Stacks

e The stack ADT

e Stack Implementation
— using arrays
— using generic linked lists
— using List ADT

e Stack Examples

EECS 268 Programming II

Stacks and Queues

e Linear data structures

— each item has specific first, next, and previous
relations with other items in the set

— examples: arrays, linked lists, vectors, strings

* Stacks and queues are special types of lists
with restricted operations

— restrict how the items are added and removed
from the list

EECS 268 Programming II

Stacks and Queues

e Stacks
— Last In First Out (LIFO) add/delete semantics
— Push() to add item only to the top or front of the list

— Pop() to remove/delete only the top or front item
from the list

* Queues
— First In First Out (FIFO) add/delete semantics
— Enqueue() to add item to the end of the list
— Dequeue() to remove item from the front of the list
— will study in next chapter

EECS 268 Programming II

Stacks

* Analogy of stack

— stack of dishes in cafeteria

e Several real-world examples

— subroutine call stack
management at runtime

* implicitly used during recursion
— language parsing
e parenthesis matching

— algebraic expression evaluation

Push Pop

||

:

Stack ADT

* Operation Contract for the ADT Stack

— isEmpty():boolean {query}

— push(in newltem:StackltemType)
throw StackException

— pop() throw StackException

— pop(out stackTop:StackltemType)
throw StackException

— getTop(out stackTop:StackltemType) {query}
throw StackException

Stack Implementation

* Can use linked lists or arrays for implementing
stacks

— more important is the interface that is exposed to the
developer!

* A program can use a stack independently of the
stack’s implementation
* Use axioms to define an ADT stack formally

— Example: Specify that the last item inserted is the first
item to be removed

 (aStack.push(newltem)).pop()= aStack

EECS 268 Programming II

Example: Reverse a List

* Traverse and output a list in reverse
e Solution can use either stack or recursion

— recursion uses the implicit call stack

EECS 268 Programming II SCC C6_reverseLISt'Cpp 7

o

¥ Checking for Balanced Braces

* Problem: Develop an algorithm to read an
expression one symbol at a time and check for

matching braces

* A stack can be used to verify whether a
program contains balanced braces
— An example of balanced braces
* abc{defg{ijk{l{mn}}op}qr
— An example of unbalanced braces
* abc{def}}H{ghij{kl}m

EECS 268 Programming II

= Checking for Balanced Braces

* Function performed by parsers/compilers
— also in several editors, like emacs, vi

* Requirements for balanced braces

— Each time you encounter a “}”, it matches an
already encountered “{”

— When you reach the end of the string, you have
matched each “{”

* Use the stack APl as done in the previous
problem to develop your own solution.

EECS 268 Programming II

T

& Checking for Balanced Braces

e Stepping through the algorithm for 3
expressions

Input string Stack as algorithm executes
1. 2. 3. 4,

1. push "{"

2. push "{"

{ 3. pop

{ { { 4. pop

Stack empty —=> balanced

{a{b}c}

ta{be} 1. push " {"

{ 2. push "{"

{ { { 3. pop
Stack not empty — not balanced

{ab}c}

1. push "{"

{ 2. pop
Stack empty when last "} " encountered —>not balanced

EECS 268 Programming II 10

ecognizing Strings in a Language

e L={wSwW’:wis a possibly empty string of
characters other than S,
w’ = reverse(w) }

* A solution using a stack

— Traverse the first half of the string, pushing each
character onto a stack

— Once you reach the S, for each character in the
second half of the string, match a popped
character off the stack

see C6-strRecog.cpp

EECS 268 Programming II 11

FImplementations of the ADT Stack

 The ADT stack can be implemented using
— An array — will have size limit
— A linked list
— The ADT list

* All three implementations use a
StackException class to handle possible
exceptions

EECS 268 Programming II

Implementations of the ADT Stack

(@) (b) ()
30 | «—+top 30 | «—top 30 | «—top
20 T 20
10 ¢ 10
Array 20 ADT list

|
!

10

/|

Linked list

Figure 6-4

Implementations of the ADT stack that use (a) an array; (b) a linked list; (c) an ADT list

An Array-Based Implementation of
the ADT Stack

* Private data fields
— An array of 1 tems of type StackItemType
— The index top to the top item

 Compiler-generated destructor and copy
constructor

top items

0 1 2 k MAX STACK-1 <— Array indexes

Figure 6-5

An array-based implementation

see C6-StackA.cpp 14

A Pointer-Based Implementation of

the ADT Stack]

topPtr

—» 10

* A pointer-based implementation

— Enables the stack to grow and

shrink dynamically

* topPtr isa pointer to the head

of a linked list of items

* A copy constructor and destructor

must be supplied

see C6-StackP.cpp

«<——o

80

«——o

60

<1

15

List

Implementation That Uses the ADT

 The ADT list can represent the items in a stack

e Let the item in position 1 of the list be the top

_ push(newltem) List position
* insert(1, newltem) f
— pop()

2
* remove(1)
3
— getTop(stackTop) .

