.

However, the large number of optimization phases typically available in cur-

rent compilers results in extremely large phase order search spaces that are either

infeasible or impractical to exhaustively explore [22]. Optimization phase order-

ing/selection search spaces in current compilers have been reported to consist in

excess of 1532 [18], or 1610 [2], or 260 [14] unique phase sequences. Therefore,

reducing the compilation time of iterative phase order space search is critical to

harnessing the most benefits from modern optimizing compilers. Shorter iterative

compilation times can be accomplished by two complementary approaches: (1)

develop techniques to reduce the phase order search space itself, or (2) devise new

2

search strategies that can perform a more intelligent but partial exploration of

the search space. Most recent and existing research effort is solely focused on the

second approach, and attempts to employ statistical or machine learning meth-

ods, along with enhanced correlation techniques to restrict the number of phase

sequences that are reached and require evaluation during the iterative search. By

contrast, the goal of this research is to analyze and address the most common

optimization phase interactions, and then to develop solutions that can substan-

tially reduce the phase order search space. We believe that such reduction will not

only make exhaustive phase order searches more practical, but also enable better

predictability and efficiency for intelligent heuristic searches.

Registers are an important resource during the application of many optimiza-

tion phases, especially in a compiler backend. It is well recognized that the limited

number of registers causes several phase interactions and ordering issues [3, 13].

Interestingly, our analysis of the phase order search space found that many such

phase interactions are not caused by register contention, but exist due to false de-

pendences between and during phase transformations that reuse the same register

numbers. In this study, we devise approaches to explore the extent and impact of

this issue on the phase order search space size and generated code performance.

We find that techniques to reduce false register dependences between phases has

a huge limiting effect of the size of the search space. Furthermore, we find that

reducing false dependences during phases can also provide additional optimiza-

tion opportunities and result in improving the quality of the code produced by

such phases. Thus, the work presented in this thesis shows promise to not only

improve the state of iterative compilation but also provide guidelines for compiler

implementations to generate higher-quality code.

3

Another issue is how to organize exhaustive phase order searches to exploit

independent phases to drastically reduce the size of the search space while still

generating code that performs as well as the code produced by the näıve phase

order search. We investigate two complementary techniques to reorganize the

phase order searches: eliminate cleanup phases from the phase order search, and

multi-stage phase order searches with mutually independent sets of phases in each

stage. Cleanup phases, such as dead assignment elimination and dead code elimi-

nation (see Table 4.1), assist other phases by cleaning junk instructions and blocks

left behind by other code transforming optimizations. As such, we attempted to

remove such phases from the set used during the näıve phase order searches and

implicitly apply them after every phase. We find that applying cleanup phases

outside the phase order search does not affect the quality of the code generated

in most cases, but results in substantially smaller exhaustive phase order search

spaces.

For our next technique, we first employes compiler writers’ knowledge to parti-

tion phases into two sets: branch and non-branch optimization phases. Generally,

branch optimizations may interact with other branch phases, but do not interact

with other non-branch optimization phases. We developed a multi-stage exhaus-

tive phase order search algorithm that applies only the branch phases in the first

stage and the branch and non-branch phases in the second stage. We find that

partitioning the phase order seach into searches with branch and non-branch op-

timizations can reduce the phase order search to a fraction of its original size

while still achieving the best overall performing function instance. We then ex-

plore methods for automatically generating set partitions for a multiple stage

phase order search by analyzing the independence relationships between all of the

4

optimizations in our compiler.

Thus, the major contributions of this thesis are:

1. This is the first research to analyze the optimization phase interactions to

reduce the phase order search space and improve code quality.

2. We show that the problem of false register dependence is different from

register pressure issues, and significantly impacts the size of the phase order

search space.

3. We develop techniques to reduce false register dependence that substantially

shrink the search space size and improve the quality of code generated by

compiler optimizations.

4. We show that removing cleanup phases from the phase order search does

not affect the quality of generated code, but significantly reduces the size of

the search space.

5. We show that partitioning the optimization phase set into groups of mutually-

independent phases and applying a multiple stage phase order search can

reduce the search space to a fraction of its original size.

6. We identify criteria that may be used to automatically generate optimization

set partitions for a multiple stage phase order search and demonstrate their

use.

5

Chapter 2

Related Work

Issues revolving around optimization phase ordering and selection have been

in the spotlight of compiler optimization research for over three decades, and

as such, there is a wide body of existing research in this area. Older research

studied the interactions between specific pairs of optimization phases. Leverett

noted the interdependence between the phases of constant folding and flow analy-

sis, and register allocation and code generation in the PQCC (Production-Quality

Compiler-Compiler) project [23]. Vegdahl studied the interaction between code

generation and compaction for a horizontal VLIW-like instruction format ma-

chine [26], and suggested various approaches to combine the two phases together

for improved performance in certain situations. The interaction between register

allocation and code scheduling has been studied by several researchers. Suggested

approaches include using postpass scheduling (after register allocation) to avoid

overusing registers [8, 13], and methods to combine the two phases into a single

pass [9]. Earlier research has also studied the interaction between register alloca-

tion and instruction selection [3], and suggested using a common representation

language for all the phases of a compiler, allowing them to be re-invoked repeat-

6

edly to take care of several such phase re-ordering issues. Most of these research

works studied, what we call, true phase interactions between pairs of optimization

phases. On the other hand, we focus on eliminating false phase interactions that

exist due to naive implementation of optimization phases in the entire compiler

backend.

Strategies to address the phase ordering problem generally pursue one of two

paths: a model-driven approach or an empirical approach. A model-driven or

analytical approach attempts to determine the properties of optimization phases,

and then use some of these properties at compile time to decide what phases to

apply and how to apply each phase. Some such studies use static and dynamic

techniques to determine the enabling and disabling interactions between optimiza-

tion phases. Such observations allow researchers to construct a single compromise

phase ordering offline [27,28] or generate a batch compiler that can automatically

adapt its phase ordering at runtime for each application [18]. However, none of

these works made any attempt to understand the causes behind those phase inter-

actions. Follow-up work on the same topic has seen the use of additional analytical

models, including code context and resource (such as cache) models, to determine

and predict other properties of optimization phases such as the impact [29], and

the profitability of optimizations [30]. Even after substantial progress, the fact

remains that properties of optimization phases, as well as the relations between

them are, as yet, poorly understood, and model-driven approaches find it hard to

predict the best phase ordering in most cases.

With the growth in computational power, the most popular methods to re-

solve all optimization application issues involve empirical approaches. Researchers

have observed that exhaustive evaluation of the phase order search space to find

7

the optimal function/program instance, even when feasible, is generally too time-

consuming to be practical. Therefore, most research in addressing phase ordering

employs iterative compilation to partially evaluate a part of the search space that

is most likely to provide good solutions. Many such techniques use machine learn-

ing algorithms, such as genetic algorithms, hill-climbing, simulated annealing and

predictive modeling to find effective (but, potentially suboptimal) optimization

phase sequences [1, 2, 7, 14, 15, 20, 21]. Other approaches employ statistical tech-

niques such as fractional factorial design and the Mann-Whitney test to find the

set of optimization flags that produce more efficient output code [4, 12, 24]. Re-

searchers have also observed that when expending similar effort most heuristic

algorithms produce comparable quality code [2,21]. The results presented in this

thesis can enable iterative searches to operate in smaller search spaces, allowing

faster and more effective phase sequence solutions.

Investigators have also developed algorithms to manage the search time during

iterative searches. Static estimation techniques have been employed to avoid ex-

pensive program simulations for performance evaluation [6, 22, 25]. Agakov et al.

characterized programs using static features and developed adaptive mechanisms

using statistical correlation models to reduce the number of sequences evaluated

during the search [1]. Kulkarni et al. employed several pruning techniques to

detect redundant phase orderings to avoid over 84% of program executions during

their genetic algorithm search [17]. However, in contrast to our approach, none of

these methods make any attempt to understand phase interactions and alter the

actual search space itself.

Research has also been conducted to completely enumerate and explore com-

ponents of the phase order search space. In the next chapter, we describe our

8

earlier work that used several novel concepts enabling us to exhaustively evalu-

ate the entire optimization phase order search space over all available phases in

our compiler for most functions in our embedded systems benchmarks [18,19,22].

Some other work has attempted enumerations of search spaces over a small subset

of available optimizations [2]. Each of these enumerations typically required sev-

eral processor months even for small programs. Most of these research efforts have

found the search space to be highly non-linear, but with many local minima that

are close to the global minimum [2, 15, 21]. Such analysis has helped researchers

devise better heuristic search algorithms. We believe that our present work to

understand and reduce the phase order search space will further benefit all such

exhaustive enumeration schemes.

9

Chapter 3

Background

In this chapter we provide an overview of the phase ordering/selection prob-

lems, and define some terminology. This overview will be followed by a description

of our interpretation of this problem, and an overview of the algorithm we use to

enumerate the phase order search space.

3.1 Attempted Optimization Phase Order Space

In its most basic form, the definition of the problem of optimization phase

ordering can be very broad. Any possible combination and ordering of optimiza-

tions of unbounded length, including unrestricted phase repetitions, can constitute

valid sequences of optimization phases. For example, considering three optimiza-

tion phases, a, b, and c, the search space will include points corresponding to the

sequences shown in Table 3.1.

Thus, such a näıve interpretation of the phase ordering problem can, indeed,

lead to a huge search space. The possibility of optimization phases enabling each

other results in phases being active multiple times in the same sequence. Conse-

10

Attempted Search Space

<no opts> a c b b a
a b a c c a
b b c a c b
c c a b a b c a b c
a b c b a a b a c b a b a ...
a c a b a c c c a b b a c ...
b c b b c
a b c

Table 3.1. The unbounded attempted phase order space for three
optimization phases, a, b, and c. Phases colored in red are sub-
categorized in the phase selection search space. Phases colored in green
are sub-categorized in the phase ordering search space. Sequence a b
c belongs to both sub-categories.

quently, the naive optimization phase order search space is virtually unbounded.

3.2 Categorization of the Phase Ordering Problem

Clearly, searching for a good optimization sequence in the naive phase or-

der search space will be overly complicated, time-consuming, and, in theory, can

proceed ad infinitum. To simplify common search strategies, most existing re-

search efforts divide the problem (and by consequence, the search space) into two

sub-categories by placing restrictions on what sequences are considered.

