Trees

- Linear Vs non-linear data structures
- Types of binary trees
- Binary tree traversals
- Representations of a binary tree
- Binary tree ADT
- Binary search tree
Overview

• We have discussed *linear* data structures
 – arrays, linked lists, stacks, queues
• Some other data structures we will consider
 – trees, tables, graphs, hash-tables
• Trees are extremely useful and suitable for a wide range of applications
 – sorting, searching, expression evaluation, data set representation
 – especially well suited to recursive algorithm implementation
Terminology

• A Tree T is a set of $n \geq 0$ elements:
 – if $n = 0$, T is an empty tree
 – if $n > 0$ then there exists some element called $r \in T$ called the root of T such that $T - \{r\}$ can be partitioned into zero or more disjoint sets T_1, T_2, \ldots where each subset forms a tree

• Trees are composed of nodes and edges

• Trees are hierarchical
 – parent-child relationship between two nodes
 – ancestor-descendant relationships among nodes

• Subtree of a tree: Any node and its descendants
Terminology

Figure 10-1 A general tree

Figure 10-2 A subtree of the tree in Figure 10-1
Terminology

• Parent of node n
 – The node directly above node n in the tree

• Child of node n
 – A node directly below node n in the tree

• Root
 – The only node in the tree with no parent

• Subtree of node n
 – A tree that consists of a child (if any) of node n and the child’s descendants
Terminology

• Leaf
 – A node with no children

• Siblings
 – Nodes with a common parent

• Ancestor of node n
 – A node on the path from the root to n

• Descendant of node n
 – A node on a path from n to a leaf
A Binary Tree

• A binary tree is a set T of nodes such that
 – T is empty, or
 – T is partitioned into three disjoint subsets:
 • a single node r, the root
 • two possibly empty sets that are binary trees, called
 the left subtree of r and the right subtree of r

• Binary trees are ordered

• These trees are not equal
A General Tree & A Binary Tree

(a)

President

VP Marketing
Director Marketing Relations

VP Manufacturing
Director Sales

VP Personnel

(b)

Caroline

John
Joseph

Jacqueline
Rose
More Binary Trees

\[a - b \]

(a)

\[a - b / c \]

(b)

\[(a - b) \times c \]

(c)

Figure 10-4 Binary trees that represent algebraic expressions
A Binary Search Tree

- A binary search tree is a binary tree that has the following properties for each node n
 - n’s value is $> all$ values in n’s left subtree TL
 - n’s value is $< all$ values in n’s right subtree TR
 - both TL and TR are binary search trees
The Height of Trees

• Height of a tree
 – Number of nodes along the longest path from the root to a leaf

![Binary trees with the same nodes but different heights](image)

Figure 10-6
Binary trees with the same nodes but different heights
The Height of Trees

• Level of a node n in a tree T
 – If n is the root of T, it is at level 1
 – If n is not the root of T, its level is 1 greater than the level of its parent

• Height of a tree T defined in terms of the levels of its nodes
 – If T is empty, its height is 0
 – If T is not empty, its height is equal to the maximum level of its nodes
The Height of Trees

• A recursive definition of height
 – If T is empty, its height is 0
 – If T is not empty,
 – $\text{height}(T) = 1 + \max\{\text{height}(\text{TL}), \text{height}(\text{TR})\}$
Full Binary Trees

• A binary tree of height h is full if
 – Nodes at levels $< h$ have two children each

• Recursive definition
 – If T is empty, T is a full binary tree of height 0
 – If T is not empty and has height $h > 0$, T is a full binary tree if its root’s subtrees are both full binary trees of height $h - 1$
Complete Binary Trees

• A binary tree of height h is complete if
 – It is full to level $h - 1$, and
 – Level h is filled from left to right
Complete Binary Trees

• Another definition:
• A binary tree of height h is complete if
 – All nodes at levels $\leq h - 2$ have two children each, and
 – When a node at level $h - 1$ has children, all nodes to its left at the same level have two children each, and
 – When a node at level $h - 1$ has one child, it is a left child
Balanced Binary Trees

