
1EECS 665 – Compiler Construction

Concepts Introduced in Chapter 4

 Grammars

 Context-Free Grammars

 Derivations and Parse Trees

 Ambiguity, Precedence, and Associativity

 Top Down Parsing

 Recursive Descent, LL

 Bottom Up Parsing

 SLR, LR, LALR

 Yacc

 Error Handling

2EECS 665 – Compiler Construction

Grammars

G = (N, T, P, S)

1. N is a finite set of nonterminal symbols

2. T is a finite set of terminal symbols

3. P is a finite subset of

(N ∪ T)* N (N ∪ T)*  (N ∪ T)*

An element (α, β) ∈ P is written as

α → β

and is called a production.

4. S is a distinguished symbol in N and is called the
start symbol.

3EECS 665 – Compiler Construction

Example of a Grammar

expression → expression + term

expression → expression - term

expression → term

term → term * factor

term → term / factor

term → factor

factor → (expression)

factor → id

4EECS 665 – Compiler Construction

Advantages of Using Grammars

 Provides a precise, syntactic specification of a
programming language.

 For some classes of grammars, tools exist that can
automatically construct an efficient parser.

 These tools can also detect syntactic ambiguities
and other problems automatically.

 A compiler based on a grammatical description of a
language is more easily maintained and updated.

5EECS 665 – Compiler Construction

Role of a Parser in a Compiler

 Detects and reports any syntax errors.

 Produces a parse tree from which intermediate code
can be generated.

followed by Fig. 4.1

6EECS 665 – Compiler Construction

Conventions for Specifying
Grammars in the Text

 terminals

 lower case letters early in the alphabet (a, b, c)

 punctuation and operator symbols [(,), ',', +, ]

 digits

 boldface words (if, then)

 nonterminals

 uppercase letters early in the alphabet (A, B, C)

 S is the start symbol

 lower case words

7EECS 665 – Compiler Construction

Conventions for Specifying
Grammars in the Text (cont.)

 grammar symbols (nonterminals or terminals)

 upper case letters late in the alphabet (X, Y, Z)

 strings of terminals

 lower case letters late in the alphabet (u, v, ..., z)

 sentential form (string of grammar symbols)

 lower case Greek letters (α, β, γ)

8EECS 665 – Compiler Construction

Chomsky Hierarchy

A grammar is said to be

1. regular if it is

where each production in P has the form

a. right-linear

A → wB or A → w

b. left-linear

A → Bw or A → w

where A, B ∈ N and w ∈ T*

9EECS 665 – Compiler Construction

Chomsky Hierarchy (cont)

2. context-free : each production in P is of the form

A → α where A ∈ N and α ∈ (N ∪ T)*

3. context-sensitive : each production in P is of the
form

α →β where |α|  |β|

4. unrestricted if each production in P is of the form

α→β where α ≠ ε

10EECS 665 – Compiler Construction

Derivation

 Derivation

 a sequence of replacements from the start symbol
in a grammar by applying productions

 E → E + E | E * E | (E) |  E | id

 Derive

 - (id + id) from the grammar

 E ⇒  E ⇒  (E) ⇒  (E + E) ⇒  (id + E)
⇒  (id + id)

 thus E derives - (id + id)

or E +⇒ - (id + id)

11EECS 665 – Compiler Construction

Derivation (cont.)

 Leftmost derivation

 each step replaces the leftmost nonterminal

 derive id + id * id using leftmost derivation

 E ⇒ E + E ⇒ id + E ⇒ id + E * E ⇒
id + id * E ⇒ id + id * id

 L(G) - language generated by the grammar G

 Sentence of G

 if S +⇒ w, where w is a string of terminals inL(G)

 Sentential form

 if S *⇒ α, where α may contain nonterminals

12EECS 665 – Compiler Construction

Parse Tree

 Parse tree pictorially shows how the start symbol of a
grammar derives a specific string in the language.

 Given a context-free grammar, a parse tree has the
properties:

 The root is labeled by the start symbol.

 Each leaf is labeled by a token or ε.

 Each interior node is labeled by a nonterminal.

 If A is a nonterminal labeling some interior node and
X

1
,X

2
, X

3
, .., X

n
are the labels of the children of that node

from left to right, then

A →X
1
, X

2
, X

3
, .. X

n
is a production of the grammar.

13EECS 665 – Compiler Construction

Example of a Parse Tree

list → list + digit | list  digit | digit

followed by Fig. 4.4

14EECS 665 – Compiler Construction

Parse Tree (cont.)

