* Concepts Introduced in Chapter 4

o« Grammars

— Context-Free Grammars
— Derivations and Parse Trees
- Ambiguity, Precedence, and Associativity

« Top Down Parsing

- Recursive Descent, LL
« Bottom Up Parsing

- SLR, LR, LALR
e Yacc

 Error Handling
EECS 665 — Compiler Construction

Grammars

G= (N,T,P,S)
1. N 1s a finite set of nonterminal symbols
2. T 1s a finite set of terminal symbols
3. P Is a finite subset of
(NUT)*N(NUT)*x(NUT)*
An element (a, B) € P is written as
a—
and Is called a production.

4. S 1s a distinguished symbol in N and is called the

start symbol.
EECS 665 — Compiler Construction

* Example of a Grammar

expression — expression + term
expression — expression - term

expression — term
term — term * factor

term — term/ factor

term — factor
factor — (expression)
factor — 1d

EECS 665 — Compiler Construction

* Advantages of Using Grammars

« Provides a precise, syntactic specification of a
programming language.

« For some classes of grammars, tools exist that can
automatically construct an efficient parser.

 These tools can also detect syntactic ambiguities
and other problems automatically.

« A compiler based on a grammatical description of a
language Is more easily maintained and updated.

EECS 665 — Compiler Construction

® RoleofaParserina Compiler

. Detects and reports any syntax errors.

« Produces a parse tree from which intermediate code
can be generated.

followed by Fig. 4.1
EECS 665 — Compiler Construction 5

N Conventions for Specifying
Grammars In the Text

o terminals

— lower case letters early In the alphabet (a, b, ¢)
— punctuation and operator symbols [(,), '), +, —]
- digits
- boldface words (if, then)

« nonterminals

— uppercase letters early in the alphabet (A, B, C)
- S IS the start symbol
~ lower case words

EECS 665 — Compiler Construction

F Conventions for Specifying
Grammars in the Text (cont.)

« grammar symbols (nonterminals or terminals)
— upper case letters late in the alphabet (X, Y, Z2)
o strings of terminals
— lower case letters late in the alphabet (u, v, ..., 2)
« sentential form (string of grammar symbols)

- lower case Greek letters (a, [3, y)

EECS 665 — Compiler Construction

* Chomsky Hierarchy

A grammar Is said to be
1. reqular if it is
where each production in P has the form

a. right-linear

A—wB or A—>w
b. left-linear

A—Bw or A—>Ww
where A,BeENandw e T*

EECS 665 — Compiler Construction

Chomsky Hierarchy (cont)

2. context-free : each production in P is of the form
A— a whereAeNand ae (NUT)*

3. context-sensitive : each production in P is of the
form

a —f where |a| < |B|

4. unrestricted if each production in P is of the form

a—p wherea #¢

EECS 665 — Compiler Construction

&.

Derivation

o Derivation

. a sequence of replacements from the start symbol
In a grammar by applying productions

-E—-E+E| E*E| (E)]| —E | Id
 Derive
. - (1d +1d) from the grammar
.E>-E=>-(E)=>-(E+E) =>-(id+E)
= —(1d+id)
. thus E derives - (i1d +1d)
or E += -(id+id)

EECS 665 — Compiler Construction

10

d Derivation (cont.)

o Leftmost derivation

- each step replaces the leftmost nonterminal

- derive i1d + 1d * 1d using leftmost derivation
cE>E+EId+E=>Id+E*E>

id+i1d*E=1d+id * i0

« L(G) - language generated by the grammar G

o Sentence of G

- 1f S += w, where w Is a string of terminals inL(G)
o Sentential form

- If S *= q, where a may contain nonterminals
EECS 665 — Compiler Construction 11

o Parse Tree

« Parse tree pictorially shows how the start symbol of a
grammar derives a specific string in the language.

