
Exploring Causes of Performance
Overhead During Dynamic Binary

Translation

Surya Tej Nimmakayala

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty
of the University of Kansas School of Engineering in partial

fulfillment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Bo Luo

Dr. Fengjun Li

Date Defended

The Thesis Committee for Surya Tej Nimmakayala certifies

That this is the approved version of the following thesis:

Exploring Causes of Performance Overhead During Dynamic Binary

Translation

Committee:

Chairperson

Date Approved

i

Acknowledgements

I am thankful to my advisor Dr. Kulkarni for supporting me and guiding me

throughout my research. I consider him as my mentor too, as he helped me to keep

going at times even when the results were not as expected. He has been persistent

in pointing my research compass in the right direction, not to be side-tracked with

the numerous differentials we came across during the research.

I would also like to thank all the Professors under whom I have taken my

courses, which helped in gaining exposure to the areas necessary to do my re-

search. It has not only helped me with my research, but also gave me a better

understanding of computer science as a whole and how the different fields have

the potential in taking the existing technology to the next level.

Finally, would like to thank the students around for striving to work hard

towards better things, to whom I could look upto at times when my morale was

low.

ii

Abstract

Dynamic Binary Translators (DBT) have applications ranging from program

portability, instrumentation, optimizations, and improving software security. To

achieve these goals and maintain control over the application’s execution, DBTs

translate and run the original source/guest programs in a sand-boxed environ-

ment. DBT systems apply several optimization techniques like code caching,

trace creation, etc. to reduce the translation overhead and enhance program per-

formance at run-time. However, even with these optimizations, DBTs typically

impose a significant performance overhead, especially for short-running applica-

tions. This performance penalty has restricted the more wide-spread adoption of

DBT technology, in spite of its obvious need.

The goal of this work is to determine the different factors that contribute to the

performance penalty imposed by dynamic binary translators. In this thesis, we

describe the experiments that we designed to achieve our goal and report our re-

sults and observations. We use a popular and sophisticated DBT, DynamoRio, for

our test platform, and employ the industry-standard SPEC CPU2006 benchmarks

to capture run-time statistics. Our experiments find that DynamoRio executes

a large number of additional instructions when compared to the native applica-

tion execution. We further measure that this increase in the number of executed

instructions is caused by the DBT frequently exiting the code cache to perform

various management tasks at run-time, including code translation, indirect branch

resolution and trace formation. We also find that the performance loss experienced

by the DBT is directly proportional to the number of code cache exits. We will

discuss the details on the experiments, results, observations, and analysis in this

work.

iii

Contents

Abstract iii

Table of Contents iv

List of Figures vi

1 Introduction 1

2 Framework for Capturing Statistics on Dynamic Binary Transla-

tion 4

2.1 DynamoRIO design details . 5

2.2 DynamoRIO changes for experiments 8

2.2.1 Run times and Compilation times 9

2.2.2 Perf statistics . 9

2.2.3 Application Instruction Counts 10

2.2.4 Fcache exit data from logs 12

2.2.5 Code cache instructions with ptrace 12

2.2.6 Code cache instructions with ptrace 12

3 Experimental Results and Analysis 15

3.1 Experimental Setup . 16

3.2 x86 Results and Analysis . 16

3.2.1 Benchmark Statistics - Test Inputs 16

3.2.2 Benchmark Statistics - Ref Inputs 27

4 Related Work 37

iv

5 Future Work 41

6 Conclusions 43

A Instruction Count Distribution Graphs - Test Inputs 45

B Instruction Count Distribution Graphs - Reference Inputs 49

References 52

v

List of Figures

2.1 DynamoRIO execution flow from [17] 7

3.1 Ratio of DynamoRIO run times to Native run times for different

benchmark test inputs . 17

3.2 Ratio of Compilation time to Execution time for different bench-

mark test inputs . 18

3.3 Distribution of fcache exit causes for different benchmark test inputs 20

3.4 Distribution of instruction counts for different execution phases of

456.hmmer benchmark input bombesin 23

3.5 Distribution of instruction counts for different execution phases of

400.perlbench benchmark input regmesg.pl 25

3.6 Ratio of DynamoRIO run times to Native run times for different

benchmark ref inputs . 27

3.7 Ratio of Compilation time to Execution time for different bench-

mark ref inputs . 28

3.8 Distribution of different factors causing fcache exits with different

benchmark reference inputs . 30

3.9 Instruction count distribution of benchmark 403.gcc for the input

g23.i . 31

3.10 Instruction count distribution of benchmark 462.libquantum for the

input parameters 1397 and 8 . 32

A.1 Distribution of instruction counts for different execution phases of

401.bzip2 benchmark test input input.program 45

A.2 Distribution of instruction counts for different execution phases of

403.gcc benchmark test input cccp 46

vi

A.3 Distribution of instruction counts for different execution phases of

429.mcf benchmark test input inp.in 46

A.4 Distribution of instruction counts for different execution phases of

445.gobmk benchmark test input connect.rot 46

A.5 Distribution of instruction counts for different execution phases of

445.gobmk benchmark test input cutstone 47

A.6 Distribution of instruction counts for different execution phases of

458.sjeng benchmark test input test.txt 47

A.7 Distribution of instruction counts for different execution phases of

462.libquantum benchmark test input parameters 33 and 5 47

A.8 Distribution of instruction counts for different execution phases of

464.h264ref benchmark test input foreman 48

B.1 Distribution of instruction counts for different execution phases of

400.perlbench benchmark ref input checkspam.pl 49

B.2 Distribution of instruction counts for different execution phases of

401.bzip2 benchmark ref input.program 50

B.3 Distribution of instruction counts for different execution phases of

429.mcf benchmark ref input inp.in 50

B.4 Distribution of instruction counts for different execution phases of

445.gobmk benchmark ref input nngs 50

B.5 Distribution of instruction counts for different execution phases of

456.hmmer benchmark ref input retro.hmm 51

B.6 Distribution of instruction counts for different execution phases of

458.sjeng benchmark ref input ref.txt 51

B.7 Distribution of instruction counts for different execution phases of

464.h264ref benchmark ref input sss.encoder.main.cfg 51

vii

Chapter 1

Introduction

The Dynamic Binary Translation (DBT) systems provide a sandboxed envi-

ronment for binary program execution. Sandboxing in DBTs is a mechanism to

control and monitor program execution. To achieve control over program ex-

ecution, a DBT interjects normal execution, translates and/or instruments the

original (guest) binary code, and runs this cached translated binary copy instead.

DBT systems have found numerous uses in program instrumentation and pro-

filing [6, 24], program optimization [2], binary portability [3, 28, 31] and secure

execution [21,23].

Dynamic binary translators need to perform several other tasks, in addition to

executing the guest program. These additional tasks include the just-in-time (JIT)

translation of the guest code to the host format and the resolution of the direct and

indirect control-flow transfers to use the new translated addresses instead. These

tasks impose overhead at run-time and slow-down the execution of the translated

program. Any instrumentation added to the translated code to perform profiling

or security operations further exacerbates the performance issue for DBTs. Poor

performance restricts the applicability and attractiveness of DBT systems in spite

1

of their potential benefits.

Researchers have developed several techniques and optimizations to improve

DBT performance. These techniques include the use of a software code cache

to store previously translated code blocks [26], chaining direct branches in the

code cache [7], mechanisms to predict indirect branch targets [19], and combining

multiple code cache blocks into traces to improve cache locality [2]. While these

approaches have resulted in dramatically improving DBT performance, it still

significantly trails the performance delivered by native code execution for many

programs, especially those that are short-running [6, 29].Therefore, there is still

a need to explore and develop new techniques to improve DBT performance and

allow its broader and mainstream adoption.

The goal of this work is to study the inner workings of state-of-the-art dy-

namic binary translators to understand the primary reasons contributing to their

performance bottlenecks. Similar studies were conducted in the past evaluate the

benefits of individual optimization techniques in a DBT [6,18]. Other researchers

have also attempted to understand the impact of a DBT on microarchitectural

structures, like instruction caches and translation lookaside buffers [26]. In this

thesis, in addition to validating these past studies on latest DBTs and machine

architectures, we also perform a new instruction-level analysis of how and where

a DBT spends its time. We detect and show the primary contributors to the

performance loss seen by the DBTs, and correlate such loss to its contributing

factors. We expect that the knowledge gained from our study will enable re-

searchers to develop new strategies to overcome DBT performance bottlenecks on

modern machines.

We conduct our experiments using a popular and sophisticated x86 to x86

2

dynamic binary translator, called DynamoRio [6]. DynamoRio has been heavily

optimized and implements most of the main stream techniques to improve DBT

performance. In addition, we employ standard tools, such as perf and ptrace,

available on most Linux distributions to perform our tests.

The rest of this thesis is organized as follows. We describe our experimental

setup and benchmark information in the next section. We then present our exper-

imental results, and discuss observations and findings in Chapter 3. We present

other related works in Chapter 4. Finally, we describe the future work and our

conclusions from this study in Chapters 5 and 6 respectively.

3

Chapter 2

Framework for Capturing

Statistics on Dynamic Binary

Translation

In this chapter we describe our experimental framework, including the tools

we use and the benchmarks we employ. We provide an introduction to the design

and implementation details of our selected dynamic binary translator (DBT).

We also explain the measurement tools, along with their important configuration

parameters in this chapter. In order to explore the impact of dynamic binary

translation, we use the open-source DynamoRIO framework. We capture different

statistics to find the effective slow-down caused by DynamoRIO for our benchmark

programs, and the impact on the hardware, to help determine the possible causes

of execution overhead. We expect these causes to give us the basis to make further

enhancements to the DynamoRIO tool to improve its performance.

4

2.1 DynamoRIO design details

One basic goal of Dynamic Binary Translation is to overcome the performance

drawback of interpretation with the help of caching and optimizing the translated

instructions. This is especially helpful for longer running programs, where transla-

tion can avoid significant interpretation cost during program execution by caching

the translated code in a software cache. However, dynamic translation involves an

overhead as extra work has to be done in translating and caching the translation

blocks/instructions. Depending on the number of translations performed by the

DBT, the quality of the translated code generated, and the total run-time of the

application, the overall execution can either see a slow-down or a speed-up as

compared to native program execution outside the DBT.

We have chosen DynamoRIO [12] as the platform to perform the required Dy-

namic Binary Translation and study its impact on the program execution and

determine the probable reasons for the overhead. The tool can be used for a va-

riety of applications like profiling, optimization and security. DynamoRIO offers

an API [16], that can be used for the necessary code instrumentation. We can

write clients [11] depending on our application of the tool, which provide instru-

mentation for various events that can occur during program execution. We will

describe the client interface further in section 2.2.3.

When an application runs under DynamoRIO, the tool handles the application

code as fragments. There are two types of fragments that DynamoRIO creates

during the application execution. One is the basic block and the other is the trace.