- A binary tree is balanced if the heights of any node’s two subtrees differ by no more than 1
- Complete binary trees are balanced
- Full binary trees are complete and balanced
Traversals of a Binary Tree

• A traversal visits each node in a tree
 – to do something with or to the node during a visit
 – for example, display the data in the node

• General form of a recursive traversal algorithm

```plaintext
traverse (in binTree:BinaryTree)
    if (binTree is not empty)
        {  traverse(Left subtree of binTree’s root)
        traverse(Right subtree of binTree’s root)
        }
```
Traversals of a Binary Tree

• Preorder traversal
 – Visit root before visiting its subtrees
 • i. e. Before the recursive calls

• Inorder traversal
 – Visit root between visiting its subtrees
 • i. e. Between the recursive calls

• Postorder traversal
 – Visit root after visiting its subtrees
 • i. e. After the recursive calls
Traversals of a Binary Tree

Figure 10-10

Traversals of a binary tree: (a) preorder; (b) inorder; (c) postorder

(a) Preorder: 60, 20, 10, 40, 30, 50, 70
(b) Inorder: 10, 20, 30, 40, 50, 60, 70
(c) Postorder: 10, 30, 50, 40, 20, 70, 60

(Numbers beside nodes indicate traversal order.)
Traversals of a Binary Tree

• A traversal operation can call a function to perform a task on each item in the tree
 – this function defines the meaning of “visit”
 – the client defines and passes this function as an argument to the traversal operation

• Tree traversal orders correspond to algebraic expressions
 – infix, prefix, and postfix
The ADT Binary Tree

<table>
<thead>
<tr>
<th>Binary tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
</tr>
<tr>
<td>left subtree</td>
</tr>
<tr>
<td>right subtree</td>
</tr>
</tbody>
</table>

+createBinaryTree()
+createBinaryTree(in rootItem: TreeItemType)
+createBinaryTree(in rootItem: TreeItemType,
 inout leftTree: BinaryTree,
 inout rightTree: BinaryTree)
+destroyBinaryTree()
+isEmpty(): boolean {query}
+getRootData(): TreeItemType throw TreeException
+setRootData(in newItem: TreeItemType) throw TreeException
+attachLeft(in newItem: TreeItemType) throw TreeException
+attachRight(in newItem: TreeItemType) throw TreeException
+attachLeftSubtree(inout leftTree: BinaryTree) throw TreeException
+attachRightSubtree(inout rightTree: BinaryTree) throw TreeException
+detachLeftSubtree(out leftTree: BinaryTree) throw TreeException
+detachRightSubtree(out rightTree: BinaryTree) throw TreeException
+getLeftSubtree(): BinaryTree
+getRightSubtree(): BinaryTree
+preorderTraverse()
+inorderTraverse()
+postorderTraverse()
The ADT Binary Tree

• Building the ADT binary tree in Fig. 10-6b

```python
    tree1.setRootData('F')
    tree1.attachLeft('G')
    tree2.setRootData('D')
    tree2.attachLeftSubtree(tree1)
    tree3.setRootData('B')
    tree3.attachLeftSubtree(tree2)
    tree3.attachRight('E')
    tree4.setRootData('C')
    tree10_6.createBinaryTree('A', tree3, tree4)
```
Possible Representations of a Binary Tree

• An array-based representation
 – Uses an array of tree nodes
 – Requires the creation of a free list that keeps track of available nodes
 – only suitable for complete binary trees

• A pointer-based representation
 – Nodes have two pointers that link the nodes in the tree
Array Based Binary Tree

• Given a complete binary tree T with n nodes, T can be represented using an array $A[0:n-1]$ such that
 – root of T is in $A[0]$

• Completeness of the tree is important because it minimizes the size of the array required

• Note that
 – parent of node $A[i]$ is at $A[(i-1)/2]$
 – for $n > 1$, $A[i]$ is a leaf node iff $n \leq 2i$

• Balanced requirement makes an array representation unsuitable for binary search tree implementation
Array Based Binary Tree

• Complete tree fits in minimum size array
 – space efficient
• Nodes do not need child or parent pointers
 – index of these can be calculated from the index of the current node
Array Based Binary Tree

