
EECS 665 Compiler Construction 1

Concepts Introduced in Chapter 6

● types of intermediate code representations
● translation of

– declarations

– arithmetic expressions

– boolean expressions

– flow-of-control statements

● backpatching

EECS 665 Compiler Construction 2

Intermediate Code Generation Is
Performed by the Front End

EECS 665 Compiler Construction 3

Intermediate Code Generation

● Intermediate code generation can be done in a
separate pass (e.g. Ada requires complex semantic
checks) or can be combined with parsing and static
checking in a single pass (e.g. Pascal designed for
one-pass compilation).

● Generating intermediate code rather than the target
code directly
– facilitates retargeting

– allows a machine independent optimization pass to be
applied to the intermediate representation

EECS 665 Compiler Construction 4

Types of Intermediate Representation

● Syntax trees and Directed Acyclic Graphs (DAG)
– nodes represent language constructs

– children represent components of the construct

● DAG
– represents each common subexpression only once in the

tree

– helps compiler optimize the generated code

followed by Fig. 6.3, 6.4, 6.6

EECS 665 Compiler Construction 5

Types of Intermediate Representation

● Three-address code
– general form: x = y op z (2 source, 1 destination)

– widely used form of intermediate representation

– Types of three-address code
● quadruples, triples, static single assignment (SSA)

● Postfix

– 0 operands (just an operator)

– all operands are on a compiler-generated stack

followed by Fig. 6.8

EECS 665 Compiler Construction 6

Types of Intermediate Representation

● Two-address code
– x := op y

– where x := x op y is implied

● One-address code
– op x

– where ac := ac op x is implied and ac is an accumulator

EECS 665 Compiler Construction 7

Types of Three-Address Code

● Quadruples
– has 4 fields, called op, arg1, arg2, and result

– often used in compilers that perform global optimization
on intermediate code.

– easy to rearrange code since result names are explicit.

followed by Fig. 6.10

EECS 665 Compiler Construction 8

● Triples
– similar to quadruples, but implicit results and temporary

values

– result of an operation is referred to by its position

– triples avoid symbol table entries for temporaries, but
complicate rearrangement of code.

– indirect triples allow rearrangement of code since they
reference a pointer to a triple instead.

Types of Three-Address Code
(cont...)

followed by Fig. 6.11, 6.12

EECS 665 Compiler Construction 9

Types of Three-Address Code
(cont...)

● Static Single Assignment (SSA) form
– an increasing popular format in optimizing compilers

– all assignments in SSA are to variables with a distinct
name

– see Figure 6.13

● function to combine multiple variable definitions

if (flag) if (flag)

x = -1; x = -1; x
1
 = -1; x

2
 = -1;

y = x * a; x
3
 =(x1,x2);

y = x
3
 * a; followed by Fig. 6.13

EECS 665 Compiler Construction 10

Three Address Stmts Used in the Text
● x := y op z # binary operation

● x := op y # unary operation

● x := y # copy or move

● goto L # unconditional jump

● if x relop y goto L # conditional jump

● param x # pass argument

● call p,n # call procedure p with n args

● return y # return (value is optional)

● x := y[i], x[i] := y # indexed assignments

● x := &y # address assignment

● x := *y, *x = y # pointer assignments

EECS 665 Compiler Construction 11

Postfix

● Having the operator after operand eliminates the
need for parentheses.

(a+b) * c ⇒ ab + c *

a * (b + c) ⇒ abc + *

(a + b) * (c + d) ⇒ ab + cd + *

● Evaluate operands by pushing them on a stack.
● Evaluate operators by popping operands, pushing

result.

 A = B * C + D ⇒ ABC * D + =

EECS 665 Compiler Construction 12

Postfix (cont.)

Activity Stack

push A A

push B AB

push C ABC

* Ar*

push D Ar*D

+ Ar+

=

● Code generation of postfix code is trivial for
several types of architectures.

EECS 665 Compiler Construction 13

Translation of Declarations

● Assign storage and data type to local variables.
● Using the declared data type

– determine the amount of storage (integer – 4 bytes,
float – 8 bytes, etc.)

– assign each variable a relative offset from the start of the
activation record for the procedure

followed by Fig. 6.17, 6.15, 6.16

EECS 665 Compiler Construction 14

Translation of Expressions

● Translate arithmetic expressions into three-address
code.

● see Figure 6.19
● a = b +-c is translated into:

 t
1
 = minus c

 t
2
 = b + t

1

 a = t
2

EECS 665 Compiler Construction 15

Translation of Boolean Expressions

● Boolean expressions are used in statements, such as
if, while, to alter the flow of control.

