
Stacks

• The stack ADT

• Stack Implementation

– using arrays

– using generic linked lists

– using List ADT

• Stack Examples

EECS 268 Programming II 1

Stacks and Queues

• Linear data structures

– each item has specific first, next, and previous
relations with other items in the set

– examples: arrays, linked lists, vectors, strings

• Stacks and queues are special types of lists
with restricted operations

– restrict how the items are added and removed
from the list

2 EECS 268 Programming II

Stacks and Queues

• Stacks
– Last In First Out (LIFO) add/delete semantics

– Push() to add item only to the top or front of the list

– Pop() to remove/delete only the top or front item
from the list

• Queues
– First In First Out (FIFO) add/delete semantics

– Enqueue() to add item to the end of the list

– Dequeue() to remove item from the front of the list

– will study in next chapter

3 EECS 268 Programming II

Stacks

• Analogy of stack

– stack of dishes in cafeteria

• Several real-world examples

– subroutine call stack
management at runtime

• implicitly used during recursion

– language parsing

• parenthesis matching

– algebraic expression evaluation

4

Push Pop

Stack ADT

• Operation Contract for the ADT Stack
– isEmpty():boolean {query}

– push(in newItem:StackItemType)

 throw StackException

– pop() throw StackException

– pop(out stackTop:StackItemType)

 throw StackException

– getTop(out stackTop:StackItemType) {query}

 throw StackException

5 EECS 268 Programming II

Stack Implementation

• Can use linked lists or arrays for implementing
stacks
– more important is the interface that is exposed to the

developer!

• A program can use a stack independently of the
stack’s implementation

• Use axioms to define an ADT stack formally
– Example: Specify that the last item inserted is the first

item to be removed
• (aStack.push(newItem)).pop()= aStack

6 EECS 268 Programming II

Example: Reverse a List

• Traverse and output a list in reverse

• Solution can use either stack or recursion

– recursion uses the implicit call stack

7
see C6-reverseList.cpp

EECS 268 Programming II

Checking for Balanced Braces

• Problem: Develop an algorithm to read an
expression one symbol at a time and check for
matching braces

• A stack can be used to verify whether a
program contains balanced braces
– An example of balanced braces

• abc{defg{ijk}{l{mn}}op}qr

– An example of unbalanced braces
• abc{def}}{ghij{kl}m

8 EECS 268 Programming II

Checking for Balanced Braces

• Function performed by parsers/compilers
– also in several editors, like emacs, vi

• Requirements for balanced braces
– Each time you encounter a “}”, it matches an

already encountered “{”

– When you reach the end of the string, you have
matched each “{”

• Use the stack API as done in the previous
problem to develop your own solution.

9 EECS 268 Programming II

Checking for Balanced Braces

• Stepping through the algorithm for 3
expressions

10 EECS 268 Programming II

Recognizing Strings in a Language

• L = {w$w’ : w is a possibly empty string of

 characters other than $,

 w’ = reverse(w) }

• A solution using a stack
– Traverse the first half of the string, pushing each

character onto a stack

– Once you reach the $, for each character in the
second half of the string, match a popped
character off the stack

11
see C6-strRecog.cpp

EECS 268 Programming II

Implementations of the ADT Stack

• The ADT stack can be implemented using

– An array – will have size limit

– A linked list

– The ADT list

• All three implementations use a
StackException class to handle possible
exceptions

12 EECS 268 Programming II

Implementations of the ADT Stack

13

Figure 6-4

Implementations of the ADT stack that use (a) an array; (b) a linked list; (c) an ADT list

An Array-Based Implementation of
the ADT Stack

• Private data fields
– An array of items of type StackItemType

– The index top to the top item

• Compiler-generated destructor and copy
constructor

14

Figure 6-5

An array-based implementation

see C6-StackA.cpp

A Pointer-Based Implementation of
the ADT Stack

• A pointer-based implementation

– Enables the stack to grow and
shrink dynamically

• topPtr is a pointer to the head
of a linked list of items

• A copy constructor and destructor
must be supplied

15 see C6-StackP.cpp

An Implementation That Uses the ADT
List

• The ADT list can represent the items in a stack

• Let the item in position 1 of the list be the top

– push(newItem)

• insert(1, newItem)

– pop()

• remove(1)

– getTop(stackTop)

• retrieve(1, stackTop)

16 see C6-StackL.cpp EECS 268 Programming II

Comparing Implementations

• Fixed size versus dynamic size

– A statically allocated array-based implementation

• Fixed-size stack that can get full

• Prevents the push operation from adding an item to the
stack, if the array is full