• Advantages
 – space saving through direct computation of child and parent indices rather than pointers
 – O(1) access time through direct computation
 • pointers are also O(1) access but with larger K

• Disadvantages
 – only useful when tree is complete
 • or, complete enough that unused cells do not waste much memory
 – sparse tree representation is too memory intensive

• If a complete tree is of height h, it requires an array of size $2^h - 1$
 – a skewed BST of 10 nodes is of height 10, requiring an array of size $2^{10} - 1 = 1023$
Figure 10-14 A pointer-based implementation of a binary tree
Pointer-based ADT Binary Tree

- **TreeException** and **TreeNode** classes
- **BinaryTree** class
 - Several constructors, including a
 - Protected constructor whose argument is a pointer to a root node; prohibits client access
 - Copy constructor that calls a private function to copy each node during a traversal of the tree
 - Destructor
Binary Tree ADT – TreeNode.h

// TreeNode.h
typedef string TreeItemType;
// node in the tree
class TreeNode {
private:
 TreeNode();
 TreeNode(const TreeItemType& nodeItem, TreeNode *left = NULL, TreeNode *right = NULL): item(nodeItem),
 leftChildPtr(left),
 rightChildPtr(right) {}

 TreeItemType item; // data portion
 TreeNode *leftChildPtr; // pointer to left child
 TreeNode *rightChildPtr; // pointer to right child

friend class BinaryTree; // friend class
};
// TreeException.h

#include <stdexcept>
#include <string>
using namespace std;

Class Tree Exception : public logic_error {
public:
 TreeException(const string& message = "") :
 logic_error(message.c_str())
 {});
};
Binary Tree ADT – BinaryTree.h

//Begin BinaryTree.h

#include "TreeException.h"
#include "TreeNode.h"

// This function pointer is used by the client
// to customize what happens when a node is visited
typedef void (*FunctionType)(TreeItemType& anItem);

class BinaryTree {
public:
 // constructors and destructor:
 BinaryTree();
 BinaryTree(const TreeItemType& rootItem);
 BinaryTree(const TreeItemType& rootItem, BinaryTree& leftTree, BinaryTree& rightTree);
 BinaryTree(const BinaryTree& tree);
 virtual ~BinaryTree();
Binary Tree ADT – BinaryTree.h

// binary tree operations:
virtual bool isEmpty() const;

virtual TreeItemType getRootData() const throw(TreeException);
virtual void setRootData(const TreeItemType& newItem) throw (TreeException);

virtual void attachLeft(const TreeItemType& newItem) throw(TreeException);
virtual void attachRight(const TreeItemType& newItem) throw(TreeException);
virtual void attachLeftSubtree(BinaryTree& leftTree) throw(TreeException);
virtual void attachRightSubtree(BinaryTree& rightTree) throw(TreeException);

virtual void detachLeftSubtree(BinaryTree& leftTree) throw(TreeException);
virtual void detachRightSubtree(BinaryTree& rightTree) throw(TreeException);

virtual BinaryTree getLeftSubtree() const;
virtual BinaryTree getRightSubtree() const;

virtual void preorderTraverse(FunctionType visit);
virtual void inorderTraverse(FunctionType visit);
virtual void postorderTraverse(FunctionType visit);
// overloaded assignment operator:
virtual BinaryTree& operator=(const BinaryTree& rhs);

protected:
BinaryTree(TreeNode *nodePtr); // constructor

// Copies the tree rooted at treePtr into a tree rooted
// at newTreePtr. Throws TreeException if a copy of the
// tree cannot be allocated.
void copyTree(TreeNode *treePtr, TreeNode* &newTreePtr) const
 throw(TreeException);;

// Deallocate memory for a tree.
void destroyTree(TreeNode * &treePtr);

// The next two functions retrieve and set the value
// of the private data member root.
TreeNode *rootPtr() const;
void setRootPtr(TreeNode *newRoot);
Binary Tree ADT – BinaryTree.h

