
Trees

• Linear Vs non-linear data structures

• Types of binary trees

• Binary tree traversals

• Representations of a binary tree

• Binary tree ADT

• Binary search tree

EECS 268 Programming II 1

Overview

• We have discussed linear data structures
– arrays, linked lists, stacks, queues

• Some other data structures we will consider
– trees, tables, graphs, hash-tables

• Trees are extremely useful and suitable for a wide
range of applications
– sorting, searching, expression evaluation, data set

representation

– especially well suited to recursive algorithm
implementation

EECS 268 Programming II 2

Terminology

• A Tree T is a set of n >= 0 elements:
– if n == 0, T is an empty tree
– if n > 0 then there exists some element called r ∈ T

called the root of T such that T - {r} can be partitioned
into zero or more disjoint sets T1 ,T2 , ... where each
subset forms a tree

• Trees are composed of nodes and edges
• Trees are hierarchical

– parent-child relationship between two nodes
– ancestor-descendant relationships among nodes

• Subtree of a tree: Any node and its descendants

3 EECS 268 Programming II

Terminology

4

Figure 10-1 A general tree Figure 10-2

A subtree of the tree in Figure 10-1

EECS 268 Programming II

Terminology

• Parent of node n
– The node directly above node n in the tree

• Child of node n
– A node directly below node n in the tree

• Root
– The only node in the tree with no parent

• Subtree of node n
– A tree that consists of a child (if any) of node n

and the child’s descendants

5 EECS 268 Programming II

Terminology

• Leaf

– A node with no children

• Siblings

– Nodes with a common parent

• Ancestor of node n

– A node on the path from the root to n

• Descendant of node n

– A node on a path from n to a leaf

6 EECS 268 Programming II

A Binary Tree

• A binary tree is a set T of nodes such that

– T is empty, or

– T is partitioned into three disjoint subsets:

• a single node r, the root

• two possibly empty sets that are binary trees, called
the left subtree of r and the right subtree of r

• Binary trees are ordered

• These trees are not equal

7 EECS 268 Programming II

A

B B

A

R L

A General Tree & A Binary Tree

8 EECS 268 Programming II

More Binary Trees

9

Figure 10-4 Binary trees that represent algebraic expressions

A Binary Search Tree

• A binary search tree is a
binary tree that has the
following properties for
each node n
– n’s value is > all values in

n’s left subtree TL

– n’s value is < all values in
n’s right subtree TR

– both TL and TR are binary
search trees

10 EECS 268 Programming II

The Height of Trees

• Height of a tree
– Number of nodes along the longest path from the

root to a leaf

 Height 3 Height 5 Height 7

11

Figure 10-6

Binary trees with

the same nodes but

different heights

The Height of Trees

• Level of a node n in a tree T
– If n is the root of T, it is at level 1

– If n is not the root of T, its level is 1 greater than
the level of its parent

• Height of a tree T defined in terms of the
levels of its nodes
– If T is empty, its height is 0

– If T is not empty, its height is equal to the
maximum level of its nodes

12 EECS 268 Programming II

The Height of Trees

• A recursive definition of height

– If T is empty, its height is 0

– If T is not empty,

– height(T) = 1 + max{height(TL), height(TR)}

 r

 / \

 TL TR

13 EECS 268 Programming II

Full Binary Trees

• A binary tree of height h
is full if
– Nodes at levels < h have

two children each

• Recursive definition
– If T is empty, T is a full

binary tree of height 0
– If T is not empty and has

height h > 0, T is a full
binary tree if its root’s
subtrees are both full
binary trees of height h – 1

14

Figure 10-7

A full binary tree of height 3

Complete Binary Trees

• A binary tree of height h is complete if

– It is full to level h – 1, and

– Level h is filled from left to right

15 EECS 268 Programming II

Complete Binary Trees

• Another definition:

• A binary tree of height h is complete if

– All nodes at levels <= h – 2 have two children
each, and

– When a node at level h – 1 has children, all nodes
to its left at the same level have two children
each, and

– When a node at level h – 1 has one child, it is a
left child

16 EECS 268 Programming II

Balanced Binary Trees

• A binary tree is balanced if the heights of any
node’s two subtrees differ by no more than 1

