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• Linear Vs non-linear data structures 

• Types of binary trees 

• Binary tree traversals 

• Representations of a binary tree 

• Binary tree ADT 

• Binary search tree 
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Overview 

• We have discussed linear data structures 
– arrays, linked lists, stacks, queues 

• Some other data structures we will consider 
– trees, tables, graphs, hash-tables 

• Trees are extremely useful and suitable for a wide 
range of applications 
– sorting, searching, expression evaluation, data set 

representation 

– especially well suited to recursive algorithm 
implementation 
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Terminology 

• A Tree T is a set of n >= 0 elements: 
– if n == 0, T is an empty tree 
– if n > 0 then there exists some element called r ∈ T 

called the root of T such that T - {r} can be partitioned  
into zero or more disjoint sets T1 ,T2 , ... where each  
subset forms a tree 

• Trees are composed of nodes and edges 
• Trees are hierarchical 

– parent-child relationship between two nodes 
– ancestor-descendant relationships among nodes 

• Subtree of a tree: Any node and its descendants 
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Terminology 
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Figure 10-1   A general tree Figure 10-2    

A subtree of the tree in Figure 10-1 
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Terminology 

• Parent of node n 
– The node directly above node n in the tree 

• Child of node n 
– A node directly below node n in the tree 

• Root 
– The only node in the tree with no parent 

• Subtree of node n 
– A tree that consists of a child (if any) of node n 

and the child’s descendants 
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Terminology 

• Leaf 

– A node with no children 

• Siblings 

– Nodes with a common parent 

• Ancestor of node n 

– A node on the path from the root to n 

• Descendant of node n 

– A node on a path from n to a leaf 
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A Binary Tree 

• A binary tree is a set T of nodes such that 

– T is empty, or  

– T is partitioned into three disjoint subsets: 

• a single node r, the root 

• two possibly empty sets that are binary trees, called 
the left subtree of r and the right subtree of r 

• Binary trees are ordered 

• These trees are not equal 
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A General Tree & A Binary Tree 
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More Binary Trees 
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Figure 10-4   Binary trees that represent algebraic expressions 



A Binary Search Tree 

• A binary search tree is a 
binary tree that has the 
following properties for 
each node n 
– n’s value is > all values in 

n’s left subtree TL 

– n’s value is < all values in 
n’s right subtree TR 

– both TL and TR are binary 
search trees 
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The Height of Trees 

• Height of a tree 
– Number of nodes along the longest path from the 

root to a leaf 

 

       Height 3           Height 5           Height 7 
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Figure 10-6 

Binary trees with 

the same nodes but 

different heights 



The Height of Trees 

• Level of a node n in a tree T 
– If n is the root of T, it is at level 1 

– If n is not the root of T, its level is 1 greater than 
the level of its parent 

• Height of a tree T defined in terms of the 
levels of its nodes 
– If T is empty, its height is 0 

– If T is not empty, its height is equal to the 
maximum level of its nodes 
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The Height of Trees 

• A recursive definition of height 

– If T is empty, its height is 0 

– If T is not empty,  

–  height(T) = 1 + max{height(TL), height(TR)} 

    r 

           /    \ 

        TL        TR 
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Full Binary Trees 

• A binary tree of height h 
is full if  
– Nodes at levels < h have 

two children each 

• Recursive definition  
– If T is empty, T is a full 

binary tree of height 0 
– If T is not empty and has 

height h > 0, T is a full 
binary tree if its root’s 
subtrees are both full 
binary trees of height h – 1 
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Figure 10-7 

A full binary tree of height 3 



Complete Binary Trees 

• A binary tree of height h is complete if 

– It is full to level h – 1, and 

– Level h is filled from left to right 
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Complete Binary Trees 

• Another definition: 

• A binary tree of height h is complete if 

– All nodes at levels <= h – 2 have two children 
each, and 

– When a node at level h – 1 has children, all nodes 
to its left at the same level have two children 
each, and 

– When a node at level h – 1 has one child, it is a 
left child 
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Balanced Binary Trees 

• A binary tree is balanced if the heights of any 
node’s two subtrees differ by no more than 1 