 Glven a context-free grammar, a parse tree has the
properties:
~ The root is labeled by the start symbol.
- Each leaf is labeled by a token or «.
- Each interior node Is labeled by a nonterminal.

- If A'is a nonterminal labeling some interior node and
XX, X, .., X are the labels of the children of that node
from left to right, then

A—X,, X,, X,, .. X 1s a production of the grammar.

EECS 665 — Compiler Construction 12

Example of a Parse Tree

list
list/ \digit
e
digit
é — 5 + 2

list — list + digit | list — digit | digit

followed by Fig. 4.4
EECS 665 — Compiler Construction 13

‘s-

Parse Tree (cont.)

. Yield

- the leaves of the parse tree read from left to right, or

— the string derived from the nonterminal at the root of the
parse tree

« An ambiguous grammar Is one that can generate
two or more parse trees that yield the same string.

EECS 665 — Compiler Construction

14

Example of an Ambiguous Grammar

string — string + string
string — string - string
string—0|1|2|3|4|5|6]|7|8]|9

string string
string + string string - string
N | | ~ I
string — string 2 9 string + string
| | | |
9 5 5 2

a. string — string + string — string — string + string
— 9 —string + string— 9-5+string— 9-5+2
b. string — string - string — 9 — string

— 9 —string +string —9-5+string— 9-5+2
EECS 665 — Compiler Construction 15

& Precedence

By convention
9+5%*2 * has higher precedence than + because
It takes Its operands before +

exXpr —> expr + term | term eXpr
term —> term * digit | digit =~ " | >
expr + term

| /1 N\

term term * digit
| |
digit digit

EECS 665 — Compiler Construction 16

* Precedence (cont.)

o If different operators have the same precedence then
they are defined as alternative productions of the
same nonterminal.

expr — expr + term | expr — term | term

term — term * factor | term / factor | factor
factor — digit | (expr)

EECS 665 — Compiler Construction 17

&.

By convention

Assoclativity

9—-5-2 left (operand with — on both sides is
taken by the operator to its left)

a=Db=c right
list —> list — digit list grows to the left
list —> digit e
list - digit
list - digit
|
digit
right —> letter = right right grows to the right
right —> letter T T
letter = right
N
letter = right

letter

* Eliminating Ambiguity

« Sometimes ambiguity can be eliminated by
rewriting a grammar.

o Stmt — If expr then stmt
| 1f expr then stmt else stmt
| other

« How do we parse:
If E1 then if E2 then S1 else S2

followed by Fig. 4.9
EECS 665 — Compiler Construction 19

Eliminating Ambiguity (cont.)

stmt — matched_stmt

| unmatched_stmt

matched_stmt — if expr then matched_stmt else matched stmt

| other

unmatched_stmt — if expr then stmt

| 1f expr then matched_stmt else unmatched_stmt

EECS 665 — Compiler Construction 20

Parsing

« Universal
o TOp-down

— recursive descent
- LL
« Bottom-up
- LR
« SLR

. canonical LR
« LALR

EECS 665 — Compiler Construction

21

* Top-Down vs Bottom-Up Parsing

o top-down

- Have to eliminate left recursion in the grammar.
- Have to left factor the grammar.

- Resulting grammars are harder to read and understand.
 bottom-up
- Difficult to implement by hand, so a tool Is needed.

EECS 665 — Compiler Construction

22

Top-Down Parsing

Starts at the root and proceeds towards the leaves.

Recursive-Descent Parsing - a recursive procedure
IS assoclated with each nonterminal In the
grammar.