Phase Selection Problem : Phase sequences are not allowed to re-order op-

timization phases. Thus, a default phase order is considered. Phases can

be turned on or off, mirroring the compile-time flags provided with several

conventional compilers, such as gcc [10]. Phase sequences colored in red in

Table 3.1 will fall under this categorization.

Phase Ordering Problem : The simplified view of the phase ordering problem

assumes a default sequence length, either greater [7,20] or smaller [1,2] than

11

the number of distinct optimization phases in the compiler. Recognizing the

possibility of phases enabling each other, most approaches allow arbitrary

repetition of phases in each sequence. Thus, the phase sequences colored in

green in Table 3.1 will fall under this categorization for a sequence length

of three.

Even after the division of the basic phase ordering problem, each sub-problem

still involves huge search spaces considering the number of optimizations typically

present in current compilers (60 in gcc [14], 82 in SUIF [1]). Evaluating all these

search points for each program seems impossible, or at least extremely hard and

overly time-consuming. Researchers, therefore, use novel search strategies along

with probabilistic and machine-learning heuristics to (intelligently) evaluate only

a portion of the search space, and find a good per-application-specific phase se-

quence.

3.3 Our Approach

For this work, we will use the same technique described by Kulkarni et al. [22]

to enumerate the phase order search space. Most approaches to address the phase

ordering and phase selection problems attempt to evaluate the performance of

code generated by different optimization phase sequences without accounting for

the fact that many such sequences may produce the same code (function instance).

Another way of interpreting the phase ordering/selection problem is to enumerate

all possible function instances that can be produced by any combination of opti-

mization phases for any possible sequence length. This interpretation of the phase

ordering problem allows us to view the phase ordering search space as a directed

acyclic graph (DAG) of distinct function instances. Each DAG is function or pro-

12

gram specific, and may be represented as in Figure 3.1 for a hypothetical program

and for the three optimization phases, a, b, and c. Nodes in the DAG represent

function instances, and edges represent transition from one function instance to

another on application of an optimization phase. The unoptimized function in-

stance is at the root. Each successive level of function instances is produced by

applying all possible phases to the distinct nodes at the preceding level. It is as-

sumed in Figure 3.1 that no phase can be successful multiple times consecutively

without any intervening phase(s) in between. The algorithm terminates when no

additional phase is successful in creating a new distinct function instance.

a

a a

a

b c

b c

c b c

b

b

c b

1

2 3 4

5 6 7 8

9 10 11 12

13

Figure 3.1. Optimization phase order search space DAG for a hy-
pothetical program and compiler with three phases

Thus, our approach to addressing the phase application problem: (1) tackles

the problem in its most basic form with no bounds or restrictions on the optimiza-

tion search space, (2) subsumes the phase selection and phase ordering problems,

both of which were earlier individually considered intractable, and (3) most im-

portantly, can make it possible to generate/evaluate the entire search space, and

determine the optimal function instance. Thus, any phase sequence from Table 3.1

13

can be mapped to a node in the DAG of Figure 3.1. This space of all possible

distinct function instances for each function/program is, what we call, the actual

optimization phase order search space.

14

Chapter 4

Experimental Setup

4.1 The VPO Compiler

The work in this thesis uses the Very Portable Optimizer (VPO) [3], which

was a part of the DARPA and NSF co-sponsored National Compiler Infrastructure

project. VPO is a compiler back end that performs all its optimizations on a single

low-level intermediate representation called RTLs (Register Transfer Lists). Since

VPO uses a single representation, it can apply most analysis and optimization

phases repeatedly and in an arbitrary order. VPO compiles and optimizes one

function at a time. This is important for the current study since restricting the

phase ordering problem to a single function, instead of the entire file, helps to make

the optimization phase order space more manageable. VPO has been targeted to

produce code for a variety of different architectures. For this study we used the

compiler to generate code for the StrongARM SA-100 processor using Linux as

its operating system.

15

4.2 Optimization Space Details

Table 4.1 describes each of the 15 optional code-improving phases that we used

during our exhaustive exploration of the optimization phase order search space. In

addition, VPO also employs two compulsory phases, register assignment and fix

entry-exit, that must be performed. Register assignment assigns pseudo registers

to hardware registers.1 In our experiments VPO implicitly performs register as-

signment before the first code-improving phase in a sequence that requires it. Fix

entry-exit calculates required stack space, local/argument offsets, and generates

instructions to manage the activation record of the runtime stack. The compiler

applies fix entry-exit after performing the last optional code-improving phase in

a sequence.

Two other optimizations, merge basic blocks and eliminate empty blocks, were

removed from the optional optimization list used for the exhaustive search since

these optimizations only change the internal control-flow representation as seen by

the compiler, do not touch any instructions, and, thus, do not directly affect the

final generated code. These optimizations are now implicitly performed after any

transformation that has the potential of enabling them. Finally, after applying

fix entry-exit, the compiler also performs predication and instruction scheduling

before the final assembly code is produced. These last two optimizations should

be performed late in VPO’s compilation process, and so are not included in the

set of phases used for exhaustive optimization space enumeration.

A few dependences between some optimization phases in VPO makes it illegal

for them to be performed at certain points in the optimization sequence. The

1In VPO, pseudo registers only represent temporary values and not variables. Before register
allocation, all program variables are assigned space on the stack.

16

Optimization
Phase

Code Description

branch chaining b Replaces a branch/jump target with the target of the
last jump in the chain.

common subex-
pression elimi-
nation

c Performs global analysis to eliminate fully redundant
calculations, which also includes global constant and
copy propagation.

dead code elimi-
nation

d Removes basic blocks that cannot be reached from the
function entry block.

loop unrolling g To potentially reduce the number of comparisons and
branches at run time and to aid scheduling at the cost
of code size increase.

dead assignment
elimination

h Uses global analysis to remove assignments when the
assigned value is never used.

block reordering i Removes a jump by reordering blocks when the target
of the jump has only a single predecessor.

loop jump mini-
mization

j Removes a jump associated with a loop by duplicating
a portion of the loop.

register alloca-
tion

k Uses graph coloring to replace references to a variable
within a live range with a register.

loop transfor-
mations

l Performs loop-invariant code motion, recurrence elimi-
nation, loop strength reduction, and induction variable
elimination on each loop ordered by loop nesting level.

code abstraction n Performs cross-jumping and code-hoisting to move iden-
tical instructions from basic blocks to their common pre-
decessor or successor.

evaluation order
determination

o Reorders instructions within a single basic block in an
attempt to use fewer registers.

strength reduc-
tion

q Replaces an expensive instruction with one or more
cheaper ones. For this version of the compiler, this
means changing a multiply by a constant into a series
of shift, adds, and subtracts.

branch reversal r Removes an unconditional jump by reversing a condi-
tional branch when it branches over the jump.

instruction
selection

s Combines pairs or triples of instructions that are are
linked by set/use dependencies. Also performs constant
folding.

useless jump re-
moval

u Removes jumps and branches whose target is the follow-
ing positional block.

Table 4.1. Candidate Optimization Phases Along with their Desig-
nations

17

first restriction is that evaluation order determination can only be performed be-

fore register assignment. Evaluation order determination is meant to reduce the

number of temporaries that register assignment later allocates to registers. Also,

in some of our current experiments (presented in Chapter 5), evaluation order

determination is always performed implicitly as part of register assignment. We

do not believe this combination significantly affects the results of this study, but

we removed this restriction in our later experiments. VPO also restricts some

optimizations that analyze values in registers, such as loop unrolling, loop strength

reduction, induction variable elimination and recurrence elimination, to be per-

formed after register allocation. Many of these phases depend on the detection of

basic induction variables and VPO requires these to be in registers before they

are detected. These phases can be performed in any order after register alloca-

tion is applied. Register allocation itself can only be effective after instruction

selection so that candidate load and store instructions can contain the addresses

of arguments or local scalars. Finally, there are a set of phases that require the

allocation of registers and must be performed after register assignment.

VPO is a compiler back end. Many other optimizations not performed by

VPO, such as loop tiling/interchange, inlining, and some other interprocedural

optimizations, are typically performed in a compiler frontend, and so are not

present in VPO. We also do not perform ILP (frequent path) optimizations since

the ARM architecture, our target for this study, is typically implemented as a

single-issue processor and ILP transformations would be less beneficial. In addi-

tion, frequent path optimizations require a profile-driven compilation process that

would complicate this study. In this study we are investigating only the phase

ordering problem and do not vary parameters for how phases should be applied.

18

For instance, we do not attempt different configurations of loop unrolling, but

always apply it with a loop unroll factor of two since we are generating code for

an embedded processor where code size can be a significant issue.

It is important to realize that all optimization phases in VPO, except loop

unrolling can be successfully applied only a limited number of times. Successful

application of each phase depends on the presence of both the program inefficiency

targeted by that phase, as well as the presence of architectural features required

by the phase. Thus, (1) register allocation is limited (in the number of times it

can be successfully applied) by the number of live ranges in each function. (2)

Loop invariant code motion is limited by the number of instructions within loops.

(3) Loop strength reduction converts regular induction variables to basic induction

variables, and there are a limited number of regular induction variables. (4) There

are a set of phases that eliminate jumps (branch chaining, block reordering, loop

jump minimization, branch reversal, useless jump removal), and these are limited

by the number of jumps in each function. (5) Common subexpression elimina-

tion is limited by the number of calculations in a function. (6) Dead assignment

elimination is limited by the number of assignments. (7) Instruction selection

combines instructions together and is limited by the number of instructions in a

function. (8) Induction variable elimination is limited by the number of induction

variables in a function. (9) Recurrence elimination removes unnecessary loads

across loop iterations and is limited by the number of loads in a function. (10)

Code abstraction is limited by the number of instructions in a function.

Loop unrolling is an optimization that can be attempted an arbitrary number

of times, and can produce a new function instance every time. We restrict loop

unrolling to be attempted only once for each loop. This is similar to the restriction

19

placed on loop unrolling in most compilers. Additionally, optimizations in VPO

never undo the changes made by another phase. Even if they did, our approach

could handle this since the function instance graph (explained in Section 3.3)

would no longer be a DAG, and would contain cycles. Thus, for any function, the

number of distinct function instances that can be produced by any possible phase

ordering of any (unbounded) length is finite, and exhaustive search to enumerate

all function instances should terminate in every case.

4.3 Our Benchmark Set

For these experiments we used a subset of the benchmarks from the MiBench

benchmark suite, which are C applications targeting specific areas of the embed-

ded market [11]. We selected two benchmarks from each of the six categories

of applications in MiBench. Table 4.2 contains descriptions of these programs.