• Complete binary trees are balanced 

• Full binary trees are complete and balanced 
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Traversals of a Binary Tree 

• A traversal visits each node in a tree 
– to do something with or to the node during a visit 
– for example, display the data in the node 

 
• General form of a recursive traversal algorithm 

 
 traverse (in binTree:BinaryTree) 

if (binTree is not empty) 

{  traverse(Left subtree of binTree’s root) 

   traverse(Right subtree of binTree’s root) 

} 
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Traversals of a Binary Tree 

• Preorder traversal 
– Visit root before visiting its subtrees 

• i. e. Before the recursive calls 

• Inorder traversal 
– Visit root between visiting its subtrees 

• i. e. Between the recursive calls 

• Postorder traversal 
– Visit root after visiting its subtrees 

• i. e. After the recursive calls 
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Traversals of a Binary Tree 
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Figure 10-10 

Traversals of a binary tree: (a) preorder; (b) inorder; (c) postorder 
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Traversals of a Binary Tree 

• A traversal operation can call a function to 
perform a task on each item in the tree 

– this function defines the meaning of “visit” 

– the client defines and passes this function as an 
argument to the traversal operation 

• Tree traversal orders correspond to algebraic 
expressions 

– infix, prefix, and postfix 
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The ADT Binary Tree 
+createBinaryTree() 

+createBinaryTree(in rootItem: TreeItemType) 

+createBinaryTree(in rootItem: TreeItemType, 

                               inout leftTree: BinaryTree,  

                               inout rightTree: BinaryTree) 

+destroyBinaryTree() 

+isEmpty(): boolean {query} 

+getRootData(): TreeItemType                     throw TreeException 

+setRootData(in newItem: TreeItemType)     throw TreeException 

+attachLeft(in newItem: TreeItemType)         throw TreeException 

+attachRight(in newItem: TreeItemType)       throw TreeException 

+attachLeftSubtree(inout leftTree: BinaryTree)      throw TreeException 

+attachRightSubtree(inout rightTree: BinaryTree) throw TreeException 

+detachLeftSubtree(out leftTree: BinaryTree)        throw TreeException 

+detachRightSubtree(out rightTree: BinaryTree)    throw TreeException 

+getLeftSubtree(): BinaryTree 

+getRightSubtree(): BinaryTree 

+preorderTraverse(in visit:FunctionType) 

+inorderTraverse(in visit:FunctionType) 

+postorderTraverse(in visit:FunctionType) 
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The ADT Binary Tree 

• Building the ADT binary tree in Fig. 10-6b  

tree1.setRootData(‘F’) 

tree1.attachLeft(‘G’) 

tree2.setRootData(‘D’) 

tree2.attachLeftSubtree(tree1) 

tree3.setRootData(‘B’) 

tree3.attachLeftSubtree(tree2) 

tree3.attachRight(‘E) 

tree4.setRootData(‘C’) 

tree10_6.createBinaryTree(‘A’,tree3,tree4) 
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Possible Representations of a  
Binary Tree 

• An array-based representation 

– Uses an array of tree nodes 

– Requires the creation of a free list that keeps track 
of available nodes 

– only suitable for complete binary trees 

• A pointer-based representation 

– Nodes have two pointers that link the nodes in the 
tree 
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Array Based Binary Tree 

• Given a complete binary tree T with n nodes, T can be 
represented using an array A[0:n-1] such that 
– root of T is in A[0] 
– for node A[i], its left child is at A[2i+1] and its right child at 

A[2i+2] if it exists 

• Completeness of the tree is important because it 
minimizes the size of the array required 

• Note that 
– parent of node A[i] is at A[(i-1)/2] 
– for n > 1, A[i] is a leaf node iff n <= 2i 

• Balanced requirement makes an array representation 
unsuitable for binary search tree implementation 
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Array Based Binary Tree 
• Complete tree fits in minimum size array  

– space efficient 

• Nodes do not need child or parent pointers  
– index of these can be calculated from the index of the 

current node  
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Array Based Binary Tree 

• Advantages 
– space saving through direct computation of child and 

parent indices rather than pointers 
– O(1) access time through direct computation 

