
EECS 665 Compiler Construction 1

Concepts Introduced in Chapter 2
● A more detailed overview of the compilation

process.
– Parsing

– Scanning

– Semantic Analysis

– Syntax-Directed Translation

– Intermediate Code Generation

EECS 665 Compiler Construction 2

Model of A Compiler Front-End

Lexical
Analyzer

Parser
Intermediate

Code
Generator

source
program

tokens syntax
tree

three-address
code

Symbol
Table

EECS 665 Compiler Construction 3

Context-Free Grammar

● A grammar can be used to describe the possible
hierarchical structure of a program.

● A context free grammar has 4 components:
– A set of tokens, known as terminal symbols.
– A set of nonterminals.
– A set of productions where each production consists of a

nonterminal, called the left side of the production, an arrow,
and a sequence of tokens and/or nonterminals, called the right
side of the production.

– A designation of one of the nonterminals as the start symbol.
● The token strings that can be derived from the start

symbol forms the language defined by the grammar.

EECS 665 Compiler Construction 4

Example Grammar

list list + digit

list list - digit

list digit

digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

EECS 665 Compiler Construction 5

Parsing

● A grammar derives strings by beginning with the
start symbol and repeatedly replacing a
nonterminal by the body of a production for that
nonterminal.

● The set of terminal strings that can be derived
from the start symbol form the language defined
by the grammar.

● Parsing is the process of taking a string of
terminals and figuring out how to derive it from
the start symbol of the language.

EECS 665 Compiler Construction 6

Parse Trees

● A parse tree pictorially shows how the start
symbol of a grammar derives a specific string in
the language.

● Given a context free grammar, a parse tree is a
tree with the following properties:
– The root is labeled by the start symbol.
– Each leaf is labeled by a token or by .
– Each interior node is labeled by a nonterminal.
– If A is the nonterminal labeling some interior node

and X1, X2, ..., Xn are the labels of the children of
that node from left to right, then A X1X2...Xn is a
production.

followed by Fig. 2.5

EECS 665 Compiler Construction 7

Ambiguous Grammars
● The leaves (tokens) of a parse tree read from left

to right form a legal string in the language
defined by the associated grammar.

● If a grammar can have more than one parse tree
generating the same string of tokens, then the
grammar is said to be ambiguous.

● For a grammar representing a programming
language, we need to ensure that the grammar is
unambiguous or there are additional rules to
resolve the ambiguities.

string → string + string | string string

string → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
followed by Fig. 2.6

EECS 665 Compiler Construction 8

Precedence and Associativity
● Precedence determines which operator is applied

first when different operators appear in an
expression and parentheses do not explicitly
indicate the order.

● Associativity is used to define the order of
operations when there are multiple operators with
the same precedence in an expression.
– Left associativity means that (x op1 y) is applied first

in the expression (x op1 y op2 z) when op1 and op2
have the same precedence.

– Right associativity means that (y op2 z) is applied
first in the expression (x op1 y op2 z) when op1 and
op2 have the same precedence.

followed by Fig. 2.7

EECS 665 Compiler Construction 9

Syntax-Directed Translation

● Syntax-directed translation is the process of
converting a string in the language specified by
the grammar into a string in some other language.

● Syntax-directed translation is achieved by
attaching rules or program fragments to
productions in the grammar.

● Execution of these attached rules or program
fragments, during parsing, results in the
translation of the input string.

EECS 665 Compiler Construction 10

● If E is a variable or constant, then the postfix
notation for E is E itself.

● If E is an expression of the form E1 op E2, where
op is any binary operator, then the postfix
notation for E is E1' E2' op, where E1' and E2' are
the postfix notations for E1 and E2, respectively.

● If E is an expression of the form (E1), then the
postfix notation for E1 is also the postfix notation
for E.

(9-5)+2 95-2+ 9-(5+2) 952+-

Converting Infix to Postfix

EECS 665 Compiler Construction 11

Syntax-Directed Definition
● Uses a grammar to define the syntactic structure.
● Associates attributes with each grammar symbol.
● Associates semantic rules for computing the values

of the attributes.

followed by Fig. 2.9, 2.10

EECS 665 Compiler Construction 12

Example Syntax-Directed Definition

● seq → seq instr | begin

● instr → east | north | west | south

EECS 665 Compiler Construction 13

Keeping Track of a Robot's Position

beginwest

south

east east east

north

north

(0,0)
(-1,0)

(-1,-1) (2,-1)

(2,1)

Input String:
begin west south east east east north north

followed by Fig. A, B, 2.11

EECS 665 Compiler Construction 14

Translation Scheme
● A translation scheme is a grammar with program

fragments called semantic actions that are
embedded within the right hand side of the
productions.

● Unlike a syntax-directed definition, the order of
evaluation of the semantic rules is explicitly shown.

followed by Fig. 2.15, 2.14

EECS 665 Compiler Construction 15

Syntax-Directed Definition (SDD)
Vs. Translation Scheme (TS)

● SDD – Semantic rules NOT embedded within the right sides of
grammar productions

TS – Semantic rules embedded within right sides of productions

● SDD – We need to define an evaluation order to compute the
attribute values at each node in the parse tree. A dependency
graph may be used. (It is possible that no such order exists.)

