
1EECS 665 – Compiler Construction

Concepts Introduced in Chapter 4

 Grammars

 Context-Free Grammars

 Derivations and Parse Trees

 Ambiguity, Precedence, and Associativity

 Top Down Parsing

 Recursive Descent, LL

 Bottom Up Parsing

 SLR, LR, LALR

 Yacc

 Error Handling
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Grammars

G = (N, T, P, S)

1. N is a finite set of nonterminal symbols

2. T is a finite set of terminal symbols

3. P is a finite subset of

(N ∪ T)* N (N ∪ T)*  (N ∪ T)*

An element ( α, β ) ∈ P is written as

α → β

and is called a production.

4. S is a distinguished symbol in N and is called the          
start symbol.
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Example of a Grammar

expression → expression + term

expression  → expression - term

expression → term

term  → term * factor

term  → term / factor

term  → factor

factor  → ( expression )

factor  → id
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Advantages of Using Grammars

 Provides a precise, syntactic specification of a 
programming language.

 For some classes of grammars, tools exist that can 
automatically construct an efficient parser.

 These tools can also detect syntactic ambiguities 
and other problems automatically.

 A compiler based on a grammatical description of a 
language is more easily maintained and updated.
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Role of a Parser in a Compiler

 Detects and reports any syntax errors.

 Produces a parse tree from which intermediate code 
can be generated.

followed by Fig. 4.1
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Conventions for Specifying 
Grammars in the Text

 terminals

 lower case letters early in the alphabet (a, b, c)

 punctuation and operator symbols [(, ), ',',  +, ]

 digits

 boldface words (if, then)

 nonterminals

 uppercase letters early in the alphabet (A, B, C)

 S is the start symbol

 lower case words
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Conventions for Specifying 
Grammars in the Text (cont.)

 grammar symbols (nonterminals or terminals)

 upper case letters late in the alphabet (X, Y, Z)

 strings of terminals

 lower case letters late in the alphabet (u, v, ..., z)

 sentential form (string of grammar symbols)

 lower case Greek letters (α, β, γ)
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Chomsky Hierarchy

A grammar is said to be

1. regular if it is

where each production in P has the form

a. right-linear

A → wB  or  A → w

b. left-linear

A → Bw  or  A → w

where A, B ∈ N and w ∈ T*
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Chomsky Hierarchy (cont)

2. context-free : each production in P is of the form

A → α where A ∈ N and  α ∈ ( N ∪ T)*

3. context-sensitive : each production in P is of the 
form

α →β where |α|  |β|

4. unrestricted if each production in P is of the form

α→β where α ≠ ε
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Derivation

 Derivation 

 a sequence of replacements from the start symbol 
in a grammar by applying productions

 E → E + E  |  E * E  |  ( E )  |   E  |  id

 Derive 

 - ( id + id ) from the grammar

 E ⇒  E ⇒  ( E ) ⇒  ( E + E )  ⇒  ( id + E ) 
⇒  ( id + id )

 thus E derives  - ( id + id )    

or E +⇒ - ( id + id )
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Derivation (cont.)

 Leftmost derivation 

 each step replaces the leftmost nonterminal

 derive id + id * id using leftmost derivation

 E ⇒ E + E ⇒ id + E ⇒ id + E * E ⇒
id + id * E ⇒ id + id * id

 L(G) - language generated by the grammar G

 Sentence of G 

 if S +⇒ w, where w is a string of terminals inL(G)

 Sentential form

 if S *⇒ α, where α may contain nonterminals
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Parse Tree

 Parse tree pictorially shows how the start symbol of a 
grammar derives a specific string in the language. 

 Given a context-free grammar, a parse tree has the 
properties:

 The root is labeled by the start symbol.

 Each leaf is labeled by a token or ε.

 Each interior node is labeled by a nonterminal.

 If A is a nonterminal labeling some interior node and 
X

1
,X

2
, X

3
, .., X

n
are the labels of the children of that node 

from left to right, then 

A →X
1
, X

2
, X

3
, .. X

n
is a production of the grammar.
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Example of a Parse Tree

list → list + digit | list  digit | digit

followed by Fig. 4.4
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Parse Tree (cont.)

