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Concepts Introduced in Chapter 2
● A more detailed overview of the compilation 

process.
– Parsing

– Scanning

– Semantic Analysis

– Syntax-Directed Translation

– Intermediate Code Generation
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Context-Free Grammar

● A grammar can be used to describe the possible 
hierarchical structure of a program.

● A context free grammar has 4 components:
– A set of tokens, known as terminal symbols.
– A set of nonterminals.
– A set of productions where each production consists of a 

nonterminal, called the left side of the production, an arrow, 
and a sequence of tokens and/or nonterminals, called the right 
side of the production.

– A designation of one of the nonterminals as the start symbol.
● The token strings that can be derived from the start 

symbol forms the language defined by the grammar.
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Example Grammar

list  list + digit

list  list - digit

list  digit

digit  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Parsing

● A grammar derives strings by beginning with the 
start symbol and repeatedly replacing a 
nonterminal by the body of a production for that 
nonterminal.

● The set of terminal strings that can be derived 
from the start symbol form the language defined 
by the grammar.

● Parsing is the process of taking a string of 
terminals and figuring out how to derive it from 
the start symbol of the language.
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Parse Trees

● A parse tree pictorially shows how the start 
symbol of a grammar derives a specific string in 
the language.

● Given a context free grammar, a parse tree is a 
tree with the following properties:
– The root is labeled by the start symbol.
– Each leaf is labeled by a token or by .
– Each interior node is labeled by a nonterminal.
– If A is the nonterminal labeling some interior node 

and X1, X2, ..., Xn are the labels of the children of 
that node from left to right, then A  X1X2...Xn is a 
production.

followed by Fig. 2.5
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Ambiguous Grammars
● The leaves (tokens) of a parse tree read from left 

to right form a legal string in the language 
defined by the associated grammar.

● If a grammar can have more than one parse tree 
generating the same string of tokens, then the 
grammar is said to be ambiguous.

● For a grammar representing a programming 
language, we need to ensure that the grammar is 
unambiguous or there are additional rules to 
resolve the ambiguities.

string → string + string | string  string

string → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
followed by Fig. 2.6
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Precedence and Associativity
● Precedence determines which operator is applied 

first when different operators appear in an 
expression and parentheses do not explicitly 
indicate the order.

● Associativity is used to define the order of 
operations when there are multiple operators with 
the same precedence in an expression.
– Left associativity means that (x op1 y) is applied first 

in the expression (x op1 y op2 z) when op1 and op2 
have the same precedence.

– Right associativity means that (y op2 z) is applied 
first in the expression (x op1 y op2 z) when op1 and 
op2 have the same precedence.

followed by Fig. 2.7
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Syntax-Directed Translation

● Syntax-directed translation is the process of 
converting a string in the language specified by 
the grammar into a string in some other language.

● Syntax-directed translation is achieved by 
attaching rules or program fragments to 
productions in the grammar.

● Execution of these attached rules or program 
fragments, during parsing, results in the 
translation of the input string.
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● If E is a variable or constant, then the postfix 
notation for E is E itself.

● If E is an expression of the form E1 op E2, where 
op is any binary operator, then the postfix 
notation for E is E1' E2' op, where E1' and E2' are 
the postfix notations for E1 and E2, respectively.

● If E is an expression of the form ( E1 ), then the 
postfix notation for E1 is also the postfix notation 
for E.

(9-5)+2  95-2+  9-(5+2)  952+-

Converting Infix to Postfix
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Syntax-Directed Definition
● Uses a grammar to define the syntactic structure.
● Associates attributes with each grammar symbol.
● Associates semantic rules for computing the values 

of the attributes.

followed by Fig. 2.9, 2.10
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Example Syntax-Directed Definition

● seq  → seq instr | begin

● instr → east | north | west | south 
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Keeping Track of a Robot's Position

beginwest

south

east east east

north

north

(0,0)
(-1,0)

(-1,-1) (2,-1)

(2,1)

Input String:
begin   west   south   east   east   east   north   north

followed by Fig. A, B, 2.11
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Translation Scheme
● A translation scheme is a grammar with program 

fragments called semantic actions that are 
embedded within the right hand side of the 
productions.

● Unlike a syntax-directed definition, the order of 
evaluation of the semantic rules is explicitly shown.

followed by Fig. 2.15, 2.14
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Syntax-Directed Definition (SDD) 
Vs. Translation Scheme (TS)

● SDD – Semantic rules NOT embedded within the right sides of 
grammar productions

TS – Semantic rules embedded within right sides of productions

● SDD – We need to define an evaluation order to compute the 
attribute values at each node in the parse tree. A dependency 
graph may be used. (It is possible that no such order exists.)