The first two columns in Figure 4.2 show the benchmarks we selected from each

application category in MiBench. The next column displays the number of lines

of C source code per program, and the last column in Figure 4.2 provides a short

description of each selected benchmark. VPO compiles and optimizes individ-

ual functions at a time. The 12 benchmarks selected contained a total of 246

functions, out of which 86 were executed with the input data provided with each

benchmark.

4.4 Setup for Search Space Exploration

Our goal in this research is to understand optimization phase interactions and

their effect on the size of the phase order search space. Therefore, we implement

20

Category Program #Lines Description

auto bitcount 584 test processor bit manipulation abilities
qsort 45 sort strings using the quicksort sorting algo-

rithm
network dijkstra 172 Dijkstra’s shortest path algorithm

patricia 538 construct patricia trie for IP traffic
telecomm fft 331 fast fourier transform

adpcm 281 compress 16-bit linear PCM samples to 4-bit
samples

consumer jpeg 3575 image compression and decompression
tiff2bw 401 convert color tiff image to b&w image

security sha 241 secure hash algorithm
blowfish 97 symmetric block cipher with variable length

key
office string-search 3037 searches for given words in phrases

ispell 8088 fast spelling checker

Table 4.2. MiBench Benchmarks Used in the Experiments

the framework to generate exhaustive per-function phase order search spaces us-

ing all of VPO’s 15 reorderable optimization phases, as proposed by Kulkarni et

al. [22]. Redundancy detection employed by this algorithm enables us to prune

away significant portions of the phase order search space, and allows exhaustive

search space enumeration for most (96%) of the functions in our benchmark suite

with the default compiler configuration.

As mentioned above, our compiler generates code for the StrongARM SA-100

processor using Linux as its operating system. Even though native execution of

the benchmarks on the ARM system to measure dynamic runtime performance

would be ideal, we were not able to do so due to resource constraints. Mainly, we

did not have access to an ARM machine that runs Linux, and which also supports

our compilation framework. Secondly, ARM machines are considerably slower

than state-of-the-art x86 machines, so performing hundreds of long-running ex-

21

periments will require a significant number of custom ARM machines, which was

infeasible for us to arrange. Therefore, we used the SimpleScalar set of func-

tional and cycle-accurate simulators [5] for the ARM to get dynamic performance

measures.

Invoking the cycle-accurate simulator for evaluating the performance of ev-

ery distinct phase sequence produced by the search algorithm is prohibitively

expensive. Therefore, we have adopted another technique that can provide quick

dynamic instruction counts for all function instances with only a few program

simulations per phase order search [6, 22]. In this scheme, program simulation is

only needed on generating a function instance with a yet unseen control-flow to

determine the number of times each basic block in that control-flow is reached

during execution. Then, dynamic performance is calculated as the sum of the

products of each block’s execution count times the number of static instructions

in that block. Interestingly, researchers have also shown that dynamic instruction

counts bear a strong correlation with simulator cycles for simple embedded pro-

cessors [22]. Note also, that the primary goal of this work is to uncover further

redundancy in the phase order search space and reduce the time for phase order

searches, while still producing the original best phase ordering code. Our dynamic

counts are primarily used to validate such performance comparisons.

4.5 The Testing Framework

As this study developed, and we continued to add more benchmark functions,

new compiler configurations, and more sophisticated data processing, we eventu-

ally built a centralized testing framework to manage our experiments. We mod-

ified VPO to accept a configuration file specifying different VPO configuration

22

options (e.g. what type of experiment to run) as well as which function in which

benchmark to compile. We wrote scripts to automate generation of the VPO

configuration files, as well as scripts to aggregate and analyze the resultant data

files. We also have access to a high performance computing cluster to run our

compute-intensive experiments. The Bioinformatics Cluster at the Information

and Telecommunication Technology Center (ITTC) at the University of Kansas

contains 176 nodes (with 4GB to 16GB of main memory on each node) and 768

total processors (with frequencies ranging from 2.8GHz to 3.2GHz). With this

computing power combined with our testing framework, we were able to paral-

lelize the phase order searches by running many different searches on individual

nodes of the cluster. Each set of experiments can be completely described within

a configuration file, and our python-based scripts are able to start many simulta-

neous search space exploration runs for each configuration with only a few short

commands. Moreover, this framework also allows us to check the status of runs on

different cluster nodes, stop and restart experiments on the fly, and automatically

accumulate and analyze the results after finishing each set of runs.

Despite the available computing power, enumerating the phase order search

space for some functions was still not possible. Search space enumerations that

took longer than two weeks to gather or that generated raw data files larger than

the maximum allowed on our 32-bit system (2.1GB) were simply stopped and

discarded.

23

Chapter 5

False Phase Interactions

Architectural registers are a key resource whose availability, or the lack thereof,

can affect (enable or disable) several compiler optimization phases. It is well-

known that the limited number of available registers in current machines and the

requirement for particular program values (like arguments) to be held in specific

registers hampers compiler optimizations and is a primary cause for the phase or-

dering problem [3]. In this chapter, we describe and explain our findings regarding

the effect of register availability and assignment on phase interactions, and the

impact of such interactions on the size of the phase order search space.

Towards this goal, we employed the algorithm outlined in Section 3.3 to gener-

ate the exhaustive phase order search spaces for a few of our benchmark functions.

We also designed several scripts to assist our manual study of these search spaces

to detect and analyze the most common phase interactions. Surprisingly, we ob-

served that many individual phase interactions occur, not due to conflicts caused

by limited number of available registers, but by the particular register numbers

that are used in surrounding instructions. Different phase orderings can assign

different registers to the same program live ranges. These different register assign-

24

 1. r[34] = r[13] + .elem_1;

 3. PC = L16;
L15:
 4. r[34] = r[13] + .elem_2;
 5. r[34] = Load[r[34]];
L16:
 . . .

 2. r[34] = Load[r[34]];

(a). original code

 3. PC = L16;
L15:

L16:
 . . .

 2. r[34] = Load[r[13] + .elem_1];

 5. r[34] = Load[r[13] + .elem_2];

(b). common subexpression
 elimination followed by
 code abstraction

 1. r[34] = r[13] + .elem_1;

 3. PC = L16;
L15:
 4. r[34] = r[13] + .elem_2;

L16:
 6. r[34] = Load[r[34]];
 . . .

(c). code abstraction followed
 by common subexpression
 elimination

Figure 5.1. True phase interaction between common subexpression
elimination and code abstraction

ments sometimes result in false register dependences that disable optimization op-

portunities for some phase orderings while not for others, and cause optimizations

applied in different orders to produce distinct codes. We call phase interactions

that are caused by false register dependences as false interactions. Such false in-

teractions are often quite arbitrary and not only impact the search space size, but

also make it more difficult for manual and intelligent heuristic search strategies to

predict good phase orderings.

5.1 Examples of Phase Interactions

Figure 5.1 shows an example of a true phase interaction between common

subexpression elimination (CSE) and code abstraction.1 Figure 5.1(a) shows the

code before applying either of these two phases. Figures 5.1(b) and 5.1(c) show

code instances that are produced by applying CSE and code abstraction in dif-

ferent orders. Applying CSE to the code in Figure 5.1(a) propagates the values

stored in r[34] in instructions 1 & 4 forward to instructions 2 & 5 to produce

1The description of these phases can be found in Table 4.1.

25

5. r[12] = Load[r[] + (r[12]{2)];0

1. r[12] = r[12] − 8;
2. r[1] = r[12];
3. r[1] = r[1]{2;
4. r[12] = r[13] + .LOC;
5. r[12] = Load[r[12] + r[1]];

(a). original code

2. r[1] = r[12] − 8;

4. r[12] = r[13] + .LOC;
5. r[12] = Load [r[12] + (r[1]{2)];

(b) instruction selection
 followed by common
 subexpression elimination

1. r[12] = r[12] − 8;

3. r[1] = r[12]{2;
4. r[12] = r[13] + .LOC;
5. r[12] = Load[r[12] + r[1]];

(c) common subexpression

 by instruction selection
 elimination followed

1. r[12] = r[12] − 8;

 removes false register
 dependence

(d) register remapping

4. r[] = r[13] + .LOC;0

Figure 5.2. Register remapping eliminates false register dependence

1. r[18] = Load [L1];

5. r[5] = Load [r[18]];

2. r[7] = r[18];
1. r[18] = Load [L1];

5. r[5] = Load [r[18]];

2. r[7] = Load[L1];

5. r[5] = Load[r[7]];

1. r[18] = Load [L1];
2. r[7] = r[18];
3. r[21] = r[7];
4. r[24] = Load[r[21]];
5. r[5] = r[24];

18

(d) copy propagation
 removes false register
 dependence

(b) instruction selection
 followed by common
 subexpression elimination

(c) common subexpression

 by instruction selection
 elimination followed

(a). original code

6. = r[7]; 6. = r[7]; 6. = r[7]; 6. = r[];

Figure 5.3. Copy propagation eliminates false register dependence

the code shown in Figure 5.1(b). However, applying code abstraction to the code

in Figure 5.1(a) (before CSE) identifies the duplicate r[34] = Load[r[34]]; in-

structions as an opportunity for cross jumping and moves this instruction into the

block labeled L16. This transformation disables CSE and the result is the infe-

rior code shown in Figure 5.1(c). This is an example of a true phase interaction

because it arises from conflicting optimization strategies.

Figures 5.2 and 5.3 illustrate examples of phase interactions between instruc-

tion selection and CSE due to false register dependence. In the first example,

we can see that the code in Figure 5.2(c) is inferior due to the reuse of register

r[12], which prevents instruction selection (applied after CSE) from combining

instructions numbered 3 & 5, and thus leaving an additional instruction in the

generated code. Applying instruction selection before CSE avoids this false reg-

26

ister dependence issue, producing better code in Figure 5.2(b). Similarly, in the

second example shown in Figure 5.3, applying CSE before instruction selection

leaves a redundant copy instruction in the code (Figure 5.3(c)) due to an unfa-

vorable register assignment. Even later and repeated application of optimization

phases are often not able to correct the effects of such register assignments. Thus,

phase interactions due to false register dependences can produce distinct function

instances. Successive optimization phases working on such unique function in-

stances produce even more distinct points in the search space in a cascading effect

that often causes an explosion in the size of the phase order search space. In

the next section, we describe our proposed solution for dealing with false register

dependences.