• Complete binary trees are balanced

• Full binary trees are complete and balanced

17 EECS 268 Programming II

Traversals of a Binary Tree

• A traversal visits each node in a tree
– to do something with or to the node during a visit
– for example, display the data in the node

• General form of a recursive traversal algorithm

 traverse (in binTree:BinaryTree)

if (binTree is not empty)

{ traverse(Left subtree of binTree’s root)

 traverse(Right subtree of binTree’s root)

}

18 EECS 268 Programming II

Traversals of a Binary Tree

• Preorder traversal
– Visit root before visiting its subtrees

• i. e. Before the recursive calls

• Inorder traversal
– Visit root between visiting its subtrees

• i. e. Between the recursive calls

• Postorder traversal
– Visit root after visiting its subtrees

• i. e. After the recursive calls

19 EECS 268 Programming II

Traversals of a Binary Tree

20

Figure 10-10

Traversals of a binary tree: (a) preorder; (b) inorder; (c) postorder

EECS 268 Programming II

Traversals of a Binary Tree

• A traversal operation can call a function to
perform a task on each item in the tree

– this function defines the meaning of “visit”

– the client defines and passes this function as an
argument to the traversal operation

• Tree traversal orders correspond to algebraic
expressions

– infix, prefix, and postfix

21 EECS 268 Programming II

The ADT Binary Tree
+createBinaryTree()

+createBinaryTree(in rootItem: TreeItemType)

+createBinaryTree(in rootItem: TreeItemType,

 inout leftTree: BinaryTree,

 inout rightTree: BinaryTree)

+destroyBinaryTree()

+isEmpty(): boolean {query}

+getRootData(): TreeItemType throw TreeException

+setRootData(in newItem: TreeItemType) throw TreeException

+attachLeft(in newItem: TreeItemType) throw TreeException

+attachRight(in newItem: TreeItemType) throw TreeException

+attachLeftSubtree(inout leftTree: BinaryTree) throw TreeException

+attachRightSubtree(inout rightTree: BinaryTree) throw TreeException

+detachLeftSubtree(out leftTree: BinaryTree) throw TreeException

+detachRightSubtree(out rightTree: BinaryTree) throw TreeException

+getLeftSubtree(): BinaryTree

+getRightSubtree(): BinaryTree

+preorderTraverse(in visit:FunctionType)

+inorderTraverse(in visit:FunctionType)

+postorderTraverse(in visit:FunctionType)
EECS 268 Programming II 22

The ADT Binary Tree

• Building the ADT binary tree in Fig. 10-6b

tree1.setRootData(‘F’)

tree1.attachLeft(‘G’)

tree2.setRootData(‘D’)

tree2.attachLeftSubtree(tree1)

tree3.setRootData(‘B’)

tree3.attachLeftSubtree(tree2)

tree3.attachRight(‘E)

tree4.setRootData(‘C’)

tree10_6.createBinaryTree(‘A’,tree3,tree4)

23

Possible Representations of a
Binary Tree

• An array-based representation

– Uses an array of tree nodes

– Requires the creation of a free list that keeps track
of available nodes

– only suitable for complete binary trees

• A pointer-based representation

– Nodes have two pointers that link the nodes in the
tree

24 EECS 268 Programming II

Array Based Binary Tree

• Given a complete binary tree T with n nodes, T can be
represented using an array A[0:n-1] such that
– root of T is in A[0]
– for node A[i], its left child is at A[2i+1] and its right child at

A[2i+2] if it exists

• Completeness of the tree is important because it
minimizes the size of the array required

• Note that
– parent of node A[i] is at A[(i-1)/2]
– for n > 1, A[i] is a leaf node iff n <= 2i

• Balanced requirement makes an array representation
unsuitable for binary search tree implementation

EECS 268 Programming II 25

Array Based Binary Tree
• Complete tree fits in minimum size array

– space efficient

• Nodes do not need child or parent pointers
– index of these can be calculated from the index of the

current node

EECS 268 Programming II 26

A

B C

D E F G

H I J

A B C D E F G H I J

Array Based Binary Tree

• Advantages
– space saving through direct computation of child and

parent indices rather than pointers
– O(1) access time through direct computation

