Chapter 3: Data Abstraction

* Abstraction, modularity, information hiding
* Abstract data types

 Example-1: List ADT

 Example-2: Sorted list ADT

 C++ Classes

* C++ Namespaces

* C++ Exceptions

EECS 268 Programming II

Modularity and Abstraction

* Important when developing large programes.

* Divide program in small manageable modules
— each module understood individually
— easier to write, understand, modify, and debug
* Modules communicate using well-defined
interfaces
— different module implementations use same interface

— provide a different and easier interface to
communicating modules — abstraction

EECS 268 Programming Il

Fundamental Concepts

 Modularity
— manages complexity of large programs
— isolates errors
— eliminates redundancies
— program is easier to read, write, and modify

* Information hiding
— hides certain implementation details within a module

— makes these details inaccessible from outside the
module

EECS 268 Programming II

Abstraction

 Functional abstraction

— separates the purpose and use of a module from its
implementation

— module’s specifications only details its behavior,
independent of the module’s implementation

e Data abstraction

— asks you to think what you can do to a collection of
data independently of how you do it

— allows you to develop each data structure in relative
isolation from the rest of the solution

Isolated Tasks

1
LT 1 T 1 i
I —] [
1 1
|
| i
T : L
First T '
implemen- ' ||
tation in —
| i
[| II
II :
| |
T [II
Second a :
implemen- ' '|
tation '-I —
| i
1 II
T T II .
LT 1 1 i
I A T

* A function’s specification, or contract, governs
how it interacts with other modules

Program Request to perform operation .
that uses i b P > Implementation
method S) of method S

Result of operation

Figure 3-2 Aslitin the wall

EECS 268 Programming II

Abstract Data Type (ADT)

 An ADT is composed of
— collection of data
— set of operations on that data

* Specifications of an ADT indicate

— what the ADT operations do, not how to
implement them

* Implementation of an ADT
— includes choosing a particular data structure

EECS 268 Programming II

Abstract Data Types

Interface

i

remove

Data
structure

Program

Request to perform operation>

Result of operation

Wall of ADT operations
Figure 3-4

A wall of ADT operations isolates a data structure from the program that uses it

EECS 268 Programming Il

Designing an ADT

 The design of an ADT should evolve naturally
during the problem-solving process

* Questions to ask when designing an ADT
— What data does a problem require?
— What operations does a problem require?

EECS 268 Programming II

List ADT Example

 ADT for a list of items: grocery list, TO-DO list

* What operations do we perform on/with a list?
— add item, delete item, find item, read, etc.
— cannot think of everything?

e should refine iteratively!

 How to store the data
— implementation detail hidden from users of the list
— arrays or linked lists

EECS 268 Programming Il

¥ List ADT Example — Properties

* Except for the first and last items, each item has a
unique predecessor and successor

* |tems are referenced by their position in the list

e Specifications of the ADT operations
— Define an operation contract for the ADT list
— Do not specify how to store the list or how to perform
the operations

* ADT operations can be used in an application
without the knowledge of how the operations
will be implemented

.

List ADT Example — Operations

* Create an empty list

* Destroy a list

* Determine whether a list is empty

* Determine the number of items in a list

* |nsert an item at a given position in the list

* Delete the item at a given position in the list

* Retrieve the item at a given position in the list

EECS 268 Programming II

.

List ADT — Operation Contract

e createlist()

* destroylList()

* isEmpty():boolean {query}
e getLength():integer {query}

* insert(in index:integer, in newltem:ListltemType,
out success:boolean)

* remove(in index:integer, out success:boolean)
* retrieve(in index:integer, dltem:ListltemType,
out success:boolean) {query}

EECS 268 Programming Il = Seéé Table on pages 128-129 1»

* Create the list -- milk, eggs, butter
— alist.createlList()
— alist.insert(1, milk, success)
— alist.insert(2, eggs, success)
— alist.insert(3, butter, success)
* |nsert bread after milk
— alist.insert(2, bread, success)
milk, bread, eggs, butter
* |nsert juice at end of list
— alist.insert(5, juice, success)
milk, bread, eggs, butter, juice

EECS 268 Programming II

8 |ict ADT Example — Operations

* Remove eggs
— aList.remove(3, success)
— milk, bread, butter, juice

* |nsert apples at beginning of list
— alist.insert(1, apples, success)
— apples, milk, bread, butter, juice

EECS 268 Programming II

*» List ADT Example -- Operations

* Algorithm description independent of list

implementation, as long as each item has an
index

e Pseudocode function that displays a list
displayList(in aList:List){
for (position=1 to aList.getLength()){

alList.retrieve(position, dataltem, success)
display dataltem

h

EECS 268 Programming II

*ist ADT Example -- Implementation

* How to implement the List ADT ?
e Alist’s kth item is stored in items[k-1]

Array indexes

O 1 2 3 k —1 MAX LIST — 1
k 12 3 19 100 ccce 5 10 18
size 1 2 3 4 . k MAX_ LIST
11111
ADT list positions