5.2 Effect of Register Pressure on Phase Order Space and

Performance

We have seen that several optimization phase interactions are caused by differ-

ent register assignments produced by different phase orderings. Such effects can

cause a false register dependence to disable optimization opportunities for some

phase orderings while not for others. False register dependence is often an arti-

fact of the limited number of registers available on most machines. Such register

scarcity forces optimization phases to be implemented in a fashion that reassigns

the same registers often and as soon as they become available. If phases are im-

plemented correctly, then a decrease in register pressure should also reduce false

register dependences. If so, then we should expect the phase order search space

to shrink with increasing register availability. However, a greater number of regis-

ters may also enable additional phase transformations, expanding the phase order

27

search space. In this section we present the first study of the effect of different

numbers of available registers on the size of the phase order search space and the

performance of the best code that is generated.

The ARM architecture provides 16 general-purpose registers, of which three

are reserved by VPO (stack pointer, program counter, and link register). We mod-

ified the VPO compiler to produce code with several other register configurations

ranging from 24 to 512 available registers. With the default VPO configuration,

we are able to measure the phase order search space size for 236 (out of 246 total)

benchmark functions. Given our processing time and speed limitations, we find

the phase order search space for the remaining ten functions to be too vast to

exhaustively explore. With our additional register configurations, there are two

more functions that cannot be exhaustively evaluated because of size and / or time

constraints. Thus, we measured and compared the search space size in all register

configurations for 234 of our benchmark functions. Since the code generated by

VPO with the other illegal register configurations cannot be simulated, we used a

novel strategy to evaluate code performance in such cases. As described earlier in

Section 4.4, measuring dynamic performance during our search space exploration

only requires program simulations for instances with unseen basic block control-

flows. Our performance evaluation strategy stores all the control-flow information

generated for each function during its exhaustive search space search with 16 reg-

isters, and reuses that information to collect dynamic performance results during

the other illegal VPO register configurations. We found that no additional con-

trol flows were generated for 73 of the 79 executed benchmark functions we were

able to gather for these other VPO configurations. Thus, our scheme allows us to

measure and compare the dynamic performance for 73 executed functions in all

28

(a) Search Space Size (b) Functions with Size Differences

Figure 5.4. Search space sizes with different numbers of available
registers

register configurations.

Figure 5.4(a) illustrates the impact of various register configurations on the

size of the phase order search space, averaged over all 234 benchmark functions,

as compared to the default search space size with 16 registers. Thus, we can

see that the search space, on average, increases mildly with increasing number of

available registers, and reaches a steady state when the additional registers are no

longer able to create any further optimization opportunities for any benchmark

functions. Figure 5.4(b) shows the number of functions that notice a difference in

the size of the search space with changing number of available registers. Here, we

see that there are typically more functions that see a search space size decrease

as opposed to a search space size increase, while many functions do not notice

any change in the size of their phase order search space. Performance for most

of the 73 executed functions either improves or remains the same, resulting in an

average improvement of 1.9% in all register configurations over the default.

The overall increase in the search space size indicates that the expansion caused

by additional optimization opportunities generally exceeds the decrease (if any)

caused by reduced phase interactions. In fact, we believe that the current im-

29

plementation of phases in VPO assumes limited registers and naturally reuses

them whenever possible, regardless of register pressure. Therefore, limited num-

ber of registers is not the sole cause for false register dependences. Consequently,

more informed optimization phase implementations may be able to minimize false

register dependences and reduce the phase order search space. We explore this

possibility further in the next two sections.

5.3 Measuring the Effect of False Register Dependence on

the Phase Order Space

Our results in the previous section suggests that current implementation of

optimization phases typically do not account for the effect of unfavorable reg-

ister assignments producing false phase interactions. Rather than altering the

implementation of all VPO optimization phases, we propose and implement two

new transformations in VPO, register remapping and copy propagation, that are

implicitly applied after every reorderable phase during our iterative search space

algorithm to reduce false register dependences between phases. In this section, we

show that removing such false phase interactions can indeed result in a dramatic

reduction in the size of the phase order search space in a compiler configuration

with sufficient (512) number of registers to avoid register pressure issues. In the

next section we adapt and employ our techniques to reduce search space size and

improve performance in the default ARM-VPO configuration with 16 registers.

5.3.1 Register Remapping to Reduce the Phase Order Search Space

Register remapping or renaming reassigns registers to live ranges in a function,

and is a transformation commonly employed before instruction scheduling to re-

30

(a) Search Space Size (b) Performance

Figure 5.5. Register-remapped configuration compared to default
(512 registers). Functions are ordered corresponding to their search
space size with the default VPO configuration (lower numbered func-
tions correspond to smaller search spaces). The rightmost bar displays
the average.

duce false register dependences and increase instruction level parallelism [8]. Fig-

ure 5.2(d) illustrates the effect of applying register remapping (after every phase)

to the code in Figure 5.2(c) to remove the false interaction between instruction

selection and CSE in Figure 5.2. In this study we use 512 available registers to

remap as many of the conflicting live ranges as possible to unique register num-

bers. Figure 5.5(a) shows the effect of implicitly applying register remapping after

every reorderable phase during the exhaustive search space exploration on the size

of the search space for 233 benchmark functions2 (the rightmost bar presents the

average). Thus, our compiler configuration with implicit register remapping is

able to reduce the search space size by 9.5% per function. Interestingly, this

technique has more impact on functions with larger default search spaces. Thus,

summing up the search space over all 233 functions, we find that the number of

total distinct function instances reduces over 13% compared to the default.

Although register remapping cannot directly impact dynamic performance, it

2The search space for one of the original 234 functions with this configuration of VPO took
too long to gather.

31

is an enabling phase that can provide more opportunities to optimizations follow-

ing it. These new opportunities increase the size of the search space for several

functions. Indeed, including register remapping as the 16th reorderable phase in

VPO causes an unmanageable increase in the size of the search space for all func-

tions, preventing the exhaustive phase order searches for many functions from

finishing even after several weeks. Therefore, it seems even more noteworthy that

this transformation can reduce the search space size so substantially even as it

enables more phases.

Of the 73 executed functions whose search spaces could be exhaustively evalu-

ated for dynamic performance counts with the VPO configuration of 512 registers,

65 did not generate a new control flow with register remapping implicitly applied.

Figure 5.5(b) shows the performance of these 65 functions when compared against

the default VPO configuration with 512 registers. From this, we can see that reg-

ister remapping only marginally affects the best code performance found during

the exhaustive phase order search for most functions. For some functions, how-

ever, we found significant performance degradations with register remapping (up

to 28.5% in one case). On average, performance degraded by 1.24%.

Detailed analysis of these performance degradations suggests that most of

these issues stem from non-orthogonal use of registers and implementation of

optimization phases in compilers. It is often the case that a system’s ABI requires

that certain values be held in specific registers at certain points in the code (e.g.

arguments must be in specific registers before a function call). Such requirements

may lead to performance variations when registers are remapped that would not

exist if all registers were used orthogonally. With our ARM-Linux architecture, the

first four registers (r[0] - r[3]) are used to hold arguments to function calls and

32

6. Load[r[13] + .RESULT] = r[0];
5. ST = strcmp;
4. r[1] = Load [r[13] + .ELEM_2];
3. r[0] = Load [r[13] + .ELEM_1];

7. r[19] = Load[r[13] + .RESULT];
8. c[0] = r[19] ? 0;

1. Load [r[13] + .ELEM_1] = r[21];
2. Load [r[13] + .ELEM_2] = r[22];

5. ST = strcmp;

7. r[19] = r[0];
8. c[0] = r[19] ? 0;

3. r[0] = r[0];
4. r[1] = r[12];

1. r[0] = r[21];
2. r[12] = r[22];

6. r[18] = r[0];

8. c[0] = r[0] ? 0;

4. r[1] = r[12];
5. ST = strcmp;
6. r[18] = r[0];

1. r[0] = r[21];
2. r[12] = r[22];

 before register allocation
(d) remapped code

 after register allocation
(e) remapped code (f) final remapped code

7. r[12] = Load[r[13] + .RESULT];
8. c[0] = r[12] ? 0;

6. Load[r[13] + .RESULT] = r[0];
5. ST = strcmp;
4. r[1] = Load [r[13] + .ELEM_2];
3. r[0] = Load [r[13] + .ELEM_1];

1. Load [r[13] + .ELEM_1] = r[5];
2. Load [r[13] + .ELEM_2] = r[6];

3. r[0] = r[0];
4. r[1] = r[1];

6. r[0] = r[0];
7. r[12] = r[0];

5. ST = strcmp;

1. r[0] = r[5];
2. r[1] = r[6];

8. c[0] = r[12] ? 0;

 before register allocation
(a) non−remapped code (b) non−remapped code

 after register allocation
(c) final non−remapped code

5. ST = strcmp;

8. c[0] = r[0] ? 0;

1. r[0] = r[5];
2. r[1] = r[6];

Figure 5.6. Non-orthogonal use of registers causes performance
degradations in register-remapped code.

r[0] is used to store the return value. Compiler writers often design optimization

phases to be unaware of such calling conventions so that they may be machine

independent. In VPO, all of the reorderable phases in the phase order search

are machine independent, and thus, do not account for the ARM-Linux calling

convention. The epilogue phase fix entry-exit, which is applied immediately before

dynamic instruction counts are recorded for each unique function instance in the

phase order search, inserts or updates additional instructions when necessary to

account for the target machine’s calling convention.

Figure 5.6 shows an example of how these requirements lead to performance

degradations when register numbers are remapped after every optimization phase.

Figures 5.6(a) - 5.6(c) show code generated by the default VPO configuration be-

fore and after register allocation and again after removing dead instructions. Fig-

33

ures 5.6(d) - 5.6(f) show the same sequence of function instances generated when

register remapping is enabled. In the initial code, instructions 3, 4, and 6 are used

to ensure the arguments and return value of the function call to strcmp are in the

appropriate registers. In the non-remapped code, the register allocator happens to

allocate these values to registers that make these instructions worthless, and thus,

they are trivially removed. In the remapped code, however, remapping register

numbers changes the order that registers are eventually allocated. Unaware of our

target machine’s calling convention, the register allocator allocates the function

arguments and return value of the strcmp function call to registers that require

instructions 4 and 6 in the final code. Intuitively, it seems these issues would only

marginally affect a function’s overall performance. However, in functions with

only a few instructions or when these issues cause instructions inside frequently

executed loops to persist, this can cause larger performance degradations.

