
EECS 665 Compiler Contruction 1

Concepts Introduced in Chapter 3

 Lexical Analysis
 Regular Expressions (RE)
 Lex
 Nondeterministic Finite Automata (NFA)
 Converting an RE to an NFA
 Deterministic Finite Automata (DFA)
 Converting an NFA to a DFA
 Minimizing a DFA

EECS 665 Compiler Contruction 2

Lexical Analysis

 Why separate the analysis phase of compiling into
lexical analysis and parsing?
 Simpler design of both phases
 Compiler efficiency is improved

EECS 665 Compiler Contruction 3

Lexical Analysis Terms

 A token is a group of characters having a collective
meaning (e.g. id).

 A lexeme is an actual character sequence forming a
specific instance of a token (e.g. num).

 A pattern is the rule describing how a particular token
can be formed (e.g. [A-Za-z_][A-Za-z_0-9]*).

 Characters between tokens are called whitespace
(e.g.blanks, tabs, newlines, comments).

 A lexical analyzer reads input characters and produces
a sequence of tokens as output.

followed by Fig. 3.1, 3.2

EECS 665 Compiler Contruction 4

Attributes for Tokens

 Some tokens have attributes that can be passed
back to the parser.
 Constants

 value of the constant

 Identifiers
 pointer to the corresponding symbol table entry

EECS 665 Compiler Contruction 5

Lexical Errors

 Only possible lexical error is that a sequence of
characters do not represent a valid token.
 Use of @ character in C.

 The lexical analyzer can either report the error
itself or report it back to the parser.

 A typical recovery strategy is to just skip characters
until a legal lexeme can be found.

 Syntax errors are much more common when
parsing.

EECS 665 Compiler Contruction 6

General Approaches to Lexical
Analyzers

 Use a lexical-analyzer generator, such as Lex.
 Write the lexical analyzer in a conventional

programming language.
 Write the lexical analyzer in assembly language.

EECS 665 Compiler Contruction 7

Languages

 An alphabet is a finite set of symbols.
 A string is a finite sequence of symbols drawn from

an alphabet.
 The  symbol indicates a string of length 0.
 A language is a set of strings over some fixed

alphabet.

followed by Tale on pg 199, Fig. 3.6

EECS 665 Compiler Contruction 8

Given an alphabet 
1.  is a regular expression that denotes {}, the set

containing the empty string.
2. For each a ,a is a regular expression denoting

{a}, the set containing the string a.
3. r and s are regular expressions denoting the

languages L(r) and L(s). Then
a) (r)|(s) denotes L(r)  L(s)
b) (r)(s) denotes L(r) L(s)
c) (r)* denotes (L(r))*

Regular Expressions

EECS 665 Compiler Contruction 9

Regular Expressions (cont.)

 *
 has highest precedence and is left associative.

 concatenation
 has second highest precedence and is left associative.

 |
 Has lowest precedence and is left associative.

 Example:

 a|(b(c*)) = a | bc*

EECS 665 Compiler Contruction 10

Let Σ = {a, b}
a | b => {a, b}
(a | b) (a | b) => {aa, ab, ba, bb}
a* => {, a, aa, aaa, ... }
(a | b)* => all strings containing zero or
 more instances of a's and b's
a | a * b => { a, b, ab, aab, aaab, ... }

followed by Fig. 3.7

Examples of Regular Expressions

EECS 665 Compiler Contruction 11

Lex - A Lexical Analyzer Generator
 Can link with a lex library to get a main routine.
 Can use as a function called yylex().
 Easy to interface with yacc.

EECS 665 Compiler Contruction 12

Lex Source
 { definitions }
 %%
 { rules }
 %%
 { user subroutines }

Definitions
 declarations of variables, constants, and regular definitions

Rules
 regular expression action

Regular Expressions
 operators ''\ [] ^ -? . * + | () $ / { }
 actions C code

Lex - A Lexical Analyzer Generator (cont)

EECS 665 Compiler Contruction 13

Lex Regular Expression Operators

 “s” string s literally
 \c character c literally (used when c would

normally be used as a lex operator)
 [s] for defining s as a character class
 ^ to indicate the beginning of a line
 [^s] means to match characters not in the s

character class
 [a-b] used for defining a range of characters

(a to b) in a character class
 r? means that r is optional

EECS 665 Compiler Contruction 14

Lex Regular Expression Operators (cont.)