• pointers are also O(1) access but with larger K 

• Disadvantages 
– only useful when tree is complete 

• or, complete enough that unused cells do not waste much memory 

– sparse tree representation is too memory intensive 

• If a complete tree is of height h, it requires an array of 
size 2h-1 
– a skewed BST of 10 nodes is of height 10, requiring an 

array of size 210-1 = 1023 
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Pointer-based ADT Binary Tree 
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Figure 10-14  A pointer-based implementation of a binary tree 
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Pointer-based ADT Binary Tree 

• TreeException and TreeNode classes 

• BinaryTree class  

– Several constructors, including a 

• Protected constructor whose argument is a pointer to a 
root node; prohibits client access 

• Copy constructor that calls a private function to copy 
each node during a traversal of the tree 

– Destructor 
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Binary Tree ADT – TreeNode.h 
// TreeNode.h 

 

typedef string TreeItemType; 

// node in the tree 

class TreeNode { 

private: 

    TreeNode() {}; 

    TreeNode(const TreeItemType& nodeItem, TreeNode *left = NULL, 

                      TreeNode *right = NULL): item(nodeItem),  

                                                                leftChildPtr(left), 

                                                                rightChildPtr(right) {} 

    TreeItemType item;          // data portion 

    TreeNode *leftChildPtr;    // pointer to left child 

    TreeNode *rightChildPtr; // pointer to right child 

    friend class BinaryTree;  // friend class 

}; 
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Binary Tree ADT – TreeException.h 

// TreeException.h 

 

#include <stdexcept> 

#include <string> 

using namespace std; 

 

Class Tree Exception : public logic_error { 

public: 

    TreeException(const string& message = “”) :  

                             logic_error(message.c_str()) 

     {} 

}; 
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Binary Tree ADT – BinaryTree.h 
//Begin BinaryTree.h 

 

#include "TreeException.h" 

#include "TreeNode.h" 

 

// This function pointer is used by the client 

// to customize what happens when a node is visited 

typedef void (*FunctionType)(TreeItemType& anItem); 

 

class BinaryTree { 

public: 

    // constructors and destructor: 

    BinaryTree(); 

    BinaryTree(const TreeItemType& rootItem); 

    BinaryTree(const TreeItemType& rootItem, BinaryTree& leftTree, 

                                                                          BinaryTree& rightTree); 

    BinaryTree(const BinaryTree& tree); 

    virtual ~BinaryTree(); 
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Binary Tree ADT – BinaryTree.h 
// binary tree operations: 

virtual bool isEmpty() const; 

 

virtual TreeItemType getRootData() const                        throw(TreeException); 

virtual void setRootData(const TreeItemType& newItem) throw (TreeException); 

 

virtual void attachLeft(const TreeItemType& newItem)     throw(TreeException); 

virtual void attachRight(const TreeItemType& newItem)   throw(TreeException); 

virtual void attachLeftSubtree(BinaryTree& leftTree)         throw(TreeException); 

virtual void attachRightSubtree(BinaryTree& rightTree)    throw(TreeException); 

 

virtual void detachLeftSubtree(BinaryTree& leftTree)       throw(TreeException); 

virtual void detachRightSubtree(BinaryTree& rightTree)   throw(TreeException); 

 

virtual BinaryTree getLeftSubtree() const; 

virtual BinaryTree getRightSubtree() const; 

 

virtual void preorderTraverse(FunctionType visit); 

virtual void inorderTraverse(FunctionType visit); 

virtual void postorderTraverse(FunctionType visit); 
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Binary Tree ADT – BinaryTree.h 
// overloaded assignment operator: 

    virtual BinaryTree& operator=(const BinaryTree& rhs); 

 

protected: 

    BinaryTree(TreeNode *nodePtr);                      // constructor 

 

    // Copies the tree rooted at treePtr into a tree rooted 

    // at newTreePtr. Throws TreeException if a copy of the 

    // tree cannot be allocated. 

    void copyTree(TreeNode *treePtr, TreeNode* & newTreePtr) const                 

                              throw(TreeException);; 

   

    // Deallocate memory for a tree. 

   void destroyTree(TreeNode * &treePtr); 

 

    // The next two functions retrieve and set the value 

    // of the private data member root. 

