Chapter 2: Recursion

- Properties of recursive solutions
- Examples
- Efficiency

Recursive Solutions

- Recursion is a programming pattern
 – function calls itself (on certain conditions)
- Solutions to some computing problems lend themselves naturally to recursion
 – solution is clearer
- Is a powerful problem-solving technique
 – breaks problem into smaller identical problems
 – alternative to iteration, which involves loops

Recursive Solutions

- Facts about a recursive solution
 – a recursive function calls itself
 – each recursive call solves an identical, but smaller, problem
 – the solution to at least one smaller problem— the base case—is known
 – eventually, one of the smaller problems must be the base case; reaching the base case enables the recursive calls to stop!

Recursive Solutions

- Four questions for constructing recursive solutions
 – How can you define the problem in terms of a smaller problem of the same type?
 – How does each recursive call diminish the size of the problem?
 – What instance of the problem can serve as the base case?
 – As the problem size diminishes, will you reach this base case?
Recursion Details

- Each function call (recursive or otherwise) pushes a new record on the runtime stack
 - contains arguments, locals, etc.
 - maintains function state
 - record popped on function return
 - introduces time and space overhead
- Box trace is visualize recursive call stack

Box Trace

- A systematic way to trace the actions of a recursive function
- Each box roughly corresponds to an activation record
- Contains function’s local environment at time of and as a result of the call to the function

A1: A Recursive Valued Function: The Factorial of n

- Problem -- Compute factorial of an integer n
- An iterative definition of factorial(n)
 \[\text{factorial}(n) = n \times (n - 1) \times (n - 2) \times \ldots \times 1 \]
 for any integer \(n > 0 \)
 \[\text{factorial}(0) = 1 \]
- A recursive definition of \(\text{factorial}(n) \)
 \[\text{factorial}(n) = 1 \quad \text{if} \quad n = 0 \]
 \[= n \times \text{factorial}(n-1) \quad \text{if} \quad n > 0 \]

Box Trace

- A function’s local environment includes:
 - The function’s local variables
 - A copy of the actual value arguments
 - A return address in the calling routine
 - The value of the function itself

\[
\begin{align*}
 n &= 3 \\
 \text{A: } \text{fact}(n-1) &= ? \\
 \text{return } &= ?
\end{align*}
\]
A2: A Recursive void Function: Writing a String Backward

- **Problem**
 - Given a string of characters, write it in reverse order
- **Recursive solution**
 - Each recursive step of the solution diminishes by 1 the length of the string to be written backward
 - Base case: write the empty string backward

A3: Fibonacci Sequence – Multiplying Rabbits

- **Problem statement about rabbit growth**
 - rabbits never die
 - a rabbit reaches sexual maturity exactly two months after birth, that is, at the beginning of its third month of life
 - rabbits are always born in male-female pairs. At the beginning of every month, each sexually mature male-female pair gives birth to exactly one male-female pair
 - How many pairs of rabbits are alive in month \(n \)?

- **Recurrence relation**
 \[\text{rabbit}(n) = \text{rabbit}(n-1) + \text{rabbit}(n-2) \]
- **Base cases**
 \[\text{rabbit}(2) = \text{rabbit}(1) = 1 \]
- **Recursive definition**
 \[\begin{align*}
 \text{rabbit}(n) &= 1 & \text{if } n \text{ is 1 or 2} \\
 &= \text{rabbit}(n-1) + \text{rabbit}(n-2) & \text{if } n > 2
 \end{align*} \]
- **Fibonacci sequence**
 - The series of numbers \(\text{rabbit}(1) \), \(\text{rabbit}(2) \), \(\text{rabbit}(3) \), and so on; that is, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
Problem statement

- How many ways can you organize a parade of length n?
- The parade will consist of bands and floats in a single line
- One band cannot be placed immediately after another

Let:

- \(P(n) \) be the number of ways to organize a parade of length n
- \(F(n) \) be the number of parades of length n that end with a float
- \(B(n) \) be the number of parades of length n that end with a band

Then

- \(P(n) = F(n) + B(n) \)

Number of acceptable parades of length n that end with a float

- \(F(n) = P(n-1) \)

Number of acceptable parades of length n that end with a band

- \(B(n) = F(n-1) \)

Number of acceptable parades of length n

- \(P(n) = P(n-1) + P(n-2) \)

Base cases

- \(P(1) = 2 \) (The parades of length 1 are float and band.)
- \(P(2) = 3 \) (The parades of length 2 are float-float, band-float, and float-band.)

Solution

- \(P(1) = 2 \)
- \(P(2) = 3 \)
- \(P(n) = P(n-1) + P(n-2) \) for \(n > 2 \)
A5: Choosing k out of n Things

• Problem statement
 – How many different choices are possible for exploring k planets out of n planets in a system?