 Yield 

 the leaves of the parse tree read from left to right, or 

 the string derived from the nonterminal at the root of the 
parse tree

 An ambiguous grammar is one that can generate 
two or more parse trees that yield the same string.
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Example of an Ambiguous Grammar

string → string + string

string → string - string

string → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9   

a. string → string + string → string  string + string

→ 9  string + string → 9  5 + string → 9  5 + 2

b. string → string - string → 9  string

→ 9  string + string → 9  5 + string → 9  5 + 2
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Precedence

By convention
9 + 5 * 2        * has higher precedence than + because

it takes its operands before +
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Precedence (cont.)

 If different operators have the same precedence then 
they are defined as alternative productions of the 
same nonterminal.

expr → expr + term | expr  term | term
term → term * factor | term / factor | factor
factor → digit | (expr)
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Associativity
By convention

9  5  2  left   (operand with  on both sides is                                  
taken by the operator to its left)

a = b = c  right
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Eliminating Ambiguity

 Sometimes ambiguity can be eliminated by 
rewriting a grammar.

 stmt → if expr then stmt

| if expr then stmt else stmt

| other

 How do we parse:

if E1 then if E2 then S1 else S2

followed by Fig. 4.9



20EECS 665 – Compiler Construction

Eliminating Ambiguity (cont.)

 stmt → matched_stmt

| unmatched_stmt

 matched_stmt → if expr then matched_stmt else matched_stmt

| other

 unmatched_stmt → if expr then stmt

| if expr then matched_stmt else unmatched_stmt
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Parsing

 Universal

 Top-down

 recursive descent

 LL

 Bottom-up

 LR

 SLR

 canonical LR

 LALR
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Top-Down vs Bottom-Up Parsing

 top-down

 Have to eliminate left recursion in the grammar.

 Have to left factor the grammar.

 Resulting grammars are harder to read and understand.

 bottom-up

 Difficult to implement by hand, so a tool is needed.
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Top-Down Parsing

Starts at the root and proceeds towards the leaves.

Recursive-Descent Parsing - a recursive procedure 
is associated with each nonterminal in the 
grammar.

Example

 type → simple | id | array [ simple ] of type

 simple → integer | char | num dotdot num

followed by Fig. 4.12
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void type() {
if ( lookahead == INTEGER || lookahead == CHAR ||

lookahead == NUM)
simple();

else if (lookahead == '^') {
match('^');
match(ID);

}
else if (lookahead == ARRAY) {

match(ARRAY);
match('[');
simple();
match(']');
match(OF);
type();

}
else

error();
}

Example of Recursive Descent Parsing
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void simple() { void match(token t)
if (lookahead == INTEGER) {

match(INTEGER); if (lookahead == t)
else if (lookahead == CHAR) lookahead = nexttoken();

match(CHAR); else
else if (lookahead== NUM) { error();

match(NUM); }
match(DOTDOT);
match(NUM);

}
else

error();
}

Example of Recursive Descent Parsing 
(cont.)
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Top-Down Parsing (cont.)

 Predictive parsing needs to know what first symbols 
can be generated by the right side of a production.

 FIRST(α) - the set of tokens that appear as the first 
symbols of one or more strings generated from α.  If 
α is ε or can generate , then ε is also in FIRST(α).

 Given a production 

A → α | β

predictive parsing requires FIRST(α) and FIRST(β) 
to be disjoint.
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Eliminating Left Recursion

 Recursive descent parsing loops forever on left recursion.

 Immediate Left Recursion

Replace A → Aα | β with A → βA´

A´ → αA´ | ε
Example:

A α β
E → E + T | T       E +T       T

T → T * F | F T *F       F

F → (E) | id

becomes

E → TE´

E´ → +TE´ | ε
T → FT´
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Eliminating Left Recursion (cont.)