 Yield

 the leaves of the parse tree read from left to right, or

 the string derived from the nonterminal at the root of the
parse tree

 An ambiguous grammar is one that can generate
two or more parse trees that yield the same string.

15EECS 665 – Compiler Construction

Example of an Ambiguous Grammar

string → string + string

string → string - string

string → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

a. string → string + string → string  string + string

→ 9  string + string → 9  5 + string → 9  5 + 2

b. string → string - string → 9  string

→ 9  string + string → 9  5 + string → 9  5 + 2

16EECS 665 – Compiler Construction

Precedence

By convention
9 + 5 * 2 * has higher precedence than + because

it takes its operands before +

17EECS 665 – Compiler Construction

Precedence (cont.)

 If different operators have the same precedence then
they are defined as alternative productions of the
same nonterminal.

expr → expr + term | expr  term | term
term → term * factor | term / factor | factor
factor → digit | (expr)

18EECS 665 – Compiler Construction

Associativity
By convention

9  5  2 left (operand with  on both sides is
taken by the operator to its left)

a = b = c right

19EECS 665 – Compiler Construction

Eliminating Ambiguity

 Sometimes ambiguity can be eliminated by
rewriting a grammar.

 stmt → if expr then stmt

| if expr then stmt else stmt

| other

 How do we parse:

if E1 then if E2 then S1 else S2

followed by Fig. 4.9

20EECS 665 – Compiler Construction

Eliminating Ambiguity (cont.)

 stmt → matched_stmt

| unmatched_stmt

 matched_stmt → if expr then matched_stmt else matched_stmt

| other

 unmatched_stmt → if expr then stmt

| if expr then matched_stmt else unmatched_stmt

21EECS 665 – Compiler Construction

Parsing

 Universal

 Top-down

 recursive descent

 LL

 Bottom-up

 LR

 SLR

 canonical LR

 LALR

22EECS 665 – Compiler Construction

Top-Down vs Bottom-Up Parsing

 top-down

 Have to eliminate left recursion in the grammar.

 Have to left factor the grammar.

 Resulting grammars are harder to read and understand.

 bottom-up

 Difficult to implement by hand, so a tool is needed.

23EECS 665 – Compiler Construction

Top-Down Parsing

Starts at the root and proceeds towards the leaves.

Recursive-Descent Parsing - a recursive procedure
is associated with each nonterminal in the
grammar.

Example

 type → simple | id | array [simple] of type

 simple → integer | char | num dotdot num

followed by Fig. 4.12

24EECS 665 – Compiler Construction

void type() {
if (lookahead == INTEGER || lookahead == CHAR ||

lookahead == NUM)
simple();

else if (lookahead == '^') {
match('^');
match(ID);

}
else if (lookahead == ARRAY) {

match(ARRAY);
match('[');
simple();
match(']');
match(OF);
type();

}
else

error();
}

Example of Recursive Descent Parsing

25EECS 665 – Compiler Construction

void simple() { void match(token t)
if (lookahead == INTEGER) {

match(INTEGER); if (lookahead == t)
else if (lookahead == CHAR) lookahead = nexttoken();

match(CHAR); else
else if (lookahead== NUM) { error();

match(NUM); }
match(DOTDOT);
match(NUM);

}
else

error();
}

Example of Recursive Descent Parsing
(cont.)

26EECS 665 – Compiler Construction

Top-Down Parsing (cont.)

 Predictive parsing needs to know what first symbols
can be generated by the right side of a production.

 FIRST(α) - the set of tokens that appear as the first
symbols of one or more strings generated from α. If
α is ε or can generate , then ε is also in FIRST(α).

 Given a production

A → α | β

predictive parsing requires FIRST(α) and FIRST(β)
to be disjoint.

27EECS 665 – Compiler Construction

Eliminating Left Recursion

 Recursive descent parsing loops forever on left recursion.

 Immediate Left Recursion

Replace A → Aα | β with A → βA´

A´ → αA´ | ε
Example:

A α β
E → E + T | T E +T T

T → T * F | F T *F F

F → (E) | id

becomes

E → TE´

E´ → +TE´ | ε
T → FT´

28EECS 665 – Compiler Construction

Eliminating Left Recursion (cont.)

In general, to eliminate left recursion given A
1
, A

2
, ..., A

n

for i = 1 to n do {
for j = 1 to i-1 do {

replace each Ai → Aj  with Ai →δ1  | ... | δk 
where Aj → δ1 | δ2 | ... | δk are the current Aj

productions
}
eliminate immediate left recursion in Ai productions
eliminate ε transitions in the Ai productions

}

This fails only if cycles (A +⇒A) or A → ε for some A.