• pointers are also O(1) access but with larger K

• Disadvantages
– only useful when tree is complete

• or, complete enough that unused cells do not waste much memory

– sparse tree representation is too memory intensive

• If a complete tree is of height h, it requires an array of
size 2h-1
– a skewed BST of 10 nodes is of height 10, requiring an

array of size 210-1 = 1023

EECS 268 Programming II 27

Pointer-based ADT Binary Tree

28

Figure 10-14 A pointer-based implementation of a binary tree

EECS 268 Programming II

Pointer-based ADT Binary Tree

• TreeException and TreeNode classes

• BinaryTree class

– Several constructors, including a

• Protected constructor whose argument is a pointer to a
root node; prohibits client access

• Copy constructor that calls a private function to copy
each node during a traversal of the tree

– Destructor

29 EECS 268 Programming II

Binary Tree ADT – TreeNode.h
// TreeNode.h

typedef string TreeItemType;

// node in the tree

class TreeNode {

private:

 TreeNode() {};

 TreeNode(const TreeItemType& nodeItem, TreeNode *left = NULL,

 TreeNode *right = NULL): item(nodeItem),

 leftChildPtr(left),

 rightChildPtr(right) {}

 TreeItemType item; // data portion

 TreeNode *leftChildPtr; // pointer to left child

 TreeNode *rightChildPtr; // pointer to right child

 friend class BinaryTree; // friend class

};

EECS 268 Programming II 30

Binary Tree ADT – TreeException.h

// TreeException.h

#include <stdexcept>

#include <string>

using namespace std;

Class Tree Exception : public logic_error {

public:

 TreeException(const string& message = “”) :

 logic_error(message.c_str())

 {}

};

EECS 268 Programming II 31

Binary Tree ADT – BinaryTree.h
//Begin BinaryTree.h

#include "TreeException.h"

#include "TreeNode.h"

// This function pointer is used by the client

// to customize what happens when a node is visited

typedef void (*FunctionType)(TreeItemType& anItem);

class BinaryTree {

public:

 // constructors and destructor:

 BinaryTree();

 BinaryTree(const TreeItemType& rootItem);

 BinaryTree(const TreeItemType& rootItem, BinaryTree& leftTree,

 BinaryTree& rightTree);

 BinaryTree(const BinaryTree& tree);

 virtual ~BinaryTree();

EECS 268 Programming II 32

Binary Tree ADT – BinaryTree.h
// binary tree operations:

virtual bool isEmpty() const;

virtual TreeItemType getRootData() const throw(TreeException);

virtual void setRootData(const TreeItemType& newItem) throw (TreeException);

virtual void attachLeft(const TreeItemType& newItem) throw(TreeException);

virtual void attachRight(const TreeItemType& newItem) throw(TreeException);

virtual void attachLeftSubtree(BinaryTree& leftTree) throw(TreeException);

virtual void attachRightSubtree(BinaryTree& rightTree) throw(TreeException);

virtual void detachLeftSubtree(BinaryTree& leftTree) throw(TreeException);

virtual void detachRightSubtree(BinaryTree& rightTree) throw(TreeException);

virtual BinaryTree getLeftSubtree() const;

virtual BinaryTree getRightSubtree() const;

virtual void preorderTraverse(FunctionType visit);

virtual void inorderTraverse(FunctionType visit);

virtual void postorderTraverse(FunctionType visit);
EECS 268 Programming II 33

Binary Tree ADT – BinaryTree.h
// overloaded assignment operator:

 virtual BinaryTree& operator=(const BinaryTree& rhs);

protected:

 BinaryTree(TreeNode *nodePtr); // constructor

 // Copies the tree rooted at treePtr into a tree rooted

 // at newTreePtr. Throws TreeException if a copy of the

 // tree cannot be allocated.

 void copyTree(TreeNode *treePtr, TreeNode* & newTreePtr) const

 throw(TreeException);;

 // Deallocate memory for a tree.

 void destroyTree(TreeNode * &treePtr);

 // The next two functions retrieve and set the value

 // of the private data member root.