 . means any character but a newline
 r* means zero or more occurrences of r
 r+ means one or more occurrences of r
 r1| r2 r1 or r2
 (r) r (used for grouping)
 $ means the end of the line
 r1/r2 means r1 when followed by r2
 r{m,n} means m to n occurrences of r

EECS 665 Compiler Contruction 15
followed by Fig. 3.8

Example Regular Expressions in Lex

 a* zero or more a's
 a+ one or more a's
 [abc] a, b, or c
 [a-z] lower case letter
 [a-zA-Z] any letter
 [^a-zA-Z] any character that is not a letter
 a.b a followed by any character followed by b
 ab|cd ab or cd
 a(b|c)d abd or acd
 ^B B at the beginning of line
 E$ E at the end of line

EECS 665 Compiler Contruction 16

Actions
 Actions are C source fragments. If it is compound or takes more
 than one line, then it should be enclosed in braces.

Example Rules
 [a-z]+ printf(''found word\n'');
 [A-Z][a-z]* { printf(''found capitalized word\n'');

 printf{'' %s\n'', yytext);
}

Definitions
 name translation

Example Definition
 digits [0-9]

Lex (cont.)

EECS 665 Compiler Contruction 17

digits [0-9]
ltr [a-zA-Z]
alpha [a-zA-Z0-9]
%%

[-+]{digits}+ |
{digits}+ printf(''number: %s\n'', yytext);
{ltr}(_|{alpha})* printf(''identifier: %s\n'', yytext);
"'"."'" printf(''character: %s\n'', yytext);
. printf(''?: %s\n'', yytext);

Prefers longest match and earlier of equals.

followed by Fig. 3.12, 3.23

Example Lex Program

EECS 665 Compiler Contruction 18

Nondeterministic Finite Automata

 A nondeterministic finite automaton (NFA)
consists of
 a set of states S
 a set of input symbols Σ (the input symbol alphabet)
 a transition function move that maps state-symbol

pairs to sets of states
 a state s0 that is distinguished as the start (or initial)

state
 a set of states F distinguished as accepting (or final)

states

EECS 665 Compiler Contruction 19

Operation of an Automata

 An automata operates by making a sequence of
moves. A move is determined by a current state
and the symbol under the read head. A move is a
change of state and may advance the read head.

EECS 665 Compiler Contruction 20

Representations of Automata
 Ex: (a|b)*abb
 Transition Diagram

 Transition Table

followed by Fig. 3.31

EECS 665 Compiler Contruction 21

Regular Expression to an NFA

EECS 665 Compiler Contruction 22

Decompostion of (ab|ba)a*

EECS 665 Compiler Contruction 23

Decompostion of (ab|ba)a* (cont.)

EECS 665 Compiler Contruction 24

Deterministic Finite Automata

 An FSA is deterministic (a DFA) if

 1. No transitions on input .

 2. For each state s and input symbol a, there is at
most one edge labeled a leaving s.

followed by Fig. 3.31, 3.32, 3.33

EECS 665 Compiler Contruction 25

Example of Converting an NFA to a
DFA

EECS 665 Compiler Contruction 26

Example of Converting an
NFA to a DFA (cont.)

EECS 665 Compiler Contruction 27

Example of Converting an NFA to a
DFA (cont.)

 Transition Table

 Transition Diagram

EECS 665 Compiler Contruction 28

Another Example of Converting an
NFA to a DFA

EECS 665 Compiler Contruction 29

Lex Implementation Details

1.Construct an NFA to recognize the sum of the
Lex patterns.

2.Convert the NFA to a DFA.

3.Minimize the DFA, but separate distinct tokens in
the initial pattern.

4.Simulate the DFA to termination (i.e., no further
transitions.)

5.Find the last DFA state entered that holds an
accepting NFA state. (This picks the longest
match.) If we can't find such a DFA state,
then it is an invalid token.

EECS 665 Compiler Contruction 30

%%
BEGIN { return (1); }
END { return (2); }
IF { return (3); }
THEN { return (4); }
ELSE { return (5); }
letter(letter|digit)* { return (6); }
digit+ { return (7); }
< { return (8); }
<= { return (9); }
= { return (10); }
<> { return (11); }
> { return (12); }
>= { return (13); }

Example Lex Program

EECS 665 Compiler Contruction 31

Lex Implementation Details (cont.)

 NFA

EECS 665 Compiler Contruction 32

Lex Implementation Details (cont.)
 DFA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