29EECS 665 – Compiler Construction

Example of Eliminating Left
Recursion

1. X → YZ | a
2. Y → ZX | Xb
3. Z → XY | ZZ | a

A1 = X A2 = Y A3 = Z

i = 1 (eliminate immediate left recursion)
nothing to do

30EECS 665 – Compiler Construction

Example of Eliminating Left
Recursion (cont.)

i = 2, j = 1
Y → Xb ⇒ Y → ZX | YZb | ab
now eliminate immediate left recursion

Y → ZXY´ | ab Y´
Y´ → ZbY´ | ε

now eliminate transitions
Y → ZXY´ | abY´ | ZX | ab
Y´ → ZbY´ | Zb

i = 3, j = 1
Z → XY ⇒ Z →YZY | aY | ZZ | a

31EECS 665 – Compiler Construction

Example of Eliminating Left
Recursion (cont.)

i = 3, j = 2
Z →YZY ⇒ Z → ZXY´ZY | ZXZY | abY´ZY

| abZY | aY | ZZ | a
now eliminate immediate left recursion

Z → abY´ZYZ´ | abZYZ´ | aYZ´ | aZ´
Z´ → XY´ZYZ´ | XZYZ´ | ZZ´ | ε

eliminate ε transitions
Z → abY´ZYZ´ | abY´ZY | abZYZ´ |abZY | aY

| aYZ´ | aZ´ | a
Z´ → XY´ZYZ´ | XY´ZY | XZYZ´ | XZY | ZZ´ | Z

32EECS 665 – Compiler Construction

Left-Factoring

A → αβ| α ⇒ A → αA
A → β | γ

Example:
Left factor

stmt → if cond then stmt else stmt
| if cond then stmt

becomes
stmt → if cond then stmt E

E → else stmt | ε

Useful for predictive parsing since we will know which
production to choose.

33EECS 665 – Compiler Construction

Nonrecursive Predictive Parsing

 Instead of recursive descent, it is table-driven and
uses an explicit stack. It uses

1. a stack of grammar symbols ($ on bottom)

2. a string of input tokens ($ on end)

3. a parsing table [NT, T] of productions

followed by Fig. 4.19

34EECS 665 – Compiler Construction

Algorithm for Nonrecursive
Predictive Parsing

1. If top == input == $ then accept
2. If top == input then

pop top off the stack
advance to next input symbol
goto 1

3. If top is nonterminal
fetch M[top, input]
If a production

replace top with rhs of production
Else

parse fails
goto 1

4. Parse fails
followed by Fig. 4.17, 4.21

35EECS 665 – Compiler Construction

First

FIRST(α) = the set of terminals that begin strings
derived from α. If α is ε or generates ε,
then ε is also in FIRST(α).

1. If X is a terminal then FIRST(X) = {X}
2. If X → aα, add a to FIRST(X)
3. If X → ε, add ε to FIRST(X)
4. If X → Y1, Y2, ..., Yk and Y1, Y2, ..., Yi-1 *⇒ ε

where i  k
Add every non ε in FIRST(Y

i
) to FIRST(X)

If Y1, Y2, ..., Yk *⇒ ε, add ε to FIRST(X)

36EECS 665 – Compiler Construction

FOLLOW(A) = the set of terminals that can
immediately follow A in a sentential form.

1. If S is the start symbol, add $ to FOLLOW(S)
2. If A →αBβ, add FIRST(β) - {ε} to FOLLOW(B)
3. If A →αB or A →αBβ and β*⇒ ε,

add FOLLOW(A) to FOLLOW(B)

FOLLOW

37EECS 665 – Compiler Construction

Production FIRST FOLLOW
E → TE´ { (, id } {), $ }
E´ → +TE´ | ε { +, ε } {), $ }
T → FT´ { (, id } { +,), $ }
T´ → *FT´ | ε {*, ε } { +,), $ }
F → (E) | id { (, id } {*, +,), $ }

Example of Calculating FIRST and
FOLLOW

38EECS 665 – Compiler Construction

Production FIRST FOLLOW
X → Ya { } { }
Y → ZW { } { }
W → c | ε { } { }
Z → a | bZ { } { }

Another Example of Calculating
FIRST and FOLLOW

39EECS 665 – Compiler Construction

Constructing Predictive Parsing
Tables

For each A → α do

1. Add A → α to M[A, a] for each a in FIRST(α)
2. If ε is in FIRST(α)

a. Add A → α to M[A, b] for each b in
FOLLOW(A)

b. If $ is in FOLLOW(A) add A →α to M[A, $]
3. Make each undefined entry of M an error.