An example basic block is shown below:

TAG 0x00007f17534e06f0

+0 m4 @0x0000000053ca1a50 ff 05 b2 36 56 1e inc <rel> 0x00000000722020b8 -> <rel> 0x00000000722020b8

5

+6 L3 31 c0 xor %eax %eax -> %eax

+8 L3 48 8b 5c 24 28 mov 0x28(%rsp) -> %rbx

+13 L3 48 8b 6c 24 30 mov 0x30(%rsp) -> %rbp

+18 L3 48 83 c4 38 add $0x0000000000000038 %rsp -> %rsp

+22 L3 c3 ret %rsp (%rsp) -> %rsp

END 0x00007f17534e06f0

The instructions marked as L3 are the original application instructions and

the first instruction marked as m4 is instrumentation injected by the client to

increment a counter. As can be seen, a basic block is a block of instructions that

execute in sequence and end when there is a change in the flow with a jump to

a different part of the code. A trace constitutes one or more basic blocks that

signify hot code, or code executed more frequently during the program execution.

These fragments after being translated are stored in their respective code caches.

So, we have two types of caches: Basic Block Cache and Trace Cache. This would

prove advantageous the next time a stored fragment is executed, as it does not

have to be translated again and can be directly executed from the respective code

cache.

As shown in the example basic block, each fragment has a TAG. This TAG is

the source binary address (SPC) of the first instruction in the block, and keeps

track of the application code address to be reached next for execution. Since the

application can not be executed directly and needs to be executed from within

DynamoRIO, the TAG of the fragment helps the tool know if a fragment for the

next application instructions to be executed is already present in the code cache

and accordingly executes or creates a new fragment in case there is no entry for

the TAG. The mappings between the TAG of the fragments and the translated

block address (TPC) in the code cache are maintained in lookup tables.

6

Figure 2.1. DynamoRIO execution flow from [17]

Figure 2.1 from [17] shows the execution flow of DynamoRIO. As a program

executes under DynamoRIO, the dispatch part of the code gets the first/next ap-

plication code address (SPC) to be executed. dispatch performs a lookup to check

if a fragment already exists in the code cache for the application address provided

as TAG. If there is an entry, a ćontext switch́ıs performed from DynamoRIO code

to the corresponding fragment code cache to execute the translated code. If there

is no entry for the application address code, translation is done to create a new

fragment and the lookup tables and code cache are updated with the new entry.

A context switch then takes the execution to the first intruction of newly created

fragment. In the dispatch routine a check for trace selection is also done to see

if the code in the frgament is hot enough to qualify as a trace head. If it is hot

enough, a new trace is created with the corresponding basic block as the trace

head. The consecutive basic blocks executed are added to the new trace until a

trace termination condition is met. DynamoRIO considers a basic block executed

for 50 times as hot code to start a trace.

A significant source of overhead in DynamoRIO results from the excessive

transitions between the DynamoRIO emulation engine and the code cache for a

7

variety of reasons other than actual code translation. This means that any added

advantage of the caching of translated fragments can be nullified by this additional

execution of DynamoRIO code that does not actually contribute to the dynamic

binary translation and is a side-effect of the same. Probably with this in mind,

the developers of DynamoRIO have made attempts to keep the control within

the code cache for most of the execution time by linking fragments in the code

cache in case of direct jumps and also instruction inlining for indirect branches

by resolving the same through appropriate checks and maintaining information

on the indirect branches in lookup tables stored within the code cache. Inspite of

these attempts we do see significant overhead with a number of benchmarks run

under DynamoRIO.

2.2 DynamoRIO changes for experiments

We have run experiments to collect data and have analyzed the same to know

the possible causes of overhead during a DynamoRIO run. We will discuss the

results of these experiments and our observations in Chapter 3. To perform our

experiments we had to make some changes to the DynamoRIO source code, includ-

ing the code of an existing DynamoRIO client and also used the Linux PERF [25]

tool to find the influence on hardware micro-architectutral features and corre-

sponding performance impact. All the runs of benchmarks under DynamoRIO

have been done through a client, except for one experiment where the environ-

ment variables have been used to do the required set-up for the benchmark runs

under DynamoRIO. We discuss the code changes and the set-up used for each of

the experiments in the following sections.

8

2.2.1 Run times and Compilation times

The first experiment conducted was to capture the execution times of the

benchmarks run natively (outside DynamoRIO) and run under DynamoRIO with

and without trace formation enabled. For this,we have used the time [8] com-

mand with the three different runs. To turn-off the traces during execution from

within DynamoRIO the run-time option disable traces [14] had been used. Sample

commands for the three runs are given below:

Native Run: time ./perlbench -I. -I./lib attrs.pl

DynamoRIO run with traces: time drrun perlbench -I. -I./lib attrs.pl

DynamoRIO run without traces: time drrun -disable traces -- perlbench -I. -I./lib attrs.pl

The above commands are to run the 400.perlbench benchmark for the test

input attrs.pl in three different configurations. The application is run through

DynamoRIO with the help of drrun [10] which is a tool of DynamoRIO. It sets

up the required configuration and runs the application from within DynamoRIO.

We added some code to the dispatch function in the DynamoRIO source file

core/dispatch.c to capture the compilation time. The code involves use of the

gettimeofday function to get the time difference between the start and end of each

basic block translation and print out the cumulative time of translation for all the

basic blocks during execution.

2.2.2 Perf statistics

We have used the Linux perf tool to capture the statistics of different hardware

counters during the execution of benchmarks under DynamoRIO and the native

run. The hardware counters would be captured for different events specified along

9

with the perf command during benchmark execution. However, the number of

events that can be given in one execution, without any skewing of the hardware

counters depends on the number of hardware counters in the system. We could

run up to 5 events on our system in one execution of the perf command. So,

in order to capture the data on all the desired events, we had to make 3 sets of

events and run each benchmark 3 times with the perf command.

Below are the sample perf commands for native execution of 400.perlbench

benchmark, test input attrs.pl :

perf stat -B -e cycles,instructions,branches,branch-misses perlbench -I. -I./lib attrs.pl

perf stat -B -e cycles,instructions,cache-references,cache-misses perlbench -I. -I./lib attrs.pl

perf stat -B -e page-faults,context-switches,L1-icache-load-misses,iTLB-load-misses,

cache-misses perlbench -I. -I./lib attrs.pl

2.2.3 Application Instruction Counts

We used the client binary libbbcount.so along with the drrun tool to capture

the number of application instructions executed from within DynamoRIO. This is

an existing client given with the standard DynamoRIO source code distribution.

We made a few changes to this client code to capture the application instruction

counts.

A client is an interface through which certain events [13] within DynamoRIO

can be registered for the particular execution of an application. Example of com-

mon events include basic block creation event, trace creation event etc. When we

register an event through the client, DynamoRIO performs a call-back to the reg-

istered function when the event occurs at run-time. So, these call-back functions

will have the code to perform any desired actions for that event. The DynamoRIO

10

API can be used to perform any action from within these call-back functions. We

have also added some additional functions to the API to be called from within

the client.

We have used the DynamoRIO client to register three events: program exit,

basic block creation and trace creation. There are seperate functions registered

for each of these events done in the dr init function within the client. The client

source file is api/samples/bbcount.c and below are the functions registered for

the three events:

dr register exit event(event exit);

dr register bb event(event basic block);

dr register trace event(event trace);

The arguments to the above functions are the call-back functions that Dy-

namoRIO calls on occurrence of these events at run-time. We have used the

call-back function of basic block creation to inject code into the basic blocks to

keep count of application instructions executed from within the code cache. With

the exit event call-back function, the final count is being printed out.

Below are the sample commands used to run the 400.perlbench benchmark test

input attrs.pl, from within DynamoRIO through the client binary libbbcount.so.

Native Run: time ./perlbench -I. -I./lib attrs.pl

DynamoRIO run with traces: time drrun -client libbbcount.so 0 "" perlbench -I. -I./lib attrs.pl

DynamoRIO run without traces: time drrun -client libbbcount.so 0 "" -disable traces -- perlbench

-I. -I./lib attrs.pl

11

2.2.4 Fcache exit data from logs

We have extracted data from the DynamoRIO logs on code cache exits. This

data helped us to know the major reasons why the control leaves the code cache

during application execution from within DynamoRIO. To capture the DynamoRIO

logs the option loglevel 3 has been used.

2.2.5 Code cache instructions with ptrace

2.2.6 Code cache instructions with ptrace

We have used ptrace [15] to monitor the execution of benchmarks under Dy-

namoRIO. The purpose of this experiment was to capture the information on the

number of instructions executed for different kinds of exits from the DynamoRIO

code cache. In order to mark the different entry points in DynamoRIO after the

exit from code cache, dummy function’s have been added to the DynamoRIO code

at appropriate places. Then, using the command nm -a -v [1] on the DynamoRIO

shared library we could find the memory addresses for the dummy functions. The

memory addresses are essential for the parent process to monitor the content of rip

(instruction pointer) register during the execution of child process, and thereby

mark the different phases of execution that correspond with the code cache exit

type. Once we have marked the different phases, corresponding instruction counts

can be captured with an increment operation for each instruction executed.

We built a separate script to use the ptrace Linux tool for monitoring, where

a child process is forked [30] and the environment for benchmark run through

DynamoRIO is set-up. In the child process, the ptrace command with the request

PTRACE TRACEME is executed, enabling the parent to monitor the benchmark

execution through DynamoRIO. The content of rip register is gathered with the

12

ptrace command excuted with the request PTRACE GETREGS. The /proc/child

pid/maps file is used to determine the information of the corresponding segment

being reached during execution by comparing the start and end addresses in the file

with the contents of rip resgister. Similarly, the different phases have been marked

by comparing the dummy function addresses (captured with nm command) with

the address in rip register. After the execution phase has been marked, the parent

sends the ptrace command with request PTRACE SINGLESTEP to the child

process, so that for each instruction executed a counter can be incremented which

would essentially give us the executed instruction count in a particular phase.

While executing the benchmarks with their smaller test inputs, it is possible to

single-step the entire execution to capture the exhaustive instruction count infor-

mation, as the test inputs produce short-running program runs. However, when

running programs with the reference inputs, single-stepping through the entire

execution is not feasible as they produce long-running programs and might take

weeks to complete the execution. So, for the reference inputs, the single-stepping

has been done in intervals of 100 million instructions. After every 100 million

instructions, the parent sends ptrace command with request PTRACE CONT, in

order for the child process to continue normal execution, which is the fast-mode

execution (compared to the single-step execution). During the fast-mode execu-

tion, parent process sleeps [33] for that duration. Once the fast-mode time is

completed, parent sends the signal SIGTRAP to the child, through the kill [32]

command. This way, the parent process will regain control over the child process

and continue to monitor its execution.

Another aspect to consider is the fast-mode time for different benchmark ref-

erence inputs. As the execution times for different benchmark-input pairs are

13

different, to get enough samples of data, the fast-mode times have been computed

to record data for about 50 intervals of 100 million instructions each during every

program execution. The monitoring process sleeps for the calculated period be-

tween successive intervals. The information on the instruction counts for different

DynamoRIO phases (inline with the code cache exits) is printed out for every 0.5

million instructions with test inputs and 100 million for the reference inputs.

14

Chapter 3

Experimental Results and

Analysis

To gather the required scientific data, we have added custom code to the orig-

inal DynamoRIO source code. This custom version of DynamoRIO code coupled

with a DynamoRIO client is run on each of the benchmarks to collect the data on

program run-times, hardware counters (perf), and application instruction counts.