In general, to eliminate left recursion given A
1
, A

2
, ..., A

n

for i = 1 to n do {
for j = 1 to i-1 do {

replace each Ai → Aj  with Ai →δ1  | ... | δk 
where Aj → δ1 | δ2 | ... | δk are the current Aj

productions
}
eliminate immediate left recursion in Ai productions
eliminate ε transitions in the Ai productions

}

This fails only if cycles ( A +⇒A) or A → ε for some A.
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Example of Eliminating Left 
Recursion

1. X → YZ | a
2. Y → ZX | Xb
3. Z → XY | ZZ | a

A1 = X A2 = Y   A3 = Z

i = 1 (eliminate immediate left recursion)
nothing to do
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Example of Eliminating Left 
Recursion (cont.)

i = 2, j = 1
Y → Xb ⇒ Y → ZX | YZb | ab
now eliminate immediate left recursion

Y → ZXY´ | ab Y´
Y´ → ZbY´ | ε

now eliminate transitions
Y → ZXY´ | abY´ | ZX | ab
Y´ → ZbY´ | Zb

i = 3, j = 1
Z → XY  ⇒ Z →YZY | aY | ZZ | a
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Example of Eliminating Left 
Recursion (cont.)

i = 3, j = 2
Z →YZY  ⇒ Z → ZXY´ZY | ZXZY | abY´ZY

| abZY | aY | ZZ | a
now eliminate immediate left recursion

Z → abY´ZYZ´ | abZYZ´ | aYZ´ | aZ´
Z´ → XY´ZYZ´ | XZYZ´ | ZZ´ | ε

eliminate ε transitions
Z → abY´ZYZ´ | abY´ZY | abZYZ´ |abZY | aY

| aYZ´ | aZ´ | a
Z´ → XY´ZYZ´ | XY´ZY | XZYZ´ | XZY | ZZ´ | Z
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Left-Factoring

A → αβ| α ⇒ A → αA
A → β | γ

Example:
Left factor

stmt → if cond then stmt else stmt
| if cond then stmt

becomes
stmt → if cond then stmt E

E → else stmt |  ε

Useful for predictive parsing since we will know which 
production to choose.
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Nonrecursive Predictive Parsing

 Instead of recursive descent, it is table-driven and 
uses an explicit stack.  It uses

1. a stack of grammar symbols ($ on bottom)

2. a string of input tokens ($ on end)

3. a parsing table [NT, T] of productions

followed by Fig. 4.19
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Algorithm for Nonrecursive 
Predictive Parsing

1. If top == input == $ then accept
2. If top == input then

pop top off the stack
advance to next input symbol
goto 1

3. If top is nonterminal
fetch M[top, input]
If a production

replace top with rhs of production
Else

parse fails
goto 1

4. Parse fails
followed by Fig. 4.17, 4.21
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First

FIRST(α) = the set of terminals that begin strings
derived from α.  If α is ε or generates ε,
then ε is also in FIRST(α).

1. If X is a terminal then FIRST(X) = {X}
2. If X → aα, add a to FIRST(X)
3. If X → ε, add ε to FIRST(X)
4. If X → Y1, Y2,  ..., Yk and Y1, Y2, ..., Yi-1 *⇒ ε

where i  k
Add every non ε in FIRST(Y

i
) to FIRST(X)

If Y1, Y2, ..., Yk *⇒ ε, add ε to FIRST(X)
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FOLLOW(A) = the set of terminals that can 
immediately follow A in a sentential form.

1. If S is the start symbol, add $ to FOLLOW(S)
2. If A →αBβ, add FIRST(β) - {ε} to FOLLOW(B)
3. If A →αB or  A →αBβ and  β*⇒ ε, 

add FOLLOW(A) to FOLLOW(B)

FOLLOW
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Production FIRST FOLLOW
E → TE´ { (, id } { ), $ }
E´ → +TE´ | ε { +, ε } { ), $ }
T → FT´ { (, id } { +, ), $ }
T´ → *FT´ | ε {*, ε } { +, ), $ }
F → (E) | id { (, id } {*, +, ), $ }

Example of Calculating FIRST and 
FOLLOW
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Production FIRST FOLLOW
X → Ya {        } {       }
Y → ZW {        } {       }
W → c | ε {        } {       }
Z → a | bZ {        } {       }

Another Example of Calculating
FIRST and FOLLOW
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Constructing Predictive Parsing 
Tables

For each  A → α do

1. Add  A → α to M[A, a] for each a in FIRST(α)
2. If ε is in FIRST(α)

a. Add  A → α to M[A, b] for each b in                        
FOLLOW(A)

b. If $ is in FOLLOW(A) add  A →α to M[A, $]
3. Make each undefined entry of M an error.
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LL(1)

First ''L'' - scans input from left to right
Second ''L'' - produces a leftmost derivation
1 - uses one input symbol of lookahead at

each step to make a parsing decision

A grammar whose predictive parsing table has no 
multiply-defined entries is LL(1).