// The next two functions retrieve and set the values
// of the left and right child pointers of a tree node.
void getChildPtrs(TreeNode *nodePtr, TreeNode * &leftChildPtr,
 TreeNode * &rightChildPtr) const;
void setChildPtrs(TreeNode *nodePtr, TreeNode *leftChildPtr,
 TreeNode *rightChildPtr);

void preorder(TreeNode *treePtr, FunctionType visit);
void inorder(TreeNode *treePtr, FunctionType visit);
void postorder(TreeNode *treePtr, FunctionType visit);

private:
 TreeNode *root; // pointer to root of tree

}; // end class
// End of header file. BinaryTree.h
// Implementation file BinaryTree.cpp for the ADT binary tree.
#include "BinaryTree.h" // header file
#include <cstddef> // definition of NULL
#include <cassert> // for assert()

BinaryTree::BinaryTree() : root(NULL) { }

BinaryTree::BinaryTree(const TreeItemType& rootItem) {
 root = new TreeNode(rootItem, NULL, NULL);
 assert(root != NULL);
}

BinaryTree::BinaryTree(const TreeItemType& rootItem,
 BinaryTree& leftTree, BinaryTree& rightTree) {
 root = new TreeNode(rootItem, NULL, NULL);
 assert(root != NULL);
 attachLeftSubtree(leftTree);
 attachRightSubtree(rightTree);
}
Binary Tree ADT – BinaryTree.cpp

BinaryTree::BinaryTree(const BinaryTree& tree) {
 copyTree(tree.root, root);
}

BinaryTree::BinaryTree(TreeNode *nodePtr): root(nodePtr) {
}

BinaryTree::~BinaryTree() {
 destroyTree(root);
}

bool BinaryTree::isEmpty() const {
 return (root == NULL);
}

TreeItemType BinaryTree::getRootData() const {
 if (isEmpty())
 throw TreeException("TreeException: Empty tree");
 return root->item;
}
void BinaryTree::setRootData(const TreeItemType& newItem) {
 if (!isEmpty()) {
 root->item = newItem;
 } else {
 root = new TreeNode(newItem, NULL, NULL);
 if (root == NULL)
 throw TreeException("TreeException: Cannot allocate memory");
 }
}

void BinaryTree::attachLeft(const TreeItemType& newItem) {
 if (isEmpty()) {
 throw TreeException("TreeException: Empty tree");
 } else if (root->leftChildPtr != NULL) {
 throw TreeException("TreeException: Cannot overwrite left subtree");
 } else { // Assertion: nonempty tree; no left child
 root->leftChildPtr = new TreeNode(newItem, NULL, NULL);
 if (root->leftChildPtr == NULL)
 throw TreeException("TreeException: Cannot allocate memory");
 }
}
void BinaryTree::attachRight(const TreeItemType& newItem) {
 if (isEmpty())
 throw TreeException("TreeException: Empty tree");
 else if (root->rightChildPtr != NULL)
 throw TreeException("TreeException: Cannot overwrite right subtree");
 else { // Assertion: nonempty tree; no right child
 root->rightChildPtr = new TreeNode(newItem, NULL, NULL);
 if (root->rightChildPtr == NULL)
 throw TreeException("TreeException: Cannot allocate memory");
 }
}

void BinaryTree::attachLeftSubtree(BinaryTree& leftTree) {
 if (isEmpty())
 throw TreeException("TreeException: Empty tree");
 else if (root->leftChildPtr != NULL)
 throw TreeException("TreeException: Cannot overwrite left subtree");
 else { // Assertion: nonempty tree; no left child
 root->leftChildPtr = leftTree.root;
 leftTree.root = NULL;
 }
}
void BinaryTree::attachRightSubtree(BinaryTree& rightTree) {
 if (isEmpty())
 throw TreeException("TreeException: Empty tree");
 else if (root->rightChildPtr != NULL)
 throw TreeException("TreeException: Cannot overwrite right subtree");
 else { // Assertion: nonempty tree; no right child
 root->rightChildPtr = rightTree.root;
 rightTree.root = NULL;
 }
}

void BinaryTree::detachLeftSubtree(BinaryTree& leftTree) {
 if (isEmpty())
 throw TreeException("TreeException: Empty tree");
 else {
 leftTree = BinaryTree(root->leftChildPtr); // constructor taking node * not tree *
 root->leftChildPtr = NULL;
 }
}
void BinaryTree::detachRightSubtree(BinaryTree& rightTree) {
 if (isEmpty())
 throw TreeException("TreeException: Empty tree");
 else {
 rightTree = BinaryTree(root->rightChildPtr); // node * to tree conversion
 root->rightChildPtr = NULL; // this tree no longer holds that subtree
 }
}