    TreeNode *rootPtr( ) const; 

    void setRootPtr(TreeNode *newRoot); 
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Binary Tree ADT – BinaryTree.h 

    // The next two functions retrieve and set the values 

    // of the left and right child pointers of a tree node. 

    void getChildPtrs(TreeNode *nodePtr, TreeNode * &leftChildPtr, 

                                 TreeNode * &rightChildPtr) const; 

    void setChildPtrs(TreeNode *nodePtr, TreeNode *leftChildPtr, 

                                 TreeNode *rightChildPtr); 

 

    void preorder(TreeNode *treePtr, FunctionType visit); 

    void inorder(TreeNode *treePtr, FunctionType visit); 

    void postorder(TreeNode *treePtr, FunctionType visit); 

 

private: 

    TreeNode *root; // pointer to root of tree 

 

}; // end class 

// End of header file. BinaryTree.h 
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Binary Tree ADT – BinaryTree.cpp 
// Implementation file BinaryTree.cpp for the ADT binary  tree. 

#include "BinaryTree.h"               // header file 

#include <cstddef>                      // definition of NULL 

#include <cassert>                      // for assert() 

 

BinaryTree::BinaryTree() : root(NULL) { }  

 

BinaryTree::BinaryTree(const TreeItemType& rootItem) { 

    root = new TreeNode(rootItem, NULL, NULL); 

    assert(root != NULL); 

} 

 

BinaryTree::BinaryTree(const TreeItemType& rootItem,  

                                       BinaryTree& leftTree, BinaryTree& rightTree) { 

    root = new TreeNode(rootItem, NULL, NULL); 

    assert(root != NULL); 

    attachLeftSubtree(leftTree); 

    attachRightSubtree(rightTree); 

} 

 EECS 268 Programming II 36 



Binary Tree ADT – BinaryTree.cpp 
BinaryTree::BinaryTree(const BinaryTree& tree) { 

    copyTree(tree.root, root); 

} 

  

BinaryTree::BinaryTree(TreeNode *nodePtr): root(nodePtr) { } 

 

BinaryTree::~BinaryTree() { 

    destroyTree(root); 

}  

 

bool BinaryTree::isEmpty() const { 

    return (root == NULL); 

}  

 

TreeItemType BinaryTree::getRootData() const { 

    if (isEmpty()) 

        throw TreeException("TreeException: Empty tree"); 

    return root>item; 

} 
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Binary Tree ADT – BinaryTree.cpp 
void BinaryTree::setRootData(const TreeItemType& newItem) { 

    if (!isEmpty()) { 

        root>item = newItem; 

    } else {  

        root = new TreeNode(newItem, NULL, NULL); 

        if (root == NULL) 

            throw TreeException("TreeException: Cannot allocate memory"); 

    }  

} 

 

void BinaryTree::attachLeft(const TreeItemType& newItem) { 

    if (isEmpty()) { 

        throw TreeException("TreeException: Empty tree"); 

    } else if (root>leftChildPtr != NULL) { 

        throw TreeException("TreeException: Cannot overwrite left subtree"); 

    } else {            // Assertion: nonempty tree; no left child 

        root>leftChildPtr = new TreeNode(newItem, NULL, NULL); 

        if (root>leftChildPtr == NULL) 

            throw TreeException("TreeException: Cannot allocate memory"); 

    } 

} 
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Binary Tree ADT – BinaryTree.cpp 
void BinaryTree::attachRight(const TreeItemType& newItem) { 

    if (isEmpty()) 

        throw TreeException("TreeException: Empty tree"); 

    else if (root>rightChildPtr != NULL) 

        throw TreeException("TreeException: Cannot overwrite right subtree"); 

    else { // Assertion: nonempty tree; no right child 

        root>rightChildPtr = new TreeNode(newItem, NULL, NULL); 

        if (root>rightChildPtr == NULL) 

            throw TreeException("TreeException: Cannot allocate memory"); 

