source - lexical
—_—
program analyzer

a3

token
=z

Y

Fig. 3.1. Interaction of lexical analyzer with parser.

get next

parser

token

symbol
table-

TOKEN INFORMAL DESCRIPTION SAMPLE LEXEMES
if characters i, f if
else characters e, 1, s, e else
oosﬁmﬁmmo_ﬂ <or>or<=or>=sor==or != <=, =
id letter followed by letters and digits | pi, score, D2
number any numeric constant 3.14159, 0,'6.02e23
literal anything but ", surrounded by "’s | "core dumped"

Figure 3.2: Examples of tokens

T AR e R T

A ot ..mh.-.an...v« ST, —-an.“ﬁ. Lo LT et e R R,
kT ST R o LT

DEFINITION

A string obtained by removing zero or more trailing symbols
of string s; e.g., ban is a prefix of banana.

A string formed by deleting zero or more of the leading
symbols-of s; e.g., nana is a suffix of banana.

A string obtained by deleting a prefix and a suffix from s;
€.g., nan is a substring of banana. Every prefix and every
suffix of s is a substring of s, but not every E&mﬁﬁm of s.is
a prefix or a suffix of 5. For every string s, both & and e are
E.omumm. suffixes, and mn_umﬁ:_m« of s.

or -—&aﬁﬁw of s

.?—Q .gagm%..mﬁam. x...Eﬁ is, _.o%on:qm? a E.mﬁwﬂaﬁ%?

- or substring 'of s such that s ¥ x.

subsequence of s

Any string formed by &.n_nm..m Zero or more not necessarily
contiguous symbols from s; e.g., baaa is a subsequence of
banana.

Terms for parts of a string.

L ASTPATTR. Y TN e IR T 14..1—. Sr o AR A AT

S

OPERATION ~ DEFINITION AND NOTATION
Union of L and M LUM={s|sisin L or sisin M}
Concatenation of L and M | LM = {st | sisin L and t is in M}
Kleene closure of L L* =UR, L*
Positive closure of L L+ =u, L

Figure 3.6: Definitions of operations on languages

AXIOM

DESCRIPTION

,w._ﬂ

Corls = | is commutative
rl(s|e) = (r]s) |t | is associative .
(rs)t = r(sp) concatenation is associative
r(s|e) = rs|rt L
_ | concatenation distributes over |
(s|)r = srier
€ = r P . o . s
. € 15 the identity element for concatenation
re =
r¥ = (rle)* | relation between * and e
w**. - |

r*

¥ 1s idempotent

Fig. 377. Algebraic properties of regular E.Enmmmmonm.

ST RN

R i T L AP — - i T

EXPRESSION MATCHES EXAMPLE
c ' the one non-operator character ¢ a

\¢ character ¢ literally \ *

ng string s literally LETY

" any character but newline a.*b

" beginning of a line “abc

& end of a line abc$

[4] any one of the characters in string s | [abc]
["] any one character not in string s [~abc]
T* zero or more strings matching r a*

r4 one or more strings matching r a+

r? Z€ro Or one r a?
r{m,n} between m and n occurrences of r | a[1,5]
T1T9 an r; followed by an ab

ry | T2 an r1 Or an Tg alb

(r) same as r (alb)
ri/re r; when followed by 7, abc/123

Figure 3.8: Lex regular expressions

' LEXEMES

TOKEN NAME

ATTRIBUTE VALUE

Any ws — —

if if =

then then =

else else -
Any id id Pointer to table entry
Any number number Pointer to table entry

< relop LT

<= relop LE

= relop EQ

<> relop NE

> relop GT

>= relop GE

Figure 3.12: Tokens, their patterns, and attribute values

-

%1{

/% definitions of manifest constants

LT,
1F,
%}

LE’ EQ, NE, GT’ GE,
THEN, ELSE, ID, NUMBER, RELOP */

/+ regular definitions %/

delim
ws
letter
digit
id
number

%%

{ws}

if

then
else
{ia}
{number}

%%

[\t\n]

{delim}+

[A-Za-2]

[0-9]

{letter}({letter}i{digit})«
{d@igit}+(\.{digit}+)?P(E[+\-1?{digit}+)?

{/* no action and no return +/}
{return(IF);}

{return(THEN);}

{return(ELSE);}

{yylval = install id{(); return(ID);}
{yylval = install num(); return{NUMBER);}
{yylval = LT; return(RELOP);}
{yylval = LE; return(RELOP);}
{yylval = EQ; return(RELOP);}
{yylval NE; return(RELOP);}
{yylval = GT; return({RELOP);}
{yvival = GE; return(RELOP);}

install_id() {
/% procedure to install the lexeme, whose
first character is pointed to by yytext and
whose length is yyleng, into the symbol table

and

}

return a pointer thereto */

install num{) { ,
/% similar procedure to install a lexeme that

is a number */

Fig. 3.23, Lex program for the tokens of Fig. 3.12....

.

OPERATION

DESCRIPTION

e-closure(s)

Set of NFA states reachable from NFA state s on e-
transitions alone.

e-closure(T)

Set of NFA states reachable from some NFA state sin 7
on e-transitions alone.

.

move(T, a)

-Set of NFA states to which there is a transition on input

symbol a from some NFA state s in 7.

Fig. 3.3]. Operations on NFA states.

initially, e-closure(sg) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {
mark T';
for (each input symbol a) {
U = e-closure(move(T, a));
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran|T, a] = U;

Figure 3.32: The subset construction

push all states of T' onto stack;
initialize e-closure(T") to T
while (stack is not empty) {
pop i, the top element, off stack;
for (each state u with an edge from ¢ to u labeled €)
if (u is not in e-closure(T)) {
add u to e-closure(T);
push u onto stack;

Figure 3.33: Computing e-closure(T")

?ﬁﬁ buffer

lexeme

Ngwmmmaf ﬁaz\ﬁw&

Automaton
simulator

Lex Lex
program compilér

Figure 3.49: A Lex program is turned into 3 transition table and actions, which
are used by a finite-automaton simulator