40EECS 665 – Compiler Construction

LL(1)

First ''L'' - scans input from left to right
Second ''L'' - produces a leftmost derivation
1 - uses one input symbol of lookahead at

each step to make a parsing decision

A grammar whose predictive parsing table has no
multiply-defined entries is LL(1).

No ambiguous or left-recursive grammar can be LL(1).

41EECS 665 – Compiler Construction

A grammar is LL(1) iff for each set of productions
where A→α1 | α2 | ... | αn, the following conditions
hold.

1. FIRST(αi) intersect FIRST(αj) = 
where 1 ≤ i ≤ n and 1 ≤ j ≤ n

and i ≠ j
2. If αi *⇒ ε then

a. α1, ..,αi-1,αi+1, ..,αn does not *⇒ ε
b. FIRST(αj) intersect FOLLOW(A) = 

where j ≠ i and 1 ≤ j ≤ n

When Is a Grammar LL(1)?

42EECS 665 – Compiler Construction

Production FIRST FOLLOW
S → iEtSS′ | a { i, a } { e, $ }
S′→ eS | ε { e, ε } { e, $ }
E → b { b } { t }

Nonterminal a b e i t $

S S→a S→iEtSS′
S′ S′→eS

S′→ε S′→ε
E E→b

So this grammar is not LL(1).

Checking If a Grammar is LL(1)

43EECS 665 – Compiler Construction

Bottom-Up Parsing

 Bottom-up parsing

 attempts to construct a parse tree for an input string
beginning at the leaves and working up towards the root

 is the process of reducing the string w to the start
symbol of the grammar

 at each step, we need to decide

 when to reduce

 what production to apply

 actually, constructs a right-most derivation in reverse

followed by Fig. 4.25

44EECS 665 – Compiler Construction

Shift-Reduce Parsing

 Shift-reduce parsing is bottom-up.

 A handle is a substring that matches the rhs of a
production.

 A shift moves the next input symbol on a stack.

 A reduce replaces the rhs of a production that is found on
the stack with the nonterminal on the left of that
production.

 A viable prefix is the set of prefixes of right sentential
forms that can appear on the stack of a shift-reduce parser

followed by Fig. 4.35

45EECS 665 – Compiler Construction

Model of an LR Parser

 Each Si is a state.

 Each Xi is a grammar symbol (when implemented
these items do not appear in the stack).

 Each ai is an input symbol.

 All LR parsers can use the same algorithm (code).

 The action and goto tables are different for each LR
parser.

46EECS 665 – Compiler Construction

LR(k) Parsing

''L'' - scans input from left to right
''R'' - constructs a rightmost derivation in reverse
''k'' - uses k symbols of lookahead at each step to

make a parsing decision

Uses a stack of alternating states and grammar symbols.
The grammar symbols are optional. Uses a string of
input symbols ($ on end). Parsing table has an action
part and a goto part.

47EECS 665 – Compiler Construction

LR (k) Parsing (cont.)

If config == (s0 X1 s1 X2 s2 ... Xm sm, ai ai+1 ... an$)
1. if action [sm, ai] == shift s then

new config is (s0 X1 s1 X2 s2 ... Xm sm ais, ai+1 ... an$)
2. if action [sm, ai] == reduce A→β and

goto [sm-r, A] == s (where r is the length of β) then
new config is (s0 X1 s1 X2 s2...Xm-r sm-r As, ai ai+1...an$)

3. if action [sm, ai] == ACCEPT then stop
4. if action [sm, ai] == ERROR then attempt recovery
Can resolve some shift-reduce conflicts with lookahead.

ex: LR(1)
Can resolve others in favor of a shift.

ex: S →iCtS | iCtSeS

48EECS 665 – Compiler Construction

Advantages of LR Parsing

 LR parsers can recognize almost all programming
language constructs expressed in context -free
grammars.

 Efficient and requires no backtracking.

 Is a superset of the grammars that can be handled
with predictive parsers.

 Can detect a syntactic error as soon as possible on a
left-to-right scan of the input.

