Minimizing a DFA

- Converting an NFA to a DFA
- Deterministic Finite Automata (DFA)
- Nondeterministic Finite Automata (NFA)Converting an RE to an NFA
- Lex
- Regular Expressions (RE)

Lexical Analysis

Concepts Introduced in Chapter 3

1

Lexical Analysis

- Why separate the analysis phase of compiling into lexical analysis and parsing?
 - Simpler design of both phases
 - Compiler efficiency is improved

Lexical Analysis Terms

- A *token* is a group of characters having a collective meaning (e.g. id).
- A *lexeme* is an actual character sequence forming a specific instance of a token (e.g. num).
- A *pattern* is the rule describing how a particular token can be formed (e.g. [A-Za-z_][A-Za-z_0-9]*).
- Characters between tokens are called *whitespace* (e.g.blanks, tabs, newlines, comments).
- A lexical analyzer reads input characters and produces a sequence of tokens as output.

Attributes for Tokens

- Some tokens have attributes that can be passed back to the parser.
 - Constants
 - value of the constant
 - Identifiers
 - pointer to the corresponding symbol table entry

Lexical Errors

- Only possible lexical error is that a sequence of characters do not represent a valid token.
 - Use of @ character in C.
- The lexical analyzer can either report the error itself or report it back to the parser.
- A typical recovery strategy is to just skip characters until a legal lexeme can be found.
- Syntax errors are much more common when parsing.

General Approaches to Lexical Analyzers

- Use a lexical-analyzer generator, such as Lex.
- Write the lexical analyzer in a conventional programming language.
- Write the lexical analyzer in assembly language.

Languages

- An alphabet is a finite set of symbols.
- A string is a finite sequence of symbols drawn from an alphabet.
- The ε symbol indicates a string of length 0.
- A language is a set of strings over some fixed alphabet.

Regular Expressions

Given an alphabet Σ

- 1. ε is a regular expression that denotes { ε }, the set containing the empty string.
- 2. For each $a \in \Sigma$, a is a regular expression denoting

 $\{a\}$, the set containing the string *a*.

3. r and s are regular expressions denoting the languages L(r) and L(s). Then a) (r) | (s) denotes L(r) v L(s) b) (r)(s) denotes L(r) L(s) c) (r)* denotes (L(r))*

Regular Expressions (cont.)

- *
 - has highest precedence and is left associative.
- concatenation
 - has second highest precedence and is left associative.

- Has lowest precedence and is left associative.
- Example:

 $a|(b(c^*)) = a | bc^*$

Examples of Regular Expressions

Let $\Sigma = \{a, b\}$	}	
a b	=>	{a, b}
(a b) (a b)	=>	{aa, ab, ba, bb}
a*	=>	{ɛ, a, aa, aaa, }
(a b)*	=>	all strings containing zero or
		more instances of a's and b's
a a * b	=>	{ a, b, ab, aab, aaab, }

Lex - A Lexical Analyzer Generator

- Can link with a lex library to get a main routine.
- Can use as a function called yylex().
- Easy to interface with yacc.

Lex Source

{ definitions }
%%
{ rules }
%%
{ user subroutines }

Definitions

declarations of variables, constants, and regular definitions

Rules

regular expression action

Regular Expressions

operators "\[]^-?.*+|()\$/{} actions C code

Lex Regular Expression Operators

- "s" string s literally
- \c character c literally (used when c would normally be used as a lex operator)
- [s] for defining s as a character class
- ^ to indicate the beginning of a line
- [^s] means to match characters not in the s character class
- [a-b] used for defining a range of characters (a to b) in a character class
- r? means that r is optional

Lex Regular Expression Operators (cont.)

- . means any character but a newline
- r* means zero or more occurrences of r
- r+ means one or more occurrences of r
- r1| r2 r1 or r2
- (r) r (used for grouping)
- \$ means the end of the line
- r1/r2 means r1 when followed by r2
- r{m,n} means m to n occurrences of r

Example Regular Expressions in Lex

- a* zero or more a's
- a+ one or more a's
- [abc] a,
- [a-z]
- [a-zA-Z]
- [^a-zA-Z]
- a.b
- ab|cd
- a(b|c)d
- \B
- E\$

a, b, or c lower case letter any letter any character that is not a letter a followed by any character followed by b ab or cd abd or acd B at the beginning of line E at the end of line

Lex (cont.)

