
EECS 665 – Fall 2017
Project 2

Intermediate Code Generation

csem reads a C program (actually a subset of C) from its standard input and compiles it into
a list of intermediate language quadruples on its standard output. The form of the quadruple
operators appear below:

x := y op z operate on y and z and place result in x
bt x lab branch to lab iff x is true
br lab branch to lab
x := global name yield address of global identifier name
x := local n yield address of local n
x := param n yield address of parameter n
x := c yield value of constant value c
x := s yield address of character string s
formal n allocate the formal having n bytes
alloc name n allocate the global name having n bytes
localloc n allocate the local having n bytes
func name begin function name
fend end function
lab=y define lab to be y
bgnstmt n beginning of statement at line n

name denotes an identifier from the C program. n denotes an integer. c denotes a C integer
constant. s denotes a string enclosed by double quotes. x, y, and z denote quadruple temporaries.
lab denotes the location of a quadruple or a reference to a symbol defined later by a “lab=y”
command. op denotes any of the C operators below:

== ! = <= >=
operate on x and y< > = | ∧ <<

>> + − ∗ / %
∼ invert x
− negate x
@ dereference x
cv convert x
f call function y with n arguments
arg pass x as an argument
ret return x
[] index z into y

followed by i (for the integer version of the operator) or by f (for the floating point version).
y is omitted for unary operators. You should assume all bitwise operators (|, ∧, &, <<, >>, ∼)
and % only operate on integer values.

For example,

double m[6];

scale(double x) {

int i;

if (x == 0)

return 0;

for (i = 0; i < 6; i += 1)

m[i] *= x;

return 1;

}

compiles into the intermediate operations below (actually only one column)

alloc m 48 t7 := local 0 t19 := local 0

func scale t8 := 0 t20 := @i t19

formal 8 t9 := t7 =i t8 t21 := global m

localloc 4 label L3 t22 := t21 []f t20

bgnstmt 6 t10 := local 0 t23 := param 0

t1 := param 0 t11 := @i t10 t24 := @f t23

t2 := @f t1 t12 := 6 t25 := @f t22

t3 := 0 t13 := t11 <i t12 t26 := t25 *f t24

t4 := cvf t3 bt t13 B3 t27 := t22 =f t26

t5 := t2 ==f t4 br B4 br B6

bt t5 B1 label L4 label L6

br B2 t14 := local 0 B3=L5

label L1 t15 := 1 B4=L6

bgnstmt 7 t16 := @i t14 B5=L3

t6 := 0 t17 := t16 +i t15 B6=L4

reti t6 t18 := t14 =i t17 bgnstmt 10

label L2 br B5 t28 := 1

B1=L1 label L5 reti t28

B2=L2 bgnstmt 9 fend

bgnstmt 8

Your assignment is to write the semantic actions for the csem program to produce the de-
sired intermediate code. The following files which will comprise part of your program should be
downloaded from the class web-page: http://www.ittc.ku.edu/∼kulkarni/teaching/EECS665/

cc.h - include file
cgram.y - yacc grammar for subset of C
makefile - csem makefile
scan.c - lexical analyzer
scan.h - defines prototypes for routines in scan.c
sem.h - defines prototypes for routines in sem.c
semutil.c - utitity routines for the semantic actions
semutil.h - defines prototypes for routines in semutil.c
sym.c - symbol table management
sym.h - defines prototypes for routines in sym.c

The makefile will create an executable called csem in the current directory. The file sem.c

contains stubs for the semantic action routines. While I have provided you access to the other *.c
and *.h files, you should not modify them. You are only allowed to update the file sem.c and will
not be allowed to update any other files. You can write additional functions in this file to abstract
common operations. When making your executable, refer to the makefile provided, which uses the
other *.c and *.h files when producing the executable. I have also included the file sem base.exe
that contains my implementation. You can use this executable to verify your output using the
diff unix command. You can also use this executable to determine the three-address code that
should be generated for each construct.

E-mail only the file sem.c as an attachment to your respective Lab TA (either Kurt – kslagle@ku.edu,
or April – t982w485@ku.edu) and CC it to ‘prasadk@ku.edu’ before the beginning of class on
Friday, December 1st.

Another Example

This example shows a compilation for a test program with multiple formal parameters, locals,
and actual arguments.

main(int a, int b)

{

double d;

int i;

printf("%d %f %d %d\n", i, d, a, b);

}

compiles into

func main t7 := @i t6

formal 4 t8 := param 1

formal 4 t9 := @i t8

localloc 8 argi t1

localloc 4 argi t3

bgnstmt 6 argf t5

t1 := "%d %f %d %d\n" argi t7

t2 := local 1 argi t9

t3 := @i t2 t10 := global printf

t4 := local 0 t11 := fi t10 5

t5 := @f t4 fend

t6 := param 0

