Concepts Introduced in Chapter 8

- register assignment
- instruction selection
- run-time stack management

followed by Fig. 8.1
Target Program

The target program can be

- Absolute machine language
- Relocatable machine language
- Assembly language
Tasks Performed by a Code Generator

- Register assignment
- Instruction selection
- Management of the run-time stack
Register Assignment

- Register assignment is the assignment of temporaries to hardware registers.

- Challenges
 - Use of register pairs
 - Overlapping of registers
 - Operations in specific registers
 - Spills
Instruction Selection

- Instruction selection is the mapping of the intermediate language operations to machine instructions.
- Have to choose not only the appropriate instructions, but also the addressing mode of each operand.
SPARC Addressing Modes

<table>
<thead>
<tr>
<th>Name</th>
<th>Assembly</th>
<th>RTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>immediate</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>register</td>
<td>%n</td>
<td>r[n]</td>
</tr>
<tr>
<td>register deferred</td>
<td>[%n]</td>
<td>M[r[n]]</td>
</tr>
<tr>
<td>displacement</td>
<td>[%n+m]</td>
<td>M[r[n]+m]</td>
</tr>
<tr>
<td></td>
<td>[%n-m]</td>
<td>M[r[n]-m]</td>
</tr>
<tr>
<td>indexed</td>
<td>[%n+%m]</td>
<td>M[r[n]+r[m]]</td>
</tr>
</tbody>
</table>
Run-Time Stack Management

- Allocating and deallocating space on the run-time stack when entering and leaving a function.
- Partitioning the register set into scratch and nonscratch sets.
- Saving and restoring nonscratch registers that are used in the function.
- Dedicating registers for managing the run-time stack.
- Passing arguments.
- Responsibility of callee versus caller.
Evaluation Order of Arguments

• What is printed by the following program?

```c
int g = 0;

int f0() { return g; }

int f1() { return ++g; }

main()
{
    printf("%d %d\n", f0(), f1());
}
```