    } 

} 

void BinaryTree::attachLeftSubtree(BinaryTree& leftTree) { 

    if (isEmpty()) 

        throw TreeException("TreeException: Empty tree"); 

    else if (root>leftChildPtr != NULL) 

        throw TreeException("TreeException: Cannot overwrite left subtree"); 

    else {                  // Assertion: nonempty tree; no left child 

        root>leftChildPtr = leftTree.root; 

        leftTree.root = NULL; 

    } 
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Binary Tree ADT – BinaryTree.cpp 

void BinaryTree::attachRightSubtree(BinaryTree& rightTree) { 

    if (isEmpty()) 

        throw TreeException("TreeException: Empty tree"); 

    else if (root>rightChildPtr != NULL) 

        throw TreeException("TreeException: Cannot overwrite right subtree"); 

    else {                    // Assertion: nonempty tree; no right child 

        root>rightChildPtr = rightTree.root; 

        rightTree.root = NULL; 

    } 

} 

 

void BinaryTree::detachLeftSubtree(BinaryTree& leftTree) { 

    if (isEmpty()) 

        throw TreeException("TreeException: Empty tree"); 

    else {  

        leftTree = BinaryTree(root>leftChildPtr); // constructor taking node * not 
tree *  

        root>leftChildPtr = NULL;                         

    } 
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Binary Tree ADT – BinaryTree.cpp 
void BinaryTree::detachRightSubtree(BinaryTree& rightTree) { 

    if (isEmpty()) 

        throw TreeException("TreeException: Empty tree"); 

    else { 

        rightTree = BinaryTree(root>rightChildPtr); // node * to tree 
conversion 

        root>rightChildPtr = NULL; // this tree no longer holds that subtree 

    } 

}  

 

BinaryTree BinaryTree::getLeftSubtree() const { 

    TreeNode *subTreePtr; 

    if (isEmpty()) 

        return BinaryTree(); 

    else {  

        copyTree(root>leftChildPtr, subTreePtr); 

        return BinaryTree(subTreePtr); 

    } 

} 
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Binary Tree ADT – BinaryTree.cpp 

BinaryTree BinaryTree::rightSubtree() const { 

    TreeNode *subTreePtr; 

    if (isEmpty()) 

        return BinaryTree(); 

    else {  

        copyTree(root>rightChildPtr, subTreePtr); 

        return BinaryTree(subTreePtr); 

    } 

}  

 

void BinaryTree::preorderTraverse(FunctionType visit) { 

    preorder(root, visit); // preorder written with respect to a tree ptr 

}  

 

void BinaryTree::inorderTraverse(FunctionType visit) { 

    inorder(root, visit); 

} 
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Binary Tree ADT – BinaryTree.cpp 
void BinaryTree::postorderTraverse(FunctionType visit) { 

    postorder(root, visit); 

} 

BinaryTree& BinaryTree::operator=(const BinaryTree& rhs) { 

    if (this != &rhs) {  

        destroyTree(root);              // deallocate lefthand side 

        copyTree(rhs.root, root);    // copy righthand side 

    } 

    return *this; 

} 

void BinaryTree::destroyTree(TreeNode *& treePtr) { 

    if (treePtr != NULL) {  

        destroyTree(treePtr>leftChildPtr); 

        destroyTree(treePtr>rightChildPtr); 

        delete treePtr;                                    // postorder traversal 

        treePtr = NULL; 

    } 
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Binary Tree ADT – BinaryTree.cpp 

void BinaryTree::copyTree(TreeNode *treePtr, TreeNode *& newTreePtr) const  
{ 

    // preorder traversal 

    if (treePtr != NULL) {  

        // copy node 

        newTreePtr = new TreeNode(treePtr>item, NULL, NULL); 

        if (newTreePtr == NULL) 

            throw TreeException("TreeException: Cannot allocate memory"); 

        copyTree(treePtr>leftChildPtr, newTreePtr>leftChildPtr); 

        copyTree(treePtr>rightChildPtr, newTreePtr>rightChildPtr); 

    } else  

        newTreePtr = NULL;     // copy empty tree 

} 

 

TreeNode *BinaryTree::rootPtr() const { 

     return root; 

} 
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Binary Tree ADT – BinaryTree.cpp 
void BinaryTree::setRootPtr(TreeNode *newRoot) { 

    root = newRoot; 