Example

. type — simple | Tid | array [simple] of type

. simple — integer | char | num dotdot num

followed by Fig. 4.12
EECS 665 — Compiler Construction 23

& Example of Recursive Descent Parsing

void type() {
If (lookahead == INTEGER || lookahead == CHAR ||

lookahead == NUM)
simple();

else if (lookahead == ") {
match('M);
match(1D);

¥

else if (lookahead == ARRAY) {
match(ARRAY);
match('[");
simple();
match(']");
match(OF);
type();

else
error();

} EECS 665 — Compiler Construction

24

% Example of Recursive Descent Parsing
(cont.)

void simple() { void match(token t)

If (lookahead == INTEGER) {
match(INTEGER); If (lookahead ==1)

else if (lookahead == CHAR) lookahead = nexttoken();
match(CHAR); else

else if (lookahead== NUM) { error();
match(NUM); }
match(DOTDOT);
match(NUM);

¥

else
error();

EECS 665 — Compiler Construction 25

Top-Down Parsing (cont.)

« Predictive parsing needs to know what first symbols
can be generated by the right side of a production.

« FIRST(a) - the set of tokens that appear as the first
symbols of one or more strings generated from a. If
a IS € or can generate , then € is also in FIRST(a).

« Given a production
A—alf

predictive parsing requires FIRST(a) and FIRST(3)
to be disjoint.

EECS 665 — Compiler Construction 26

* Eliminating Left Recursion

o Recursive descent parsing loops forever on left recursion.

o Immediate Left Recursion
Replace A — AQ | B with A — BA’

A — QA" | €

Example:
A a B
E—-E+T|T E
T—>T*F|F T *F F
F—(E)|id
becomes
E — TE
EE — +TE"|€
T — FT

EECS 665 — Compiler Construction

27

% Eliminating Left Recursion (cont.)

In general, to eliminate left recursion given A, A,, ..., A
fori=1tondo{
fory=1toi1-1do{
replace each Aj— Ajy with Aj =017 |...| Oy
where A; — 01| 0, | ... | Ok are the current A,
productions

n

}

eliminate immediate left recursion in A; productions
eliminate € transitions in the A; productions

}

This fails only if cycles (A += A) or A — ¢ for some A.

EECS 665 — Compiler Construction 28

&-

adiA

Example of Eliminating Left
Recursion

X—> YZ]|a
Y— ZX|Xb
Z— XY|ZZ]|a

Al=X A2=Y A3=Z

1=1

(eliminate Immediate left recursion)
nothing to do

EECS 665 — Compiler Construction

29

& Example of Eliminating Left
Recursion (cont.)

1=2,]=1

Y— Xb=>Y—>2ZX|YZb|ab

now eliminate Immediate left recursion
Y — ZXY |abY’
Y — ZbY'|¢€

now eliminate [transitions
Y — ZXY |abY |ZX|ab
Y —ZbY |Zb

i=3,j=1
Z > XY = Z-YZY|aY|ZZ]|a

EECS 665 — Compiler Construction

30

& Example of Eliminating Left
Recursion (cont.)

1=3,]=2
L—o>YZIY = Z—>ZXY ZY | ZXZY |abY ' ZY
|abZY |aY | ZZ | a
now eliminate immediate left recursion
Z—abY' ZYZ |abZYZ |aYZ |aZ
L > XY ZYZ | XZYZ |ZZ |¢€
eliminate € transitions
Z—abY' ZYZ |abY ZY |abZYZ |abZY |aY
|laYZ |aZ | a
L > XY ZYZ | XY ZY | XZYZ | XZY |ZZ | Z

EECS 665 — Compiler Construction 31

d Left-Factoring

A — af| ay = A — oA’
A —Bly
Example:

|_eft factor

stmt — 1If cond then stmt else stmt

| 1f cond then stmt

becomes

stmt — If cond then stmt E

E — else stmt | €

Useful for predictive parsing since we will know which
production to choose.

EECS 665 — Compiler Construction 32

Nonrecursive Predictive Parsing

o Instead of recursive descent, it is table-driven and
uses an explicit stack. It uses

1. a stack of grammar symbols ($ on bottom)
2. a string of input tokens ($ on end)
3. a parsing table [NT, T] of productions

followed by Fig. 4.19

EECS 665 — Compiler Construction 33

K3 Algorithm for Nonrecursive
Predictive Parsing

1. If top == Input == $ then accept
2. If top == Input then
pop top off the stack
advance to next input symbol
goto 1
3. If top I1s nonterminal
fetch M[top, input]
If a production
replace top with rhs of production
Else
parse fails
goto 1

4. Parse fails

followed by Fig. 4.17, 4.21
EECS 665 — Compiler Construction 34

é.