● Boolean operators
– ! – NOT (highest precedence)

– && – AND (mid precedence, left associative)

– || – OR (lowest precedence, left associative)

– <, <=, >, >=, =, !=, are relational operators

● Short-circuit code
– B1 || B2, if B1 true, then don't evaluate B2

– B1 && B2, if B1 false, then don't evaluate B2
followed by Fig. 6.37

EECS 665 Compiler Construction 16

Translation of Control-flow
Statements

● Control-flow statements include:
– if statement

– if statement else statement

– while statement

followed by Fig. 6.35, 6.36

EECS 665 Compiler Construction 17

Control-Flow Translation of
if-Statement

● Consider statement:

 if x < 100 goto L
2

 goto L
3

L
3
: if x > 200 goto L

4

 goto L
1

L
4
: if x != y goto L

2

 goto L
1

L
2
: x = 0

L
1
:

if (x < 100 || x > 200 && x != y) x = 0;

EECS 665 Compiler Construction 18

Backpatching

● Allows code for boolean expressions and flow-of-
control statements to be generated in a single pass.

● The targets of jumps will be filled in when the
correct label is known.

EECS 665 Compiler Construction 19

Backpatching an ADA While Loop

● Example

while a < b loop

a := a + cost;

end loop;

● loop_stmt : WHILE m cexpr LOOP m seq_of_stmts n
END LOOP m ';'
{ dowhile ($2, $3, $5, $7, $10); }

 ;

EECS 665 Compiler Construction 20

Backpatching an Ada While Loop
(cont.)

loop_stmt : WHILE m cexpr LOOP m seq_of_stmts n END LOOP m ';'
{ dowhile ($2, $3, $5, $7, $10); }

;

void dowhile (int m1, struct sem_rec *e, int m2,

 struct sem_rec *n1, int m3) {

 backpatch(eback.s_true, m2);

 backpatch(es_false, m3);

 backpatch(n1, m1);

 return(NULL);

}

EECS 665 Compiler Construction 21

Backpatching an Ada If Statement

● Examples:

 if a < b then if a < b then if a < b then

 a := a +1; a := a + 1; a := a + 1;

 end if; else elsif a < c then

 a := a + 2; a := a + 2;

 end if; ...
end if;

EECS 665 Compiler Construction 22

Backpatching an Ada If Statement
(cont.)

if_stmt : IF cexpr THEN m seq_of_stmts n elsif_list0
else_option END IF m ';'

 { doif($2, $4, $6, $7, $8, $11); }

 ;

elsif_list0 : {$$ = (struct sem_rec *) NULL; }

 | elsif_list0 ELSIF m cexpr THEN m seq_of_stmts n

 {$$ = doelsif($1, $3, $4, $6, $8); }

 ;

else_option: { $$ = (struct sem_rec *) NULL; }

 | ELSE m seq_of_stmts { $$ = $2; }

EECS 665 Compiler Construction 23

if_stmt : IF cexpr THEN m seq_of_stmts n elsif_list0 else_option END IF
m

{ doif($2, $4, $6, $7, $8, $11); }

void doif(struct sem_rec *e, int m1, struct sem_rec *n1,
 struct sem_rec *elsif, int elsopt, int m2) {

backpatch(eback.s_true, m1);
 backpatch(n1, m2);

if (elsif != NULL) {

backpatch(es_false, elsifs_place);

backpatch(elsifback.s_link, m2);
if (elsopt != 0)

backpatch(elsifs_false, elsopt);
else

backpatch(elsifs_false, m2);
}
else if (elsopt != 0)

backpatch(es_false, elsopt);
else

backpatch(es_false, m2);
}

EECS 665 Compiler Construction 24

Backpatching an Ada If Statement
(cont.)

elsif_list0 : { $$ = (struct sem_rec *) NULL; }
 | elsif_list0 ELSIF m cexpr THEN m seq_of_stmts n

{ $$ = doelsif($1, $3, $4, $6, $8); }
 ;

struct sem_rec *doelsif (struct sem_rec *elsif, int m1, struct sem_rec *e,
 int m2, struct sem_rec *n1) {

backpatch (eback.s_true, m2);
if (elsif != NULL) {

backpatch(elsifs_false, m1);
return (node(elsifs_place, 0, merge(n1, elsifback.s_link), es_false));

}
else

return (node(m1, 0, n1, es_false));
}

EECS 665 Compiler Construction 31

Addressing One Dimensional Arrays
● Assume w is the width of each array element in

array A[] and low is the first index value.
● The location of the ith element in A.

base + (i  low)*w

● Example:

INTEGER ARRAY A[5:52];

...