} 

 

void BinaryTree::getChildPtrs(TreeNode *nodePtr, TreeNode *& leftPtr,           

                                             TreeNode *& rightPtr) const { 

    leftPtr = nodePtr>leftChildPtr; 

    rightPtr = nodePtr>rightChildPtr; 

} 

 

void BinaryTree::setChildPtrs(TreeNode *nodePtr, TreeNode *leftPtr, 

                                                 TreeNode *rightPtr) { 

    nodePtr>leftChildPtr = leftPtr; 

    nodePtr>rightChildPtr = rightPtr; 

} 
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Binary Tree ADT – BinaryTree.cpp 

void BinaryTree::preorder(TreeNode *treePtr, FunctionType visit) { 

    if (treePtr != NULL) {  

        visit(treePtr>item); 

        preorder(treePtr>leftChildPtr, visit); 

        preorder(treePtr>rightChildPtr, visit); 

    } 

} 

 

void BinaryTree::inorder(TreeNode *treePtr, FunctionType visit) { 

    if (treePtr != NULL) {  

        inorder(treePtr>leftChildPtr, visit); 

        visit(treePtr>item); 

        inorder(treePtr>rightChildPtr, visit); 

    } 

} 
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Binary Tree ADT – BinaryTree.cpp 

void BinaryTree::postorder(TreeNode *treePtr, FunctionType visit) { 

    if (treePtr != NULL) {  

        postorder(treePtr>leftChildPtr, visit); 

        postorder(treePtr>rightChildPtr, visit); 

        visit(treePtr>item); 

    } 

} 

// End of implementation file. 
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Binary Tree ADT – Client Code 
// Example client code 

#include <iostream> 

#include "BinaryTree.h"  

using namespace std; 

void display(TreeItemType& anItem); 

 

int main() 

{ 

   BinaryTree tree1, tree2, left;  

   // tree with only a root 70 

   BinaryTree tree3(70);     

 

   // build the tree in Figure 10-10 

   tree1.setRootData(40); 

   tree1.attachLeft(30); 

   tree1.attachRight(50); 
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   tree2.setRootData(20); 

   tree2.attachLeft(10); 

   tree2.attachRightSubtree(tree1); 

 

   // tree in Fig 10-10 

   BinaryTree binTree(60, tree2, tree3); 

 

   binTree.inorderTraverse(display); 

   binTree.getLeftSubtree().inorderTraverse 

                                            (display); 

   binTree.detachLeftSubtree(left); 

   left.inorderTraverse(display); 

   binTree.inorderTraverse(display); 

 

   return 0; 

}  // end main 



Pointer-based ADT Binary Tree: 
Tree Traversals 

• BinaryTree class (continued) 
– Public methods for traversals so that visiting a node remains 

on the client’s side of the wall 
void inorderTraverse(FunctionType visit); 
typedef void (*FunctionType)(TreeItemType&  

                             item); 

– Protected methods, such as inorder, that enable the 
recursion 

 void inorder(TreeNode *treeptr,  

              FunctionType visit); 

– inorderTraverse calls inorder, passing it a node 
pointer and the client-defined function visit  
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Recursive Inorder Traversal 
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Nonrecursive Inorder Traversal 

• An iterative method 
and an explicit stack 
can  mimic the actions 
of a return from a 
recursive call to 
inorder 
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Figure 10-16   

Traversing (a) the left and (b) the right subtrees of 20 



Copying a Binary Tree 

• To copy a tree 
– traverse it in preorder 
– insert each item visited into a new tree 
– use in copy constructor 

• To deallocate a tree 
– traverse in postorder 
– delete each node visited 
– “visit” follows deallocation of a node’s subtrees 
– use in destructor 
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The ADT Binary Search Tree 

• The ADT binary tree is not suitable when you need to 
search for a particular item 
• binary search tree (BST) is more suitable 

• A data item in a BST has specially designated search key 
– search key is the part of a record that identifies it within a 

collection of records 

• Assume that the set of all keys can be linearly ordered 
– a comparison function for two keys cmp(k2, k2) distinguishes 3 

cases: (1) k1 < k2, (2) k1 == k2, or (3) k1 > k2 

• If we use a binary search tree to organize the set of records, 
then each record must be a node in the tree 
– Record is a class instance held by tree node 
– Record field is a member variable 
– Key is the record field used as search tag 
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Binary Search Trees 