BinaryTree BinaryTree::getLeftSubtree() const {
 TreeNode *subTreePtr;
 if (isEmpty())
 return BinaryTree();
 else {
 copyTree(root->leftChildPtr, subTreePtr);
 return BinaryTree(subTreePtr);
 }
}
Binary Tree ADT – BinaryTree.cpp

BinaryTree BinaryTree::rightSubtree() const {
 TreeNode *subTreePtr;
 if (isEmpty())
 return BinaryTree();
 else {
 copyTree(root->rightChildPtr, subTreePtr);
 return BinaryTree(subTreePtr);
 }
}

void BinaryTree::preorderTraverse(FunctionType visit) {
 preorder(root, visit); // preorder written with respect to a tree ptr
}

void BinaryTree::inorderTraverse(FunctionType visit) {
 inorder(root, visit);
}
void BinaryTree::postorderTraverse(FunctionType visit) {
 postorder(root, visit);
}

BinaryTree& BinaryTree::operator=(const BinaryTree& rhs) {
 if (this != &rhs) {
 destroyTree(root); // deallocate lefthand side
 copyTree(rhs.root, root); // copy righthand side
 }
 return *this;
}

void BinaryTree::destroyTree(TreeNode * &treePtr) {
 if (treePtr != NULL) {
 destroyTree(treePtr->leftChildPtr);
 destroyTree(treePtr->rightChildPtr);
 delete treePtr; // postorder traversal
 treePtr = NULL;
 }
}
void BinaryTree::copyTree(TreeNode *treePtr, TreeNode *&newTreePtr) const
{
 // preorder traversal
 if (treePtr != NULL) {
 // copy node
 newTreePtr = new TreeNode(treePtr->item, NULL, NULL);
 if (newTreePtr == NULL)
 throw TreeException("TreeException: Cannot allocate memory");
 copyTree(treePtr->leftChildPtr, newTreePtr->leftChildPtr);
 copyTree(treePtr->rightChildPtr, newTreePtr->rightChildPtr);
 } else
 newTreePtr = NULL; // copy empty tree
}

TreeNode *BinaryTree::rootPtr() const {
 return root;
}
void BinaryTree::setRootPtr(TreeNode *newRoot) {
 root = newRoot;
}

void BinaryTree::getChildPtrs(TreeNode *nodePtr, TreeNode *&leftPtr, TreeNode *&rightPtr) const {
 leftPtr = nodePtr->leftChildPtr;
 rightPtr = nodePtr->rightChildPtr;
}

void BinaryTree::setChildPtrs(TreeNode *nodePtr, TreeNode *leftPtr, TreeNode *rightPtr) {
 nodePtr->leftChildPtr = leftPtr;
 nodePtr->rightChildPtr = rightPtr;
}
void BinaryTree::preorder(TreeNode *treePtr, FunctionType visit) {
 if (treePtr != NULL) {
 visit(treePtr->item);
 preorder(treePtr->leftChildPtr, visit);
 preorder(treePtr->rightChildPtr, visit);
 }
}

void BinaryTree::inorder(TreeNode *treePtr, FunctionType visit) {
 if (treePtr != NULL) {
 inorder(treePtr->leftChildPtr, visit);
 visit(treePtr->item);
 inorder(treePtr->rightChildPtr, visit);
 }
}
void BinaryTree::postorder(TreeNode *treePtr, FunctionType visit) {
 if (treePtr != NULL) {
 postorder(treePtr->leftChildPtr, visit);
 postorder(treePtr->rightChildPtr, visit);
 visit(treePtr->item);
 }
}