For the experiment to collect the instruction counts executed in different memory

segments using ptrace, instead of the client, environment variables have been used

to set-up the run of the benchmark under the control of DynamoRIO.

We present our analysis by compiling different sets of data to harvest the

different factors that possibly lead to the run-time overhead (or speed-up) of

different benchmarks run through DynamoRIO.

15

3.1 Experimental Setup

Our experimental platform consists of a cluster of Intel Xeon (R) W3530 2.8

GHz (x 8 cores) work-station’s with 3.9 GB memory, running the 64-bit Fedora

18 operating system. We use the industry-standard SPEC integer benchmarks to

collect our performance results [9]. Each benchmark is provided with two sets of

inputs, test and ref. Test inputs typically provide short program run-times, while

’ref’ inputs are used for long-lived program runs.

3.2 x86 Results and Analysis

In this section we discuss and analyse the collected data represented as graphs,

pertaining to different factors contributing to the run-time overhead.

3.2.1 Benchmark Statistics - Test Inputs

Figure 3.1 shows the ratio of DynamoRIO run-times to Native run-times for

different benchmarks run with test inputs. This basically gives an insight to the

overhead of running the program through DynamoRIO. If the ratio is less than 1,

it signifies a speed-up and a ratio greater than 1 signifies an overhead.

Test inputs are short running programs that account for the case of start-up

overhead when running different programs through DynamoRIO. The benchmarks

with substantial overhead are the 400.perlbench, 403.gcc and 445.gobmk. While

the highest overhead is for the 400.perlbench input regmesg.pl (with traces), we

could even see a speedup with the 445.gobmk input capture.tst. In this section,

we discuss our analysis on the factors responsible for the overhead. We also

suggest possible ways to reduce the overhead, or in other words to try and get the

16

execution state of benchmarks with overhead to the one with the speedup.

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Ratio of DRIO and Native run-times

DRIO-wotraces/Native DRIO-wtraces/Native

Figure 3.1. Ratio of DynamoRIO run times to Native run times for
different benchmark test inputs

The graph in figure 3.2 plots the compilation times for different benchmarks to

see if it is a major contributor for the performance overhead. It can be seen that

the time taken for compilation or translation of the source binary to target binary

is indeed the major contributor to the overhead with the test inputs. Target

binary is essentially basic blocks of source binary instrumented with additional

instructions, in order for DynamoRIO to maintain control over the execution flow

of the source binary. DynamoRIO incorporates the concepts of tracing and linking

to the target binary at the fragment level (fundamental unit of target binary).

From the Figure 3.2, it is seen that for benchmarks that have the highest

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ratio of Compilation Time to Execution Time

DRIO-wotraces DRIO-wtraces

Figure 3.2. Ratio of Compilation time to Execution time for differ-
ent benchmark test inputs

percentage of overhead, like 400.perlbench with test input regmesg.pl, has the

highest ratio of compilation time which is 80% of execution time. Similarly, the

other test inputs for benchmarks 400.perlbench, 403.gcc and 445.gobmk also have

significant compilation times. This high percentage can also account for the size

of their executables, which are 1203 KB, 3632 KB and 3944 KB respectively. The

size of executables for each of the benchmark can be seen in Table 3.1, and also

the respective native run times.

Figure 3.2 also illustrates that the tracing mechanism incorporated does not

result in optimized performance but rather adds overhead, as the compilation

times are considerably high when run with traces than without traces.

As these are short running programs, the overhead of compilation can not be

18

Benchmark Static
Exec.
Size(in
KB)

Trace
Count

Basic
Block
Count

Native
Run-
Time(sec)

Total
Context
Switches

400 perlbench.attrs.pl 1203.066 1492.700 16627.100 0.147 151708.800
400 perlbench.gv.pl 1203.066 1008.700 13779.400 0.025 105540.600
400 perlbench.makerand.pl 1203.066 263.300 5855.200 0.077 33504.200
400 perlbench.pack.pl 1203.066 3666.200 26878.400 0.193 291185.000
400 perlbench.redef.pl 1203.066 528.500 9307.800 0.017 69650.500
400 perlbench.ref.pl 1203.066 707.000 10717.800 0.017 78645.500
400 perlbench.regmesg.pl 1203.066 1102.400 15261.800 0.017 119580.100
400 perlbench.test.pl 1203.066 1026.755 13262.705 4.399 104746.373
401 bzip2.dryer.jpg 72.381 554.500 3567.500 4.104 38202.200
401 bzip2.input.program 72.381 516.100 3339.700 2.466 37635.500
403 gcc hs.cccp.i 3632.383 20964.200 103816.200 1.354 1385432.600
429 mcf hs.inp.in 22.643 248.000 2569.000 2.795 19392.000
445 gobmk.capture.tst 3944.371 1631.100 8778.200 0.548 111445.000
445 gobmk.connection rot.tst 3944.371 1593.000 9098.900 0.071 106304.400
445 gobmk.connection.tst 3944.371 4198.800 19469.000 4.634 272542.600
445 gobmk.connect rot.tst 3944.371 1698.000 9322.100 0.069 112671.700
445 gobmk.connect.tst 3944.371 2671.800 12343.500 1.647 169207.300
445 gobmk.cutstone.tst 3944.371 2215.000 10623.500 0.269 143610.500
445 gobmk.dniwog.tst 3944.371 7055.000 31364.200 11.859 452076.900
456 hmmer.bombesin.hmm 314.469 309.000 4202.800 2.927 29803.400
458 sjeng hs.test.txt 149.578 1108.000 5782.200 4.065 72226.000
462 libquantum hs.33.5 50.480 205.000 2119.200 0.082 17404.000
464 h264ref hs.foreman test.cfg 565.682 1960.000 11694.200 15.406 149200.000

Table 3.1. Different stats related to the benchmark test inputs

compensated with the resulting improved code locality produced by DynamoRIO.

The time taken for compilation is more than the actual execution time for some

benchmark/inputs resulting in the high overheads for most of the benchmarks.

Furthermore, the high compilation times is the result of high context switches

between the contexts of DynamoRIO and the code cache (application code exe-

cution). This high number of context switches in turn results in the execution of

DynamoRIO code for most of the execution time. Also, the percentage of context

switches to actually create the fragments (basic blocks, traces) is less.

The table 3.1 has information on the number of traces, and basic blocks

created for each of the benchmark, as well as the number of context switches

between the context of DynamoRIO and application execution from the translated

code in caches. It can be seen that the context switches are significantly more

than the sum of the traces and basic blocks, supporting our earlier statement on

the context switches.

We researched further to find the possible causes of context switches other

than the actual compilation. The log data collected from DynamoRIO on the

19

code cache exits has been helpful to know the major reasons for control exiting

code cache for reasons other than the fragment compilation.

Figure 3.3 shows the ditribution of different factors causing the control exit

from the fcache. The figure also shows the average of all the factors for all the

benchmarks, showing the important factors for fcache exits.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fcache exit distribution - Test Inputs

Sys call execs Total Indirect Branches Dir. Branch not in cache

Link not allowed Non-ignorable sys call

Figure 3.3. Distribution of fcache exit causes for different bench-
mark test inputs

It can be seen that there are two outstanding factors, Indirect Branches and

Link not allowed between fragments in addition to block translation. Intuitively,

the number of additional instructions executed should depend on and correlate

with the number of code cache exits. But, we could see that even for some

benchmarks with similarly high exit rates, the additional instructions executed

by DynamoRIO are signficantly different.

20

Benchmark Total
Fcache
Ex-
its/millisec

perf instrcnt ra-
tio(DRIO/Native)

400 perlbench.attrs.pl 379.75 73.89
400 perlbench.gv.pl 536.48 89.36
400 perlbench.makerand.pl 213.91 3.60
400 perlbench.pack.pl 484.77 10.37
400 perlbench.redef.pl 523.49 167.49
400 perlbench.ref.pl 514.41 130.47
400 perlbench.regmesg.pl 556.86 105.95
400 perlbench.test.pl 5.46 16.28
401 bzip2.dryer.jpg 8.64 1.27
401 bzip2.input.program 13.52 1.31
403 gcc hs.cccp.i 309.66 3.73
429 mcf hs.inp.in 6.71 1.52
445 gobmk.capture.tst 279.76 3.24
445 gobmk.connection rot.tst 428.81 5.76
445 gobmk.connection.tst 38.50 1.60
445 gobmk.connect rot.tst 471.23 6.78
445 gobmk.connect.tst 91.46 1.70
445 gobmk.cutstone.tst 248.40 2.65
445 gobmk.dniwog.tst 24.36 1.52
456 hmmer.bombesin.hmm 9.48 1.28
458 sjeng hs.test.txt 12.63 1.70
462 libquantum hs.33.5 95.62 1.82
464 h264ref hs.foreman test.cfg 14.73 1.53

Table 3.2. Fcache exit ratio against perf instruction count ratios
for different benchmark test inputs

Table 3.2 shows the exit rates for different benchmark test inputs along with

the corresponding perf instruction count ratio between DynamoRIO to Native

instruction counts. It can be seen from this table that for the benchmark 400.perl-

bench test input attrs.pl the exit rate is 379.75 and for the benchmark 403.gcc

test input cccp.i the exit rate is 309.66. Though the exit rates are close, there is

a big difference between the perf instruction count ratios.

Table 3.3 shows the ratio of DynamoRIO to Application perf counters for

different events. It can be seen that for the benchmark 400.perlbench test input

attrs.pl the L1 icache load misses and iTLB load misses are more compared

to the benchmark 403.gcc test input cccp.i. This probably explains the big differ-

ence in the perf cycle count ratios as the high cycle count for 400.perlbench can be

due to the stall cycles required to address the penalty of the misses. The misses

also show that the code had been accessed more randomly compared to the other

benchmark. The overhead is probably not indicated by just the exit rate and the

outstanding factors of the exits, but also on how the hardware is able to handle

21

the extra load of instructions considering the resultant code locality by running

the program from within DynamoRIO.