– A dynamically allocated array-based
implementation or a pointer-based
implementation

• No size restriction on the stack

17 EECS 268 Programming II

Comparing Implementations

• A pointer-based implementation vs. one that
uses a pointer-based implementation of the
ADT list

– Pointer-based implementation is more efficient

– ADT list approach reuses an already implemented
class

• Much simpler to write

• Saves programming time

18 EECS 268 Programming II

Application: Algebraic Expressions

• Infix expressions – most commonly used
– a*b-c, a+b+c/d

– need operator precedence rules and parenthesis

• Postfix / prefix expressions
– definitive, unambiguous grammars

– no need for precedence rules or parenthesis

• Infix Prefix Postfix

 a*b-c -*abc ab*c-

 a*(b-c) *a-bc abc-*

19 EECS 268 Programming II

Application: Algebraic Expressions

• Postfix/prefix expressions are easier to evaluate
than infix

• Evaluate an infix expression
– convert the infix expression to postfix form

– evaluate the postfix expression

• We use stack
– can use either array, pointer, or List ADT based

implementation

– interface of stack ADT is important

– implementation of the stack ADT is not

20 EECS 268 Programming II

Evaluating Postfix Expressions

• When an operand is entered
– push it onto a stack

• When an operator is entered
– apply it to the top two operands of the stack
– pop the operands from the stack
– push the result of the operation onto the stack

• Simplifying assumptions
– the string is a syntactically correct postfix expression
– no unary operators are present
– no exponentiation operators are present
– operands are single lowercase letters that represent

integer values

21 EECS 268 Programming II

Evaluating Postfix Expressions

22 EECS 268 Programming II

Converting Infix Expressions to
Equivalent Postfix Expressions

• Evaluate infix expression by first converting it into
an equivalent postfix expression

• Facts about converting from infix to postfix
– operands always stay in the same order with respect

to one another

– operator will move only “to the right” with respect to
the operands

– all parentheses are removed

• Stack used to hold pending operators until they
can be emitted in their right position

23 EECS 268 Programming II

Converting Infix Expressions to
Equivalent Postfix Expressions

• Steps to process infix expression
– append an operand to the end of an initially

empty string postfixExpr

– push (onto a stack

– push an operator onto the stack, if stack is empty;
otherwise pop operators and append them to
postfixExpr as long as they have a precedence >=
that of the operator in the infix expression

– at), pop operators from stack and append them
to postfixExpr until (is popped

24 see C6-InfixEval.cpp EECS 268 Programming II

Infix to Postfix Expressions

• Convert a-(b+c*d)/e to postfix

25 EECS 268 Programming II

Application: A Search Problem

• Indicate whether a sequence
of flights exists from the
origin city to the destination
city

• The flight map is a graph

– two adjacent vertices are
joined by an edge

– a directed path is a sequence
of directed edges

26 EECS 268 Programming II

Stack-Based Nonrecursive Solution

• The solution performs an exhaustive search

– feasible only for small search spaces

– beginning at the origin city, try every possible
sequence of flights until either

• we find a sequence that gets to the destination city

• we determines that no such sequence exists

• Backtracking used to recover from choosing a
wrong city

27 EECS 268 Programming II

Stack-Based Nonrecursive Solution

28 EECS 268 Programming II

A Recursive Solution

• Possible outcomes of recursive search strategy

– we eventually reach the destination city and can
conclude that it is possible to fly from the origin to
the destination

– we reach a city C from which there are no
departing flights

– we go around in circles

29 EECS 268 Programming II

A Recursive Solution

• A refined recursive search strategy

searchR(in originCity:City,

 in destinationCity:City):boolean

 Mark originCity as visited

 if (originCity is destinationCity)

 Terminate -- the destination is reached

 else

 for (each unvisited city C adjacent to

 originCity)

 searchR(C, destinationCity)

30 EECS 268 Programming II

The Relationship Between Stacks and
Recursion

• Typically, stacks are used by compilers to
implement recursive methods

– during execution, each recursive call generates an
activation record that is pushed onto a stack

• Stacks can be used to implement a
nonrecursive version of a recursive algorithm

31 EECS 268 Programming II

Summary

• ADT stack operations have a last-in, first-out
(LIFO) behavior

• Have a wide range of practical applications

– algorithms that operate on algebraic expressions

– flight maps

• A strong relationship exists between recursion
and stacks

32 EECS 268 Programming II