49EECS 665 – Compiler Construction

LR Parsing Example

1. E → E + T
2. E → T
3. T → T * F
4. T → F
5. F → (E)
6. F → id

followed by Fig. 4.37

50EECS 665 – Compiler Construction

LR Parsing Example

It produces rightmost derivation in reverse:

E → E + T → E + F → E + id

→ T + id → T * F + id

→ T * id + id → F * id + id

→ id * id + id

followed by Fig. 4.38

51EECS 665 – Compiler Construction

Calculating the Sets of LR(0) Items

LR(0) item - production with a dot at some position in
the right side

Example:
A→BC has 3 possible LR(0) items

A→·BC
A→B·C
A→BC·

A→ε has 1 possible item
A→·

3 operations required to construct the sets of LR(0) items:
(1) closure, (2) goto, and (3) augment

followed by Fig. 4.32

52EECS 665 – Compiler Construction

Example of Computing the Closure of
a Set of LR(0) Items

Grammar Closure (I
0
) for I0 = {E´→·E}

E´ →E E´ →·E
E →E + T | T E →·E + T
T →T * F | F E →·T
F →(E) | id T →·T * F

T →·F
F →·(E)
F →· id

53EECS 665 – Compiler Construction

Calculating Goto of a Set of LR(0) Items
Calculate goto (I,X) where I is a set of items and X is a grammar
symbol.

Take the closure (the set of items of the form A→αX·β)

where A→α·Xβ is in I.

Grammar Goto (I
1
,+) for I

1
= {E´→E·,E→E·+T}

E´ → E E → E + ·T
E → E + T | T T → ·T * F
T → T * F | F T → ·F
F → (E) | id F → ·(E)

F → ·id

Goto (I
2
,*) for I

2
={E→T·,T→T·*F}

T → T * ·F
F → ·(E)
F → ·id

54EECS 665 – Compiler Construction

Augmenting the Grammar

followed by Fig. 4.33, 4.31

 Given grammar G with start symbol S, then an
augmented grammar G´ is G with a new start
symbol S´ and new production S´→S.

55EECS 665 – Compiler Construction

followed by Fig. 4.31, A

Analogy of Calculating the Set of LR(0)
Items with Converting an NFA to a DFA

 Constructing the set of items is similar to converting
an NFA to a DFA

 each state in the NFA is an individual item

 the closure (I) for a set of items is the same as the
ε-closure of a set of NFA states

 each set of items is now a DFA state and goto
(I,X) gives the transition from I on symbol X

56EECS 665 – Compiler Construction

Sets of LR(0) Items Example

S → L = R | R

L → *R | id

R → L

followed by Fig. 4.39

57EECS 665 – Compiler Construction

Constructing SLR Parsing Tables

Let C = {I
0
, I

1
, ..., I

n
} be the parser states.

1. If [A→α·aβ] is in Ii and goto (Ii, a) = Ij then set

action [i, a] to 'shift j'.

2. If [A→α·] is in I
i
, then set action [i, a] to 'reduce A→α' for

all a in the FOLLOW(A). A may not be S´.

3. If [S´→ S·] is in I
i
, then set action [i, $] to 'accept'.

4. If goto (I
i
, A)=I

j
, then set goto[i, A] to j.

5. Set all other table entries to 'error'.

6. The initial state is the one holding [S´→·S].

followed by Fig. 4.37

64EECS 665 – Compiler Construction

Using Ambiguous Grammars

1. E → E + E E → E + T | T
2. E → E * E instead of T → T * F | F
3. E → (E) F → (E) | id
4. E → id

See Figure 4.48.

Advantages:
Grammar is easier to read.
Parser is more efficient.

followed by Fig. 4.48

65EECS 665 – Compiler Construction

Using Ambiguous Grammars (cont.)

Can use precedence and associativity to solve the
problem.

See Fig 4.49.

shift / reduce conflict in state action[7,+]=(s4,r1)
s4 = shift 4 or E → E + E
r1 = reduce 1 or E → E + E

id + id + id
 cursor here

action[7,*]=(s5,r1)
action[8,+]=(s4,r2) action[8,*]=(s5,r2)

followed by Fig. 4.49

66EECS 665 – Compiler Construction

Another Ambiguous Grammar

0. S → S

1. S → iSeS

2. S → iS

3. S → a

See Figure 4.50.

action[4,e]=(s5,r2)

followed by Fig. 4.50, 4.51

67EECS 665 – Compiler Construction

Ambiguities from Special-Case
Productions

E → E sub E sup E
E → E sub E
E → E sup E
E → { E }
E → c

68EECS 665 – Compiler Construction

Ambiguities from Special-Case
Productions (cont)