// End of implementation file.
// Example client code
#include <iostream>
#include "BinaryTree.h"
using namespace std;
void display(TreeItemType& anItem);

int main()
{
 BinaryTree tree1, tree2, left;
 // tree with only a root 70
 BinaryTree tree3(70);

 // build the tree in Figure 10-10
 tree1.setRootData(40);
 tree1.attachLeft(30);
 tree1.attachRight(50);

 tree2.setRootData(20);
 tree2.attachLeft(10);
 tree2.attachRightSubtree(tree1);

 // tree in Fig 10-10
 BinaryTree binTree(60, tree2, tree3);

 binTree.inorderTraverse(display);
 binTree.getLeftSubtree().inorderTraverse(display);
 binTree.detachLeftSubtree(left);
 left.inorderTraverse(display);
 binTree.inorderTraverse(display);

 return 0;
} // end main
Pointer-based ADT Binary Tree: Tree Traversals

• **BinaryTree** class (continued)
 – Public methods for traversals so that visiting a node remains on the client’s side of the wall

    ```
    void inorderTraverse(FunctionType visit);
    typedef void (*FunctionType)(TreeItemType& item);
    ```

 – Protected methods, such as `inorder`, that enable the recursion

    ```
    void inorder(TreeNode *treeptr, FunctionType visit);
    ```

 – `inorderTraverse` calls `inorder`, passing it a node pointer and the client-defined function `visit`
Recursive Inorder Traversal

(The notation →60 means “a pointer to the node containing 60.”)

Stack:

<table>
<thead>
<tr>
<th>Step</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>→60</td>
<td>→20</td>
<td>→10</td>
<td>NULL</td>
<td>→10</td>
<td>→10</td>
<td>NULL</td>
<td>→10</td>
<td>→10</td>
<td>→20</td>
</tr>
<tr>
<td>60</td>
<td>→20</td>
<td>→20</td>
<td>→20</td>
<td>→60</td>
<td>→20</td>
<td>→60</td>
<td>→60</td>
<td>→60</td>
<td>→60</td>
<td>→60</td>
</tr>
</tbody>
</table>

Visit 10

Visit 20

\[
\text{treePtr at Step 1} \quad \rightarrow 60
\]

\[
\text{treePtr at Steps 2, 9, and 10} \quad \rightarrow 20 \quad \rightarrow 70
\]

\[
\text{treePtr at Steps 3, 5, 6, and 8} \quad \rightarrow 10 \quad \rightarrow 40
\]

\[
\text{treePtr is NULL at Steps 4 and 7} \quad \rightarrow 30 \quad \rightarrow 50
\]
Nonrecursive Inorder Traversal

• An iterative method and an explicit stack can mimic the actions of a return from a recursive call to inorder.

![Figure 10-16](image)

Figure 10-16

Traversing (a) the left and (b) the right subtrees of 20
Copying a Binary Tree

- To copy a tree
 - traverse it in preorder
 - insert each item visited into a new tree
 - use in copy constructor

- To deallocate a tree
 - traverse in postorder
 - delete each node visited
 - “visit” follows deallocation of a node’s subtrees
 - use in destructor
The ADT Binary Search Tree

• The ADT binary tree is not suitable when you need to search for a particular item
 • binary search tree (BST) is more suitable
• A data item in a BST has specially designated search key
 – search key is the part of a record that identifies it within a collection of records
• Assume that the set of all keys can be linearly ordered
 – a comparison function for two keys cmp(k2, k2) distinguishes 3 cases: (1) k1 < k2, (2) k1 == k2, or (3) k1 > k2
• If we use a binary search tree to organize the set of records, then each record must be a node in the tree
 – Record is a class instance held by tree node
 – Record field is a member variable
 – Key is the record field used as search tag
Binary Search Trees

• Binary tree H such that key of any node x, $key(x)$, is greater than the keys of all nodes in its *left* subtree and is less than or equal to keys of all nodes in its *right* subtree
 – often called the BST property
• Equal elements could as easily be in the left subtree
 – but some standard definition is required!
Binary Search Trees – Observations