First

FIRST(a) = the set of terminals that begin strings

oW

derived from a. If aIs € or generates &,
then € is also in FIRST(a).

If X 1s a terminal then FIRST(X) = {X}
If X — aq, add a to FIRST(X)
If X — €, add € to FIRST(X)
fX—->Y,Y, ..,Y,andY,Y, ., K Y, *>¢
where 1 <k

Add every non € in FIRST(Y;) to FIRST(X)
IfY,, Y, .., Y *> ¢ add € to FIRST(X)

EECS 665 — Compiler Construction

35

. FOLLOW

FOLLOW(A) = the set of terminals that can
Immediately follow A in a sentential form.

1. If S is the start symbol, add $ to FOLLOW(S)
2. If A —aBf, add FIRST(p) - {¢} to FOLLOW(B)
3.1f A—aB or A—aBp and B*= ¢,

add FOLLOW(A) to FOLLOW(B)

EECS 665 — Compiler Construction 36

¢ Example of Calculating FIRST and
FOLLOW

Production FIRST FOLLOW
E —TE {(,id} {).$}
E° —+TE |e {+ ¢} {).%}
T —FT 1(1d} {+)3%}
T —>*FT |e {* ¢} {+)3%}
F—@®&d {(1d} {*,+).3%}

EECS 665 — Compiler Construction

37

W& Another Example of Calculating
FIRST and FOLLOW
Production FIRST FOLLOW
X —Ya { 1 { }
Y —ZW { } { }
W —cle { 1} {
/ —a ‘ bZ { } { }

EECS 665 — Compiler Construction

38

& Constructing Predictive Parsing
Tables

Foreach A— a do

1. Add A — ato MJA, a] for each a in FIRST(a)
2. 1f €isin FIRST(a)
a. Add A — a to M[A, b] for each b In
FOLLOW(A)
b. If$1sin FOLLOW(A) add A —a to M[A, $]
3. Make each undefined entry of M an error.

EECS 665 — Compiler Construction 39

é.

LL(1)
First "L" - scans Input from left to right
Second "L" - produces a leftmost derivation
1 - uses one input symbol of lookahead at

each step to make a parsing decision

A grammar whose predictive parsing table has no
multiply-defined entries i1s LL(1).

No ambiguous or left-recursive grammar can be LL(1).

EECS 665 — Compiler Construction 40

o When Is a Grammar LL(1)?

A grammar is LL(1) Iff for each set of productions
where A—aq; | as]| ... | a,, the following conditions
hold.

1. FIRST(q) intersect FIRST(q;) = &
where 1<i1<n and lSJSﬂ
and 17|

2. If a; *= ¢ then
a. dy, ..,0 0, ..,0 doesnot *= ¢

b. FIRST(ay) intersect FOLLOW(A) = <
wherej#land1<j<n

EECS 665 — Compiler Construction 41

% Checking If a Grammar is LL(1)

Production FIRST FOLLOW
S iEtSS' | a {i a} {e$)
S'—eS|e¢ {e e} {e, $}
E b {b} £t}
Nonterminal] a b e i t $
S S—a S—IEtSS’
S’ S'—eS
S'—¢ S'—¢
E | E—b

So this grammar Is not LLQ?n'pﬂ N

EECS 665 — 42

* Bottom-Up Parsing

« Bottom-up parsing

-~ attempts to construct a parse tree for an input string
beginning at the leaves and working up towards the root

— IS the process of reducing the string w to the start
symbol of the grammar

— at each step, we need to decide

« When to reduce
 What production to apply
-~ actually, constructs a right-most derivation in reverse

followed by Fig. 4.25
EECS 665 — Compiler Construction 43

Shift-Reduce Parsing

Shift-reduce parsing Is bottom-up.