1. E → E sub E sup E FIRST(E) = { '{', c}
2. E → E sub E FOLLOW(E) = {sub,sup,'}',$}
3. E → E sup E
4. E → { E } sub, sup have equal precedence
5. E → c and are right associative

followed by Fig. B

69EECS 665 – Compiler Construction

Ambiguities from Special-Case
Productions (cont)

1. E → E sub E sup E FIRST(E) = { '{', c}
2. E → E sub E FOLLOW(E) = {sub,sup,'}',$}
3. E → E sup E
4. E → { E } sub, sup have equal precedence
5. E → c and are right associative

action[7,sub]=(s4,r2) action[7,sup]=(s10,r2)
action[8,sub]=(s4,r3) action[8,sup]=(s5,r3)
action[11,sub]=(s5,r1,r3) action[11,sup]=(s5,r1,r3)
action[11,}]=(r1,r3) action[11,$]=(r1,r3)

followed by Fig. C

70EECS 665 – Compiler Construction

YACC

Yacc source program declaration
%%
translation rules
%%
supporting C-routines

followed by Fig. 4.57

71EECS 665 – Compiler Construction

YACC Declarations

 In declarations:

 Can put ordinary C declarations in

%{

...

%}

 Can declare tokens using

 %token

 %left

 %right

 Precedence is established by the order the operators
are listed (low to high).

72EECS 665 – Compiler Construction

YACC Translation Rules

 Form

A : Body ;

where A is a nonterminal and Body is a list of
nonterminals and terminals.

 Semantic actions can be enclosed before or after
each grammar symbol in the body.

 Yacc chooses to shift in a shift/reduce conflict.

 Yacc chooses the first production in a
reduce/reduce conflict.

73EECS 665 – Compiler Construction

Yacc Translation Rules (cont.)

 When there is more than one rule with the same
left hand side, a '|' can be used.

A : B C D ;

A : E F ;

A : G ;

=>

A : B C D

| E F

| G

;

74EECS 665 – Compiler Construction

%token IF ELSE NAME /* defines multicharacter tokens */
%right '=' /* low precedence, a=b=c shifts */
%left '+' '-' /* mid precedence, a-b-c reduces */
%left '*' '/' /* high precedence, a/b/c reduces */
%%
stmt : expr ';'

| IF '(' expr ')' stmt
| IF '(' expr ')' stmt ELSE stmt
; /* prefers shift to reduce in shift/reduce conflict */

expr : NAME '=' expr /* assignment */
| expr '+' expr
| expr '-' expr
| expr '*' expr
| expr '/' expr
| '-' expr %prec '*' /* can override precedence */
| NAME
;

%% /* definitions of yylex, etc. can follow */

Example of a Yacc Specification

75EECS 665 – Compiler Construction

Yacc Actions

 Actions are C code segments enclosed in { } and
may be placed before or after any grammar symbol
in the right hand side of a rule.

 To return a value associated with a rule, the action
can set $$.

 To access a value associated with a grammar
symbol on the right hand side, use $i, where i is the
position of that grammar symbol.

 The default action for a rule is

{ $$ = $1; }
followed by Fig. 4.58, 4.59

76EECS 665 – Compiler Construction

Syntax Error Handling

 Errors can occur at many levels

 lexical - unknown operator

 syntactic - unbalanced parentheses

 semantic - variable never declared

 logical - dereference a null pointer

 Goals of error handling in a parser

 detect and report the presence of errors

 recover from each error to be able to detect subsequent
errors

 should not slow down the processing of correct programs

77EECS 665 – Compiler Construction

Syntax Error Handling (cont.)

 Viable−prefix property - detect an error as soon as
see a prefix of the input that is not a prefix of any
string in the language.

78EECS 665 – Compiler Construction

Error-Recovery Strategies

 Panic- mode

 skip until one of a synchronizing set of tokens is found
(e.g. ';', ''end''). Is very simple to implement but may
miss detection of some error (when more than one error
in a single statement)

 Phase- level

 replace prefix of remaining input by a string that allows
the parser to continue. Hard for the compiler writer to
anticipate all error situations

79EECS 665 – Compiler Construction

Error-Recovery Strategies (cont...)

 Error productions

 augment the grammar of the source language to include
productions for common errors. When production is
used, an appropriate error diagnostic would be issued.
Feasible to only handle a limited number of errors.

 Global correction

 choose minimal sequence of changes to allow a least-
cost correction. Too costly to actually be implemented
in a parser. Also the closest correct program may not be
what the programmer intended.