• BST may not be a balanced binary tree
 – choice of root node is important with respect to the set of all key values present in the tree
• Leftmost descendant of root = minimum item
• Rightmost descendant of root = maximum item
• Inorder traversal of BST = sorted key order
• BST strongly analogous to binary search of an array in sorted order
• Pointer based implementation dynamically allocating tree nodes is the most obvious approach
 – nodes are wrappers for records, might point to records
 – BST template would use record type as parameter
The ADT Binary Search Tree

- Simple BST API
 - similar to 10-18 in book
- Assumes method RecordT.get_key() exists for all possible record types
- Logic of BST find() closely resembles binary search in an array
- Logic of insertion is essentially search for the right place for the inserted record in the tree

```cpp
class BST {
public:
  BST();
  ~BST();
  boolean is_empty();
  boolean insert(RecordT& r);
  RecordT* find(KeyT key);
  boolean delete(KeyT key);
  void preorder();
  void inorder();
  void postorder();
private:
  BST_Node* lchild;
  BST_Node* rchild;
  RecordT* record;
};
```
ADT Binary Search Tree – find

• find the record with search key skey
• first checks the current node and then recursively searches the relevant subtree if it exists
• If relevant subtree does not exist, the search has fails

```cpp
RecordT * BST::find(const KeyT& skey) {
    if ( record == NULL ) {
        return(NULL);
    } else if ( record->get_key() == skey ) {
        return(record);  // key found
    } else if ( record->get_key() > skey ) {
        // search left tree
        if ( lchild == NULL ) {
            return(NULL);
        }
        return(lchild->find(skey));
    } else {
        // search right tree
        if ( rchild == NULL ) {
            return(NULL);
        }
        return(rchild->find(skey));
    }
}
```
ADT Binary Search Tree: Insertion

- BST::insert() method looks for proper place and adds the record in the right spot
 - insert 7, 3, 1, 8, 13, 15, 6, 9, 10 using this algorithm

```cpp
boolean BST::insert(const RecordT& inr) {
    if (record == NULL) {
        // This will be the first record in empty tree
        record = &inr;
        return True;
    } else if (inr > get_key() < record > get_key()) {
        if (lchild == NULL) lchild = new BST;
        return(lchild > insert(inr));
    } else {
        if (rchild == NULL) rchild = new BST;
        return(rchild > insert(inr));
    }
}
```
Figure 10-23
(a) Insertion into an empty tree;
(b) search terminates at a leaf;
(c) insertion at a leaf
• Delete operation on node N is a bit more complicated

• If N is a leaf
 – both lchild and rchild are NULL
 – parent node pointer referring to N should be set to NULL
 • need a pointer to parent node to do this

• If N has only 1 child
 – replace N with its only child

• If N has two children
 – replace N with minimum item of its right subtree
• Deleting the item in node N when N has two children (continued)
 – locate another node M that is easier to delete
 • M is the leftmost node in N’s right subtree
 • M will have no more than one child
 • M’s search key is called the inorder successor of N’s search key
 – copy the item that is in M to N
 – remove the node M from the tree
ADT Binary Search Tree: Delete

- Deleting node x is simple because it has only one child and can be replaced by the root of its child without violating any of the BST constraints.
- Deleting R is harder, but c can replace it because it is the smallest (leftmost) element of the right sub-tree.
ADT Binary Search Tree: Delete

• Delete 3, 7, 8 in order

```
    7
   / \
  3   8
 /     \
1  6    9
    / \
   13 15
```

```
    7
   / \
  6   8
 /     \
1   13 
   /   \
  9   15
```

```
    9
   / \
  3   13
 /     \
1  6    10
    / \
   15 15
```

```
    8
   / \
  3   13
 /     \
1   6   9
   /   / \
  1   10 15
```
ADT Binary Search Tree: Retrieval and Traversal

• The retrieval operation can be implemented by refining the search algorithm
 – return the item with the desired search key if it exists
 – otherwise, throw TreeException

• Traversals for a binary search tree are the same as the traversals for a binary tree

• Theorem 10-1
 – the inorder traversal of a binary search tree T will visit its nodes in sorted search-key order
Height of a Binary Tree