A handle is a substring that matches the rhs of a
production.

A shift moves the next input symbol on a stack.

A reduce replaces the rhs of a production that is found on
the stack with the nonterminal on the left of that
production.

A viable prefix is the set of prefixes of right sentential
forms that can appear on the stack of a shift-reduce parser

followed by Fig. 4.35
EECS 665 — Compiler Construction 44

Model of an LR Parser

Each S; Is a state.

Each X I1s a grammar symbol (when implemented

these items do not appear In the stack).

Each a; Is an input symbol.

All LR parsers can use the same algorithm (code).
The action and goto tables are different for each LR

parser.

EECS 665 — Compiler Construction

45

* LR(K) Parsing

L" - scans input from left to right

"R" - constructs a rightmost derivation In reverse
K" - uses k symbols of lookahead at each step to

make a parsing decision

Uses a stack of alternating states and grammar symbols.
The grammar symbols are optional. Uses a string of
iInput symbols ($ on end). Parsing table has an action
part and a goto part.

EECS 665 — Compiler Construction 46

K3 LR (k) Parsing (cont.)

If config == (S5, X; S, X, S, ... X S, & &y ... 4 F)
1. 1f action [s,, &] == shift s then
new config is (S X; S; X, S, ... X, S @S, ;g ... a,3)
2. If action [sp, aj] == reduce A—f3 and
goto [s,., A] ==s (wherer is the Iength of B) then
new config is (sO X8 X58,.. XS AS, & a,q...a,9)
3. 1f action [s,,, a;] == ACCEPT then stop
4. 1f action [s,,, a] == ERROR then attempt recovery
Can resolve some shift-reduce conflicts with lookahead.
ex: LR(1)
Can resolve others in favor of a shift.
ex: S —ICtS | ICtSeS

EECS 665 — Compiler Construction 47

&.

Advantages of LR Parsing

« LR parsers can recognize almost all programming
language constructs expressed in context -free
grammars.

o Efficient and requires no backtracking.

o Is a superset of the grammars that can be handled
with predictive parsers.

 Can detect a syntactic error as soon as possible on a
left-to-right scan of the input.

EECS 665 — Compiler Construction

48

‘5 LR Parsing Example
1.E>E+T

2.E—T

3.T—>T*F

4.T—>F

5.F— (E)

6. F — Id

followed by Fig. 4.37
EECS 665 — Compiler Construction 49

* LR Parsing Example

oIt produces rightmost derivation in reverse:
E—-E+T - E+F - E+id
—T+id - T*F+id
—T*id+i1d - F*id+1id
—1d * 1d + 1d

followed by Fig. 4.38
EECS 665 — Compiler Construction 50

Calculating the Sets of LR(0) Items

LR(0) item - production with a dot at some position In
the right side
Example:
A—BC has 3 possible LR(0) items
A—-BC
A—B-C
A—BC-
A—¢ has 1 possible item
A—:

3 operations required to construct the sets of LR(0) items:
(1) closure, (2) goto, and (3) augment

followed by Fig. 4.32
EECS 665 — Compiler Construction 51

& Example of Computing the Closure of
a Set of LR(0) Items

Grammar Closure (1) for I, ={E"—-E}
E° —E E —-E
E —SE+T|T E —E+T
T —->T*F|F E —.T
F —(E)]|id T —T*F
T —F
F —(E)
F —-id

EECS 665 — Compiler Construction

52

¥ Calculating Goto of a Set of LR(0) Items

Calculate goto (1,X) where | is a set of items and X is a grammar
symbol.

Take the closure (the set of items of the form A—aX-[3)
where A—a-XBisin 1.