Benchmark Branch
Miss%

Cache
Miss%

Context
Switches

L1
icache
load
misses

iTLB
load
misses

400 perlbench.attrs.pl 0.543 0.371 5.743 78.396 65.216
400 perlbench.gv.pl 0.663 0.704 9.325 109.491 83.534
400 perlbench.makerand.pl 0.514 0.450 16.750 201.198 21.938
400 perlbench.pack.pl 0.819 0.186 3 17.029 48.106
400 perlbench.redef.pl 0.551 0.511 33.600 178.569 75.824
400 perlbench.ref.pl 0.618 0.341 33.400 152.658 101.630
400 perlbench.regmesg.pl 0.598 0.563 12.100 123.410 59.279
400 perlbench.test.pl 1.134 0.668 1.092 28.083 19.136
401 bzip2.dryer.jpg 0.864 1.295 4.768 21.004 5.378
401 bzip2.input.program 1.001 1.390 5.207 23.617 4.529
403 gcc hs.cccp.i 0.988 0.659 6.804 15.448 28.197
429 mcf hs.inp.in 0.709 1.001 3.814 12.851 3.097
445 gobmk.capture.tst 0.928 0.178 2.720 32.802 38.289
445 gobmk.connection rot.tst 0.516 0.130 15.727 51.631 69.832
445 gobmk.connection.tst 1.014 0.090 1.532 11.033 11.371
445 gobmk.connect rot.tst 0.684 0.125 11.581 67.363 89.123
445 gobmk.connect.tst 0.918 0.150 1.419 12.917 14.543
445 gobmk.cutstone.tst 0.715 0.119 3.908 16.143 33.563
445 gobmk.dniwog.tst 0.983 0.375 2.608 9.500 7.873
456 hmmer.bombesin.hmm 0.826 1.309 3.219 17.508 2.455
458 sjeng hs.test.txt 0.886 0.569 5.661 43.097 5.974
462 libquantum hs.33.5 2.612 0.403 33.300 183.327 35.996
464 h264ref hs.foreman test.cfg 1.026 1.033 2.728 7.166 3.319

Table 3.3. Ratio of DynamoRIO and Application PERF counters
for different events with each of the benchmark test inputs

Table 3.4 shows the counts of other instructions executed with in the code cache

apart from the translated instructions. The counts have been captured with the

help of ptrace and maps. The ratio of other instructions to the total instructions

is not that high, implying that the overhead due to the other instructions is not

that big. The inputs for the benchmarks 401.bzip2 and 462.libquantum have the

highest overhead with 11% and 10% respectively. Other inputs have the overheads

in the single digits or less than 1.

Benchmarks Code Cache -
Other ICount

Total ICount CC-Other
ICount/Total
ICount

400 perlbench.redef.pl 8983533.000 887665902.000 0.010
401 bzip2.input.program 1201238475.000 10855705330.000 0.111
403 gcc hs.cccp.i 9646369.000 1024677672.000 0.009
429 mcf hs.inp.in 123415.000 64442423.000 0.002
445 gobmk.connect rot.tst 3869729.000 251377454.000 0.015
445 gobmk.cutstone.tst 751636.000 233894825.000 0.003
456 hmmer.bombesin.hmm 223028.000 89912289.000 0.002
458 sjeng hs.test.txt 17582478.000 336561573.000 0.052
462 libquantum hs.33.5 48002097.000 476153483.000 0.101
464.foreman test.cfg 144047.000 73680140.000 0.002

Table 3.4. Ratio of Other code cache instructions and Total In-
structions of the benchmark test inputs

22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

8
4

2

1
6

8
3

2
5

2
4

3
3

6
5

4
2

0
6

5
0

4
7

5
8

8
8

6
7

2
9

7
5

7
0

8
4

1
1

9
2

5
2

1
0

0
9

3

1
0

9
3

4

1
1

7
7

5

1
2

6
1

6

1
3

4
5

7

1
4

2
9

8

1
5

1
3

9

1
5

9
8

0

1
6

8
2

1

1
7

6
6

2

1
8

5
0

3

1
9

3
4

4

2
0

1
8

5

2
1

0
2

6

2
1

8
6

7

2
2

7
0

8

2
3

5
4

9

2
4

3
9

0

2
5

2
3

1

2
6

0
7

2

2
6

9
1

3

2
7

7
5

4

2
8

5
9

5

2
9

4
3

6

3
0

2
7

7

3
1

1
1

8

3
1

9
5

9

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure 3.4. Distribution of instruction counts for different execution
phases of 456.hmmer benchmark input bombesin

A better insight of how the different exits from the code cache influenced the

benchmark execution would be through the number of DynamoRIO instructions

executed with each of those exits. We have used ptrace with single-step to execute

the benchmark and collect samples of instruction counts executed in different

phases for every 0.5 million instructions. With the use of maps that helped in

keeping track of the memory segments along with the program counter enabled us

in capturing the counts for different phases. The figure 3.4 shows the distribution

of instructions counts for different execution phases of benchmark 456.hmmer

with input bombesin. The color code of different execution phases maps to the

fraction of DynamoRIO instruction counts executed to address the corresponding

fcache exit reasons: Indirect Branchs,Block Translation and Trace Formation. It

can be seen that most of the graph is green, which is the color code for instructions

executed in the code cache. This is a good indicator of high percentage of code

being executed from within the code cache. The next significant phase executed is

Trace Formation which relates to the fcache exit due to absence of linking between

certain fragments and the trace heads to be executed next, followed by the phase

for Indirect Branches.

Ideally, this distribution of instruction counts for different execution phases

23

of DynamoRIO should be inline with the distribution of different fcache exits for

the bombesin input of benchmark 456.hmmer shown in figure 3.3. But, according

to the fcache exit distribution, the instructions executed for exit due to Indirect

Branches which is around 50% of the total exits, should be more compared to

the exit due to Trace Formation, which is around 42% of the total exits. This

contradicts with our findings on the instruction count distribution. The reason for

this can be that the optimization technique of instruction inlining might be coming

in handy, resolving the indirect branches within the fragment cache, averting the

need to exit from the code cache, assuming that the design of the code is more

structured enabling the indirect branch prediction to be more efficient. From this,

it can be said that the number of DynamoRIO instructions needed to execute in

resolving the reason for exit is not a constant for all the cases of a particular exit

type, but also depends on the nature of the exit and other factors like the employed

optimizations. So, the instruction count distribution is not directly proportional

to the fcache exit distribution.

It is also possible to explain the low overhead with this particular benchmark

run, resulting in a run-time close to that of native run from the figure 3.1. The

optimization techniques like, caching of basic blocks, linking of basic blocks within

cache, trace creation, instruction inlining to handle indirect branches from within

the fragment cache must have helped in keeping most of the execution within the

fragment cache and abating the effect of additional instructions executed apart

from the application code. The design of the benchmark code also plays a role,

as it is possible that the code of 456.hmmer is more structured and the test input

invokes only part of the benchmark code base that is more re-usable and requires

less translation.

24

Another interesting case to look at would be the benchmark 400.perlbench run

with test input regmesg.pl. This has the highest run-time overhead as shown in the

figure 3.1 and also the major contributing factor for overhead is the compilation

time or the basic block translation time, shown in figure 3.2. The fcache exit

distribution for the same can be seen in the figure 3.3, which is around 52% for

indirect branches, 43% for trace formation and 15% for block translation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

3
4

6
7

1
0

0

1
3

3

1
6

6

1
9

9

2
3

2

2
6

5

2
9

8

3
3

1

3
6

4

3
9

7

4
3

0

4
6

3

4
9

6

5
2

9

5
6

2

5
9

5

6
2

8

6
6

1

6
9

4

7
2

7

7
6

0

7
9

3

8
2

6

8
5

9

8
9

2

9
2

5

9
5

8

9
9

1

1
0

2
4

1
0

5
7

1
0

9
0

1
1

2
3

1
1

5
6

1
1

8
9

1
2

2
2

1
2

5
5

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure 3.5. Distribution of instruction counts for different execution
phases of 400.perlbench benchmark input regmesg.pl

Now, referring to the instruction count distribution during the benchmark

execution in figure 3.5, we can see that the code executed during block translation

is pervasive. This concurs with the high compilation time overhead mentioned

earlier with reference to the figure 3.2. The other phases Indirect Branches,Trace

Formation(color codes orange and yellow respectively) can be prominently seen in

the distribution posing a high degree of overhead. As a result, very small portion

of instructions have been executed from within the fragment cache which is the

distribution in green.

Next, we discuss the affect of the high instruction volume on the hardware.

Table 3.3 shows the ratio of branch misses with DynamoRIO compared to the

native run. It can be seen from the table that the ratios for the benchmarks

400.perlbench, 403.gobmk and 445.gobmk are less than 1, indicating that the

25

branch misses for native run are more compared to the run with DynamoRIO.

Similarly, the Table 3.3 has the cache miss ratios for different benchmarks.

These ratios for the benchmarks 400.perlbench, 403.gobmk and 445.gobmk is less

than 1, being coherent with the data of the branch miss percentages. It can be

said that the improved code locality through the DynamoRIO run has resulted in

an overall improvement of the branch prediction and also the overall cache misses

for these benchmark test inputs.

However, other sources of penalty with respect to hardware are significant

resulting in the overhead not being compensated. Table 3.3 shows the context

switches for different benchmark test inputs run through DynamoRIO as a multi-

ple of the context switches run natively. The context switches are more compared

to native run. Similarly, the Table 3.3 gives information on the L1 icache load

misses and iTLB load misses with the DynamoRIO runs against the native runs.

It is probably because of the large executable size of the benchmark in compar-

ision with the DynamoRIO code, resulting in a high percentage of L1 and TLB

misses. The resulting penalty probably couldn’t be compensated by any added

speed with some other factors during execution like overall branch misses and

overall cache misses causing the overhead with each of the benchmarks. Looking

into remodelling the hardware can be one of the future explorations to amelio-

rate the execution time of the programs through DynamoRIO as the code base

of the tool itself is large and can probably get even bigger with any new features.

Also, exploring opportunities to parallelize parts of the DynamoRIO code can be

beneficial.

26

3.2.2 Benchmark Statistics - Ref Inputs

The below figure 3.6 shows the ratio of DynamoRIO run times to the native

run times. It can be seen that similar to the test inputs the highest overhead

is with the benchmarks 400.perlbench, 403.gcc and 445.gobmk. However, the

highest overhead is with the input diffmail.pl of the benchmark 400.perlbench,

with close to 100% overhead.

0.000

0.500

1.000

1.500

2.000

2.500

3.000

4
0

0
_

p
e

rl
b

e
n

ch
.c

h
e

ck
sp

a
m

.p
l

4
0

0
_

p
e

rl
b

e
n

ch
.d

if
fm

a
il

.p
l

4
0

0
_

p
e

rl
b

e
n

ch
.s

p
li

tm
a

il
.p

l

4
0

1
_

b
zi

p
2

.c
h

ic
k

e
n

.j
p

g

4
0

1
_

b
zi

p
2

.i
n

p
u

t.
co

m
b

in
e

d

4
0

1
_

b
zi

p
2

.i
n

p
u

t.
p

ro
g

ra
m

4
0

1
_

b
zi

p
2

.i
n

p
u

t.
so

u
rc

e

4
0

1
_

b
zi

p
2

.l
ib

e
rt

y
.j

p
g

4
0

1
_

b
zi

p
2

.t
e

xt
.h

tm
l

4
0

3
_

g
cc

_
h

s.
1

6
6

.i

4
0

3
_

g
cc

_
h

s.
2

0
0

.i

4
0

3
_

g
cc

_
h

s.
cp

-d
e

cl
.i

4
0

3
_

g
cc

_
h

s.
c-

ty
p

e
ck

.i

4
0

3
_

g
cc

_
h

s.
e

xp
r2

.i

4
0

3
_

g
cc

_
h

s.
e

xp
r.