• Binary tree H such that key of any node x, key(x), is 
greater than the keys of all nodes in its left subtree and 
is less than or equal to keys of all nodes in its right sub-
tree 
– often called the BST property 

• Equal elements could as easily be in the left subtree 
– but some standard definition is required! 
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Binary Search Trees – Observations 

• BST may not be a balanced binary tree 
– choice of root node is important with respect to the set of 

all key values present in the tree 

• Leftmost descendant of root = minimum item 
• Rightmost descendant of root = maximum item 
• Inorder traversal of BST = sorted key order 
• BST strongly analogous to binary search of an array in 

sorted order 
• Pointer based implementation dynamically allocating 

tree nodes is the most obvious approach 
– nodes are wrappers for records, might point to records 
– BST template would use record type as parameter 
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The ADT Binary Search Tree 

• Simple BST API 
– similar to 10-18 in book 

• Assumes method  
RecordT.get_key( ) exists for all 
possible record types 

• Logic of BST find( ) closely 
resembles binary search in an 
array 

• Logic of insertion is essentially 
search for the right place for 
the inserted record in the tree 
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class BST { 

public:  

    BST(); 

    ~BST(); 

    boolean is_empty(); 

    boolean insert( RecordT& r); 

    RecordT* find( KeyT key); 

    boolean delete(KeyT key); 

    void preorder(); 

    void inorder(); 

     void postorder(); 

private:  

    BST_Node *lchild; 

    BST_Node *rchild; 

    RecordT *record; 

};  



ADT Binary Search Tree – find 

• find the record with 
search key skey 

• first checks the 
current node and 
then recursively 
searches  the 
relevant subtree if 
it exists 

• If relevant subtree 
does not exist, the 
search has fails 
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RecordT * BST::find(const KeyT& skey) { 

     if ( record == NULL ) { 

           return(NULL); 

     } else if ( record>get_key() == skey ) { 

           return(record);  // key found 

     } else if ( record>get_key() > skey ) {  

           // search left tree 

           if ( lchild == NULL ) {  

                 return(NULL); 

           } 

           return(lchild>find(skey)); 

       } else { 

            // search right tree 

            if ( rchild == NULL ) {  

                  return(NULL); 

            } 

            return(rchild>find(skey)); 

        } 

} 



ADT Binary Search Tree: Insertion 

• BST::insert() method looks for proper place and adds 
the record in the right spot 
– insert 7, 3, 1, 8, 13 15, 6, 9, 10 using this algorithm 
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boolean BST::insert(constRecordT& inr) { 

     if ( record == NULL ) { 

          // This will be the first record in empty tree 

          record = &inr; 

          return True; 

     } else if ( inr>get_key() < record>get_key() ) { 

          if ( lchild == NULL )  lchild = new BST; 

              return(lchild>insert(inr)); 

     } else { 

          if ( rchild == NULL )   rchild = new BST; 

               return(rchild>insert(inr)); 

      } 

} 



ADT Binary Search Tree: Insertion 
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Figure 10-23  

 (a) Insertion into an empty tree; 

 (b) search terminates at a leaf; 

 (c) insertion at a leaf  
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ADT Binary Search Tree – Delete 

• Delete operation on node N is a bit more 
complicated 

• If N is a leaf 
– both lchild and rchild are NULL 
– parent node pointer referring to N should be set to 

NULL 
• need a pointer to parent node to do this 

• If N has only 1 child 
– replace N with its only child 

• If N has two children 
– replace N with minimum item of its right subtree 
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ADT Binary Search Tree: Delete 

• Deleting the item in node N when N has two 
children (continued) 

– locate another node M that is easier to delete 

• M is the leftmost node in N’s right subtree 

• M will have no more than one child 

• M’s search key is called the inorder successor of N’s 
search key  

– copy the item that is in M to N 

– remove the node M from the tree 
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ADT Binary Search Tree: Delete 