TS – Evaluation order of semantic rules is explicitly shown by 
their position in the right side of grammar productions. Actions 
executed in the order in which they are encountered in a depth-
first traversal of the parse tree

● SDD – Semantic rules are NOT part of the parse tree

TS – Actions are included in the constructed parse tree
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Parsing

● Parsing is the process of determining how/if a 
string of tokens can be generated by a grammar.

● Parsing Methods
– Top-Down

● Construction starts at the root and proceeds to the leaves.
● Can be easily constructed by hand.

– Bottom-Up
● Construction starts at the leaves and proceeds to the root.
● Can accept a larger class of grammars.

followed by Fig. 2.17, 2.18
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Recursive Descent Parsing

● Top-down method for syntax analysis.
● A procedure is associated with each nonterminal 

of a grammar.
● Can be implemented by hand.

– Decides which production to use by examining the 
lookahead symbol.  

– The appropriate procedure is invoked for each 
nonterminal in the rhs of the production.

● Predictive parsing means that a single lookahead 
symbol can be used to determine the procedure to 
be called for the next nonterminal.

followed by Fig. 2.15
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Example Grammar for Recursive 
Descent Parsing

● Must not be left recursive.
● Must be left factored.

expr → term rest

rest  →+ term { print('+') } rest | - term { print('-') } rest | 

term → 0 { print('0') }

term → 1 { print('1') }

...

term → 9 { print('9') }
followed by Fig. C, D, E, F
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Syntax Trees
● Concrete Syntax Tree - a parse tree
● Abstract Syntax Tree

– Each interior node is an operator rather than a 
nonterminal.

– Convenient for translation.
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Lexical Analysis Terms

● A token is a group of characters having a 
collective meaning.
– id

● A lexeme is an actual character sequence forming 
a specific instance of a token.

– num
● Characters between tokens are called whitespace.

– blanks, tabs, newlines, comments
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Inserting a Lexical Analyzer

Input
lexical

analyzer parser

read
character

push back
character

pass token
and its

attributes
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Recognizing Keywords and Identifiers

● Keywords are character strings such as if, for, do, 
used in languages to identify constructs.

● Character strings for variables, arrays, functions, 
etc. are returned as identifiers.

count  =  count  +  increment
=>
<id,count>  =  <id,count>  + < id,increment>

● Distinguish keywords from identifiers
– keywords are reserved in many languages

– initialize symbol table with keywords
followed by Fig. G
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Symbol Table
● Used to save lexemes (identifiers) and their 

attributes.
● It is common to initialize a symbol table to include 

reserved words so the form of an identifier can be 
handled in a uniform manner.

● Attributes are stored in the symbol table for later 
use in semantic checks and translation. 
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Symbol Table Per Scope

● Scope of a declaration is the portion of a program to 
which the declaration applies.

● The most-closely nested rule for blocks is that an 
identifier x is in the scope of the most-closely nested 
declaration of x.

● Implementing the most-closely nested rule:
– create a distinct symbol table for each block.

– chain the symbol tables in a hierarchical tree structure.

followed by Fig. 2.36, I
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l-values and r-values
● l-value

– Used on the left side of an assignment statement.

– Used to refer to a location.

● r-value
– Used on the right side of an assignment statement.

– Used to refer to a value.
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Intermediate Code Generation

● The front-end of the compiler produces intermediate 
code, from which the back-end generates the target 
program.

● Two important intermediate representation:
– syntax trees

● syntax tree nodes represent significant programming constructs
● provides a pictorial, hierarchical structure

– three-address code
● list of elementary programming steps
● a useful format for code optimization

followed by Fig. 2.39
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Three-Address Code

● Format of three-address code instructions:
– General Format:   x = y op z

– Arrays:                 x [ y ] = z,  x = y [ z ]

– Copy:                   x = y

– Control flow:       ifFalse x goto L,

–                              ifTrue x goto L,

–                              goto L
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Translation to Three-Address Code

Translation of Statements:
if expr then stmt

code to compute
expr into x

ifFalse x goto after

code for stmt

after

Translation of Expression:
a[i] = 2*a[j-k]

t3 = j – k
t2 = a [ t3 ]
t1 = 2 * t2
a [ i ] = t1
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Static Checking

● Static checks are consistency checks done during 
compilation.

● Static checking includes:
– Syntactic checking

● syntax checks that are not enforced by the grammar.

– Type checking
● Type checking assures that the type of a construct matches that 

expected by its context.
● Coercions: automatic conversion of the type of an operand to 

that expected by the operator.
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