• Theorem 10-2
 – A full binary tree of height \(h \geq 0 \) has \(2^h - 1 \) nodes

• Theorem 10-3
 – The maximum number of nodes that a binary tree of height \(h \) can have is \(2^h - 1 \)

• Theorem 10-4
 – The minimum height of a binary tree with \(n \) nodes is \(\lceil \log_2(n+1) \rceil \)
 – Complete trees and full trees have minimum height

• The maximum height of a binary tree with \(n \) nodes is \(n \)
Height of a Binary Tree

Figure 10-32 Counting the nodes in a full binary tree of height h

<table>
<thead>
<tr>
<th>Level</th>
<th>Number of nodes at this level</th>
<th>Number of nodes at this and previous levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1 = 2^0$</td>
<td>$1 = 2^1 - 1$</td>
</tr>
<tr>
<td>2</td>
<td>$2 = 2^1$</td>
<td>$3 = 2^2 - 1$</td>
</tr>
<tr>
<td>3</td>
<td>$4 = 2^2$</td>
<td>$7 = 2^3 - 1$</td>
</tr>
<tr>
<td>4</td>
<td>$8 = 2^3$</td>
<td>$15 = 2^4 - 1$</td>
</tr>
<tr>
<td>h</td>
<td>2^{h-1}</td>
<td>$2^h - 1$</td>
</tr>
</tbody>
</table>
The Efficiency of Binary Search Tree Operations

• The maximum number of comparisons required by any binary search tree (BST) operation is the number of nodes along the longest path from root to a leaf—that is, the tree’s height.

• The order in which insertion and deletion operations are performed on a binary search tree affects its height.

• Insertion in random order produces a binary search tree that has near-minimum height.
The Efficiency of Binary Search Tree Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Average case</th>
<th>Worst case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieval</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Insertion</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Deletion</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Traversal</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Figure 10-34 The order of the retrieval, insertion, deletion, and traversal operations for the pointer-based implementation of the ADT binary search tree
Saving and Restoring a BST

- Saving/restoring any data structure to/from a file requires us to serialize the data structure
- Files store data linearly
- Arrays and linked lists are linear

- Preorder, postorder and inorder traversals produce a linear tree listings
 - What order makes restoration easiest?
- Preorder: 7, 3, 1, 6, 8, 13, 9, 10, 15
- Insert nodes in an empty BST in this order and it reproduces the original
Applications

• Treesort
 – Uses the ADT binary search tree to sort an array of records into search-key order
 • Average case: $O(n \times \log n)$
 • Worst case: $O(n^2)$
An n-ary tree is a general tree whose nodes can have no more than n children each — a generalization of a binary tree.

Figure 10-38 A general tree

Figure 10-41
An implementation of the n-ary tree in Figure 10-38
n-ary Trees

• A binary tree can represent an n-ary tree
 – seems a bit odd, but good when the number of children is highly variable and especially when there is no upper bound on the number of children

• Lchild is used to point to the first of its children
 – Rchild pointers are used to link siblings together

Figure 10-39 Another implementation of the tree in Figure 10-38

Figure 10-40 The binary tree that Figure 10-39 represents
Binary trees provide a hierarchical organization of data

The implementation of a binary tree is usually pointer-based

If the binary tree is complete, an efficient array-based implementation is possible

Traversing a tree to "visit"—that is, do something to or with—each node is useful

You pass a client-defined "visit" function to the traversal operation to customize its effect on the items in the tree
Summary

• The binary search tree allows you to use a binary search-like algorithm to search for an item having a specified value

• Binary search trees come in many shapes
 – The height of a binary search tree with n nodes can range from a minimum of $\lceil \log_2(n + 1) \rceil$ to a maximum of n
 – The shape of a binary search tree determines the efficiency of its operations
Summary

• An inorder traversal of a binary search tree visits the tree’s nodes in sorted search-key order
• The treesort algorithm efficiently sorts an array by using the binary search tree’s insertion and traversal operations
Summary

• Saving a binary search tree to a file while performing
 – An inorder traversal enables you to restore the tree as a binary search tree of minimum height
 – A preorder traversal enables you to restore the tree to its original form