5.3.2 Copy Propagation to Reduce the Phase Order Search Space

Next, based on our manual analysis of false phase interactions in VPO, we

implemented copy propagation as another transformation to potentially further

minimize the effects of unfavorable register assignments. Copy propagation is of-

ten used in compilers as a clean-up phase to remove copy instructions by replacing

the occurrences of targets of direct assignments with their values. Figure 5.3(d)

shows the result of applying copy propagation (after every phase) to the code in

Figure 5.3(c), which results in code that is equivalent to that in Figure 5.3(b), thus

negating the phase order issue originally present in this case between instruction

selection and CSE.

We performed experiments to study the impact of implicitly applying copy

34

(a) Search Space Size (b) Performance

Figure 5.7. Copy propagation configuration compared to default
(512 registers). Functions are ordered corresponding to their search
space size with the default VPO configuration (lower numbered func-
tions correspond to smaller search spaces). The rightmost bar displays
the average.

propagation to reduce false phase interactions on the size of the phase order search

space. Figure 5.7(a) shows the change in the phase order search space size com-

pared to default (with 512 registers) if every original VPO phase when successful

is followed by the clean-up phase of copy propagation during exhaustive phase

order space search for each function. Thus, the application of copy propagation is

able to reduce the size of the search space by over 33%, on average. Furthermore,

this technique also has a much more significant impact on functions with larger

search spaces. Indeed, when we sum the search space size across all functions

with this configuration and compare this to the sum of search space sizes with

the default VPO configuration (with 512 registers), we find a total search space

reduction of slightly more than 67%. Unlike the enabling effect produced by regis-

ter remapping, copy propagation can directly improve performance by eliminating

copy instructions. Using our earlier described technique to measure dynamic per-

formance counts for a configuration with 512 registers, we were able to gather

dynamic instruction counts for 72 benchmark functions. We found that applying

copy propagation after every phase allows the exhaustive phase order searches

35

(a) Search Space Size (b) Performance

Figure 5.8. Register remapping and copy propagation configura-
tion compared to default (512 registers). Functions are ordered corre-
sponding to their search space size with the default VPO configuration
(lower numbered functions correspond to smaller search spaces). The
rightmost bar displays the average.

to generate best function instances that achieve 0.41% better performance than

default, on average. At the same time, we also observed that including copy prop-

agation as a distinct (16th) reorderable phase during the search space exploration

(and not applying it implicitly after every phase) has a negligible effect on the

quality of the code instances (performance improved by only 0.06% on average

over the configuration with copy propagation implicitly applied). Moreover, such

a VPO configuration almost doubles the size of the phase order search space with

an increase of 98.8% over the default configuration, on average.

5.3.3 Combining Register Remapping and Copy Propagation

Interestingly, combining our two techniques is able to further reduce false reg-

ister dependences and the size of the phase order search spaces. Thus, as shown in

Figure 5.8(a), implicitly applying both register remapping and copy propagation

after every phase reduces the size of the phase order search spaces by over 56.7%,

per function, on average. This technique also has a much more significant effect on

functions with larger search spaces. Thus, the total search space reduction when

36

summed across all functions for this configuration compared to the default is an

impressive 88.9%. We were able to gather performance data for 66 of our bench-

mark functions in this configuration. As can be seen in Figure 5.8(b), the effect

on performance is similar to the effect of applying register remapping alone (Fig-

ure 5.5(b)), with the best average performance degrading by 1.24%. Since both

our implicit phases reduce false register dependences, our results in this section

demonstrate that false phase interactions caused by differing register assignments

significantly contribute to the size of the phase order search space.

5.4 Eliminating False Register Dependence on Real

Embedded Architectures

In the previous section, we showed that applying register remapping and copy

propagation effectively reduce the phase order search space in a machine with

virtually unlimited registers. Unfortunately, both these transformations show a

tendency to increase register pressure, which can affect the operation of successive

phases. In this section we show how we can employ our observations from the last

section to adapt the behavior and application of these transformations for use on

real embedded hardware to reduce search space size and improve generated code

quality.

5.4.1 Reducing the Search Space with Copy Propagation

Aggressive application of copy propagation can increase register pressure and

introduce register spill instructions. Increased register pressure can further af-

fect other optimizations, that may ultimately result in changing the shape of the

original phase order search space. For this reason, we develop a conservative

37

(a) Search Space Size (b) Performance

Figure 5.9. Copy propagation configuration compared to default
(16 registers). Functions are ordered corresponding to their search
space size with the default VPO configuration (lower numbered func-
tions correspond to smaller search spaces). The rightmost bar displays
the average.

implementation of copy propagation that is only successful in cases where the

copy instruction becomes redundant and can be removed later. Thus, our trans-

formation only succeeds in instances where we can avoid increasing the register

pressure.

We now apply our version of conservative copy propagation implicitly after

each reorderable optimization phase during exhaustive phase order search space

exploration (similar to its application in the last section). Figure 5.4.1 plots the

size of the search space for each of our benchmark functions compared against

the default VPO configuration. Thus, we can see that, similar to our results

in the last section, our technique here reduces the size of the search space by

30% per function on average. Again, this technique tends to have more of an

impact on functions with larger search spaces and the total search space size is

reduced by 57.5% when summed across all functions. Implicit application of copy

propagation during the exhaustive search algorithm improves the best generated

code for a few functions, improving average performance by 0.56%.3 We also found

3Because we were actually able to simulate each function instance, these results include all

38

that including copy propagation as a distinct (16th) reorderable phase during the

search space exploration on the real 16-register ARM machine gives similar results

as on a hypothetical machine with 512 registers. The search space increases by

over 133% per function on average and performance is only marginally better

(0.19%) than implicit application.4 Thus, prudent application of techniques to

remove false register dependences can be very effective at reducing the size of the

phase order search space on real machines.

5.4.2 Improving Performance with Localized Register Remapping

We have not yet developed a similar conservative version of register remapping

for implicit application during phase order searches. Instead, we employ register

remapping to show how removing false register dependences during traditional op-

timization phases can be used to increase optimization opportunities and improve

the quality of the generated code.

We select instruction selection to demonstrate our application of localized reg-

ister remapping, but the same technique can also be applied to other phases.

As illustrated in Figure 5.2(c), instruction selection (or some other optimization

phase) might miss optimization opportunities due to some false register depen-

dences. We modify instruction selection to only remap those live ranges that are

blocking its application due to a false register dependence, if the transformation

would be successful otherwise. Thus, when instruction selection fails to combine

instructions due to one of more register conflicts, we identify the conflicting live

ranges in these instructions, attempt to remap these so that they no longer conflict,

81 executed functions we were able to gather in the default configuration.
4Four of the 236 benchmark functions we gathered with the default configuration generated

search spaces that were too large to gather with this configuration. Thus, these results include
the remaining 232 benchmark functions, 79 of which were executed at least once.

39

(a) Search Space Size (b) Performance

Figure 5.10. Aggressive localized register remapping configuration
compared to default (16 registers). Functions are ordered correspond-
ing to their search space size with the default VPO configuration (lower
numbered functions correspond to smaller search spaces). The right-
most bar displays the average.

and then attempt to combine the instructions again. Such localized application

of register remapping can minimize any increase in register pressure as well as

potentially provide further optimization opportunities and generate better code.

In our first attempt at this technique, we found instruction selection may still

fail after our localized register remapping due to some other issues (e.g. creating

an invalid instruction). If such futile remappings are allowed to remain, many

new (locally remapped) function instances may be introduced in the search space.

This issue creates an explosion in the size of the search space for several of our

benchmark functions. On average (as can be seen in Figure 5.10(a)), the search

space size increased over 438% in the functions whose search spaces we were able

to completely enumerate with this technique enabled.5 Promisingly, as can be seen

in Figure 5.10(b), we found that the best code improved by 1.51%, on average.

To eliminate this substantial increase in search space size, we implemented a

more conservative form of localized register remapping that rolls back any failed

5The search spaces for 14 of the 236 functions we were able to completely enumerate with
the default VPO configuration (8 of which were executed) became too large or took too long to
gather with this configuration.

40

(a) Search Space Size (b) Performance

Figure 5.11. Conservative localized register remapping configura-
tion compared to default (16 registers). Functions are ordered corre-
sponding to their search space size with the default VPO configuration
(lower numbered functions correspond to smaller search spaces). The
rightmost bar displays the average.

remappings in an attempt to negate any corresponding search space increases.

Figures 5.11(a) and 5.11(b) show the search space and performance results for

this configuration.6 The search space size still increases, but only slightly, by

2.68% on average. The performance improves, but these improvements are more

modest than the improvements seen with the more aggressive localized register

remapping, only 0.55% on average, but with as much as 12% in the best case. This

lower average improvement also indicates that at least some of the performance

improvements seen in the aggressive configuration were due to register remapping

interacting with optimization phases other than instruction selection.

Further, we tested the usefulness of this approach during the conventional

(batch) compilation. The batch VPO compiler applies a fixed order of optimiza-

tion phases in a loop until there are no additional changes made to the program

by any phase. Figures 5.12(a) and 5.12(b) show the performance of the batch

compiler with aggressive and conservative localized register remapping for each

6We were unable to completely enumerate 3 of the 236 function search spaces with this
configuration, 2 of which were executed. Thus, these results show search spaces of 233 functions,
and performances of 79 functions.

41

(a) Aggressive Localized Register
Remapping

(b) Conservative Localized Register
Remapping

Figure 5.12. Batch performance results for localized register remap-
ping. The Functions are unordered. The rightmost bar displays the
average.

of our 86 executed benchmark functions. We found that, on average, the aggres-

sive configuration improved the batch compiler performance by 0.44%, while the

conservative configuration improved it by 0.15%. The aggressive configuration

has a greater impact on performance, but may actually degrade performance in

some cases by introducing new register conflicts with other phases. Although such

degradations may also occur in the conservative configuration, we did not observe

this effect in the results for our benchmark functions.

The sole performance degradation in the conservative configuration was due to

a conflict caused by remapping registers illustrated in Figure 5.13. Figures 5.13(a)

- 5.13(d) show the code generated by the batch sequence with the default VPO

configuration, and Figures 5.13(e) - 5.13(h) show the code generated by the same

sequence with localized register remapping enabled. In this case, it is advanta-

geous to hold the incremented values in these instructions in a common register

(r[4]) because this allows the second application of instruction selection to com-

bine the original code into only three instructions (as shown in Figure 5.13(d)).

Remapping these incremented values to be held in several registers (which pro-

42

. . .

. . .