 TreeNode *rootPtr() const;

 void setRootPtr(TreeNode *newRoot);

EECS 268 Programming II 34

Binary Tree ADT – BinaryTree.h

 // The next two functions retrieve and set the values

 // of the left and right child pointers of a tree node.

 void getChildPtrs(TreeNode *nodePtr, TreeNode * &leftChildPtr,

 TreeNode * &rightChildPtr) const;

 void setChildPtrs(TreeNode *nodePtr, TreeNode *leftChildPtr,

 TreeNode *rightChildPtr);

 void preorder(TreeNode *treePtr, FunctionType visit);

 void inorder(TreeNode *treePtr, FunctionType visit);

 void postorder(TreeNode *treePtr, FunctionType visit);

private:

 TreeNode *root; // pointer to root of tree

}; // end class

// End of header file. BinaryTree.h

EECS 268 Programming II 35

Binary Tree ADT – BinaryTree.cpp
// Implementation file BinaryTree.cpp for the ADT binary tree.

#include "BinaryTree.h" // header file

#include <cstddef> // definition of NULL

#include <cassert> // for assert()

BinaryTree::BinaryTree() : root(NULL) { }

BinaryTree::BinaryTree(const TreeItemType& rootItem) {

 root = new TreeNode(rootItem, NULL, NULL);

 assert(root != NULL);

}

BinaryTree::BinaryTree(const TreeItemType& rootItem,

 BinaryTree& leftTree, BinaryTree& rightTree) {

 root = new TreeNode(rootItem, NULL, NULL);

 assert(root != NULL);

 attachLeftSubtree(leftTree);

 attachRightSubtree(rightTree);

}

 EECS 268 Programming II 36

Binary Tree ADT – BinaryTree.cpp
BinaryTree::BinaryTree(const BinaryTree& tree) {

 copyTree(tree.root, root);

}

BinaryTree::BinaryTree(TreeNode *nodePtr): root(nodePtr) { }

BinaryTree::~BinaryTree() {

 destroyTree(root);

}

bool BinaryTree::isEmpty() const {

 return (root == NULL);

}

TreeItemType BinaryTree::getRootData() const {

 if (isEmpty())

 throw TreeException("TreeException: Empty tree");

 return root>item;

}

EECS 268 Programming II 37

Binary Tree ADT – BinaryTree.cpp
void BinaryTree::setRootData(const TreeItemType& newItem) {

 if (!isEmpty()) {

 root>item = newItem;

 } else {

 root = new TreeNode(newItem, NULL, NULL);

 if (root == NULL)

 throw TreeException("TreeException: Cannot allocate memory");

 }

}

void BinaryTree::attachLeft(const TreeItemType& newItem) {

 if (isEmpty()) {

 throw TreeException("TreeException: Empty tree");

 } else if (root>leftChildPtr != NULL) {

 throw TreeException("TreeException: Cannot overwrite left subtree");

 } else { // Assertion: nonempty tree; no left child

 root>leftChildPtr = new TreeNode(newItem, NULL, NULL);

 if (root>leftChildPtr == NULL)

 throw TreeException("TreeException: Cannot allocate memory");

 }

}
EECS 268 Programming II 38

Binary Tree ADT – BinaryTree.cpp
void BinaryTree::attachRight(const TreeItemType& newItem) {

 if (isEmpty())

 throw TreeException("TreeException: Empty tree");

 else if (root>rightChildPtr != NULL)

 throw TreeException("TreeException: Cannot overwrite right subtree");

 else { // Assertion: nonempty tree; no right child

 root>rightChildPtr = new TreeNode(newItem, NULL, NULL);

 if (root>rightChildPtr == NULL)

 throw TreeException("TreeException: Cannot allocate memory");

 }

}

void BinaryTree::attachLeftSubtree(BinaryTree& leftTree) {

 if (isEmpty())

 throw TreeException("TreeException: Empty tree");

 else if (root>leftChildPtr != NULL)

 throw TreeException("TreeException: Cannot overwrite left subtree");

 else { // Assertion: nonempty tree; no left child

 root>leftChildPtr = leftTree.root;

 leftTree.root = NULL;