* To insert an item, make room in the array

Array indexes New item

e
\—>O 1 Zl 3 4 k MAX LIST -1
k+1 12 3 - 19 100 cces 5 10 18 ? ssese ?
size i tems

EECS 268 Programming II 17

o

%)

List ADT Example -- Implementation

* To delete an item, remove gap in array

(a)

Array indexes

Delete 19

Lo e

MAX LIST-1

MAX LIST - 1

k-1 k
k 12 3 44 . 100 5 10 18 ?
size ’—>1 2 3 4 5 k k+1 MAX LIST
items
ADT list positions
Array indexes
L»
0 1 2 3 k-1
k 12 3 44 1100 5 10 18 ? ?
k MAX LIST
items

size ’—>1 2 3 4

ADT list positions

Figure 3-13 (@) Deletion causes a gap; (b) fill gap by shifting

List ADT — Options

 Many other design options are possible
— retrieve items by name, instead of by index
— sort items by name or some other factor
— display list in some sorted order
* Several data structures can be used during
implementation
— arrays, linked lists, trees, hash-tables, etc.
— different advantages, restrictions, and costs

.
" =

=% ADT Sorted List -- Properties

e Maintains items in sorted order

* |nserts and deletes items by their values, not
their positions

EECS 268 Programming II

@
*ADT Sorted List — Operation Contract

* sortedlsEmpty():boolean{query}

* sortedGetLength():integer{query}

e sortedinsert(in nltem:ListitemType, out success:boolean)
* sortedRemove(in index:integer, out success :boolean)

e sortedRetrieve(in index:integer, out dltem:ListltemType,
out success :boolean){query}

* locatePosition(in anltem:ListltemType,
out isPresent:boolean):integer{query}

EECS 268 Programming Il | Seeé Table on pages 133-134 21

Implementing ADTs

* Choosing the data structure to represent the
ADT'’s data is a part of implementation
— Choice of a data structure depends on
» Details of the ADT’s operations
* Context in which the operations will be used
* Implementation details should be hidden
behind a wall of ADT operations

— A program (client) should only be able to access
the data structure by using the ADT operations

Hiding Data Structures and Code

remove

Data
structure

Program

Request to perform operation>

€

Result of operation

Wall of ADT operations
Figure 3-8

ADT operations provide access to a data structure

EECS 268 Programming II 23

Violating Information Hiding

TN

remove

Data
structure

Program

Wall of ADT operations
Figure 3-9 Violating the wall of ADT operations

EECS 268 Programming II

C++ Classes

* Encapsulation combines an ADT’s data with its
operations to form an object
— an object is an instance of a class
— a class defines a new data type

— a class contains data members and methods (member
functions)

— by default, all data members in a class are private
* but, can specify them as public
e can only be accessed by other class members

— some member functions have to be public
— encapsulation hides implementation details

Request

C++ Classes

«

Results

Methods

Data

Figure 3-10
An object’s data and methods

are encapsulated

C++ Classes

* Each class definition is placed in a header file
— Classname . h

 The implementation of a class’s methods are
placed in an implementation file

— Classname . cpp

EECS 268 Programming II

27

C++ Classes: Constructors

* Constructors

— create and initialize new instances of a class
* invoked when you declare an instance of the class

— have the same name as the class
— have no return type, not even void
e A class can have several constructors

— a default constructor has no arguments

— compiler will generate a default constructor if you
do not define any constructors

EECS 268 Programming Il

28

C++ Classes: Constructors

 The implementation of a method qualifies its
name with the scope resolution operator ::

* The implementation of a constructor
— sets data members to initial values
— can use an initializer

Sphere: :Sphere() : theRadius (1.0)
{

! // end default constructor

— cannot use return to return a value

EECS 268 Programming II

29

C++ Classes: Destructors

e Destructor

— destroys an instance of an object when the object’s
lifetime ends

— called automatically for local variables on subroutine exit
— called explicitly by delete operator
— primary duty is to de-allocate dynamic memory

 Each class has one destructor

— for many classes, you can omit the destructor
 if they do not allocate any memory

— the compiler will generate a destructor if you do not define
one

EECS 268 Programming II 30

C++ Classes: The header file

/** @file Sphere.h */
const double PI = 3.14159;
class Sphere

{

public:
Sphere () ; // Default constructor
Sphere (double initialRadius); // Constructor

void setRadius (double newRadius) ;
double getRadius () const; // can’t change data members
double getDiameter () const;
double getCircumference () const;
double getArea () const;
double getVolume () const;
void displayStatistics () const;
private:
double theRadius; // data members should be private

}; // end Sphere

EECS 268 Programming II 31

++ Classes: The implementation file

/** @file Sphere.cpp */
#include <iostream>

#include "Sphere.h" // header file
using namespace std;
Sphere: :Sphere() : theRadius(1.0)

{

} // end default constructor

Sphere: :Sphere (double initialRadius)
{
if (initialRadius > 0)
theRadius = initialRadius;
else
theRadius = 1.0;
} // end constructor

EECS 268 Programming II

32

++ Classes: The implementation file

void Sphere::setRadius (double newRadius)