10. r[1] = r[0] + 1;
9. r[0] = r[4];

11. r[4] = r[1];
12. r[0] = B[r[0]]&255;

8. r[0] = B[r[0]]&255;
7. r[4] = r[1];
6. r[1] = r[0] + 1;
5. r[0] = r[4];

4. r[0] = B[r[0]]&255;
3. r[4] = r[1];
2. r[1] = r[0] + 1;
1. r[0] = r[4];

(a). original code

. . .

. . .

10. r[1] = r[0] + 1;
9. r[0] = r[4];

11. r[4] = r[1];
12. r[0] = B[r[0]]&255;

8. r[0] = B[r[0]]&255;
7. r[4] = r[1];
6. r[1] = r[0] + 1;
5. r[0] = r[4];

4. r[0] = B[r[0]]&255;
3. r[4] = r[1];
2. r[1] = r[0] + 1;
1. r[0] = r[4];

(e). original code

. . .

. . .
9. r[0] = r[4];

12. r[0] = B[r[0]]&255;

8. r[0] = B[r[0]]&255;

5. r[0] = r[4];

4. r[0] = B[r[0]]&255;

1. r[0] = r[4];

3. r[4] = r[4] + 1;

7. r[4] = r[4] + 1;

11. r[4] = r[4] + 1;

 elimination
(c). common subexpression

. . .

. . .

4. r[0] = B[r[4]]&255; r[4] = r[4] + 1;

8. r[0] = B[r[4]]&255; r[4] = r[4] + 1;

12. r[0] = B[r[4]]&255; r[4] = r[4] + 1;

 instruction selection
(d). second application of

. . .

. . .

4. r[12] = B[r[4]]&255;

8. r[3] = B[r[4] + 1]&255;
7. r[0] = B[r[4] + 2]&255;

11. r[4] = r[4] + 3;

 instruction selection
 (with register remapping)

(h). second application of

. . .

. . .

12. r[0] = B[r[0]]&255;

7. r[0] = r[4] + 2;
8. r[3] = B[r[4] + 1]&255;

11. r[4] = r[4] + 3;

4. r[12] = B[r[4]]&255;

 elimination
(g). common subexpression

 instruction selection
(b). first application of

. . .

. . .
9. r[0] = r[4];

12. r[0] = B[r[0]]&255;

8. r[0] = B[r[0]]&255;

5. r[0] = r[4];

4. r[0] = B[r[0]]&255;

1. r[0] = r[4];

3. r[4] = r[0] + 1;

7. r[4] = r[0] + 1;

11. r[4] = r[0] + 1;

. . .

. . .

12. r[0] = B[r[0]]&255;

3. r[3] = r[12] + 1;

1. r[12] = r[4];

4. r[12] = B[r[12]]&255;

8. r[3] = B[r[3]]&255;
7. r[0] = r[3] + 1;

11. r[4] = r[0] + 1;

 instruction selection
 (with register remapping)

(f). first application of

Figure 5.13. Localized register remapping may disable some opti-
mization opportunities.

duces better code after the first application of instruction selection), prevents the

second application of instruction selection from combining these instructions opti-

mally. Thus, while register remapping typically eliminates false conflicts between

phases, it may also disable optimization opportunities in certain situations.

43

Chapter 6

Phase Independence

Two phases are independent of one another if applying them in different orders

for any input code always leads to the same output code. If a phase is completely

independent of all other phases, then that phase can be removed from the set

employed during the exhaustive phase order search and applied implicitly after

every relevant phase to reduce the phase order search space. We have observed

that very few phases in VPO are completely independent of each other. How-

ever, several pairs of phases show none to very sparse phase interaction activity.

Furthermore, some phases can be grouped together such that they only interact

with other phases in that group, and do not interact with phases outside of that

group. In this chapter, we show that reorganizing exhaustive phase order searches

to exploit phase independence can drastically reduce the size of the search space

while still generating code that performs as well as the code produced by the näıve

phase order search. We investigate two complementary techniques to reorganize

the phase order searches: eliminate cleanup phases from the phase order search,

and multi-stage phase order searches with mutually independent sets of phases in

each stage.

44

(a) Search Space Size (b) Performance

Figure 6.1. Results of implicitly applying DAE after every relevant
phase during the phase order search compared to default. Functions
are ordered corresponding to their search space size with the default
VPO configuration (lower numbered functions correspond to smaller
search spaces). The rightmost bar displays the average.

6.1 Eliminating Cleanup Phases

Cleanup phases, such as dead assignment elimination (DAE) and dead code

elimination (DCE) (see Table 4.1), do not consume any machine resources and

merely assist other phases by cleaning junk instructions and blocks left behind by

other code transforming optimizations. Such optimizations can be performed after

any phase that might require cleanup. Thus, barring any false phase interactions,

on-demand or implicit application of cleanup phases should not have any negative

impacts on the performance of other optimization phases, but may result in a

significant reduction in the space of phase orderings to explore.

We modified our phase order search algorithm to allow us to apply either DAE

or DCE after every relevant phase. Figure 6.1(a) shows the effect of applying DAE

implicitly on the search space size for each of our 236 benchmark functions. This

configuration cuts the average search space size by just over 50%. It also has

a much more significant impact on functions with larger default search spaces.

Summing up the search space over all 236 functions, we find that the number of

45

1. Load [r[13] + .WORD] = r[5];

3. r[0] = Load[r[13] + .WORD];
4. ST = good;

1. r[12] = r[5];

3. r[0] = r[12];
4. ST = good;

1. r[12] = r[5];

3. r[0] = r[12];
8. ST = good;

 before register allocation after register allocation

1. Load [r[13] + .WORD] = r[5];
2. r[12] = Load[r[13] + .DEAD];
3. r[0] = Load[r[13] + .WORD];

1. r[0] = r[5];
2. r[12] = r[1];
3. r[0] = r[0];
4. ST = good;4. ST = good; 4. ST = good;

1. r[0] = r[5];

 before register allocation after register allocation

(d) DAE configuration (e) DAE configuration (f) DAE configuration
 final code

(a) default configuration (b) default configuration (c) default configuration
 final code

Figure 6.2. Non-orthogonal use of registers can cause performance
degradations when DAE is implicitly applied after every phase.

total distinct function instances reduces by over 77% as compared to the default.

Although this technique does not affect the best performance found for most

functions, it does incur performance degradations in 5 of the 81 executed functions.

These range from less than 0.4% up to 25.9%, with an average degradation across

all functions of 0.95%.

Similar to what we saw with register remapping in Section 5.3.1, we found

that most of these degradations stem from the non-orthogonal use of registers.

Figure 6.2 shows an example. Figures 6.2(a) - 6.2(c) show code for our example

function before and after register allocation and again after every other applicable

phase has been applied in the default configuration. In this configuration, the

dead assignment in instruction 2 is not removed until after register allocation

is applied. In VPO, register allocation attempts to allocate registers one at a

time in a fixed order. With the default ordering, the register allocator always

attempts to allocate values to r[12] before allocating to r[0]. In Figure 6.2(b),

we see that the register allocator allocates the value used in instruction 3 to r[0]

46

because allocating to r[12] would conflict with the assignment in instruction 2.

This happens to be advantageous as now instruction 3 may be trivially removed as

shown in Figure 6.2(c). Figures 6.2(d) - 6.2(f) show the code generated by applying

the same sequence of phases in the configuration with DAE applied implicitly after

every optimization phase. In this configuration, the dead assignment is removed

before register allocation. Register allocation now chooses to allocate the value

used in instruction 3 to r[12] (as allocating to this register no longer results in

a conflict). Under this allocation scheme, instruction 3 must remain in the final

code. In each of the examples we analyzed, we saw that these issues resulted

in only one or two additional instructions in the final code. In spite of this,

when these additional instructions appear in smaller functions or inside frequently

executed loops, they may produce significant performance degradations.

We also tried applying the cleanup phase dead code elimination (DCE) af-

ter every relevant phase in the phase order search. DCE removes basic blocks

that cannot be reached from the function entry block. In the default VPO con-

figuration, opportunities to apply DCE are relatively rare. Moreover, the other

optimizations in VPO already ignore unreachable code and are typically not af-

fected by applying DCE. For these reasons, we did not expect removing DCE to

have much of an impact on the search space. Indeed, we found that this technique

reduced the search space in only one of our 236 benchmark functions (by 86%).

This function was never executed, and none of the performances of the functions

that were executed are affected by removing DCE from the search space.

47

6.2 Eliminating Branch Optimizations

The set of optimization phases in many compilers can be naturally partitioned

into two subsets: phases that affect the program control-flow and phases that de-

pend on registers. Intuitively, control-flow (branch) optimizations should be nat-

urally independent from non-branch optimizations. Using our knowledge of the

VPO optimization set, we identified six of the fifteen reorderable VPO optimiza-

tion phases as branch optimizations: branch chaining, useless jump elimination,

dead code elimination, branch reversal, block reordering, and loop jump minimiza-

tion (see Table 4.1 for a description of each of these). Using the same technique

as we used with cleanup phases in Section 6.1, we modified VPO to apply each of

these phases after every other relevant phase in the phase order search. We then

enumerated the phase order search space for our benchmark functions with each

of the branch optimizations removed (one at a time) from the search space. As

a point of comparison, we also applied this same technique with the non-branch

optimization, instruction selection.

Figures 6.3(a) and 6.3(b) show the average search space size results for each of

these configurations. We found that, in most cases, removing branch optimizations

from the phase order search significantly reduces the search space size. Similar

to what we saw in Section 6.1 with removing dead assignment elimination from

the search space, removing the branch optimizations had more of an effect on

functions with larger default search spaces. Figure 6.3(b) quantifies this effect by

comparing the total number of distinct function instances summed over all 236

benchmark functions gathered in each configuration to the total number found in

the default configuration. Removing instruction selection from the phase order

search drastically reduces the average search space size by 83.3% per function and

48

(a) Search Space Size (per Function) (b) Total Search Space Size

(c) Average Performance Degradation
(per Function)

(d) Number of Functions with Perfor-
mance Degradations

Figure 6.3. Configurations with an optimization applied implicitly
after every phase compared to the default configuration. In (a) and
(b), the average across all 236 benchmark functions is shown. In (c)
and (d), the results of the 81 executed benchmark functions are shown.

96.1% total (although, as we will see, this comes with a significant performance

cost). Among the branch optimizations, removing block reordering from the phase

order search yields the most significant reductions in search space size with an

average reduction of 48.1% per function and an impressive 82.2% reduction in

total search space size. Opportunities to apply useless jump removal, dead code

elimination, and loop jump minimization are relatively rare compared to the other

phases, and thus, removing these from the search space yield a smaller reduction

in the search space size.