Grammar Goto (I,,+) for I, ={E"—E- E—E-+T}
E —>E E—->E+-T
T —->T*F|F T—-F
F o~ (E)]id F— (E)
F—-id
Goto (|2,*) for |2:{E—>T-,T—>T-*F}
T—->T*F
F— - (E)
F—id

EECS 665 — Compiler Construction 53

* Augmenting the Grammar

« Given grammar G with start symbol S, then an
augmented grammar G” is G with a new start
symbol S” and new production S"—S.

followed by Fig. 4.33, 4.31
EECS 665 — Compiler Construction 54

¢ Analogy of Calculating the Set of LR(0)
ltems with Converting an NFA to a DFA

« Constructing the set of items Is similar to converting
an NFAto a DFA

— each state in the NFA Is an individual 1tem

- the closure (I) for a set of items is the same as the
e-closure of a set of NFA states

- each set of items Is now a DFA state and goto
(1,X) gives the transition from | on symbol X

followed by Fig. 4.31, A
EECS 665 — Compiler Construction 55

% Sets of LR(0) Items Example

S —-> L=R|R
L — "R | Ic
R —> L

followed by Fig. 4.39
EECS 665 — Compiler Construction 56

Constructing SLR Parsing Tables

LetC={l, I,
1. If [A—a-aB] 1s In [and goto (l;, a) = I; then set

..., | .} be the parser states.

action [1, a] to 'shift J'.

2. If [A—a-] isin [, then set action [I, a] to 'reduce A—a'for
all a in the FOLLOW(A). A may not be S,

3. If [S"— S-]is in [, then set action [i, $] to ‘accept'.
4. 1f goto (I, A):Ij, then set gotoli, A] to j.

5. Set all other table entries to 'error".

6. The initial state Is the one holding [S"—"S].

followed by Fig. 4.37
EECS 665 — Compiler Construction 57

. Using Ambiguous Grammars

l.E—-E+E E—-E+T|T
2.E—-E*E Instead of T->T*F|F
3.E—(E) F—(E)|id
4. E — 1d

See Figure 4.48.

Advantages:
Grammar IS easler to read.
Parser 1S more efficient.

followed by Fig. 4.48
EECS 665 — Compiler Construction 64

& Using Ambiguous Grammars (cont.)

Can use precedence and associativity to solve the
problem.

See Fig 4.49.

shift / reduce conflict In state action|[7,+]=(s4,rl)
s4=shift4 or E—E-+E
rl=reducelor E—E+E:

id+1d +1d
T cursor here
action[7,*]=(s5,r1)
; — : *7—
aCtIOn[8,+] (84’r2) aCtIOn[8,] (S5,f2) followed by Fig. 4.49

EECS 665 — Compiler Construction 65

Another Ambiguous Grammar

0.S"—>S

1.S — 1SeS

2.S —1IS

3.S —a

See Figure 4.50.
action|[4,e]=(s5,r2)

followed by Fig. 4.50, 4.51
EECS 665 — Compiler Construction 66

& Ambiguities from Special-Case
Productions

E—-EsSubEsSupkE
E—>ESubE
E—->ESupE
E—-{E}

E—CcC

EECS 665 — Compiler Construction

& Ambiguities from Special-Case
Productions (cont)

1. E—>EsubEsupE FIRST(E)={'{, c}
2.E—>EsSubE FOLLOW(E) = {sub,sup,'}',$}
3.E—ESupkE

4. E—-{E} sub, sup have equal precedence
5, E—cC and are right associative

followed by Fig. B
EECS 665 — Compiler Construction 68

& Ambiguities from Special-Case
Productions (cont)

l.E—->EsubEsupE
2.E—ESub E
3.E—ESupkE

4, E—> {E}
5,E—cC

action|7,sub]=(s4,r2)
action[8,sub]=(s4,r3)
action[11,sub]=(s5,r1,r3)
action[11,}]=(r1,r3)

FIRST(E) ={'{, c}
FOLLOW(E) = {sub,sup,} ,$}

sub, sup have equal precedence
and are right associative

action|7,sup]=(s10,r2)
action[8,sup]=(s5,r3)
action[11,sup]=(s5,r1,r3)
action[11,%]=(r1,r3)

followed by Fig. C

EECS 665 — Compiler Construction 69

&.