Actions

Actions are C source fragments. If it is compound or takes more than one line, then it should be enclosed in braces.

Example Rules

```
[a-z]+ printf("found word\n");
[A-Z][a-z]* { printf("found capitalized word\n");
    printf{" %s\n", yytext);
  }
```

Definitions

name translation

Example Definition digits [0-9]

Example Lex Program

digits [0-9] ltr [a-zA-Z] alpha [a-zA-Z0-9] %%

```
[-+]{digits}+
{digits}+
{ltr}(_|{alpha})*
```

printf("number: %s\n", yytext);
printf("identifier: %s\n", yytext);
printf("character: %s\n", yytext);
printf("?: %s\n", yytext);

Prefers longest match and earlier of equals.

followed by Fig. 3.12, 3.23

Nondeterministic Finite Automata

- A nondeterministic finite automaton (NFA) consists of
 - a set of states S
 - a set of input symbols Σ (the input symbol alphabet)
 - a transition function move that maps state-symbol pairs to sets of states
 - a state s0 that is distinguished as the start (or initial) state
 - a set of states F distinguished as accepting (or final) states

Operation of an Automata

• An automata operates by making a sequence of moves. A move is determined by a current state and the symbol under the read head. A move is a change of state and may advance the read head.

Representations of Automata

- Ex: (a|b)*abb
- Transition Diagram

• Transition Table

	input symbol		
State	a	b	
0	{ 0 ,1}	{0 }	
1	_	{2}	
2	_	{3}	
3	_	_	

followed by Fig. 3.31

Regular Expression to an NFA

Decomposition of (ab|ba)a*

Decomposition of (ab|ba)a* (cont.) b N1: N3: а 2 3 5 6 b N2: а N4: 3' 6' 7 4 b b N5: а N6: а 2 3 5 7 6 4 b а ε ε 3 2 4 N7: 8 1 ε ε b а 5 6 7 ε N10: N9: ε а ε а 8' 9 1**0** 11 1**0** 9 ε b ε а ε ε 2 3 4 ε N11: ε а 8 9 10 ε b а ε ε 5 6

Deterministic Finite Automata

• An FSA is deterministic (a DFA) if

1. No transitions on input ϵ .

2. For each state s and input symbol *a*, there is at most one edge labeled *a* leaving s.

Example of Converting an NFA to a DFA

Example of Converting an NFA to a DFA (cont.)

A = e-closure({1}) = {1, 2, 5}
mark A
{1, 2, 5}
$$a > {3}$$

B = e-closure({3}) = {3}
{1, 2, 5} $b > {6}$
C = e-closure({6}) = {6}
mark B
{3} $b > {4}$
D = e-closure({4}) = {4, 8, 9, 11}
mark C
{6} $a > {7}$

 $E = e-closure({7}) = {7,8,9,11}$ mark D ${4, 8, 9, 11} \underline{a}_{10}$ $F = e-closure({10}) = {9, 10, 11}$ mark E ${7, 8, 9, 11} \underline{a}_{10}$ mark F ${9, 10, 11} \underline{a}_{10}$

Example of Converting an NFA to a DFA (cont.)

• Transition Table

• Transition Diagram

Another Example of Converting an NFA to a DFA

Lex Implementation Details

- 1.Construct an NFA to recognize the sum of the Lex patterns.
- 2.Convert the NFA to a DFA.
- 3.Minimize the DFA, but separate distinct tokens in the initial pattern.
- 4.Simulate the DFA to termination (i.e., no further transitions.)
- 5. Find the last DFA state entered that holds an accepting NFA state. (This picks the longest match.) If we can't find such a DFA state, then it is an invalid token.

Example Lex Program

%%	
BEGIN	{ return (1); }
END	{ return (2); }
IF	{ return (3); }
THEN	{ return (4); }
ELSE	{ return (5); }
letter(letter digit)*	{ return (6); }
digit+	{ return (7); }
<	{ return (8); }
<=	{ return (9); }
=	{ return (10); }
<>	{ return (11); }
>	{ return (12); }
>=	{ return (13); }

$\overbrace{0} \xrightarrow{\epsilon} (1) \xrightarrow{B} (2) \xrightarrow{E} (3) \xrightarrow{G} (4) \xrightarrow{I} (5)$

Ν

6

Lex Implementation Details (cont.)

• NFA

Lex Implementation Details (cont.)

• ΠΓΔ