We also found that removing branch optimizations from the phase order search

causes relatively few performance degradations. Figure 6.3(c) shows the average

49

L12:
 . . .
 1. PC = c[0] ! 0, L14;
 2. PC = L15;
L14:
 . . .
 3. PC = RT;
L15:
 . . .
 4. PC = L12;

(a). original code

L12:
 . . .
 1. PC = c[0] ! 0, L14;
 . . . (was block L15)
 4. PC = L12;
L14:
 . . .
 3. PC = RT;

(b). block reordering
 followed by
 branch reversal

L12:
 . . .

 . . .

 1. PC = c[0] : 0, L15;
 . . . (was block L14)
 3. PC = RT;
L15:

 4. PC = L12;

(c). branch reversal

 block reordering
 followed by

Figure 6.4. Interaction between block reordering and branch rever-
sal. The operators ’!’ and ’:’ each compare two elements. ’!’ returns
true if these are not equal. ’:’ returns true if these are equal.

performance results for each of these configurations compared to the default and

Figure 6.3(d) shows the number of functions yielding a performance degradation

in each configuration. Removing instruction selection produces the most signif-

icant impact on performance with 30 of the 81 executed functions experiencing

some performance degradation and an average degradation of 2.73% per function.

In the worst case, performance drops by more than 32.1% in this configuration.

In contrast, removing branch optimizations from the search space has a much

milder effect on performance. Some branch optimizations (specifically, useless

jump elimination, dead code elimination, and loop jump minimization) may be

removed without any noticeable impact on performance whatsoever. Among the

impacting configurations, removing block reordering impacts the most functions

(14), while removing branch reversal generates the largest performance degrada-

tion of a single function (24.4%). On average, removing block reordering has the

largest per function performance degradation (of 0.36%).

Under our current understanding of the phase implementations in VPO, we

50

believe branch optimizations should not have many interactions with non-branch

optimizations. It should be noted, however, that the sets of branch and non-branch

optimizations may not always be disjoint. For example, in VPO, loop unrolling

can modify the program control-flow and also requires registers. Despite this,

detailed analysis of the performance degradations in these configurations suggests

that most of these degradations are indeed due to interactions among the branch

optimizations. Figure 6.4 shows an example of one such interaction between block

reordering and branch reversal. Applying block reordering first to the original

code, as shown in 6.4(b), removes the branch to L15, but also disables branch

reversal. In contrast, applying branch reversal first (6.4(c)), removes the branch

to L14, but disables block reordering and allows the branch to L15 to persist.

When this function is actually executed, the branch to L15 is taken much more

frequently than the branch to L14. Thus, this interaction causes a significant

performance degradation when we remove branch reversal from the phase order

search. Given this result, we next explore how to exploit mutually independent

groups of phases in order to reduce the search space.

6.3 Multi-stage Phase Order Searches

In the previous section, we found that branch optimizations are largely inde-

pendent from non-branch optimizations, but, in several cases, cannot be simply

removed from the phase order search because of interactions with other branch op-

timizations. In this section, we show that a novel reorganization of the phase order

search that exploits the independence relationship between these groups of phases

drastically reduces the phase order search space without degrading performance.

51

Figure 6.5. Multi-stage phase order search space size compared to
default. Functions are ordered corresponding to their search space
size with the default VPO configuration (lower numbered functions
correspond to smaller search spaces). The rightmost bar displays the
average.

6.3.1 The Multi-Stage Approach

Our new approach divides the phase order search into multiple searches con-

ducted over different subsets of the optimization set. In the first stage, we conduct

a phase order search using only the branch optimizations identified in the previ-

ous section as our optimization set. This will return the set of function instances

that is reachable by applying any combination of the branch optimizations. Next,

we search through these resulting function instances to find the best perform-

ing function instance(s). Finally, for each best performing function instance, we

conduct another phase order search using the non-branch optimizations as our

optimization set and with this function instance as a starting point.

We found that this multi-stage phase order search prunes the generated search

space to a fraction of its original size without sacrificing performance. In our orig-

inal configuration for the multi-stage phase order search, the optimization set in

the second stage did not include any branch optimizations. We found that some

functions may not reach an optimal performing function instance with this con-

figuration because some of the non-branch optimizations may change the control

52

flow (by removing an instruction which results in the removal of a basic block)

and enable one of the branch optimizations. When we include the branch opti-

mizations in the optimization set of the second stage, we can generate at least

one optimal performing function instance for each of the 81 executed benchmark

functions while still pruning the search space significantly. Note that some func-

tions have multiple optimal performing function instances in the default search

space and this algorithm does not always produce all of them.

Figure 6.5 compares the search space gathered with this technique to the search

space generated by the default configuration. We only compare search spaces

generated for the 81 executed benchmark functions because this technique uses

performance as a distinguishing criteria to prune the search space. On average,

this technique reduces the original search space size by over 59% per function.

This technique also has a much more significant impact on functions with larger

default search spaces. We find that this technique reduces the total number of

distinct function instances (summed across all 81 functions) by an impressive

88.4%.

6.3.2 Automatic Set Partitioning

The multi-stage phase order search described here requires intricate knowl-

edge of the compiler’s optimization set in order to partition this set into mutually

independent subsets. Typically, compiler users do not know enough about their

compiler to know which sets of optimizations might be mutually independent.

Furthermore, although the branch / non-branch partitioning yields great search

space reductions, there may exist optimization set partitionings which are able

to reduce the search space even more within the multi-stage phase order search

53

{s}

{s} −− 2602782 / 2606233 (99.87) −−> {i}

{s} −− 1435397 / 1437547 (99.85) −−> {u}
{s} −− 1928098 / 1930359 (99.88) −−> {b}

{s} −− 3518726 / 4373485 (80.46) −−> {c}

{s} −− 1322681 / 1428096 (92.62) −−> {l}

{s} −− 1865692 / 1871993 (99.66) −−> {r}

{s} −− 432 / 612 (70.59) −−> {o}

{s} −− 3619540 / 3622677 (99.91) −−> {h}
{s} −− 19828 / 19876 (99.76) −−> {j}

{s} −− 531361 / 579346 (91.72) −−> {k}

{s} −− 521932 / 695560 (75.04) −−> {q}

{s} −− 1502813 / 1612770 (93.18) −−> {n}
{s} −− 979361 / 1060829 (92.32) −−> {g}

Figure 6.6. Independence table for instruction selection. See Ta-
ble 4.1 for the optimization corresponding to each code.

framework. Thus, we designed an algorithm to automatically partition the opti-

mization set into multi-stage phase order search sets by analyzing independence

statistics gathered from the default phase order search space.

In order to get a view of the independence relationships among the optimiza-

tions in our compiler, we first need to gather information about how often our

optimization phases interact. In our case, we use the default phase order search

space for each of the 81 executed benchmark functions as our data set. From this,

we calculate an independence score for each pair of optimizations. This score is

an estimation of how often each set of phases is independent. We calculate scores

for each optimization pair by visiting all of the nodes in the input data. If two

optimization phases are active at the same node (i.e. applying them leads to a

new node), we increment the total active value for this optimization pair. If

applying these optimizations from this point in either order eventually leads to

the same node, we increment the total independent value for this optimization

pair. The final independence score for each optimization pair is the ratio of its

total independent value to its total active value.

We can construct independence tables summarizing the independence relation-

54

ships among our optimization phases. Figure 6.6 shows the independence table

for instruction selection. A quick glance at this table shows that instruction se-

lection is almost always independent from each of the branch optimizations, but

interacts more often with some of the non-branch optimizations, especially com-

mon subexpression elimination and strength reduction. The independence score

between instruction selection and dead code elimination is not listed because these

two phases are never found to be active at the same node in our data set.

Using these tables, we can compute a set independence score between two

optimization sets. The optimization pair set between two sets A and B is the set

of all optimization pairs that can be formed by pairing an optimization from set A

with an optimization from set B. Now, the set independence score between two sets

A and B is simply the sum of the total independent values between optimization

pairs in A and B’s optimization pair set divided by the sum of the total active

values.

Next, we can use set independence scores to compute the most mutually in-

dependent subsets of our optimization set. For each possible subset of length ⌊n

2
⌋

(n being the total number of optimizations in our original set), compute the set

independence score between this set and the set composed of the remaining op-

timizatons. As set independence is a symmetric relationship, there is no need to

compute set independence for subsets of length greater than ⌊n

2
⌋.

Finally, to choose the best partitions for the multi-stage phase order search,

we choose the most mutually independent subsets that will also result in the

largest search space reductions. Admittedly, we have no way of knowing which

set partitions will most reduce the phase order search space. However, we have

seen that search spaces grow exponentially as optimizations are introduced. Thus,

55

we seek to minimize the number of optimizations that will interact within one

stage of the multi-stage phase order search. Thus, we choose the most mutually

independent subset with length ⌊n

2
⌋ as the optimization set for the first stage of

our multi-stage phase order search. This yields the subset:

A={b, u, d, r, i, j, g}

Note that we have chosen the branch optimizations along with loop unrolling.

Loop unrolling has a tendency to interact with the branch optimizations because it

introduces new control flows. However, when loop unrolling is included in the first

stage of the multi-stage phase order search, it is never active because it requires

register allocation and instruction selection before it can be applied. Thus, using

the optimization set chosen by our automatic set partitioning algorithm as the

first stage in the multi-stage phase order search generates the same search space

as using a branch / non-branch optimization partitioning.

56

Chapter 7

Future Work

There are several avenues for future work. In Chapter 5, we focused on phase

interactions produced by false register dependences and different register assign-

ments. In the future we plan to study other causes of false phase interactions and

investigate possible solutions. One cause we believe is a conservative implemen-

tation of instruction selection, which misses some opportunities because it does

not combine instructions when it cannot immediately improve the code. A more

aggressive implementation of instruction selection may remove interactions such

as those identified in the example in Figure 7.1. We believe that eliminating such

false interactions will not only reduce the size of the phase order search space,

but will also make the remaining interactions more predictable. We would like

to explore if this predictability can allow heuristic search algorithms to detect

better phase ordering sequences faster. In Section 5.4.2, we integrated localized

register remapping with instruction selection to produce higher-quality code. In

the future, we would like to similarly modify other compiler optimizations and

study their effect on performance.

In Chapter 6, we exploited phase independence to reduce the search space size.