 }

} EECS 268 Programming II 39

Binary Tree ADT – BinaryTree.cpp

void BinaryTree::attachRightSubtree(BinaryTree& rightTree) {

 if (isEmpty())

 throw TreeException("TreeException: Empty tree");

 else if (root>rightChildPtr != NULL)

 throw TreeException("TreeException: Cannot overwrite right subtree");

 else { // Assertion: nonempty tree; no right child

 root>rightChildPtr = rightTree.root;

 rightTree.root = NULL;

 }

}

void BinaryTree::detachLeftSubtree(BinaryTree& leftTree) {

 if (isEmpty())

 throw TreeException("TreeException: Empty tree");

 else {

 leftTree = BinaryTree(root>leftChildPtr); // constructor taking node * not
tree *

 root>leftChildPtr = NULL;

 }

} EECS 268 Programming II 40

Binary Tree ADT – BinaryTree.cpp
void BinaryTree::detachRightSubtree(BinaryTree& rightTree) {

 if (isEmpty())

 throw TreeException("TreeException: Empty tree");

 else {

 rightTree = BinaryTree(root>rightChildPtr); // node * to tree
conversion

 root>rightChildPtr = NULL; // this tree no longer holds that subtree

 }

}

BinaryTree BinaryTree::getLeftSubtree() const {

 TreeNode *subTreePtr;

 if (isEmpty())

 return BinaryTree();

 else {

 copyTree(root>leftChildPtr, subTreePtr);

 return BinaryTree(subTreePtr);

 }

}
EECS 268 Programming II 41

Binary Tree ADT – BinaryTree.cpp

BinaryTree BinaryTree::rightSubtree() const {

 TreeNode *subTreePtr;

 if (isEmpty())

 return BinaryTree();

 else {

 copyTree(root>rightChildPtr, subTreePtr);

 return BinaryTree(subTreePtr);

 }

}

void BinaryTree::preorderTraverse(FunctionType visit) {

 preorder(root, visit); // preorder written with respect to a tree ptr

}

void BinaryTree::inorderTraverse(FunctionType visit) {

 inorder(root, visit);

}

EECS 268 Programming II 42

Binary Tree ADT – BinaryTree.cpp
void BinaryTree::postorderTraverse(FunctionType visit) {

 postorder(root, visit);

}

BinaryTree& BinaryTree::operator=(const BinaryTree& rhs) {

 if (this != &rhs) {

 destroyTree(root); // deallocate lefthand side

 copyTree(rhs.root, root); // copy righthand side

 }

 return *this;

}

void BinaryTree::destroyTree(TreeNode *& treePtr) {

 if (treePtr != NULL) {

 destroyTree(treePtr>leftChildPtr);

 destroyTree(treePtr>rightChildPtr);

 delete treePtr; // postorder traversal

 treePtr = NULL;

 }

} EECS 268 Programming II 43

Binary Tree ADT – BinaryTree.cpp

void BinaryTree::copyTree(TreeNode *treePtr, TreeNode *& newTreePtr) const
{

 // preorder traversal

 if (treePtr != NULL) {

 // copy node

 newTreePtr = new TreeNode(treePtr>item, NULL, NULL);

 if (newTreePtr == NULL)

 throw TreeException("TreeException: Cannot allocate memory");

 copyTree(treePtr>leftChildPtr, newTreePtr>leftChildPtr);

 copyTree(treePtr>rightChildPtr, newTreePtr>rightChildPtr);

 } else

 newTreePtr = NULL; // copy empty tree

}

TreeNode *BinaryTree::rootPtr() const {

 return root;

}

EECS 268 Programming II 44

Binary Tree ADT – BinaryTree.cpp
void BinaryTree::setRootPtr(TreeNode *newRoot) {

 root = newRoot;

}

void BinaryTree::getChildPtrs(TreeNode *nodePtr, TreeNode *& leftPtr,

 TreeNode *& rightPtr) const {

 leftPtr = nodePtr>leftChildPtr;

 rightPtr = nodePtr>rightChildPtr;