i

4
0

3
_

g
cc

_
h

s.
g

2
3

.i

4
0

3
_

g
cc

_
h

s.
s0

4
.i

4
0

3
_

g
cc

_
h

s.
sc

il
a

b
.i

4
2

9
_

m
cf

_
h

s.
in

p
.i

n

4
4

5
_

g
o

b
m

k
.1

3
x1

3
.t

st

4
4

5
_

g
o

b
m

k
.n

n
g

s.
ts

t

4
4

5
_

g
o

b
m

k
.s

co
re

2
.t

st

4
4

5
_

g
o

b
m

k
.t

re
v

o
rc

.t
st

4
4

5
_

g
o

b
m

k
.t

re
v

o
rd

.t
st

4
5

6
_

h
m

m
e

r.
n

p
h

3
.h

m
m

4
5

6
_

h
m

m
e

r.
re

tr
o

.h
m

m

4
5

8
_

sj
e

n
g

_
h

s.
re

f.
tx

t

4
6

2
_

li
b

q
u

a
n

tu
m

_
h

s.
1

3
9

7
.8

4
6

4
_

h
2

6
4

re
f_

h
s.

fo
re

m
a

n
_

re
f_

e
n

co
d

e
r_

b
a

se
li
n

e
.c

fg

4
6

4
_

h
2

6
4

re
f_

h
s.

fo
re

m
a

n
_

re
f_

e
n

co
d

e
r_

m
a

in
.c

fg

4
6

4
_

h
2

6
4

re
f_

h
s.

ss
s.

e
n

co
d

e
r.

m
a

in
.c

fg

A
V

G

Ratio of DRIO and Native Run Times

DRIO-wotraces/Native DRIO-wtraces/Native

Figure 3.6. Ratio of DynamoRIO run times to Native run times for
different benchmark ref inputs

Reference inputs signify the steady state run of a program and lead to long

running times. So, the compilation overhead would be compensated by the longer

execution times for each of the benchmarks. This aspect is illustrated in Fig-

ure 3.7, with ratios of the compilation times to the execution times for different

benchmark reference inputs. The highest compilation time ratio’s are for the

27

403.gcc benchmark with the input scilab.i, which is 0.071 or 7%. This shows that

the compilation time is not a significant contributor to the overhead.

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

0.07000

0.08000

Ratio of Compilation Time to Execution Time

DRIO-wotraces/Native DRIO-wtraces/Native

Figure 3.7. Ratio of Compilation time to Execution time for differ-
ent benchmark ref inputs

Table 3.5 shows the application statistics for different benchmarks run with

reference inputs like, trace counts, basic block counts, total context switches be-

tween the DynamoRIO and application contexts. The number of context switches

are considerably more than the count for the fragments (traces, basic blocks) cre-

ated during the execution, just like in the case of test inputs, leading to execution

of high number of DynamoRIO instructions. But, because of the longer running

programs or program inputs though the counts of context switches for ref inputs

are similar to those of test inputs, the initial overhead of compilation (DynamoRIO

28

Benchmark Trace
Count

Basic
Block
Count

Native
Run-
Time(sec)

Total
Context
Switches

400 perlbench.checkspam.pl 8178.8 40578.0 227.6 541143.7
400 perlbench.diffmail.pl 4473.3 27557.7 71.7 340470.8
400 perlbench.splitmail.pl 6288.8 33740.1 106.0 450717.7
401 bzip2.chicken.jpg 734.0 4097.9 40.7 49749.7
401 bzip2.input.combined 749.0 4195.2 90.9 49779.3
401 bzip2.input.program 682.9 3960.8 126.4 47579.1
401 bzip2.input.source 763.9 4259.0 115.9 52278.9
401 bzip2.liberty.jpg 725.9 4006.9 62.9 47354.3
401 bzip2.text.html 684 3981.6 139.6 48431.5
403 gcc hs.166.i 21874.2 108672.3 30.2 1462223.1
403 gcc hs.200.i 25141.8 112271.7 46.5 1582352.4
403 gcc hs.cp-decl.i 21800.1 103935.8 29.6 1416681.7
403 gcc hs.c-typeck.i 22490.5 105935.2 43.6 1447296.1
403 gcc hs.expr2.i 23836.8 110178.7 49.3 1529959.4
403 gcc hs.expr.i 21163.6 102248.2 35.8 1413184.5
403 gcc hs.g23.i 22641.7 106901.2 66.5 1468781.1
403 gcc hs.s04.i 19306.1 96114.8 64.5 1283429.4
403 gcc hs.scilab.i 24551.7 111303.3 17.4 1555177.4
429 mcf hs.inp.in 260.0 2565.1 383.3 20240.5
445 gobmk.13x13.tst 9353.2 38286.0 70.8 575940.0
445 gobmk.nngs.tst 10011.8 40247.4 180.0 613075.2
445 gobmk.score2.tst 9214.0 37462.2 93.3 570369.9
445 gobmk.trevorc.tst 9423.4 38454.3 71.2 581499.0
445 gobmk.trevord.tst 9239.8 38129.1 96.7 571706.9
456 hmmer.nph3.hmm 748.2 6367.3 154.7 59207.8
456 hmmer.retro.hmm 409.0 4445.2 330.1 34410.4
458 sjeng hs.ref.txt 1308.0 6272.3 594.0 83000.4
462 libquantum hs.1397.8 240.0 2311.3 533.3 20141.5
464 h264ref hs.foreman ref baseline.cfg 2268.0 12653.2 85.9 161563.5
464 h264ref hs.foreman ref main.cfg 3042.0 15473.1 61.4 206221.5
464 h264ref hs.sss encoder main.cfg 3109.0 15732.0 546.1 212284.6

Table 3.5. Different stats related to the benchmark ref inputs

code execution) could be compensated with the steady state execution leading to

smaller percentages of compilation times as discussed with the Figure 3.7.

This means that the compilation is done less frequently compared to the test

inputs. However, the overhead signifies extra instructions executed compared to

native run. It would give us the two sources of DynamoRIO code and any penalty

during execution of these additonal instructions. As discussed in the scenario of

test inputs, the DynamoRIO instructions are executed when the control exits from

the code cache and we have collected data for the reference inputs as well on the

factors leading to fcache exits. The figure 3.8 shows the distribution of different

factors causing the fcache exits for SPEC benchmarks with the ref input.

Even for reference inputs the outstanding factors causing the fcache exits are:

Indirect Branch targets and Link not allowed for trace heads. Table 3.6 shows

the fcache exit rate and the perf instuction count ratio for different benchmark

reference inputs. The exit rates for the reference inputs is relatively less compared

29

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
0

0
_

p
e

rl
b

e
n

ch
.c

h
e

ck
sp

a
m

.p
l

4
0

0
_

p
e

rl
b

e
n

ch
.d

if
fm

a
il

.p
l

4
0

0
_

p
e

rl
b

e
n

ch
.s

p
li

tm
a

il
.p

l

4
0

1
_

b
zi

p
2

.c
h

ic
k

e
n

.j
p

g

4
0

1
_

b
zi

p
2

.i
n

p
u

t.
co

m
b

in
e

d

4
0

1
_

b
zi

p
2

.i
n

p
u

t.
p

ro
g

ra
m

4
0

1
_

b
zi

p
2

.i
n

p
u

t.
so

u
rc

e

4
0

1
_

b
zi

p
2

.l
ib

e
rt

y
.j

p
g

4
0

1
_

b
zi

p
2

.t
e

x
t.

h
tm

l

4
0

3
_

g
cc

_
h

s.
1

6
6

.i

4
0

3
_

g
cc

_
h

s.
2

0
0

.i

4
0

3
_

g
cc

_
h

s.
cp

-d
e

c
l.

i

4
0

3
_

g
cc

_
h

s.
c-

ty
p

e
ck

.i

4
0

3
_

g
cc

_
h

s.
e

x
p

r2
.i

4
0

3
_

g
cc

_
h

s.
e

x
p

r.
i

4
0

3
_

g
cc

_
h

s.
g

2
3

.i

4
0

3
_

g
cc

_
h

s.
s0

4
.i

4
0

3
_

g
cc

_
h

s.
sc

il
a

b
.i

4
2

9
_

m
cf

_
h

s.
in

p
.i

n

4
4

5
_

g
o

b
m

k
.1

3
x1

3
.t

st

4
4

5
_

g
o

b
m

k
.n

n
g

s.
ts

t

4
4

5
_

g
o

b
m

k
.s

co
re

2
.t

st

4
4

5
_

g
o

b
m

k
.t

re
v

o
rc

.t
st

4
4

5
_

g
o

b
m

k
.t

re
v

o
rd

.t
st

4
5

6
_

h
m

m
e

r.
n

p
h

3
.h

m
m

4
5

6
_

h
m

m
e

r.
re

tr
o

.h
m

m

4
5

8
_

sj
e

n
g

_
h

s.
re

f.
tx

t

4
6

2
_

li
b

q
u

a
n

tu
m

_
h

s.
1

3
9

7
.8

4
6

4
_

h
2

6
4

re
f_

h
s.

fo
re

m
a

n
_

re
f_

e
n

co
d

e
r_

b
a

se
li

n
e

.c
fg

4
6

4
_

h
2

6
4

re
f_

h
s.

fo
re

m
a

n
_

re
f_

e
n

co
d

e
r_

m
a

in
.c

fg

4
6

4
_

h
2

6
4

re
f_

h
s.

ss
s.

e
n

co
d

e
r.

m
a

in
.c

fg

A
V

G

Fcache exit distribution - Ref Inputs

Sys call execs Total Indirect Branches Dir. Branch not in cache Link not allowed Non-ignorable sys call

Figure 3.8. Distribution of different factors causing fcache exits
with different benchmark reference inputs

to the test inputs, probably because of the longer steady state runs. Ideally, the

high exit rate and instruction count ratio combination for 400.perlbench should

be high considering the high overheads in-order for our inference with test inputs

to apply for reference inputs as well. However, the exit rates for 403.gcc reference

inputs are high but the perf instruction count ratio is highest for the 400.perlbench

benchmark reference input diffmail.pl. With the reference inputs it is not readily

evident with the exit rate for the fcache exits to be the root cause of the overhead.