TS – Evaluation order of semantic rules is explicitly shown by
their position in the right side of grammar productions. Actions
executed in the order in which they are encountered in a depth-
first traversal of the parse tree

● SDD – Semantic rules are NOT part of the parse tree

TS – Actions are included in the constructed parse tree

EECS 665 Compiler Construction 16

Parsing

● Parsing is the process of determining how/if a
string of tokens can be generated by a grammar.

● Parsing Methods
– Top-Down

● Construction starts at the root and proceeds to the leaves.
● Can be easily constructed by hand.

– Bottom-Up
● Construction starts at the leaves and proceeds to the root.
● Can accept a larger class of grammars.

followed by Fig. 2.17, 2.18

EECS 665 Compiler Construction 17

Recursive Descent Parsing

● Top-down method for syntax analysis.
● A procedure is associated with each nonterminal

of a grammar.
● Can be implemented by hand.

– Decides which production to use by examining the
lookahead symbol.

– The appropriate procedure is invoked for each
nonterminal in the rhs of the production.

● Predictive parsing means that a single lookahead
symbol can be used to determine the procedure to
be called for the next nonterminal.

followed by Fig. 2.15

EECS 665 Compiler Construction 18

Example Grammar for Recursive
Descent Parsing

● Must not be left recursive.
● Must be left factored.

expr → term rest

rest →+ term { print('+') } rest | - term { print('-') } rest |

term → 0 { print('0') }

term → 1 { print('1') }

...

term → 9 { print('9') }
followed by Fig. C, D, E, F

EECS 665 Compiler Construction 19

Syntax Trees
● Concrete Syntax Tree - a parse tree
● Abstract Syntax Tree

– Each interior node is an operator rather than a
nonterminal.

– Convenient for translation.

EECS 665 Compiler Construction 20

Lexical Analysis Terms

● A token is a group of characters having a
collective meaning.
– id

● A lexeme is an actual character sequence forming
a specific instance of a token.

– num
● Characters between tokens are called whitespace.

– blanks, tabs, newlines, comments

EECS 665 Compiler Construction 21

Inserting a Lexical Analyzer

Input
lexical

analyzer parser

read
character

push back
character

pass token
and its

attributes

EECS 665 Compiler Construction 22

Recognizing Keywords and Identifiers

● Keywords are character strings such as if, for, do,
used in languages to identify constructs.

● Character strings for variables, arrays, functions,
etc. are returned as identifiers.

count = count + increment
=>
<id,count> = <id,count> + < id,increment>

● Distinguish keywords from identifiers
– keywords are reserved in many languages

– initialize symbol table with keywords
followed by Fig. G

EECS 665 Compiler Construction 23

Symbol Table
● Used to save lexemes (identifiers) and their

attributes.
● It is common to initialize a symbol table to include

reserved words so the form of an identifier can be
handled in a uniform manner.

● Attributes are stored in the symbol table for later
use in semantic checks and translation.

EECS 665 Compiler Construction 24

Symbol Table Per Scope

● Scope of a declaration is the portion of a program to
which the declaration applies.

● The most-closely nested rule for blocks is that an
identifier x is in the scope of the most-closely nested
declaration of x.

● Implementing the most-closely nested rule:
– create a distinct symbol table for each block.

– chain the symbol tables in a hierarchical tree structure.

followed by Fig. 2.36, I

EECS 665 Compiler Construction 25

l-values and r-values
● l-value

– Used on the left side of an assignment statement.

– Used to refer to a location.

● r-value
– Used on the right side of an assignment statement.

– Used to refer to a value.

EECS 665 Compiler Construction 26

Intermediate Code Generation

● The front-end of the compiler produces intermediate
code, from which the back-end generates the target
program.

● Two important intermediate representation:
– syntax trees

● syntax tree nodes represent significant programming constructs
● provides a pictorial, hierarchical structure

– three-address code
● list of elementary programming steps
● a useful format for code optimization

followed by Fig. 2.39

EECS 665 Compiler Construction 27

Three-Address Code

● Format of three-address code instructions:
– General Format: x = y op z

– Arrays: x [y] = z, x = y [z]

– Copy: x = y

– Control flow: ifFalse x goto L,

– ifTrue x goto L,

– goto L

EECS 665 Compiler Construction 28

Translation to Three-Address Code

Translation of Statements:
if expr then stmt

code to compute
expr into x

ifFalse x goto after

code for stmt

after

Translation of Expression:
a[i] = 2*a[j-k]

t3 = j – k
t2 = a [t3]
t1 = 2 * t2
a [i] = t1

EECS 665 Compiler Construction 29

Static Checking

● Static checks are consistency checks done during
compilation.

● Static checking includes:
– Syntactic checking

● syntax checks that are not enforced by the grammar.

– Type checking
● Type checking assures that the type of a construct matches that

expected by its context.
● Coercions: automatic conversion of the type of an operand to

that expected by the operator.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