* retrieve(1, stackTop)
alLlist .getLength ()

10

80

60

<«—— Top of stack

EECS 268 Programming II SCC C6_StaCkLCpp 16

wl@j

2|

@ Comparing Implementations

* Fixed size versus dynamic size

— A statically allocated array-based implementation
* Fixed-size stack that can get full

* Prevents the push operation from adding an item to the
stack, if the array is full

— A dynamically allocated array-based
implementation or a pointer-based
implementation

 No size restriction on the stack

EECS 268 Programming II 17

= Comparing Implementations

* A pointer-based implementation vs. one that
uses a pointer-based implementation of the
ADT list

— Pointer-based implementation is more efficient

— ADT list approach reuses an already implemented
class
* Much simpler to write
* Saves programming time

EECS 268 Programming II 18

wl@j

2|

*Application: Algebraic Expressions

* |nfix expressions — most commonly used
— a*b-c, a+b+c/d
— need operator precedence rules and parenthesis

* Postfix / prefix expressions
— definitive, unambiguous grammars
— no need for precedence rules or parenthesis

e |nfix Prefix Postfix
a*b-c -*abc ab*c-
a* (b-c) *a-bc abc-*

EECS 268 Programming II

wl@j

=Application: Algebraic Expressions

» Postfix/prefix expressions are easier to evaluate
than infix

* Evaluate an infix expression
— convert the infix expression to postfix form
— evaluate the postfix expression

e We use stack

— can use either array, pointer, or List ADT based
implementation

— interface of stack ADT is important
— implementation of the stack ADT is not

EECS 268 Programming II 20

* When an operand is entered
— push it onto a stack

* When an operator is entered
— apply it to the top two operands of the stack
— pop the operands from the stack
— push the result of the operation onto the stack
* Simplifying assumptions
— the string is a syntactically correct postfix expression
— no unary operators are present
— no exponentiation operators are present

— operands are single lowercase letters that represent
integer values

EECS 268 Programming II

Key entered

2
3
4

Calculator action

push 2
push 3
push 4
operand2 = pop stack 4)
operandl = pop stack (3)

result = operandl + operand2 (7)
push result

pop stack (7)
pop stack (2)

operand?2
operandl

result = operandl * operand2 (14)
push result

EECS 268 Programming II

After stack operation:

Stack (bottom to top)
2

2 3

2 3 4

2 3

2

2

2 7

2

14

22

Converting Infix Expressions to
Equivalent Postfix Expressions

* Evaluate infix expression by first converting it into
an equivalent postfix expression

* Facts about converting from infix to postfix

— operands always stay in the same order with respect
to one another

— operator will move only “to the right” with respect to
the operands

— all parentheses are removed

* Stack used to hold pending operators until they
can be emitted in their right position

EECS 268 Programming II 23

Converting Infix Expressions to
Equivalent Postfix Expressions

* Steps to process infix expression

— append an operand to the end of an initially
empty string postfixExpr

— push (onto a stack

— push an operator onto the stack, if stack is empty;
otherwise pop operators and append them to

postfixExpr as long as they have a precedence >=
that of the operator in the infix expression

— at), pop operators from stack and append them
to postfixExpr until (is popped

EECS 268 Programming II S€C C6_InﬁXEval'Cpp 24

Infix to Postfix Expressions

* Convert a-(b+c*d)/e to postfix

ch Stack (bottom to top) postfixExp
a a
— — a
(—(a
b —(ab
+ —(+ ab
C —(+ abc
* — (+ * abc
d —(+ * abcd
) —(+ abcd« Move operators
—(abcdx + from stack to
- abcdx + postfixExp until "("
/ —/ abcdx +
=/ abcdx +e Copy operators from
abcdx +e/- stack to postfixExp
EECS 268 Programming II 5

o

% Application: A Search Problem
°/

* Indicate whether a sequence
of flights exists from the
origin city to the destination

city
* The flight map is a graph

— two adjacent vertices are
joined by an edge Roee—

— a directed path is a sequence l
of directed edges

5

o——Ppo—Pp 00—

Y
—*"i’\
P

Xoedg——eo ()

of

EECS 268 Programming II

wmltack-Based Nonrecursive Solution

* The solution performs an exhaustive search
— feasible only for small search spaces

— beginning at the origin city, try every possible
sequence of flights until either
* we find a sequence that gets to the destination city
* we determines that no such sequence exists

* Backtracking used to recover from choosing a
wrong city

EECS 268 Programming II 27

tack-Based Nonrecursive Solution

Action Reason Contents of stack (bottom to top)
Push P Initialize P

Push R Next unvisited adjacent city PR
Push X Next unvisited adjacent city PRX
Pop X No unvisited adjacent city PR

Pop R No unvisited adjacent city P

Push W Next unvisited adjacent city PW
Push S Next unvisited adjacent city PWS
Push T Next unvisited adjacent city PWST
Pop T No unvisited adjacent city PWS
Pop 5 No unvisited adjacent city PW
Push Y Next unvisited adjacent city PWY
Push Z Next unvisited adjacent city PWY Z

EECS 268 Programming II 28

A Recursive Solution

* Possible outcomes of recursive search strategy

— we eventually reach the destination city and can
conclude that it is possible to fly from the origin to
the destination

— we reach a city C from which there are no
departing flights

— we go around in circles

EECS 268 Programming II 29

A Recursive Solution

* A refined recursive search strategy

searchR(1n originCity:City,
1in destinationCity:City) :boolean
Mark originCity as visited
if (originCity 1is destinationCity)

Terminate —-- the destination 1s reached
else
for (each unvisited city C adjacent to
originCity)

searchR(C, destinationCity)

EECS 268 Programming II 30

w% Relationship Between Stacks and

<%
Recursion

ﬂ/

-

NN
b
Gligs.

* Typically, stacks are used by compilers to
implement recursive methods

— during execution, each recursive call generates an
activation record that is pushed onto a stack

e Stacks can be used to implement a
nonrecursive version of a recursive algorithm

EECS 268 Programming II

Summary

* ADT stack operations have a last-in, first-out
(LIFO) behavior

* Have a wide range of practical applications
— algorithms that operate on algebraic expressions
— flight maps

e A strong relationship exists between recursion
and stacks