No ambiguous or left-recursive grammar can be LL(1).
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A grammar is LL(1) iff for each set of  productions
where  A→α1 | α2 | ... | αn, the following conditions
hold.

1. FIRST(αi) intersect FIRST(αj) = 
where 1 ≤ i ≤ n    and 1 ≤ j ≤ n 

and i ≠ j
2.  If αi *⇒ ε then

a. α1, ..,αi-1,αi+1, ..,αn does not *⇒ ε
b. FIRST(αj) intersect FOLLOW(A) = 

where j ≠ i and 1 ≤ j ≤ n

When Is a Grammar LL(1)?
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Production FIRST FOLLOW
S → iEtSS′ | a { i, a } { e, $ }
S′→ eS | ε { e, ε } { e, $ }
E → b { b } { t }

Nonterminal     a b          e i t          $

S             S→a S→iEtSS′
S′                                  S′→eS

S′→ε S′→ε
E                         E→b

So this grammar is not LL(1).

Checking If a Grammar is LL(1)
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Bottom-Up Parsing

 Bottom-up parsing

 attempts to construct a parse tree for an input string 
beginning at the leaves and working up towards the root

 is the process of reducing the string w to the start 
symbol of the grammar

 at each step, we need to decide

 when to reduce

 what production to apply

 actually, constructs a right-most derivation in reverse

followed by Fig. 4.25
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Shift-Reduce Parsing

 Shift-reduce parsing is bottom-up.

 A handle is a substring that matches the rhs of a 
production.

 A shift moves the next input symbol on a stack.

 A reduce replaces the rhs of a production that is found on 
the stack with the nonterminal on the left of that 
production.

 A viable prefix is the set of prefixes of right sentential 
forms that can appear on the stack of a shift-reduce parser

followed by Fig. 4.35
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Model of an LR Parser

 Each Si is a state.

 Each Xi is a grammar symbol (when implemented 
these items do not appear in the stack).

 Each ai is an input symbol.

 All LR parsers can use the same algorithm (code).

 The action and goto tables are different for each LR 
parser.
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LR(k) Parsing

''L'' - scans input from left to right
''R'' - constructs a rightmost derivation in reverse
''k'' - uses k symbols of lookahead at each step to 

make a parsing decision

Uses a stack of alternating states and grammar symbols.  
The grammar symbols are optional.  Uses a string of 
input symbols ($ on end).  Parsing table has an action 
part and a goto part.
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LR (k) Parsing (cont.)

If config == (s0 X1 s1 X2 s2 ... Xm sm, ai ai+1 ... an$)
1. if action [sm, ai] == shift s then

new config is (s0 X1 s1 X2 s2 ... Xm sm ais, ai+1 ... an$)
2. if action [sm, ai] == reduce A→β and 

goto [sm-r, A] == s ( where r is the length of β) then 
new config is (s0 X1 s1 X2 s2...Xm-r sm-r As, ai ai+1...an$)

3. if action [sm, ai] == ACCEPT then stop
4. if action [sm, ai] == ERROR then attempt recovery
Can resolve some shift-reduce conflicts with lookahead.

ex: LR(1)
Can resolve others in favor of a shift. 

ex: S →iCtS | iCtSeS
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Advantages of LR Parsing

 LR parsers can recognize almost all programming 
language constructs expressed in context -free 
grammars.

 Efficient and requires no backtracking.

 Is a superset of the grammars that can be handled 
with predictive parsers.