}

void BinaryTree::setChildPtrs(TreeNode *nodePtr, TreeNode *leftPtr,

 TreeNode *rightPtr) {

 nodePtr>leftChildPtr = leftPtr;

 nodePtr>rightChildPtr = rightPtr;

}

EECS 268 Programming II 45

Binary Tree ADT – BinaryTree.cpp

void BinaryTree::preorder(TreeNode *treePtr, FunctionType visit) {

 if (treePtr != NULL) {

 visit(treePtr>item);

 preorder(treePtr>leftChildPtr, visit);

 preorder(treePtr>rightChildPtr, visit);

 }

}

void BinaryTree::inorder(TreeNode *treePtr, FunctionType visit) {

 if (treePtr != NULL) {

 inorder(treePtr>leftChildPtr, visit);

 visit(treePtr>item);

 inorder(treePtr>rightChildPtr, visit);

 }

}

EECS 268 Programming II 46

Binary Tree ADT – BinaryTree.cpp

void BinaryTree::postorder(TreeNode *treePtr, FunctionType visit) {

 if (treePtr != NULL) {

 postorder(treePtr>leftChildPtr, visit);

 postorder(treePtr>rightChildPtr, visit);

 visit(treePtr>item);

 }

}

// End of implementation file.

EECS 268 Programming II 47

Binary Tree ADT – Client Code
// Example client code

#include <iostream>

#include "BinaryTree.h"

using namespace std;

void display(TreeItemType& anItem);

int main()

{

 BinaryTree tree1, tree2, left;

 // tree with only a root 70

 BinaryTree tree3(70);

 // build the tree in Figure 10-10

 tree1.setRootData(40);

 tree1.attachLeft(30);

 tree1.attachRight(50);

 EECS 268 Programming II 48

 tree2.setRootData(20);

 tree2.attachLeft(10);

 tree2.attachRightSubtree(tree1);

 // tree in Fig 10-10

 BinaryTree binTree(60, tree2, tree3);

 binTree.inorderTraverse(display);

 binTree.getLeftSubtree().inorderTraverse

 (display);

 binTree.detachLeftSubtree(left);

 left.inorderTraverse(display);

 binTree.inorderTraverse(display);

 return 0;

} // end main

Pointer-based ADT Binary Tree:
Tree Traversals

• BinaryTree class (continued)
– Public methods for traversals so that visiting a node remains

on the client’s side of the wall
void inorderTraverse(FunctionType visit);
typedef void (*FunctionType)(TreeItemType&

 item);

– Protected methods, such as inorder, that enable the
recursion

 void inorder(TreeNode *treeptr,

 FunctionType visit);

– inorderTraverse calls inorder, passing it a node
pointer and the client-defined function visit

49 EECS 268 Programming II

Recursive Inorder Traversal

50 EECS 268 Programming II

Nonrecursive Inorder Traversal

• An iterative method
and an explicit stack
can mimic the actions
of a return from a
recursive call to
inorder

51

Figure 10-16

Traversing (a) the left and (b) the right subtrees of 20

Copying a Binary Tree

• To copy a tree
– traverse it in preorder
– insert each item visited into a new tree
– use in copy constructor

• To deallocate a tree
– traverse in postorder
– delete each node visited
– “visit” follows deallocation of a node’s subtrees
– use in destructor

EECS 268 Programming II 52

The ADT Binary Search Tree

• The ADT binary tree is not suitable when you need to
search for a particular item
• binary search tree (BST) is more suitable

• A data item in a BST has specially designated search key
– search key is the part of a record that identifies it within a

collection of records

• Assume that the set of all keys can be linearly ordered
– a comparison function for two keys cmp(k2, k2) distinguishes 3

cases: (1) k1 < k2, (2) k1 == k2, or (3) k1 > k2

• If we use a binary search tree to organize the set of records,
then each record must be a node in the tree
– Record is a class instance held by tree node
– Record field is a member variable
– Key is the record field used as search tag

53 EECS 268 Programming II

Binary Search Trees

• Binary tree H such that key of any node x, key(x), is
greater than the keys of all nodes in its left subtree and
is less than or equal to keys of all nodes in its right sub-
tree
– often called the BST property

• Equal elements could as easily be in the left subtree
– but some standard definition is required!