The instruction count distribution in different execution phases of reference

inputs will shed some light on the evolving execution pattern as the steady state

run progresses through completion. It would also show the influence of the op-

30

Benchmark Total
Fcache
Ex-
its/millisec

perf instrcnt ra-
tio(DRIO/Native)

400 perlbench.checkspam.pl 1.35 1.902
400 perlbench.diffmail.pl 2.41 2.172
400 perlbench.splitmail.pl 2.5 1.815
401 bzip2.chicken.jpg 1.14 1.238
401 bzip2.input.combined 0.47 1.332
401 bzip2.input.program 0.32 1.297
401 bzip2.input.source 0.39 1.348
401 bzip2.liberty.jpg 0.71 1.261
401 bzip2.text.html 0.32 1.305
403 gcc hs.166.i 34.34 1.933
403 gcc hs.200.i 22.44 1.943
403 gcc hs.cp decl.i 31.73 1.863
403 gcc hs.c typeck.i 25.1 1.689
403 gcc hs.expr2.i 24.04 1.684
403 gcc hs.expr.i 29.95 1.74
403 gcc hs.g23.i 17.55 1.721
403 gcc hs.s04.i 15.57 1.722
403 gcc hs.scilab.i 52.76 2.055
429 mcf hs.inp.in 0.05 1.402
445 gobmk.13x13.tst 5.13 1.505
445 gobmk.nngs.tst 2.14 1.497
445 gobmk.score2.tst 4.36 1.425
445 gobmk.trevorc.tst 5.11 1.504
445 gobmk.trevord.tst 3.74 1.492
456 hmmer.nph3.hmm 0.41 1.057
456 hmmer.retro.hmm 0.11 1.076
458 sjeng hs.ref.txt 0.1 1.669
462 libquantum hs.1397.8 0.04 1.228
464 h264ref hs.foreman ref baseline.cfg 2.72 1.527
464 h264ref hs.foreman ref main.cfg 4.31 1.455
464 h264ref hs.sss encoder main.cfg 0.91 1.416

Table 3.6. Fcache exit rates and perf instruction count ratios for
different benchmark reference inputs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure 3.9. Instruction count distribution of benchmark 403.gcc for
the input g23.i

timization techniques on the benchmark run, which was discussed with the test

inputs as well. The Figure 3.9 shows the instruction count distribution in differ-

ent execution phases of the benchmark 403.gcc run with input g23.i. It can be

seen that in the samples collected progressively with time, more instructions are

being executed from within the code cache marked in color code green. This is

the typical execution pattern expected for long running applications run through

31

a binary translator. The optimization techniques incorporated in DynamoRIO [5]

like, caching, linking, trace formation and instruction inlining have been able to

considerably improve the execution time spent in the fragment cache. However,

the additional instructions executed couldn’t be fully alleviated through the op-

timization techniques as an overhead of around 30% could be seen in terms of

run-time captured in the figure 3.6. The overhead would be accountable to the

ability of the hardware to handle the excess instruction load. It is evident from the

data given in the table 3.8 that the higher miss-rates of L1 icache, iTLB, branch-

misses and context switches are higher than the native run, which couldn’t be

abated by the improved code locality in the fragment cache harvested during the

steady state run.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure 3.10. Instruction count distribution of benchmark
462.libquantum for the input parameters 1397 and 8

Another example is the instruction count distribution of the benchmark 462.libquan-

tum with input parameters 1397 and 8, shown in the figure 3.10. Here, the ex-

ecution reveals that a very high percentage of code has been executed from the

fragment cache, and that the optimizations have been able to improve the per-

formance compared to the native run, given the characteristic of longer run-time

of the benchmark. This can be seen with the run-time stats portrayed in the fig-

ure 3.6. The ratio of DynamoRIO run-time to Native run-time for this benchmark

32

input is little less than 1, indicating a speed-up.

Also, from the figure 3.8, it can be seen that for the benchmark 403.gcc in-

put g23.i and the benchmark 462.libqunatum input parameters 1397 and 8, the

percentage of indirect branch exits from fragment cache is around 48%. However,

from their respective instruction distributions shown in figure 3.9 and figure 3.10

respectively, not much of code has been executed in the corresponding execution

phase for Indirect Branches with color code orange. This is an indication of the

influence of instruction inlining to be able to resolve the indirect branches with

the help of auxiliary code placed in fragment cache for the same.

Moving forward, we look into how the hardware has handled the extra in-

structions executed as a result of the fcache exits. As with the test inputs, the

factors responsible for overhead with ref inputs also produce a cumulative effect

with respect to the resulting overhead.

Table 3.7 shows the ratios of other code cache instruction counts to the total

instructions, for different benchmark reference inputs. Similar to the test inputs

the other instructions do not constitute much of the overhead. The highest is for

the inputs of the benchmarks 458.sjeng and 462.libquantum with the overheads

of 12 and 13 percent respectively. So, this is another source of an overhead, but

not a significant one.

Benchmarks Code Cache -
Other ICount

Total ICount CC-Other
ICount/Total
ICount

400 perlbench.checkspam.pl 20184472.000 1533744933.000 0.013
403 gcc hs.g23.i 9631584.000 886058512.000 0.011
429 mcf hs.inp.in 123841.000 41190975.000 0.003
445 gobmk.nngs.tst 813799.000 167865993.000 0.005
456 hmmer.retro.hmm 222048.000 62639472.000 0.004
458 sjeng hs.ref.txt 11960064.000 99729147.000 0.120
462 libquantum hs.1397.8 2970202773.000 22206986093.000 0.134
464.sss encoder main.cfg 144876.000 47774198.000 0.003

Table 3.7. Ratio of Other code cache instructions and Total In-
structions of the benchmark reference inputs

Table 3.8 below shows the ratio’s of DynamoRIO and Application hardware

33

counters for different benchmark reference inputs.

Benchmark Branch
Miss%

Cache
Miss%

Context
Switches

L1
icache
load
misses

iTLB
load
misses

400 perlbench.checkspam.pl 0.87 0.57 2.72 3.60 17.24
400 perlbench.diffmail.pl 1.17 0.41 2.87 4.01 8.00
400 perlbench.splitmail.pl 1.24 0.75 3.27 4.71 7.50
401 bzip2.chicken.jpg 0.95 1.16 2.32 4.50 2.20
401 bzip2.input.combined 1.02 1.15 1.84 3.66 2.03
401 bzip2.input.program 1.02 1.10 2.05 3.24 2.00
401 bzip2.input.source 1.06 1.13 1.76 3.07 2.14
401 bzip2.liberty.jpg 0.85 1.32 2.23 3.79 2.35
401 bzip2.text.html 1.10 1.24 1.43 3.36 2.55
403 gcc hs.166.i 1.31 1.23 2.22 7.04 15.16
403 gcc hs.200.i 1.24 0.84 2.65 7.02 10.87
403 gcc hs.cp-decl.i 1.63 1.66 2.68 7.58 12.16
403 gcc hs.c-typeck.i 1.41 1.98 2.66 6.93 12.48
403 gcc hs.expr2.i 1.27 1.75 1.71 6.90 9.58
403 gcc hs.expr.i 1.43 1.73 1.33 7.49 8.73
403 gcc hs.g23.i 1.08 1.74 1.69 6.68 9.46
403 gcc hs.s04.i 1.46 0.72 1.21 6.28 12.50
403 gcc hs.scilab.i 1.20 0.72 2.98 7.21 18.14
429 mcf hs.inp.in 0.81 0.99 1.33 1.59 1.79
445 gobmk.13x13.tst 1.04 0.28 1.84 9.07 6.01
445 gobmk.nngs.tst 1.07 0.30 1.88 9.50 8.27
445 gobmk.score2.tst 0.99 0.11 1.99 9.02 6.21
445 gobmk.trevorc.tst 1.04 0.22 1.64 9.53 6.22
445 gobmk.trevord.tst 1.03 0.22 1.89 10.03 6.42
456 hmmer.nph3.hmm 1.03 1.12 1.37 2.77 0.80
456 hmmer.retro.hmm 0.91 1.06 1.30 1.89 0.82
458 sjeng hs.ref.txt 0.84 0.60 2.55 56.01 4.00
462 libquantum hs.1397.8 0.77 0.92 1.70 1.40 2.03
464 h264ref hs.foreman ref baseline.cfg 0.99 0.99 2.35 5.87 2.84
464 h264ref hs.foreman ref main.cfg 1.03 0.85 2.42 6.51 2.74
464 h264ref hs.sss encoder main.cfg 0.94 0.90 1.83 5.08 2.63

Table 3.8. Ratio of DynamoRIO and Application PERF counters
for different events with each of the benchmark ref inputs

As stated earlier, the overhead is the result of the cumulative effect of differ-

ent factors rather than a single stand-out factor. Like with the perf stats, for

different benchmarks it can be seen that during the execution, though few fac-

tors result in a speed-up like improved overall branch prediction and cache miss

percentage, other factors like Context Switches, L1 icache load misses and iTLB

load misses,result in a slow-down nullifying the affect of the speed-up gained with

the earlier factors. The two factors: L1 icache load misses and iTLB load misses

have the dominating effect on the overhead. The inputs for the larger benchmarks

400.perlbench, 403.gcc and 445.gobmk have comparatively higher misses resulting

in higher overheads. All the benchmarks with overheads close to and above 50%

show a combination of these factors irrespective of the size of the benchmarks. To

explain the highest overhead with the 400.perlbench inputs, we should look at the

34

absolute hardware counter data of all the benchmarks, as the numbers in table 3.8

are for each of the benchmarks with respect to native run and not relative to other

benchmarks.

The table 3.9 shows the absolute hardware counter values for all the bench-

marks. The 400.perlbench inputs have a moderate number for each of the factors

resulting in a higher overhead. Other benchmarks do have higher numbers than

the perlbench but other factors were not has high or not that moderate. The

traces did help the reference inputs with an improved code locality which can be

seen with relatively improved cache misses compared to native run. But in-order

to execute the DynamoRIO instructions for the caching, the penalty outweighed

the resultant benefits.

Benchmark page
faults

context
switches

L1 icache load
misses

iTLB load
misses

400 perlbench.checkspam.pl 62719.0 2086.2 29394939703.8 461132463.6
400 perlbench.diffmail.pl 60701.4 752.0 15968361691.4 108681967.1
400 perlbench.splitmail.pl 177615.2 1191.2 6456686207.2 31362344.1
401 bzip2.chicken.jpg 19010.0 244.6 35705777.3 572765.4
401 bzip2.input.combined 106419.0 480.9 65677168.8 1432250.7
401 bzip2.input.program 145827.0 538.6 85777371.6 1985356.0
401 bzip2.input.source 144809.1 439.3 76222039.8 1913225.1
401 bzip2.liberty.jpg 19332.5 340.9 42586662.9 859808.2
401 bzip2.text.html 147179.3 646.6 93104456.4 2571532.2
403 gcc hs.166.i 145114.1 255.5 2401657380.2 19724103.6
403 gcc hs.200.i 100230.6 376.7 6294751868.9 40345460.6
403 gcc hs.cp decl.i 132964.6 304.2 2308228664.3 18040525.6
403 gcc hs.c typeck.i 204064.1 368.3 3260020837.3 25738947.0
403 gcc hs.expr2.i 359328.2 452.3 2798556907.7 22925898.6
403 gcc hs.expr.i 229253.8 396.1 2008010664.2 15843322.2
403 gcc hs.g23.i 318081.3 586.3 2640536811.3 23782506.3
403 gcc hs.s04.i 437967.3 647.1 2923525056.8 31539677.1
403 gcc hs.scilab.i 42897.3 206.8 3489980001.0 34095804.8
429 mcf hs.inp.in 319262.6 1026.5 115111931.1 2943680.8
445 gobmk.13x13.tst 7659.1 570.7 24903682383.4 22517451.0
445 gobmk.nngs.tst 7988.1 1294.8 63367259168.2 71465280.1
445 gobmk.score2.tst 7623.0 619.9 20851630193.4 24926334.7
445 gobmk.trevorc.tst 7769.6 675.4 26939805062.7 21952245.6
445 gobmk.trevord.tst 7699.7 743.3 33434956140.6 28851708.1
456 hmmer.nph3.hmm 7810.7 506.7 273819502.8 2300921.7
456 hmmer.retro.hmm 1962.2 887.0 182427750.6 3099690.7
458 sjeng hs.ref.txt 29241.6 2625.0 126710850939.4 69682253.5
462 libquantum hs.1397.8 145412.5 1385.8 175130571.5 3693486.8
464 h264ref hs.foreman ref baseline.cfg 10701.6 534.9 1125155452.3 6115595.7
464 h264ref hs.foreman ref main.cfg 7367.3 376.5 1587285881.0 5880242.1
464 h264ref hs.sss encoder main.cfg 22109.8 2656.2 10664863334.9 45536380.1

Table 3.9. DynamoRIO hardware numbers for reference inputs

In summary, not just the fcache exit rate, but the exit rate combined with

the impact on hardware can result in an overhead or speed up. To address the

issue of overhead, research is to be done on how to reduce the number of fcache

35

exits because of the two major factors: Indirect Branch Target and Linking not

allowed with trace head and also in the design of an efficient hardware to handle

the high instruction volume. This can include larger TLB tables, page tables and

more history to be accounted for by the branch predictor as both the DynamoRIO

code and application code are being run from within a single process without any

threads resulting in high pressure on the hardware. Options for parallelization

within the DynamoRIO code base and eager translation to compile basic blocks

ahead of time(analogous to pre-fetching) can be explored to run things faster.