57

3. r[18] = r[17] + 20;

7. r[21] = r[20] + 20;
8. r[22] = Load [r[21]];

6. r[20] = Load[r[20]];

2. r[17] = Load [r[17]];
1. r[17] = r[13] + .LOC;

9. c[0] = r[19] ? r[22];

(a) original code (b) instruction selection
 followed by common
 subexpression elimination

(c) common subexpression
 elimination followed by
 instruction selection

4. r[19] = Load [r[18]];
. . .
5. r[20] = r[13] + .LOC;

.

2. r[17] = Load [r[13] + .LOC];

4. r[19] = Load [17] + 20];

8. r[22] = Load [r[17] + 20];
9. c[0] = r[19] ? r[22];

2. r[17] = Load [r[13] + .LOC];
3. r[18] = r[17] + 20;
4. r[19] = Load[r[18]];

8. r[22] = Load[r[18]];
9. c[0] = r[19] ? r[22]

Figure 7.1. Phase interaction between instruction selection and
common subexpression elimination. Instruction selection fails to re-
move instruction 3 in (c) because combining instructions 3 & 4 does
not improve the final code (instruction 3 must remain due to the use of
r[18] in instruction 8). A more aggressive implementation of instruc-
tion selection would combine instructions 3 & 4 (despite the fact that
instruction 3 must remain), and, in a later pass, combine instructions
3 & 8, at which point instruction 3 would be removed, rendering (b)
and (c) identical function instances.

In some cases, we found that interactions stemming from the non-orthogonal use

of registers can cause performance degradations. We plan to modify VPO to

account for the non-orthogonal use of registers and eliminate this as a cause of

phase interaction. We believe heuristic (specifically, genetic) search algorithms can

benefit from a multi-stage approach. We would like to compare the optimization

independence relationships we found by analyzing the complete phase order search

space with the relationships we can deduce from modified VPO configurations

and heuristic search algorithms. Finally, we would like to refine our process of

automatically partitioning the optimization set for the multi-stage phase order

search (described in Section 6.3.2) and experiment with other optimization set

partitions.

58

Chapter 8

Conclusions

Effectively addressing the optimization phase ordering problem is important

for applications in the embedded systems domain. Unfortunately, in current com-

pilers, most functions produce phase order search spaces that are infeasible or

impractical to exhaustively explore. Thus, we develop several novel techniques

for reducing the phase order search space.

We found that the problem of huge phase order search spaces is partly a

result of the interactions between optimization phases that are caused by false

register dependences. We also discover that due to the current implementation of

optimization phases, even reducing the register pressure by increasing the number

of available registers is not sufficient to eliminate false register dependences. Our

new transformations, register remapping and copy propagation, to reduce false

register dependences are able to substantially reduce the size of the phase order

search spaces, but at the cost of increased register pressure that is not sustainable

on real machines. We then showed that conservative implementation of these

transformations during and between phases can still achieve impressive reductions

in the search space size, while also achieving better code quality.

59

If an optimization phase is completely independent from all other phases in the

phase order search space, we should be able to remove this phase from the search

by applying it implicitly after every relevant phase. When we analyzed the inde-

pendence relationships among the optimizations in our compiler, we found most

phases only interact with a small group of other phases and these interactions tend

to be sparse. We found removing cleanup phases, such as dead assignment elimi-

nation and dead code elimination, from the phase order search usually works very

well, but causes significant performance degradations in a few cases. We found

that branch and non-branch optimizations typically only interact among them-

selves. We showed that partitioning the optimization set into branch and non-

branch optimizations and applying these in a staged fashion reduces the search

space to a fraction of its original size without sacrificing performance. Finally, we

described a method for automatically performing this partitioning without prior

knowledge of the compiler’s phase implementations.

60

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thom-

son, M. Toussaint, and C. K. I. Williams. Using machine learning to focus iterative

optimization. In CGO ’06: Proceedings of the International Symposium on Code

Generation and Optimization, pages 295–305, Washington, DC, USA, 2006.

[2] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves, D. Subramanian,

L. Torczon, and T. Waterman. Finding effective compilation sequences. In LCTES

’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems, pages 231–239, 2004.

[3] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In

Proceedings of the SIGPLAN’88 Conference on Programming Language Design and

Implementation, pages 329–338, 1988.

[4] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters: An

Introduction to Design, Data Analysis, and Model Building. John Wiley & Sons,

1 edition, June 1978.

[5] D. Burger and T. Austin. The SimpleScalar tool set, version 2.0. SIGARCH

Comput. Archit. News, 25(3):13–25, 1997.

[6] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon,

and T. Waterman. Acme: adaptive compilation made efficient. In LCTES ’05:

Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages, com-

pilers, and tools for embedded systems, pages 69–77, 2005.

61

[7] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced code

space using genetic algorithms. In Workshop on Languages, Compilers, and Tools

for Embedded Systems, pages 1–9, May 1999.

[8] P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling for a pipelined

architecture. Proceedings of the SIGPLAN ’86 Conference on Programming Lan-

guage Design and Implementation, pages 11–16, June 1986.

[9] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in large

basic blocks. In ICS ’88: Proceedings of the 2nd international conference on Su-

percomputing, pages 442–452, 1988.

[10] B. J. Gough. An Introduction to GCC. Network Theory Ltd., May 2005.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown. MiBench: A free, commercially representative embedded benchmark suite.

IEEE 4th Annual Workshop on Workload Characterization, December 2001.

[12] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Automatic selection

of compiler options using non-parametric inferential statistics. In PACT ’05: Pro-

ceedings of the 14th International Conference on Parallel Architectures and Com-

pilation Techniques, pages 123–132, Washington, DC, USA, 2005. IEEE Computer

Society.

[13] J. L. Hennessy and T. Gross. Postpass code optimization of pipeline constraints.

ACM Transactions on Programming Languages and Systems, 5(3):422–448, 1983.

[14] K. Hoste and L. Eeckhout. Cole: Compiler optimization level exploration. In

accepted in the International Symposium on Code Generation and Optimization

(CGO 2008), 2008.

[15] T. Kisuki, P. Knijnenburg, , and M. O’Boyle. Combined selection of tile sizes and

unroll factors using iterative compilation. In Internation Conference on Parallel

Architectures and Compilation Techniques, pages 237–246, 2000.

62

[16] T. Kisuki, P. Knijnenburg, M. O’Boyle, F. Bodin, , and H. Wijshoff. A feasibility

study in iterative compilation. In Proceedings of ISHPC’99, volume 1615 of Lecture

Notes in Computer Science, pages 121–132, 1999.

[17] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones. Fast

searches for effective optimization phase sequences. In Proceedings of the ACM

SIGPLAN ’04 Conference on Programming Language Design and Implementation,

pages 171–182, Washington DC, USA, June 2004.

[18] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson. Exhaustive optimization

phase order space exploration. In Proceedings of the Fourth Annual IEEE/ACM

International Symposium on Code Generation and Optimization, pages 306–308,

March 26-29 2006.

[19] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson. In search of near-optimal

optimization phase orderings. In LCTES ’06: Proceedings of the 2006 ACM SIG-

PLAN/SIGBED conference on Language, compilers and tool support for embedded

systems, pages 83–92, 2006.

[20] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey,

Y. Paek, and K. Gallivan. Finding effective optimization phase sequences. In

Proceedings of the 2003 ACM SIGPLAN Conference on Languages, Compilers,

and Tools for Embedded Systems, pages 12–23, 2003.

[21] P. A. Kulkarni, D. B. Whalley, and G. S. Tyson. Evaluating heuristic optimiza-

tion phase order search algorithms. In CGO ’07: Proceedings of the International

Symposium on Code Generation and Optimization, pages 157–169, 2007.

[22] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson. Practical ex-

haustive optimization phase order exploration and evaluation. ACM Transactions

on Architecture and Code Optimization, 6(1):1–36, 2009.

[23] B. W. Leverett, R. G. G. Cattell, S. O. Hobbs, J. M. Newcomer, A. H. Reiner, B. R.

Schatz, and W. A. Wulf. An overview of the production-quality compiler-compiler

63

project. Computer, 13(8):38–49, 1980.

[24] Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler optimiza-

tions for automatic performance tuning. In CGO ’06: Proceedings of the Interna-

tional Symposium on Code Generation and Optimization, pages 319–332, 2006.

[25] S. Triantafyllis, M. Vachharajani, N. Vachharajani and D. I. August. Compiler

optimization-space exploration. In Proceedings of the International Symposium on

Code Generation and Optimization, pages 204–215, 2003.

[26] S. R. Vegdahl. Phase coupling and constant generation in an optimizing microcode

compiler. In Proceedings of the 15th Annual Workshop on Microprogramming,

pages 125–133. IEEE Press, 1982.

[27] D. Whitfield and M. L. Soffa. An approach to ordering optimizing transformations.

In Proceedings of the second ACM SIGPLAN symposium on Principles & Practice

of Parallel Programming, pages 137–146, 1990.

[28] D. L. Whitfield and M. L. Soffa. An approach for exploring code improving trans-

formations. ACM Trans. Program. Lang. Syst., 19(6):1053–1084, 1997.

[29] M. Zhao, B. Childers, and M. L. Soffa. Predicting the impact of optimizations

for embedded systems. In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN

Conference on Language, compiler, and tool for embedded systems, pages 1–11,

New York, NY, USA, 2003. ACM Press.

[30] M. Zhao, B. R. Childers, and M. L. Soffa. A model-based framework: An approach

for profit-driven optimization. In Proceedings of the International Symposium on

Code Generation and Optimization, pages 317–327, Washington, DC, USA, 2005.

64

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Background
	Attempted Optimization Phase Order Space
	Categorization of the Phase Ordering Problem
	Our Approach

	Experimental Setup
	The VPO Compiler
	Optimization Space Details
	Our Benchmark Set
	Setup for Search Space Exploration
	The Testing Framework

	False Phase Interactions
	Examples of Phase Interactions
	Effect of Register Pressure on Phase Order Space and Performance
	Measuring the Effect of False Register Dependence
	Reg. Remapping to Reduce the Phase Order Search Space
	Copy Propagation to Reduce the Phase Order Search Space
	Combining Register Remapping and Copy Propagation

	Eliminating False Register Dependence on Real Architectures
	Reducing the Search Space with Copy Propagation
	Improving Performance with Localized Register Remapping

	Phase Independence
	Eliminating Cleanup Phases
	Eliminating Branch Optimizations
	Multi-stage Phase Order Searches
	The Multi-Stage Approach
	Automatic Set Partitioning

	Future Work
	Conclusions
	References