EECS 268 Programming II 54

X
< >=

6

2

1 4

7

9

7

4

6
5

Binary Search Trees – Observations

• BST may not be a balanced binary tree
– choice of root node is important with respect to the set of

all key values present in the tree

• Leftmost descendant of root = minimum item
• Rightmost descendant of root = maximum item
• Inorder traversal of BST = sorted key order
• BST strongly analogous to binary search of an array in

sorted order
• Pointer based implementation dynamically allocating

tree nodes is the most obvious approach
– nodes are wrappers for records, might point to records
– BST template would use record type as parameter

EECS 268 Programming II 55

The ADT Binary Search Tree

• Simple BST API
– similar to 10-18 in book

• Assumes method
RecordT.get_key() exists for all
possible record types

• Logic of BST find() closely
resembles binary search in an
array

• Logic of insertion is essentially
search for the right place for
the inserted record in the tree

EECS 268 Programming II 56

class BST {

public:

 BST();

 ~BST();

 boolean is_empty();

 boolean insert(RecordT& r);

 RecordT* find(KeyT key);

 boolean delete(KeyT key);

 void preorder();

 void inorder();

 void postorder();

private:

 BST_Node *lchild;

 BST_Node *rchild;

 RecordT *record;

};

ADT Binary Search Tree – find

• find the record with
search key skey

• first checks the
current node and
then recursively
searches the
relevant subtree if
it exists

• If relevant subtree
does not exist, the
search has fails

57 EECS 268 Programming II

RecordT * BST::find(const KeyT& skey) {

 if (record == NULL) {

 return(NULL);

 } else if (record>get_key() == skey) {

 return(record); // key found

 } else if (record>get_key() > skey) {

 // search left tree

 if (lchild == NULL) {

 return(NULL);

 }

 return(lchild>find(skey));

 } else {

 // search right tree

 if (rchild == NULL) {

 return(NULL);

 }

 return(rchild>find(skey));

 }

}

ADT Binary Search Tree: Insertion

• BST::insert() method looks for proper place and adds
the record in the right spot
– insert 7, 3, 1, 8, 13 15, 6, 9, 10 using this algorithm

58 EECS 268 Programming II

boolean BST::insert(constRecordT& inr) {

 if (record == NULL) {

 // This will be the first record in empty tree

 record = &inr;

 return True;

 } else if (inr>get_key() < record>get_key()) {

 if (lchild == NULL) lchild = new BST;

 return(lchild>insert(inr));

 } else {

 if (rchild == NULL) rchild = new BST;

 return(rchild>insert(inr));

 }

}

ADT Binary Search Tree: Insertion

59

Figure 10-23

 (a) Insertion into an empty tree;

 (b) search terminates at a leaf;

 (c) insertion at a leaf

EECS 268 Programming II

ADT Binary Search Tree – Delete

• Delete operation on node N is a bit more
complicated

• If N is a leaf
– both lchild and rchild are NULL
– parent node pointer referring to N should be set to

NULL
• need a pointer to parent node to do this

• If N has only 1 child
– replace N with its only child

• If N has two children
– replace N with minimum item of its right subtree

EECS 268 Programming II 60

ADT Binary Search Tree: Delete

• Deleting the item in node N when N has two
children (continued)

– locate another node M that is easier to delete

• M is the leftmost node in N’s right subtree

• M will have no more than one child

• M’s search key is called the inorder successor of N’s
search key

– copy the item that is in M to N

– remove the node M from the tree

61 EECS 268 Programming II

ADT Binary Search Tree: Delete

• Deleting node x is simple because it has only one child
and can be replaced by the root of its child without
violating any of the BST constraints

• Deleting R is harder, but c can replace it because it is
the smallest (leftmost) element of the right sub-tree

EECS 268 Programming II 62

R

Y

X

C

R

Y

C

C

Y

ADT Binary Search Tree: Delete
• Delete 3, 7, 8 in order

EECS 268 Programming II 63

6 7

6 3 6 8

6 13

6 9 6 15

6 10

6 1 6 6

6 7

6 6 6 8

6 13

6 9 6 15

6 10

6 1

6 8

6 3 6 13

6 9 6 15

6 10

6 1 6 6

6 9

6 3 6 13

6 10 6 15 6 1 6 6

ADT Binary Search Tree:
Retrieval and Traversal

• The retrieval operation can be implemented by
refining the search algorithm

– return the item with the desired search key if it exists

– otherwise, throw TreeException

• Traversals for a binary search tree are the same
as the traversals for a binary tree