 Can detect a syntactic error as soon as possible on a 
left-to-right scan of the input.
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LR Parsing Example

1. E → E + T
2. E → T
3. T → T * F
4. T → F
5. F → ( E )
6. F → id

followed by Fig. 4.37
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LR Parsing Example

It produces rightmost derivation in reverse:

E → E + T → E + F  → E + id 

→ T + id  → T * F + id

→ T * id + id  → F * id + id 

→ id * id + id

followed by Fig. 4.38
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Calculating the Sets of LR(0) Items

LR(0) item - production with a dot at some position in     
the right side

Example:
A→BC has 3 possible LR(0) items

A→·BC
A→B·C
A→BC·

A→ε has 1 possible item
A→·

3 operations required to construct the sets of LR(0) items:
(1) closure, (2) goto, and (3) augment

followed by Fig. 4.32
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Example of Computing the Closure of 
a Set of LR(0) Items

Grammar Closure (I
0
) for I0 = {E´→·E}

E´ →E E´ →·E
E →E + T | T E →·E + T
T →T * F | F E →·T
F →( E ) | id T →·T * F

T →·F
F →·( E )
F →· id
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Calculating Goto of a Set of LR(0) Items
Calculate goto (I,X) where I is a set of items and X is a grammar 
symbol.

Take the closure (the set of items of the form A→αX·β)

where  A→α·Xβ is in I.

Grammar Goto (I
1
,+) for I

1
= {E´→E·,E→E·+T}

E´ → E E → E + ·T
E → E + T | T T → ·T * F
T → T * F | F T → ·F
F → ( E ) | id F → ·( E )

F → ·id

Goto (I
2
,*) for I

2
={E→T·,T→T·*F}

T → T * ·F
F → ·( E )
F → ·id
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Augmenting the Grammar

followed by Fig. 4.33, 4.31

 Given grammar G with start symbol S, then an 
augmented grammar G´ is G with a new start 
symbol S´ and new production S´→S.
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followed by Fig. 4.31, A

Analogy of Calculating the Set of LR(0) 
Items with Converting an NFA to a DFA

 Constructing the set of items is similar to converting 
an NFA to a DFA

 each state in the NFA is an individual item

 the closure (I) for a set of items is the same as the 
ε-closure of a set of NFA states

 each set of items is now a DFA state and goto 
(I,X) gives the transition from I on symbol X
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Sets of LR(0) Items Example

S  →  L = R  | R

L  →  *R  | id

R  →  L

followed by Fig. 4.39
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Constructing SLR Parsing Tables

Let C = {I
0
, I

1
, ..., I

n
} be the parser states.

1. If [A→α·aβ] is in Ii and goto (Ii, a) = Ij then set

action [i, a] to 'shift j'.

2. If [A→α·] is in I
i
, then set action [i, a] to 'reduce A→α' for 

all a in the FOLLOW(A).  A may not be S´.

3. If [S´→ S·] is in I
i
, then set action [i, $] to 'accept'.

4. If goto (I
i
, A)=I

j
, then set goto[i, A] to j.

5. Set all other table entries to 'error'.

6. The initial state is the one holding [S´→·S].

followed by Fig. 4.37
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Using Ambiguous Grammars

1. E → E + E E → E + T | T
2. E → E * E instead of T → T * F | F
3. E → ( E ) F → ( E ) | id
4. E → id

See Figure 4.48.

Advantages:
Grammar is easier to read.
Parser is more efficient. 

followed by Fig. 4.48
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Using Ambiguous Grammars (cont.)

Can use precedence and associativity to solve the 
problem. 

See Fig 4.49.

shift / reduce conflict in state action[7,+]=(s4,r1)
s4 = shift 4 or E → E + E
r1 = reduce 1 or E → E + E

id + id + id 
 cursor here

action[7,*]=(s5,r1)
action[8,+]=(s4,r2) action[8,*]=(s5,r2)

followed by Fig. 4.49
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Another Ambiguous Grammar

0. S → S

1. S  → iSeS

2. S  → iS

3. S  → a

See Figure 4.50.

action[4,e]=(s5,r2)

followed by Fig. 4.50, 4.51
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Ambiguities from Special-Case 
Productions

E → E sub E sup E
E → E sub E
E → E sup E
E → { E }
E → c
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Ambiguities from Special-Case 
Productions (cont)