N = A[I];

– low=5, base=addr(A[5]), width=4

address(A[I])=addr(A[5])+(I5)*4

EECS 665 Compiler Construction 32

Addressing One Dimensional Arrays
Efficiently

● Can rewrite as:

i*w + base  low*w

address(A[I]) = I*4 + addr(A[5])  5*4

 = I*4 + addr(A[5])  20

EECS 665 Compiler Construction 33

Addressing Two Dimensional Arrays

● Assume row -major order, w is the width of each element,
and n2 is the number of values i2 can take.

address = base + ((i1  low1)*n2 + i2  low2)*w

● Example in Pascal:

var a : array[3..10, 4..8] of real;

addr(a[i][j]) = addr(a[3][4]) + ((i3)*5 + j  4)*8

● Can rewrite as

address = ((i1*n2)+i2)*w + (base  ((low1*n2)+low2)*w)

addr(a[i][j]) = ((i*5)+j)*8 + addr(a[3][4])  ((3*5)+4)*8

 = ((i*5)+j)*8 + addr(a[3][4])  152

EECS 665 Compiler Construction 34

Addressing C Arrays

● Lower bound of each dimension of a C array is
zero.

● 1 dimensional

base + i*w
● 2 dimensional

base + (i1*n2 + i2)*w
● 3 dimensional

base + ((i1*n2 + i2)*n3 + i3)*w

EECS 665 Compiler Construction 35

Static Checking

1. Type Checks

Ex: int a, c[10], d;

 a = c + d;

2. Flow-of-control Checks

Ex: main {

 int i;

 i++;

 break;

 }

EECS 665 Compiler Construction 36

Static Checking (cont.)

3. Uniqueness Checks
Ex: program foo (output);

 var i, j : integer;

 a,i : real;

4. Name-related Checks
Ex: LOOPA:

LOOP

EXIT WHEN I =N;

I = I + 1;

TERM := TERM / REAL (I);

END LOOP LOOPB;

EECS 665 Compiler Construction 37

Static and Dynamic Type Checking

● Static type checking is performed by the compiler.
● Dynamic type checking is performed when the

target program is executing.
● Some checks can only be performed dynamically:

 var i : 0..255;

 ...

 i := i+1;

EECS 665 Compiler Construction 38

Why is Static Checking Preferable to
Dynamic Checking?

● There is no guarantee that the dynamic check will
be tested before the application is distributed.

● The cost of a static check is at compile time, where
the cost of a dynamic check may occur every time
the associated language construct is executed.

EECS 665 Compiler Construction 39

Basic Terms

● Atomic types - types that are predefined or known
by the compiler
– boolean, char, integer, real in Pascal

● Constructed types - types that one declares
– arrays, records, pointers, classes

● Type expression - the type associated with a
language construct

● Type system - a collection of rules for assigning
type expressions to various parts of a program

EECS 665 Compiler Construction 42

Type Checking

● Perform type checking
– assign type expression to all source language

components

– determine conformance to the language type system

● A sound type system statically guarantees that type
errors cannot occur at runtime.

● A language implementation is strongly typed if the
compiler guarantees that the program it accepts will
run without type errors.

EECS 665 Compiler Construction 43

Rules for Type Checking

● Type synthesis
– build up type of expression from types of subexpressions

● Type inference
– determine type of a construct from the way it is used

if f has type s t and x has type s,
then expression f(x) has type t

if f(x) is an expression

then for some  and , f has type  and x has type 

EECS 665 Compiler Construction 44

Example of a Simple Type Checker

Production Semantic Rule

PD; E

DD; D

Did : T { addtype(id.entry, T.type); }

Tchar { T.type = char; }

Tinteger { T.type = integer; }

TT1 { T.type = pointer (T1.type); }

Tarray[num]of T1 { T.type = array(num.val,T1.type); }

Eliteral { E.type = char; }

Enum { E.type = integer; }

EECS 665 Compiler Construction 45

Example of a Simple Type Check
(cont.)

Production Semantic Rule

Eid { E.type = lookup(id.entry); }

EE1 mod E2 { E.type = E1.type == integer &&

 E2.type == integer ?

 integer : type_error(); }

EE1[E2] { E.type = E2.type == integer &&

 isarray(E1.type, &t) ?

 t : type_error(); }

EE1↑ { E.type = ispointer(E1.type,&t) ?

 t : type_error(); }

EECS 665 Compiler Construction 46

Type Conversions - Coercions

● An implicit type conversion.
● In C or C++, some type conversions can be implicit

– assignments

– operands to arithmetic and logical operators

– parameter passing

– return values

EECS 665 Compiler Construction 47

Overloading in Java

● A function or operator can represent different
operations in different contexts

● Example 1
– operators '+', '-' etc., are overloaded to work with

different data types

● Example 2
– function overloading resolved by looking at the

arguments of a function

void err () { ... }
void err (String s) { ... }

EECS 665 Compiler Construction 48

Polymorphism

● The ability for a language construct to be executed
with arguments of different types

● Example 1
– function length can be called with different types of lists

fun length (x) =
 if null (x) then 0 else length (tail(x)) + 1

● Example 2
– templates in C++

● Example 3
– using the object class in Java