• Theorem 10-1

– the inorder traversal of a binary search tree T will visit
its nodes in sorted search-key order

64 EECS 268 Programming II

Height of a Binary Tree

• Theorem 10-2
– A full binary tree of height h  0 has 2h – 1 nodes

• Theorem 10-3
– The maximum number of nodes that a binary tree of

height h can have is 2h – 1

• Theorem 10-4
– The minimum height of a binary tree with n nodes is
log2(n+1)

– Complete trees and full trees have minimum height

• The maximum height of a binary tree with n
nodes is n

65 EECS 268 Programming II

Height of a Binary Tree

66

Figure 10-32 Counting the nodes in a full binary tree of height h

The Efficiency of Binary Search Tree
Operations

• The maximum number of comparisons
required by any b. s. t. operation is the
number of nodes along the longest path from
root to a leaf—that is, the tree’s height

• The order in which insertion and deletion
operations are performed on a binary search
tree affects its height

• Insertion in random order produces a binary
search tree that has near-minimum height

67 EECS 268 Programming II

The Efficiency of Binary Search Tree
Operations

68

Figure 10-34 The order of the retrieval, insertion, deletion, and traversal operations for the

pointer-based implementation of the ADT binary search tree

EECS 268 Programming II

Saving and Restoring a BST

• Saving/restoring any data
structure to/from a file
requires us to serialize the
data structure

• files store data linearly
• arrays and linked lists are

linear

69 EECS 268 Programming II

6 7

6 3 6 8

6 13

6 9 6 15

6 10

6 1 6 6

• Preorder, postorder and inorder traversals produce a
linear tree listings
– what order makes restoration easiest?

• Preorder: 7,3,1,6,8,13,9,10,15
• Insert nodes in an empty BST in this order and it

reproduces the original

Applications

• Treesort

– Uses the ADT binary search tree to sort an array of
records into search-key order

• Average case: O(n * log n)

• Worst case: O(n2)

70 EECS 268 Programming II

n-ary Trees

• An n-ary tree is a general tree whose nodes
can have no more than n children each

– a generalization of a binary tree

71

Figure 10-38 A general tree Figure 10-41

 An implementation of the n-ary tree in Figure 10-38

n-ary Trees
• A binary tree can represent an n-ary tree

– seems a bit odd, but good when the number of children is
highly variable and especially when there is no upper bound
on the number of children

• Lchild is used to point to the first of its children
– Rchild pointers are used to link siblings together

72

Figure 10-39 Another implementation of the tree in Figure 10-38

Figure 10-40 The binary tree

that Figure 10-39 represents

Summary

• Binary trees provide a hierarchical organization of
data

• The implementation of a binary tree is usually
pointer-based

• If the binary tree is complete, an efficient array-
based implementation is possible

• Traversing a tree to “visit”—that is, do something
to or with—each node is useful

• You pass a client-defined “visit” function to the
traversal operation to customize its effect on the
items in the tree

73 EECS 268 Programming II

Summary

• The binary search tree allows you to use a
binary search-like algorithm to search for an
item having a specified value

• Binary search trees come in many shapes

– The height of a binary search tree with n nodes
can range from a minimum of log2(n + 1) to a
maximum of n

– The shape of a binary search tree determines the
efficiency of its operations

74 EECS 268 Programming II

Summary

• An inorder traversal of a binary search tree
visits the tree’s nodes in sorted search-key
order

• The treesort algorithm efficiently sorts an
array by using the binary search tree’s
insertion and traversal operations

75 EECS 268 Programming II

Summary

• Saving a binary search tree to a file while
performing

– An inorder traversal enables you to restore the
tree as a binary search tree of minimum height

– A preorder traversal enables you to restore the
tree to its original form

76 EECS 268 Programming II