1. E → E sub E sup E FIRST(E) = { '{', c}
2. E → E sub E FOLLOW(E) = {sub,sup,'}',$}
3. E → E sup E
4. E → { E } sub, sup have equal precedence 
5. E → c and are right associative

followed by Fig. B
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Ambiguities from Special-Case 
Productions (cont)

1. E → E sub E sup E FIRST(E) = { '{', c}
2. E → E sub E FOLLOW(E) = {sub,sup,'}',$}
3. E → E sup E
4. E → { E } sub, sup have equal precedence 
5. E → c and are right associative

action[7,sub]=(s4,r2) action[7,sup]=(s10,r2)
action[8,sub]=(s4,r3) action[8,sup]=(s5,r3)
action[11,sub]=(s5,r1,r3) action[11,sup]=(s5,r1,r3)
action[11,}]=(r1,r3) action[11,$]=(r1,r3)

followed by Fig. C
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YACC

Yacc source program declaration
%%
translation rules
%%
supporting C-routines

followed by Fig. 4.57
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YACC Declarations

 In declarations:

 Can put ordinary C declarations in

%{

... 

%}

 Can declare tokens using

 %token

 %left

 %right

 Precedence is established by the order the operators 
are listed (low to high).
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YACC Translation Rules

 Form

A : Body ;

where A is a nonterminal and Body is a list of 
nonterminals and terminals.

 Semantic actions can be enclosed before or after 
each grammar symbol in the body.

 Yacc chooses to shift in a shift/reduce conflict.

 Yacc chooses the first production in a 
reduce/reduce conflict.
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Yacc Translation Rules (cont.)

 When there is more than one rule with the same 
left hand side, a '|' can be used.

A : B C D ;

A : E F ;

A : G ;

=>

A : B C D

| E F

| G

;
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%token IF ELSE NAME /* defines multicharacter tokens */
%right '=' /* low precedence, a=b=c shifts */
%left '+' '-' /* mid precedence, a-b-c reduces */
%left '*' '/' /* high precedence, a/b/c reduces */
%%
stmt : expr ';'

| IF '(' expr ')' stmt
| IF '(' expr ')' stmt ELSE stmt
; /* prefers shift to reduce in shift/reduce conflict */

expr : NAME '=' expr /* assignment */
| expr '+' expr
| expr '-' expr
| expr '*' expr
| expr '/' expr
| '-' expr  %prec '*' /* can override precedence */
| NAME
;

%%   /* definitions of yylex, etc. can follow */

Example of a Yacc Specification
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Yacc Actions

 Actions are C code segments enclosed in { } and 
may be placed before or after any grammar symbol 
in the right hand side of a rule.

 To return a value associated with a rule, the action 
can set $$.

 To access a value associated with a grammar 
symbol on the right hand side, use $i, where i is the 
position of that grammar symbol.

 The default action for a rule is

{ $$ = $1; }
followed by Fig. 4.58, 4.59
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Syntax Error Handling

 Errors can occur at many levels

 lexical - unknown operator

 syntactic - unbalanced parentheses

 semantic - variable never declared

 logical - dereference a null pointer

 Goals of error handling in a parser

 detect and report the presence of errors

 recover from each error to be able to detect subsequent 
errors

 should not slow down the processing of correct programs
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Syntax Error Handling (cont.)

 Viable−prefix property - detect an error as soon as 
see a prefix of the input that is not a prefix of any 
string in the language.
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Error-Recovery Strategies

 Panic- mode 

 skip until one of a synchronizing set of tokens is found 
(e.g. ';', ''end'').  Is very simple to implement but may 
miss detection of some error (when more than one error 
in a single statement)

 Phase- level 

 replace prefix of remaining input by a string that allows 
the parser to continue.   Hard for the compiler writer to 
anticipate all error situations
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Error-Recovery Strategies (cont...)

 Error productions 

 augment the grammar of the source language to include 
productions for common errors.  When production is 
used, an appropriate error diagnostic would be issued.  
Feasible to only handle a limited number of errors.

 Global correction 

 choose minimal sequence of changes to allow a least-
cost correction.  Too costly to actually be implemented 
in a parser.  Also the closest correct program may not be 
what the programmer intended.