36

Chapter 4

Related Work

Prior research has been done to explore different reasons for the overhead of

running applications under Dynamic Binary Translation Systems. Techniques to

address different causes of the overheads have been researched, implemented and

shown to improve run-times. The work of Arkaitz Ruiz and Kim Hazelwood [27]

in exploring how the hardware is affected by running applications from within the

DBT’s is close to our work. In their work they have used the perf [25] tool to get

the hardware counters for different hardware events during the execution. They

use Pin [4] and DynamoRIO [12] for their experiements. Their focus was mainly

in exploring the impact of Pin on the hardware and the causes. They have run the

SPEC2006 INT benchmarks [9] under both Pin and DynamoRIO. Acccording to

their results, the main root cause of the overhead is the high volume of instructions

executed than the native execution, causing high L1 instruction cache misses and

iTLB misses for most of the benchmarks. We have adopted the perf tool as well

to collect our hardware statistics during benchmark execution and our results

validate their observations.

We not only explore the hardware impact but other aspects of the DBT as

37

well, like the number of exits, basic block’s and traces created during execution,

run-time and compilation-time during the application execution inorder to achieve

a more wholesome understanding of how the DBT influences the application ex-

ecution. Certainly, the root cause of the overhead is high instruction execution

derived from the large code base of DynamoRIO executed during the translation.

This is the result of the control exiting the code cache for the translation. In our

work we found that the main reasons for the exits from the code cache is indirect

branch execution and no linking between basic blocks and trace heads, so, the

ultimate cause of overhead filters down to the source pc to target pc translation

in executing basic blocks and traces from within the respective code caches.

Research has been done in better handling of indirect branches previously

and SPIRE [22] is an approach to handle hot indirect branches during source pc

translation. The idea is not to exit the code cache for the translation, but to have

a trampoline at the source pc address that would in turn redirect the control to

the code cache for executing the translated code. There can be self-modifying

applications and as SPIRE system would modify the original source code with a

trampoline, there is a need to maintain code transparency to the application. For

this a code space with size of original source binary is created and the trampolines

are created in the new space, leaving the original source code untouched. With

the hot indirect branches handled by SPIRE, the overhead of context switching

for translation can be reduced to improve the performance.

The method used in SPIRE is probe-based and DynamoRIO uses JIT-based

compilation with software prediction as the method to resolve the indirect branches.

With software prediction a compare-jump list is put in place for the indirect branch

to jump to the appropriate target pc, as the source pc can’t be known until the

38

branch instruction had been executed. With the compare-jump list, only the

corresponding mappings of source pc’s in the list have to be checked from the

hash-table with all the source to target pc mappings. However, if the mapping

can’t be found from within the list, the whole lookup-table has to be checked

for resolving the indirect branch. In the prior work with SPIRE, it has been

shown on indirect branch intensive benchmarks that the probe-based method in

SPIRE is more efficient than the software based approach currently implemented

in DynamoRIO.

Apart from SPIRE approach to reduce the instances of exiting code cache for

address translation, the work on HQEMU [20] has also shown to help in reduc-

ing the exits when executing traces from within code cache. With HQEMU, the

goal is to improve the quality of translated code with additional compilation of

intermediate code from QEMU with LLVM translation. LLVM is an optimization

intensive compiler. In addition to improved code quality a technique called trace

merging has been implemented with HQEMU to address the exits while executing

the traces from code cache. When traces are created and executed, it is possible

that the control is switched between certain traces more frequently. With trace

merging, depending on information provided by hardware called Hardware Perfor-

mance Monitor data on such traces is collected and are merged into a single trace

avoiding the switching between the code cache and DBT for the trace address

translation. These would be hot traces that would be executed more frequently

and therefore a large number of exits from code cache can be averted, therefore

reducing a considerable amount of overhead due to translation.

So, these techniques of reducing the translation overhead with the SPIRE

system and trace merging are of interest to address the two major reasons for

39

code cache exits: Indirect Branches and No linking between fragments in code

cache with trace heads.

40

Chapter 5

Future Work

Our work in this thesis studies the major causes for performance overhead in

DBT compared to native program execution. Based on our results and observa-

tions, there are several avenues for future work.

One prominent cause of the performance overhead is the large number of exits

from the code cache that are required to service various DBT tasks. Our immedi-

ate focus in the future will be to explore techniques to reduce the number of exits

from the code cache. We intend to develop and evaluate different mechanisms to

reduce the number of code cache exits for each of the three main causes: basic

block translation, indirect branches, and trace formation. We expect our tech-

niques to use the additional computation resources of multi-core and many-core

machines to parallelize these tasks and allow the main DBT program execution

to stay in the code cache for longer.

More work is also need to resolve the impact on hardware caused by high in-

struction volume and loss of instruction (and perhaps, data) locality due to DBT

execution. We will research and design better hardware techniques to efficiently

execute DBTs with larger code bases. We will also attempt to combine our soft-

41

ware and hardware techniques to create a more collaborative effort to achieve an

ideal DBT execution environment that can run applications close to or even better

than native execution performance on modern multi-core machines.

42

Chapter 6

Conclusions

Dynamic binary translation is an important mechanism to realize portable pro-

gram execution, program profiling for performance improvement, and monitoring

and instrumentation to provide a secure execution environment. Unfortunately,

program execution in a DBT can cause small to significant performance overhead,

resulting in limiting the adoption of this technology in mainstream systems. Our

goal in this thesis was to understand the causes for performance overhead in a

DBT to allow targeted resolution of such causes in the future.

We have designed new experiments to explore performance characteristics for

DynamoRio, which is a popular and sophisticated x86 to x86 binary translator,

instrumentor and optimizer. The performance overhead of a DBT is due to a com-

bination of factors. Our experiments measuring the effect of program execution in

a DBT on processor cache and branch prediction hardware reveal trends that are

mostly consistent with earlier results. In particular, we confirmed that program

execution in a DBT exerts greater pressure on the L1 instruction cache and the

instruction TLB due to a higher volume of executed instructions compared to

native program execution.

43

In this thesis we conducted further experiments to understand the causes for

the higher volume of executed instructions and associated performance overheads.

We found that the performance overhead can be attributed to frequent exits from

the code cache to service the additional tasks performed by the DBT. We deter-

mined that the major causes for code cache exits include block translation, trace

formation, and indirect branch resolution. Our experiments and graphs also re-

veal the number of exits in each category and the number of instructions executed

to service such events throughout program execution. Based on these results we

plan to devise parallelization techniques to conduct these services asynchronously

and in advance to reduce the number of code cache exits and DBT performance

overhead in the future.

44

Appendix A

Instruction Count Distribution

Graphs - Test Inputs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

5
4

7

1
0

9
3

1
6

3
9

2
1

8
5

2
7

3
1

3
2

7
7

3
8

2
3

4
3

6
9

4
9

1
5

5
4

6
1

6
0

0
7

6
5

5
3

7
0

9
9

7
6

4
5

8
1

9
1

8
7

3
7

9
2

8
3

9
8

2
9

1
0

3
7

5

1
0

9
2

1

1
1

4
6

7

1
2

0
1

3

1
2

5
5

9

1
3

1
0

5

1
3

6
5

1

1
4

1
9

7

1
4

7
4

3

1
5

2
8

9

1
5

8
3

5

1
6

3
8

1

1
6

9
2

7

1
7

4
7

3

1
8

0
1

9

1
8

5
6

5

1
9

1
1

1

1
9

6
5

7

2
0

2
0

3

2
0

7
4

9

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure A.1. Distribution of instruction counts for different execu-
tion phases of 401.bzip2 benchmark test input input.program

45

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

6
6

1

1
3

2
1

1
9

8
1

2
6

4
1

3
3

0
1

3
9

6
1

4
6

2
1

5
2

8
1

5
9

4
1

6
6

0
1

7
2

6
1

7
9

2
1

8
5

8
1

9
2

4
1

9
9

0
1

1
0

5
6

1

1
1

2
2

1

1
1

8
8

1

1
2

5
4

1

1
3

2
0

1

1
3

8
6

1

1
4

5
2

1

1
5

1
8

1

1
5

8
4

1

1
6

5
0

1

1
7

1
6

1

1
7

8
2

1

1
8

4
8

1

1
9

1
4

1

1
9

8
0

1

2
0

4
6

1

2
1

1
2

1

2
1

7
8

1

2
2

4
4

1

2
3

1
0

1

2
3

7
6

1

2
4

4
2

1

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure A.2. Distribution of instruction counts for different execu-
tion phases of 403.gcc benchmark test input cccp

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
6

0

3
1

9

4
7

8

6
3

7

7
9

6

9
5

5

1
1

1
4

1
2

7
3

1
4

3
2

1
5

9
1

1
7

5
0

1
9

0
9

2
0

6
8

2
2

2
7

2
3

8
6

2
5

4
5

2
7

0
4

2
8

6
3

3
0

2
2

3
1

8
1

3
3

4
0

3
4

9
9

3
6

5
8

3
8

1
7

3
9

7
6

4
1

3
5

4
2

9
4

4
4

5
3

4
6

1
2

4
7

7
1

4
9

3
0

5
0

8
9

5
2

4
8

5
4

0
7

5
5

6
6

5
7

2
5

5
8

8
4

6
0

4
3

6
2

0
2

6
3

6
1

6
5

2
0

6
6

7
9

6
8

3
8

6
9

9
7

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure A.3. Distribution of instruction counts for different execu-
tion phases of 429.mcf benchmark test input inp.in

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

3
4

6
7

1
0

0

1
3

3

1
6

6

1
9

9

2
3

2

2
6

5

2
9

8

3
3

1

3
6

4

3
9

7

4
3

0

4
6

3

4
9

6

5
2

9

5
6

2

5
9

5

6
2

8

6
6

1

6
9

4

7
2

7

7
6

0

7
9

3

8
2

6

8
5

9

8
9

2

9
2

5

9
5

8

9
9

1

1
0

2
4

1
0

5
7

1
0

9
0

1
1

2
3

1
1

5
6

1
1

8
9

1
2

2
2

1
2

5
5

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure A.4. Distribution of instruction counts for different execu-
tion phases of 445.gobmk benchmark test input connect.rot