YACC

Yacc source program declaration

%%

translation rules

%%

supporting C-routines

= YACC = y.tab.c

followed by Fig. 4.57
EECS 665 — Compiler Construction 70

‘s-

YACC Declarations

o In declarations:

~ Can put ordinary C declarations In

%{
%0}
- Can declare tokens using
 %token
. oleft
 %oright

- Precedence is established by the order the operators
are listed (low to high).

EECS 665 — Compiler Construction

71

YACC Translation Rules

Form
A Body ;

where A 1s a nonterminal and Body Is a list of
nonterminals and terminals.

Semantic actions can be enclosed before or after
each grammar symbol in the body.

Yacc chooses to shift in a shift/reduce conflict.

Yacc chooses the first production in a
reduce/reduce conflict.

EECS 665 — Compiler Construction

72

® acc Translation Rules (cont.)

« When there 1s more than one rule with the same
left hand side, a |' can be used.

A . BCD;
A . EF;
A S C
=>
A . BCD
EF
G

EECS 665 — Compiler Construction

Example of a Yacc Specification

%token IF ELSE NAME [* defines multicharacter tokens */
%right '=' /[* low precedence, a=b=c shifts */
%left '+' '-* /* mid precedence, a-b-c reduces */
%left *' /' /[* high precedence, a/b/c reduces */
%%

stmt :expr’;

| IF (" expr')' stmt
| IF '(" expr ") stmt ELSE stmt
, [* prefers shift to reduce in shift/reduce conflict */
expr : NAME '='"expr [* assignment */
expr '+' expr
expr - expr
expr *' expr
expr /' expr
' expr %prec ' /* can override precedence */
NAME

%% /* definitions of yylex, etc. can follow */

EECS 665 — Compiler Construction 74

Yacc Actions

Actions are C code segments enclosed in { } and
may be placed before or after any grammar symbol
In the right hand side of a rule.

To return a value associated with a rule, the action

can set $$.

To access a value associated with a grammar
symbol on the right hand side, use $i, where 1 is the
position of that grammar symbol.

The default action for a rule 1s

{$$=9%1;}

EECS 665 — Compiler Construction

followed by Fig. 4.58, 4.59
75

* Syntax Error Handling

. Errors can occur at many levels

- lexical - unknown operator

— syntactic - unbalanced parentheses
— semantic - variable never declared
- logical - dereference a null pointer

« Goals of error handling in a parser

-~ detect and report the presence of errors

- recover from each error to be able to detect subsequent
errors

- should not slow down the processing of correct programs

EECS 665 — Compiler Construction 76

‘s-

Syntax Error Handling (cont.)

« Viable—prefix property - detect an error as soon as
see a prefix of the input that is not a prefix of any
string in the language.

EECS 665 — Compiler Construction

77

& Error-Recovery Strategies

o Panic- mode

- skip until one of a synchronizing set of tokens is found
(e.g. "', "end"). Is very simple to implement but may
miss detection of some error (when more than one error

In a single statement)
 Phase- level

- replace prefix of remaining input by a string that allows
the parser to continue. Hard for the compiler writer to
anticipate all error situations

EECS 665 — Compiler Construction 8

* Error-Recovery Strategies (cont...)

« Error productions

— augment the grammar of the source language to include
productions for common errors. When production is
used, an appropriate error diagnostic would be issued.
Feasible to only handle a limited number of errors.

o Global correction

- choose minimal sequence of changes to allow a least-
cost correction. Too costly to actually be implemented
In a parser. Also the closest correct program may not be
what the programmer intended.

EECS 665 — Compiler Construction

79