Let \(c(n, k) \) be the number of groups of k planets chosen from n

• In terms of Planet X:
 – \(c(n, k) = (\text{the number of groups of } k \text{ planets that include Planet } X) + (\text{the number of groups of } k \text{ planets that do not include Planet } X) \)

• Num. of ways to choose k of n things is the sum
 – the number of ways to choose k – 1 out of n – 1 things
 – the number of ways to choose k out of n – 1 things
 \[c(n, k) = c(n - 1, k - 1) + c(n - 1, k) \]

• Base cases
 – there is one group of everything : \(c(k, k) = 1 \)
 – there is one group of nothing : \(c(n, 0) = 1 \)
 – Although k cannot exceed n here, we want our solution to be general
 \(c(n, k) = 0 \) if \(k > n \)

• Recursive solution
 \[
 c(n,k) = \begin{cases}
 1 & \text{if } k = 0 \\
 1 & \text{if } k = n \\
 0 & \text{if } k > n \\
 c(n - 1, k - 1) + c(n - 1, k) & \text{if } 0 < k < n
 \end{cases}
 \]

see C2-kOfN.cpp
A6: Finding Largest Item in an Array

- A recursive solution – \(\text{maxArray()} \)

 \[
 \begin{align*}
 &\text{if (anArray has only one item)} \\
 &\quad \text{maxArray(anArray) is the item in anArray} \\
 &\text{else if (anArray has more than one item)} \\
 &\quad \text{maxArray(anArray) is} \\
 &\quad \text{MAX(maxArray(left half of anArray), maxArray(right half of anArray))}
 \end{align*}
 \]

A7: Binary Search

\[\text{binarySearch(in anArray:ArrayType, in value:ItemType)}\]

\[
\begin{align*}
&\text{if (anArray is of size 1)} \\
&\quad \text{Determine if anArray's item is equal to value} \\
&\text{else} \\
&\quad \text{Find the midpoint of anArray} \\
&\quad \text{Determine which half of anArray contains value} \\
&\quad \text{if (value is in the first half of anArray)} \\
&\quad\quad \text{binarySearch(first half of anArray, value)} \\
&\quad\quad \text{else} \\
&\quad\quad \text{binarySearch(second half of anArray, value)}
\end{align*}
\]

A8: Finding k-th Smallest Item in Array

- Recursive solution
 - select a ‘pivot’ item in the array
 - partitioning items in array about this pivot item
 - recursively apply strategy to one of the partitions

\[
\begin{array}{c}
S_1 \quad S_2 \\
< p \quad p \quad \geq p
\end{array}
\]

\[
\begin{align*}
&\text{first} \quad \text{pivotIndex} \quad \text{last} \\
&\text{kSmall(k, anArray, first, last)} \\
&\quad = \text{kSmall(k, anArray, first, pivotIndex-1)} \\
&\quad \quad \text{if } k < \text{pivotIndex - first + 1} \\
&\quad = p \quad \quad \text{if } k = \text{pivotIndex - first + 1} \\
&\quad = \text{kSmall(k-(pivotIndex-first+1), anArray, pivotIndex+1, last)} \\
&\quad \quad \text{if } k > \text{pivotIndex - first + 1}
\end{align*}
\]
The Towers of Hanoi

solveTowers (count, source, destination, spare)
 if (count is 1)
 Move a disk directly from source to destination
 else {
 solveTowers(count-1, source, spare, destination)
 solveTowers(1, source, destination, spare)
 solveTowers(count-1, spare, destination, source)
 } //end if

Recursion and Efficiency

• Some recursive solutions are so inefficient that they should not be used
• Factors that contribute to the inefficiency of some recursive solutions
 – overhead associated with function calls
 – inherent inefficiency of some recursive algorithms
• Do not use a recursive solution if it is inefficient and there is a clear, efficient iterative solution
Recursion solves a problem by solving a smaller problem of the same type.

Four questions:
- How can you define the problem in terms of a smaller problem of the same type?
- How does each recursive call diminish the size of the problem?
- What instance(s) of the problem can serve as the base case?
- As the problem size diminishes, will you reach a base case?

To construct a recursive solution, assume a recursive call’s postcondition is true if its precondition is true.

The box trace can be used to trace the actions of a recursive method.

Recursion can be used to solve problems whose iterative solutions are difficult to conceptualize.

Some recursive solutions are much less efficient than a corresponding iterative solution due to their inherently inefficient algorithms and the overhead of function calls.

If you can easily, clearly, and efficiently solve a problem by using iteration, you should do so.