46

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

7
5

1
4

9

2
2

3

2
9

7

3
7

1

4
4

5

5
1

9

5
9

3

6
6

7

7
4

1

8
1

5

8
8

9

9
6

3

1
0

3
7

1
1

1
1

1
1

8
5

1
2

5
9

1
3

3
3

1
4

0
7

1
4

8
1

1
5

5
5

1
6

2
9

1
7

0
3

1
7

7
7

1
8

5
1

1
9

2
5

1
9

9
9

2
0

7
3

2
1

4
7

2
2

2
1

2
2

9
5

2
3

6
9

2
4

4
3

2
5

1
7

2
5

9
1

2
6

6
5

2
7

3
9

2
8

1
3

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure A.5. Distribution of instruction counts for different execu-
tion phases of 445.gobmk benchmark test input cutstone

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

9
6

7

1
9

3
3

2
8

9
9

3
8

6
5

4
8

3
1

5
7

9
7

6
7

6
3

7
7

2
9

8
6

9
5

9
6

6
1

1
0

6
2

7

1
1

5
9

3

1
2

5
5

9

1
3

5
2

5

1
4

4
9

1

1
5

4
5

7

1
6

4
2

3

1
7

3
8

9

1
8

3
5

5

1
9

3
2

1

2
0

2
8

7

2
1

2
5

3

2
2

2
1

9

2
3

1
8

5

2
4

1
5

1

2
5

1
1

7

2
6

0
8

3

2
7

0
4

9

2
8

0
1

5

2
8

9
8

1

2
9

9
4

7

3
0

9
1

3

3
1

8
7

9

3
2

8
4

5

3
3

8
1

1

3
4

7
7

7

3
5

7
4

3

3
6

7
0

9

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure A.6. Distribution of instruction counts for different execu-
tion phases of 458.sjeng benchmark test input test.txt

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

3
0

5

3
2

4

3
4

3

3
6

2

3
8

1

4
0

0

4
1

9

4
3

8

4
5

7

4
7

6

4
9

5

5
1

4

5
3

3

5
5

2

5
7

1

5
9

0

6
0

9

6
2

8

6
4

7

6
6

6

6
8

5

7
0

4

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure A.7. Distribution of instruction counts for different execu-
tion phases of 462.libquantum benchmark test input parameters 33
and 5

47

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

5
2

1
2

1
0

4
2

3

1
5

6
3

4

2
0

8
4

5

2
6

0
5

6

3
1

2
6

7

3
6

4
7

8

4
1

6
8

9

4
6

9
0

0

5
2

1
1

1

5
7

3
2

2

6
2

5
3

3

6
7

7
4

4

7
2

9
5

5

7
8

1
6

6

8
3

3
7

7

8
8

5
8

8

9
3

7
9

9

9
9

0
1

0

1
0

4
2

2
1

1
0

9
4

3
2

1
1

4
6

4
3

1
1

9
8

5
4

1
2

5
0

6
5

1
3

0
2

7
6

1
3

5
4

8
7

1
4

0
6

9
8

1
4

5
9

0
9

1
5

1
1

2
0

1
5

6
3

3
1

1
6

1
5

4
2

1
6

6
7

5
3

1
7

1
9

6
4

1
7

7
1

7
5

1
8

2
3

8
6

1
8

7
5

9
7

1
9

2
8

0
8

1
9

8
0

1
9

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure A.8. Distribution of instruction counts for different execu-
tion phases of 464.h264ref benchmark test input foreman

48

Appendix B

Instruction Count Distribution

Graphs - Reference Inputs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure B.1. Distribution of instruction counts for different execu-
tion phases of 400.perlbench benchmark ref input checkspam.pl

49

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure B.2. Distribution of instruction counts for different execu-
tion phases of 401.bzip2 benchmark ref input.program

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure B.3. Distribution of instruction counts for different execu-
tion phases of 429.mcf benchmark ref input inp.in

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure B.4. Distribution of instruction counts for different execu-
tion phases of 445.gobmk benchmark ref input nngs

50

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure B.5. Distribution of instruction counts for different execu-
tion phases of 456.hmmer benchmark ref input retro.hmm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure B.6. Distribution of instruction counts for different execu-
tion phases of 458.sjeng benchmark ref input ref.txt

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7

%
 I

n
s.

 C
o

u
n

t
D

is
t.

Samples

code cache Indirect Branches Block Translation Trace Formation Others

Figure B.7. Distribution of instruction counts for different execu-
tion phases of 464.h264ref benchmark ref input sss.encoder.main.cfg

51

References

[1] About.com. nm-linux command-unix command.

http://linux.about.com/library/cmd/blcmdl1 nm.htm, May 2015.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic opti-

mization system. In Proceedings of the ACM SIGPLAN 2000 conference on Pro-

gramming language design and implementation, PLDI ’00, pages 1–12, New York,

NY, USA, 2000. ACM.

[3] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the

Annual Conference on USENIX Annual Technical Conference, ATEC ’05, pages

41–41, Berkeley, CA, USA, 2005. USENIX Association.

[4] S. Berkowits. Pin - a dynamic binary instrumentation tool.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-

tool, June 2012.

[5] D. L. Bruening. Effcient,transparent,and comprehensive runtime code manipula-

tion. http://www.burningcutlery.com/derek/docs/phd.pdf, September 2004.

[6] D. L. Bruening. Efficient, transparent, and comprehensive runtime code manipu-

lation. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA,

2004. AAI0807735.

[7] R. F. Cmelik and D. Keppel. Shade: A fast instruction set simulator for execution

profiling. Technical report, Sun Microsystems, Inc., Mountain View, CA, USA,

1993.

52

[8] W.-T. Command. time - unix command.

http://en.wikipedia.org/wiki/Time %28Unix%29, October 2014.

[9] S. S. P. E. Corporation. Cint2006 - integer component of spec cpu2006.

https://www.spec.org/cpu2006/CINT2006/, August 2006.

[10] Q. Z. Derek L. Bruening. Deployment - linux platform.

http://dynamorio.org/docs/page deploy.html, September 2014.

[11] Q. Z. Derek L. Bruening. Dynamorio - building a client.

http://dynamorio.org/docs/using.html#sec build, September 2014.

[12] Q. Z. Derek L. Bruening. Dynamorio - dynamic instrumentation tool platform.

http://dynamorio.org/, September 2014.

[13] Q. Z. Derek L. Bruening. Dynamorio: Common events.

http://dynamorio.org/docs/using.html#sec events, September 2014.

[14] Q. Z. Derek L. Bruening. Fine-tuning dynamorio: Runtime parameters.

http://dynamorio.org/docs/using.html#sec options, September 2014.

[15] die.net. ptrace(2)-linux man page. http://linux.die.net/man/2/ptrace, February

2015.

[16] DynamoRIO. Dynamorio api. http://dynamorio.org/docs/index.html, September

2014.

[17] DynamoRIO. Dynamorio system details. http://dynamorio.org/docs/overview.html,

September 2014.

[18] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars, and B. R. Childers.

Evaluating indirect branch handling mechanisms in software dynamic translation

systems. In Proceedings of the International Symposium on Code Generation and

Optimization, CGO ’07, pages 61–73, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[19] J. D. Hiser, D. W. Williams, W. Hu, J. W. Davidson, J. Mars, and B. R. Childers.

Evaluating indirect branch handling mechanisms in software dynamic translation

systems. ACM Trans. Archit. Code Optim., 8(2):9:1–9:28, June 2011.

53

[20] D.-Y. Hong, C.-C. Hsu, P.-C. Yew, J.-J. Wu, W.-C. Hsu, P. Liu, C.-M. Wang,

and Y.-C. Chung. Hqemu: A multi-threaded and retargetable dynamic binary

translator on multicores. In Proceedings of the Tenth International Symposium

on Code Generation and Optimization, CGO ’12, pages 104–113, New York, NY,

USA, 2012. ACM.

[21] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J. C. Knight,

A. Nguyen-Tuong, and J. Rowanhill. Secure and practical defense against code-

injection attacks using software dynamic translation. In Proceedings of the 2nd

international conference on Virtual execution environments, VEE ’06, pages 2–12,

New York, NY, USA, 2006. ACM.

[22] N. Jia, C. Yang, J. Wang, D. Tong, and K. Wang. Spire: Improving dynamic bi-

nary translation through spc-indexed indirect branch redirecting. In Proceedings of

the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, VEE ’13, pages 1–12, New York, NY, USA, 2013. ACM.

[23] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution via program

shepherding. In Proceedings of the 11th USENIX Security Symposium, pages 191–

206, Berkeley, CA, USA, 2002. USENIX Association.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: building customized program analysis tools with

dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’05, pages 190–200,

New York, NY, USA, 2005. ACM.

[25] PerfWiki. Linux kernel profiling with perf.

https://perf.wiki.kernel.org/index.php/Tutorial, May 2014.

[26] A. Ruiz-Alvarez and K. Hazelwood. Evaluating the impact of dynamic binary

translation systems on hardware cache performance. In Workload Characterization,

2008. IISWC 2008. IEEE International Symposium on, pages 131–140, Sept 2008.

54

[27] A. Ruiz-Alvarez and K. Hazelwood. Evaluating the impact of dynamic binary

translation systems on hardware cache performance. In Workload Characterization,

2008. IISWC 2008. IEEE International Symposium on, pages 131–140, Sept 2008.

[28] K. Scott and J. Davidson. Strata: A software dynamic translation infrastructure.

Technical report, Charlottesville, VA, USA, 2001.

[29] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L. Soffa.

Retargetable and reconfigurable software dynamic translation. In Proceedings of the

international symposium on Code generation and optimization: feedback-directed

and runtime optimization, CGO ’03, pages 36–47, Washington, DC, USA, 2003.

IEEE Computer Society.

[30] tutorialspoint.com. Fork-system call. http://www.tutorialspoint.com/unix system calls/fork.htm,

May 2015.

[31] D. Ung and C. Cifuentes. Dynamic binary translation using run-time feedbacks.

Sci. Comput. Program., 60(2):189–204, Apr. 2006.

[32] wikipedia.org. Kill-unix command. http://en.wikipedia.org/wiki/Kill %28command%29,

May 2015.

[33] wikipedia.org. Sleep-unix command. http://en.wikipedia.org/wiki/Sleep %28Unix%29,

May 2015.

55

	Abstract
	Table of Contents
	List of Figures
	Introduction
	Framework for Capturing Statistics on Dynamic Binary Translation
	DynamoRIO design details
	DynamoRIO changes for experiments
	Run times and Compilation times
	Perf statistics
	Application Instruction Counts
	Fcache exit data from logs
	Code cache instructions with ptrace
	Code cache instructions with ptrace

	Experimental Results and Analysis
	Experimental Setup
	x86 Results and Analysis
	Benchmark Statistics - Test Inputs
	Benchmark Statistics - Ref Inputs

	Related Work
	Future Work
	Conclusions
	Instruction Count Distribution Graphs - Test Inputs
	Instruction Count Distribution Graphs - Reference Inputs
	References