• Deleting node x is simple because it has only one child 
and can be replaced by the root of its child without 
violating any of the BST constraints 

• Deleting R is harder, but c can replace it because it is 
the smallest (leftmost) element of the right sub-tree 
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ADT Binary Search Tree: Delete 
• Delete 3, 7, 8 in order 
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ADT Binary Search Tree:  
Retrieval and Traversal 

• The retrieval operation can be implemented by 
refining the search algorithm 

– return the item with the desired search key if it exists 

– otherwise, throw TreeException 

• Traversals for a binary search tree are the same 
as the traversals for a binary tree 

• Theorem 10-1 

– the inorder traversal of a binary search tree T will visit 
its nodes in sorted search-key order  
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Height of a Binary Tree 

• Theorem 10-2 
– A full binary tree of height h  0 has 2h – 1 nodes 

• Theorem 10-3 
– The maximum number of nodes that a binary tree of 

height h can have is 2h – 1 

• Theorem 10-4 
– The minimum height of a binary tree with n nodes is 
log2(n+1) 

– Complete trees and full trees have minimum height 

• The maximum height of a binary tree with n 
nodes is n 
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Height of a Binary Tree 
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Figure 10-32  Counting the nodes in a full binary tree of height h 



The Efficiency of Binary Search Tree 
Operations 

• The maximum number of comparisons 
required by any b. s. t. operation is the 
number of nodes along the longest path from 
root to a leaf—that is, the tree’s height 

• The order in which insertion and deletion 
operations are performed on a binary search 
tree affects its height 

• Insertion in random order produces a binary 
search tree that has near-minimum height 
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The Efficiency of Binary Search Tree 
Operations 
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Figure 10-34  The order of the retrieval, insertion, deletion, and traversal operations for the 

pointer-based implementation of the ADT binary search tree 
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Saving and Restoring a BST 

• Saving/restoring any data 
structure to/from a file 
requires us to serialize the 
data structure 

• files store data linearly 
• arrays and linked lists are 

linear 
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• Preorder, postorder and inorder traversals produce a 
linear tree listings 
– what order makes restoration easiest? 

• Preorder: 7,3,1,6,8,13,9,10,15 
• Insert nodes in an empty BST in this order and it 

reproduces the original 



Applications 

• Treesort 

– Uses the ADT binary search tree to sort an array of 
records into search-key order 

• Average case: O(n * log n) 

• Worst case: O(n2) 
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n-ary Trees 

• An n-ary tree is a general tree whose nodes 
can have no more than n children each  

– a generalization of a binary tree 
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Figure 10-38 A general tree Figure 10-41 

 An implementation of the n-ary tree in Figure 10-38 



n-ary Trees 
• A binary tree can represent an n-ary tree 

– seems a bit odd, but good when the number of children is 
highly variable and especially when there is no upper bound 
on the number of children 

• Lchild is used to point to the first of its children 
– Rchild pointers are used to link siblings together 
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Figure 10-39 Another implementation of the tree in Figure 10-38 

 
Figure 10-40 The binary tree 

that Figure 10-39 represents 



Summary 

• Binary trees provide a hierarchical organization of 
data 

• The implementation of a binary tree is usually 
pointer-based 

• If the binary tree is complete, an efficient array-
based implementation is possible 

• Traversing a tree to “visit”—that is, do something 
to or with—each node is useful 

• You pass a client-defined “visit” function to the 
traversal operation to customize its effect on the 
items in the tree    
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Summary 

• The binary search tree allows you to use a 
binary search-like algorithm to search for an 
item having a specified value 

• Binary search trees come in many shapes 

– The height of a binary search tree with n nodes 
can range from a minimum of log2(n + 1) to a 
maximum of n 

– The shape of a binary search tree determines the 
efficiency of its operations 
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Summary 

• An inorder traversal of a binary search tree 
visits the tree’s nodes in sorted search-key 
order 

• The treesort algorithm efficiently sorts an 
array by using the binary search tree’s 
insertion and traversal operations 
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Summary 

• Saving a binary search tree to a file while 
performing 

– An inorder traversal enables you to restore the 
tree as a binary search tree of minimum height 

– A preorder traversal enables you to restore the 
tree to its original form 
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