{

if (newRadius > 0)
theRadius = newRadius;
else
theRadius = 1.0;
} // end setRadius

e The constructor could call setRadius

EECS 268 Programming II

33

+ Classes: The implementation file

double Sphere::getRadius () const
{

return theRadius;
} // end getRadius

double Sphere::getArea () const
{

return 4.0 * PI * theRadius * theRadius;
} // end getArea

EECS 268 Programming II 34

++ Classes: Using the class Sphere

#include <iostream>
#include "Sphere.h" // header file
using namespace std;
int main() // the client
{
Sphere unitSphere;
Sphere mySphere(5.1);
cout << mySphere.getDiameter () << endl;

} // end main

EECS 268 Programming II

35

Inheritance in C++

* Inheritance is a way to reuse the code (and
behavior) of existing classes

* existing class is called the base or super or parent
class

 the new class is called derived or sub class

* Derived class inherits any of the publicly defined
methods or data members of a base class

* public members are accessible by any function

* protected members are accessible only in base and
derived classes

Inheritance in C++

* Derived classes can add new data members and
member functions

— methods with the same prototype (name as well as
number and types of arguments) in the derived class
override base class methods

— distinct from overloading — same function name but
different set of parameters

* An instance of a derived class is considered to also be
an instance of the base class

— can be used anywhere an instance of the base class can be
used

* An instance of a derived class can invoke public
methods of the base class

Inheritance — Example

#include “Sphere.h”
enum Color {RED, BLUE, GREEN, YELLOW};

class ColoredSphere: public Sphere

{
public:

Color getColor () const;

private:

Color c;
} // end ColoredSphere

EECS 268 Programming II

38

C++ Namespaces

 Mechanism for logically grouping declarations
and definitions into one declarative region

* The contents of the namespace can be
accessed by code inside or outside the
namespace

— use the scope resolution operator (::) to access
elements from outside the namespace

— alternatively, the using declaration allows the
names of the elements to be used directly

C++ Namespaces

« Creating a namespace

namespace smallNamespace
{

int count = 0;

void abc () ;
} // end smallNamespace

 Using a hamespace
using namespace smallNamespace;
count +=1;
abc () ;

EECS 268 Programming II D C3—namespace. cpp 40

C++ Exceptions

* Mechanism for handling errors at runtime
— pre-defined as well as user-defined
— default action is often to kill the program

e A function can indicate that an error has
occurred by throwing an exception

* Code that deals with the exception is said to
handle it

— uses a try block and catch blocks

C++ Exceptions

* Place a statement that might throw an exception
within a try block

try { statement(s); }
* Write a catch block for each type of exception handled

— order is not important

catch (ExceptionClass identifier) {
statement (s) ;

}

catch (ExceptionClass identifier?2) {
statement (s) ;

EECS 268 Programming II

C++ Exceptions

* When a statement in a try block causes an
exception

— rest of try block is ignored
 destructors of objects local to the block are called

— control passes to catch block corresponding to the
exception

— after a catch block executes, control passes to

statement after last catch block associated with the
try block

— if a catch block for the exception is not found, the
program typically aborts

see C3-exceptions.cpp

C++ Exceptions

 Throwing exceptions
— A throw statement throws an exception

— Methods that throw an exception have a throw clause
void myMethod (int x) throw (MyException)
{

if (. .)
throw MyException (“MyException: ..”);

} // end myMethod

* You can use an exception class in the C++
Standard Library or define your own

EECS 268 Programming Il 44

ist Implemented Using Exceptions

* We define two exception classes

#include <stdexcept>
#include <string>
using namespace std;
class ListIndexOutOfRangeException
public out of range
{
public:
ListIndexOutOfRangeException (const string &
message = V")
: out of range (message.c str())

{}
}; // end ListException

EECS 268 Programming II 45

#include <stdexcept>
#include <string>

using namespace std;

class ListException : public logic error

{

public:
ListException (const string & message = %)
logic error (message.c str())

{}
}; // end ListException

EECS 268 Programming II 46

/** @file ListAexcept.h */
#include “ListException.h”
#include “ListIndexOutOfRangeException.h”

class List
{
public:

void insert (int index,
const ListItemType& newltem)

throw (ListIndexOutOfRangeException,
ListException);

} // end List

EECS 268 Programming II

47

/** @file ListAexcept.cpp */
void List::insert (int index,

const ListItemType& newltem)
throw (ListIndexOutOfRangeException,
ListException);

if (size > MAX LIST)
throw ListException (“ListException: ” +

“TList full on insert”);

} // end insert

EECS 268 Programming II

48

Summary

Data abstraction controls the interaction
between a program and its data structures

Abstract data type (ADT): a set of data-
management operations together with the
data values upon which they operate

Define an ADT fully before making any
decisions about an implementation

C++ classes used to implement ADT
— encapsulates both data and operations

Summary

* Members of a class are private by default
— data members are typically private
— public methods can be provided to access them

 Namespace: a mechanism to group classes,
functions, variables, types, and constants

* You can throw an exception if you detect an
error during program execution
— use try and catch blocks to handle exceptions

